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Abstract

We present a novel multi-view, projective texture mapping technique. While previous multi-view texturing ap-

proaches lead to blurring and ghosting artefacts if 3D geometry and/or camera calibration are imprecise, we

propose a texturing algorithm that warps (“floats”) projected textures during run-time to preserve crisp, detailed

texture appearance. Our GPU implementation achieves interactive to real-time frame rates. The method is very

generally applicable and can be used in combination with many image-based rendering methods or projective

texturing applications. By using Floating Textures in conjunction with, e.g., visual hull rendering, light field ren-

dering, or free-viewpoint video, improved rendering results are obtained from fewer input images, less accurately

calibrated cameras, and coarser 3D geometry proxies.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Generation
I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism

1. Introduction

To take advantage of the continuing progress in graphics
hardware capabilities for realistic rendering, ever more de-
tailed model descriptions are needed. Because creating com-
plex models with conventional modeling and animation tools
is a time-consuming and expensive process, direct modeling
techniques from real-world examples are an attractive alter-
native. By scanning, or reconstructing, the 3D geometry of
an object or scene and capturing its visual appearance using
photos or video, the goal of direct modeling techniques is
to achieve photo-realistic 3D rendering results at interactive
frame rates.

Texture mapping was introduced in computer graphics as
early as 1974 as a very effective means to increase visual
rendering complexity without the need to increase geom-
etry details [Cat74]. Later on, projective texture mapping
overcame the need for explicit texture-to-surface parameter-
ization and enabled applying conventional photographs di-
rectly as texture [SKvW∗92]. To texture 3D geometry from
all around and to reproduce non-Lambertian reflectance ef-
fects View-dependent texture mapping [DTM96] and Un-
structured Lumigraph Rendering [BBM∗01] use multiple
photographs taken from different viewpoints. If exact 3D

geometry and sufficiently many, well-calibrated and regis-
tered images are given, image-based modeling techniques,
like [WAA∗00, LKG∗03], achieve impressive 3D rendering
results.

Unfortunately, acquiring highly accurate 3D geometry
and calibrated images turns out to be at least as tedious
and time-consuming as model creation using software tools.
In response, a number of different image-based rendering
(IBR) techniques have been devised that make do with
more approximate geometry. With a mere planar rectangle
as geometry proxy, Light Field Rendering arguably con-
stitutes the most “puristic” image-based rendering tech-
nique [LH96]. Here, many images are needed to avoid blur-
ring or ghosting artefacts [CCST00]. If more appropriate
depth maps are additionally available, Lumigraph rendering
can compensate for parallax between images to yield con-
vincing results from less images [GGSC96,BBM∗01]. Other
image-based rendering approaches implicitly or explicitly
recover approximate 3D geometry from the input images to
which the images are applied as texture [MBR∗00,VBK05,
CTMS03]. In general, however, the price for contending
with approximate 3D geometry is that (many) more input
images must be available, else rendering quality degrades
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Figure 1:Comparison of standard linear interpolation using

the Unstructured Lumigraph weighting scheme (left) and the

Floating Textures approach (right) for similar input images

and visual hull geometry proxy. Ghosting along the collar

and blurring of the shirt’s front, noticeable in linear inter-

polation, are eliminated on-the-fly by Floating Textures.

and artefacts quickly prevail, Fig. 1. Another unsolved chal-
lenge is that, while image-based rendering can compensate
for coarse 3D geometry if sufficiently many input images are
available, all techniques still require well calibrated cameras
and input images. Thus, time-consuming camera calibration
procedures must precede image-based object acquisition ev-
ery time. But even with the utmost care taken during acqui-
sition, minute camera calibration inaccuracies, tiny 3D scan-
ning holes, and small registration errors can occur and visi-
bly degrade rendering quality of the model. The only option
to rescue rendering quality then is to try to "fix" the model,
registration, or calibration by hand, or to repeat the acquisi-
tion process all over again.

What is needed is a multi-image texturing algorithm that
achieves best-possible results from imprecisely calibrated
images and approximate 3D geometry. In the following, we
propose a GPU-based multi-view texturing algorithm to-
wards this goal. Because the algorithm runs independently
on the graphics card, it can be used in conjunction with many
image-based modeling and rendering (IBMR) techniques to
improve rendering outcome.

As particular contributions, our paper presents:

• a novel texturing algorithm that constitutes a symbiosis
between classical linear interpolation and optical flow-
based warping refinement to correct for local texture mis-
alignments and warping the textures accordingly in the
rendered image domain;

• a novel weighting and visibility scheme which signifi-
cantly reduces artefacts at occlusion boundaries;

• a general algorithm that can be applied in conjunction
with many IBMR techniques to improve rendering qual-
ity;

• an efficient GPU-based implementation of the proposed

algorithm which achieves interactive to real-time render-
ing frame rates;

• a simple extension to our Floating Textures approach for
static scenes which reduces the actual rendering part to a
simple texture look-up.

The remainder of the paper is organized as follows. After
reviewing relevant previous work in Section 2 we examine
the underlying problem of ghosting and occlusion artefacts
in multi-view projective texture mapping in Section 3. In
Section 4 we describe our Floating Textures as a way to
eliminate ghosting, occlusion and calibration artefacts. Im-
plementation details are given in Section 5, and experimen-
tal evaluation results for a variety of different test scenes and
IBMR techniques are presented in Section 6 before we dis-
cuss limitations and conclude with Section 7.

2. Previous Work

Sampling Problem: In light field rendering, a novel view
is generated by appropriately re-sampling from a large
set of images [LH96, MP04]. Given sufficiently many in-
put images, the synthesized novel view can be of aston-
ishingly high quality. Else, ghosting artefacts or, at best,
blurring degrade light field rendering quality. Several re-
searchers have investigated how many input images are min-
imally needed to create artefact-free light field rendering re-
sults [CCST00, LS04]. Alternatively, rendering quality can
be enhanced by considering not only input camera positions
but also the current viewpoint [ESM07] or by adding back in
high frequency components [SYGM03]. Nevertheless, these
approaches still introduce at least some image blur if the
scene is undersampled.

Geometry aided IBR: Instead of relying on sampling
density, another approach to increase rendering quality from
sparsely sampled image data is to make use of a geometry
proxy representing the scene. Prominent examples are Lumi-
graph Rendering by Gortler et al. [GGSC96], Unstructured
Lumigraph Rendering by Buehler et al. [BBM∗01] and De-
bevec et al.’s View-dependent Texture Mapping [DTM96].
Isaaksen et al. [IMG00] showed that if scene depth estima-
tion is precise enough and no occlusion occurs, any sin-
gle scene element can, in theory, be reconstructed with-
out ghosting artefacts. Several other researchers built upon
this insight to improve rendering results [ZKU∗04,VBK05].
An interesting approach which not only blends colours on
a geometry proxy but attempts to reconstruct a consistent,
view-dependent geometry of the scene with the aid of bilat-
eral filtering was only recently presented by Waschbüsch et

al. [WWG07].

In image-based modeling approaches, high-quality 3D
geometry scans of real-world objects are used and tex-
tured with a collection of photographs [RCMS99,WAA∗00,
Bau02, ZWT∗05]. Acquiring these detailed models is time-
consuming and, of course, is possible only for scenes that
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hold still during acquisition. In any case, image calibration
inaccuracies, subcritical sampling, and geometry acquisition
errors remain potential sources of rendering artefacts.

Occlusion handling: In settings with very sparse camera
setups, occlusion and registration artefacts become annoy-
ingly obvious. Carranza et al. [CTMS03] therefore proposed
to use a visibility map, computing visibility for every vertex
of the mesh from several camera views that are slightly dis-
placed in the image plane. Lensch et al. [LKG∗03] search
for depth discontinuities to discard samples close to them,
as they are prone to errors. In Virtual Viewpoint Video
[ZKU∗04] these discontinuities are rendered separately us-
ing Bayesian image matting to compute fore- and back-
ground colours along with opacities. All of these approaches
either assume very precise underlying geometry, or they
need extensive pre-processing to achieve interactive render-
ing frame rates.

Warping Techniques: If complete correspondences be-
tween image pixels can be established, accurate image warp-
ing becomes possible [CW93,MB95]. Often, however, cur-
rent methods for automatic camera calibration and depth ac-
quisition are too imprecise. For very similar images, opti-
cal flow techniques have proven useful [HS81,LK81]. They
can be employed to create smooth morphs between images,
e.g. [VBK05].

The work with the closest resemblance to ours was pro-
posed by Aliaga et al. in the context of creating virtual walk-
throughs [AFYC02, AYFC03]. Aliaga et al. capture a very
dense set of omnidirectional images, with an average dis-
tance between capturing positions of 4 cm. For image syn-
thesis, they identify corresponding features in the different
images, triangulate them in one reference view, and warp
this mesh according to the current viewpoint and the inter-
polated feature positions. Our approach differs markedly in
a number of important points. First, Floating Textures do not
rely on previously tracked features which can be difficult to
establish, especially for natural scenes. Second, we explic-
itly take occlusion effects into account, instead of relying on
dense sampling. Third, instead of using only a sparse set of
features to establish the necessary information for warping,
we search for a globally optimal solution, which makes our
approach less dependent on scene properties.

3. Problem Description

In a slightly simplified version, the plenoptic function
P(x,y,z,θ,φ) describes radiance as a function of 3D posi-
tion in space (x,y,z) and direction (θ,φ) [AB91]. The notion
of image-based rendering now is to approximate the plenop-
tic function with a finite number of discrete samples of P for
various (x,y,z,θ,φ) and to efficiently re-create novel views
from this representation by making use of some sort of ob-
ject geometry proxy.

Any object surface that we choose to display can be de-

Geometry error Projection Error
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Figure 2: Top left: Geometry inaccuracies cause ghosting

artefacts. Point P on the original surface GO is erroneously

projected to 3D-position P1 from camera C1 and to 3D-

position P2 from camera C2 if only the approximate geom-

etry GA is available. Top right: Small imprecisions in cam-

era calibration can lead to false pixel projections (red lines,

compared to correct projections displayed as blue lines).

This leads to a texture shift on the object surface and sub-

sequently to ghosting artefacts. Bottom: Visibility errors.

Given only approximate geometry GA, point P is classified

as being visible from C2 and not visible from camera C1.

Given correct geometryGO, it is actually the reverse, result-

ing in false projections.

scribed as a function G : (x,y,z,θ,φ) → (xo,yo,zo), i.e., by
a mapping of viewing rays (x,y,z,θ,φ) to 3D coordinates
(xo,yo,zo) on the object’s surface. Of course, the function
G is only defined for rays hitting the object, but this is not
crucial since one can simply discard the computation for all
other viewing rays. With GO we denote the function of the
true surface of the object, and with GA we denote a function
that only approximates this surface, Fig. 2.

Next, a variety of camera calibration techniques exist to
establish the projection mapping Pi : (x,y,z) → (s, t) which
describes how any 3D point (x,y,z) is mapped to its corre-
sponding 2D-position (s, t) in the i-th image. From its pro-
jected position (s, t) in image Ii, the 3D point’s colour value
(r,g,b) can be read out, Ii : (s, t)→ (r,g,b). Then, any novel
view IVLinear from a virtual viewpoint V synthesized by a
weighted linear interpolation scheme, as employed by most
IBR systems, can be formulated as

I
V
Linear(x,y,z,θ,φ) = ∑

i

I
V
i (x,y,z,θ,φ) ωi (1)

with

I
V
i (x,y,z,θ,φ) = Ii(Pi(GA(x,y,z,θ,φ))) (2)

ωi = δi(GA(x,y,z,θ,φ)) wi(x,y,z,θ,φ) (3)
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Figure 3: Rendering with Floating Textures. The input pho-

tos are projected from camera positions Ci onto the approxi-

mate geometryGA and onto the desired image plane of view-

point V . The resulting intermediate images IVi exhibit mis-

match which is compensated by warping all IVi based on the

optical flow to obtain the final image IVFloat.

and ∑i ωi = 1. The notation IVi is used to denote the image
rendered for a viewpoint V by projecting the input image Ii
as texture onto GA. Note that δi is a visibility factor which
is one if a point on the approximate surface GA is visible by
camera i, and zero otherwise. wi is the weighting function
which determines the influence of camera i for every viewing
ray.

Note that (1) is the attempt to represent the plenoptic func-
tion as a linear combination of re-projected images. For sev-
eral reasons, weighted linear interpolation cannot be relied
on to reconstruct the correct values of the plenoptic func-
tion:

1. Typically, GO 6= GA almost everywhere, so the input to
(2) is already incorrect in most places, Fig. 2 top left.

2. Due to calibration errors, Pi is not exact, leading to pro-
jection deviations and, subsequently, erroneous colour
values, Fig. 2 top right.

3. In any case, only visibility calculations based on the orig-
inal geometry GO can provide correct results. If only
approximate geometry is available, visibility errors are
bound to occur, Fig. 2 bottom.

In summary, in the presence of even small geometry inaccu-
racies or camera calibration imprecisions, a linear approach
is not able to correctly interpolate from discrete image sam-
ples.

4. Floating Textures

In the following, we describe our approach to reduce blur-
ring and ghosting artefacts caused by geometry and calibra-

tion inaccuracies using an adaptive, non-linear approach. In
a nutshell, the notion of Floating Textures is to correct for
local texture misalignments by determining the optical flow
between projected textures and warping the textures accord-
ingly in the rendered image domain. Both steps, optical flow
estimation and multi-texture warping, can be efficiently im-
plemented on graphics hardware to achieve interactive to
real-time performance.

As input, the algorithm requires nothing more but a set
of images, the corresponding, possibly imprecise, calibra-
tion data, and a geometry proxy. For simplicity, we will first
assume an occlusion-free scene and describe how occlusion
handling can be added in Sect. 4.2. Without occlusion, any
novel viewpoint can, in theory, be rendered from the input
images by warping. To determine the warp fields, we are safe
to assume that corresponding pixels in different images have
a set of similar properties, like colour or gradient constancy,
so that the following property holds:

I j = WIi→I j ◦ Ii , (4)

where WIi→I j ◦ Ii warps an image Ii towards I j according
to the warp field WIi→I j . The problem of determining the
warp field WIi→I j between two images Ii, I j is known as
optical flow estimation [HS81,LK81]. If pixel distances be-
tween corresponding image features are not too large, algo-
rithms to robustly estimate per-pixel optical flow are avail-
able [BBPW04].

For our Floating Textures approach, we propose a symbio-
sis of linear interpolation and optical flow-based warping.
We first project the photographs from cameras Ci onto the
approximate geometry surfaceGA and render the scene from
the desired viewpoint V , creating the intermediate images
IVi , Fig. 3. Note that while corresponding image features do
not yet exactly line up in IVi they are much closer together
than in the original photos (disparity compensation). We can
apply optical flow estimation to the intermediate images IVi
to robustly determine the pairwise flow fields WIVi →IVj

.

To compensate for more than two input images, we lin-
earily combine the flow fields according to (6), apply these
to all intermediate images IVi and blend them to obtain the
final rendering result IVFloat. To reduce computational cost,
instead of establishing for n input photos (n−1)n flow fields,
it often suffices to consider only the 3 closest input images
to the current viewpoint. If more than 3 input images are
needed, we can reduce the quadratic effort to linear com-
plexity by using intermediate results, which we however did
not incorporate in our current system.

We use an angular weighting scheme as proposed
in [BBM∗01, DTM96] because it has been found to yield
better results for coarse geometry than weighting schemes
based on normal vectors [CTMS03]. Our Floating Textures
are, in fact, independent of the weighting scheme used as
long as the different weights sum up to 1 for every pixel,
which is necessesary to ensure that corresponding features
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Figure 4: Rendering with Floating Textures for static scenes.

In a preprocessing step, the images I j of every camera are

projected onto the approximate surface GA and into every

other input camera Ci, resulting in the intermediate images

I
Ci

j . Then the warp fields between these images in every cam-

era view is calculated. For rendering the image IVFloat from

viewpoint V , the warp field of each camera is queried for the

texture coordinate offset (black arrows) of every rendered

fragment, and the corrected texture value (blue dot in image

plane) is projected back onto the object and into the novel

view.

coincide in the output image, and given a smooth change
of camera influences if the virtual camera moves, otherwise
snapping problems could occur.

The processing steps are summarized in the following
functions and visualized in Fig. 3:

I
V
Float =

n

∑
i=1

(WIVi
◦ IVi )ωi (5)

WIVi
=

n

∑
j=1

ω jWIVi →IVj
(6)

WIVi
is the combined flow field which is used for warping

image IVi . (5) is therefore an extension of (1) by additionally
solving for the non-linear part in P.

Note that our Floating Textures deliberately do not satisfy
the epipolar constraint anymore. To make use of epipolar
geometry constraints one has to presume perfectly calibrated
cameras, which is seldom the case. Instead, by not relying on
epipolar geometry, Floating Textures can handle imprecise
camera calibration as well as approximate geometry.

4.1. Acceleration for Static Scenes

For static scenes it might seem unnecessary to re-compute
the flow fields for every frame. But for a coarse geometry
proxy, one cannot simply assign constant texture coordinates

to every vertex and every input image. Instead, we propose
a slight variation of our Floating Texture generation which
can be computed during preprocessing.

Instead of computing flow fields between input images af-
ter they have been projected into the desired viewpoint, we
render the scene from each camera position Ci and project
all other input images into its viewpoint, i.e, we render ICi

j ,

j ∈ {1, . . . ,n}. The flow fieldsW
I
Ci
i →I

Ci
j

are then established

between the rendered image I
Ci

i and every I
Ci

j , with j 6= i.
As the views from the cameras do not change over time for
static scenes, image synthesis for a new viewpoint reduces
to simple projective texturing using warped texture coordi-
nates, Fig. 4:

I
V
Float =

n

∑
i=1

((
n

∑
j=1

(ω jWI
Ci
i →I

Ci
j

))◦ ICi

i )Vωi (7)

Note that in comparison to viewpoint-centered warping (5)
rendering quality may be slightly reduced. On the other
hand, the online rendering computations are reduced to two
simple texture lookups per fragment and camera.

4.2. Soft Visibility

Up to now, we have assumed only occlusion-free situations,
which is seldomly the case in real-world scenarios. Simple
projection of imprecisely calibrated photos onto an approx-
imate 3D geometry model typically cause unsatisfactory re-
sults in the vicinity of occlusion boundaries, Fig. 5 top left:
texture information from occluding parts of the mesh project
incorrectly onto other geometry parts. With respect to Float-
ing Textures, this not only affects rendering quality but also
the reliability of flow field estimation.

A common approach to handle the occlusion problem is
to establish a binary visibility map for each camera, multi-
ply it with the weight map, and normalize the weights af-
terwards so they sum up to one. This efficiently discards
occluded pixels in the input cameras for texture genera-
tion [CTMS03,LKG∗03]. One drawback of this approach is
that it must be assumed that the underlying geometry is pre-
cise, and cameras are precisely calibrated. In the presence
of coarse geometry, the usage of such binary visibility maps
can create occlusion boundary artefacts at pixels where the
value of the visibility map suddenly changes, Fig. 5 left col-
umn.

To counter these effects, we create a “soft” visibility map
Ω for the current viewpoint and every input camera using a
distance filter on the binary map:

Ω(x,y) =







0 if δ(x,y) = 0
occDist(x,y)

r if occDist(x,y) ≤ r

1 else

(8)

Here r is a user-defined radius, and occDist(x,y) is the dis-
tance to the next occluded pixel. If Ω is multiplied with the

c© 2008 The Author(s)

Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.



M. Eisemann, B. De Decker, M. Magnor, P. Bekaert, E. de Aguiar, N. Ahmed, C. Theobalt & A. Sellent / Floating Textures

Figure 5: Top left: Projection errors if occlusion is ignored.

Top right: Optical flow estimation goes astray if occluded

image regions are not properly filled. Second row, left: Visu-

alization of a binary visibility map for three input cameras.

Second row, right: Visualization of a soft visibility map for

three input cameras. Third row, left: Weight map multiplied

with the binary visibility map. Third row, right: Weight map

multiplied with the soft visibility map; note that no sudden

jumps of camera weights occur anymore between adjacent

pixels. Bottom left: Final result after texture projection using

weight map with binary visibility. Bottom right: Final result

after texture projection using weight map with soft visibility.

Note that most visible seams and false projections have been

effectively removed.

weight map, (8) makes sure that occluded regions stay oc-
cluded, while hard edges in the final weight map are re-
moved. Using this “soft” visibility map the above mentioned
occlusion artefacts effectively disappear, Fig. 5 bottom right.

To improve optical flow estimation, we fill occluded ar-
eas in the projected input images IVi with the corresponding
colour values from that camera whose weight ω for this pixel
is highest. Otherwise, the erroneously projected part could
seriously influence the result of the Floating Texture output
as wrong correspondences could be established, Fig. 5 top
right. With hole filling, the quality of the flow calculation is
strongly improved, Fig. 5 bottom right. One could also think
about using already warped texture values from surrounding
“secure” areas for iterative hole filling.

5. GPU Implementation

The following is a description of our complete algorithm for
dynamic scenes. A block diagram is given in Fig. 6. The ex-
tension to static scenes is straightforward. We assume that
camera parameters, input images and a geometry proxy is
given. The geometry representation can be of almost arbi-
trary type, e.g., a triangle mesh, a voxel representation, or
a depth map (even though correct occlusion handling with
a single depth map is not always possible due to the 2.5D
scene representation).

First, given a novel viewpoint, we query the closest cam-
era positions. For sparse camera arrangements, we typically
choose the 2 or 3 closest input images. We render the ge-
ometry model from the cameras’ viewpoints into different
depth buffers. These depth maps are then used to establish
for each camera a binary visibility map for the current view-
point, similar in spirit to [CTMS03]. We use these visibility
maps as input to the soft visibility shader. The calculation
of Ω can be efficiently implemented in a two-pass fragment
shader. Next, a weight map is established by calculating the
camera weights per output pixel. We use an angular weight-
ing scheme similar to [BBM∗01]. The final camera weights
for each pixel in the output image are obtained by multiply-
ing the weight map with the visbility map and normalizing
it so that the weights sum up to 1.

To create the input images for the flow field calculation,
we render the geometry proxy from the desired viewpoint
several times into multiple render targets, in turn projecting
each input photo onto the geometry. If the weight for a spe-
cific camera is 0 for a pixel, the colour from the input camera
with the highest weight at this position is used instead.

To compute the optical flow between two images we rely
on a GPU-optimized implementation of the optical flow
technique by Brox et al. [BBPW04]. We found this algo-
rithm not only very accurate but also quite robust to noise.
Optical flow computation time depends on image resolution
as well as on the amount of texture mismatch. Per rendered
frame and three input images, we need to compute six flow
fields. Even though this processing step is computationally
expensive and takes approximately 90% of the rendering
time, we still achieve between 5 and 24fps at 1024× 768-
pixel rendering resolution on an NVidia GeForce 8800GTX.
Compared to the results of a CPU implementation presented
in [BBPW04], we observe a speedup factor of 70. While we
also experimented with faster optical flow algorithms, like a
multi-scale implementation of the well known technique by
Horn and Schunck [HS81], we found that results were not as
satisfactory. Tests have shown that the limiting speed factor
is, in fact, not computational load, but the high number of
state changes necessary to compute the flow fields.

Once all needed computations have been carried out, we
can combine the results in a final render pass, which warps
and blends the projected images according to the weight map
and flow fields.
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Figure 6: Complete overview of our Floating Textures algorithm on GPU. See text for details.

6. Results

To evaluate the proposed texturing approach, we have tested
Floating Textures in conjunction with a number of differ-
ent image-based rendering approaches. All tests were carried
out using an OpenGL/GLSL implementation of our algo-
rithm on a NVidia GeForce 8800GTX graphics card. Float-
ing Texture frame rates vary between 5 and 24 fps, depend-
ing on the number of input images used and the amount of
mismatch between textures which influences the number of
iterations needed for the optical flow estimation algorithm to
converge. The different IBR approaches with which we eval-
uated Floating Textures are (Figure 8, from top to bottom):

1. Synthetic Data Set: 49 input images synthesized from a
textured 3D model, ground truth available;

2. Polyhedral Visual Hull Rendering: shape-from-silhouette
reconstruction [FB03];

3. Free-Viewpoint Video: a parameter-fitted high-resolution
3D human model [CTMS03];

4. SurfCap: high-resolution geometry reconstructed using
silhouette, feature, and stereo cues [SH07];

5. Light Field Rendering: a sub-sampled version of the
Stanford Buddha light field data set [LH96].

Figure 7 depicts the corresponding geometry proxies for
each IBR method. For each of these five different IBR tech-
niques, we compared four different texturing approaches
(Figure 8, from left to right):

1. Bandlimited Texturing [CCST00],
2. Filtered Blending [ESM07],
3. Unstructured Lumigraph Rendering [BBM∗01], and
4. Floating Textures.

The viewpoint was chosen so that the angular distance to the
used input views was maximized.

Synthetic data set The ground truth model of the Stan-
ford Bunny consists of 65k triangles. As input images,
we rendered 49 views from random directions applying a
coloured checkerboard pattern as texture. We then reduced
the mesh to 948 triangles to use it as coarse geometry proxy.
Bandlimited reconstruction as well as Filtered Blending in-
troduce considerable blurring along texture discontinuities.

Unstructured Lumigraph rendering, on the other hand, leads
to ghosting artefacts (aliasing). Floating Textures, instead, is
able to compensate for most texture mismatch and generates
a crisp texture.

Polyhedral Visual Hull Rendering We tested different
texturing approaches for the exact polyhedral visual hull re-
construction approach by Franco and Boyer [FB03], both in
an off-line setup as well as in a real-time "live" system. Our
setup of the "live" system consists of 8 cameras with a reso-
lution of 1024x786 pixels that are connected in pairs of two
to 4 PCs (the camera nodes), arranged in an approximate
quarter-dome. One PC is used to calculate the approximate
geometry of the scene from silhouettes obtained from the
camera nodes. The camera nodes calculate these silhouettes
by downsampling the input images and performing back-
ground subtraction. The walls of the scene are covered in
green cloth to facilitate this process. The approximate ge-
ometry is sent to a PC which renders the final image. The
rendering algorithm takes the images from 3 cameras to tex-
ture the approximate geometry so only these three images
are sent over the network to conserve bandwidth. The sys-
tem allows to capture and render scenes at approximately 10
fps and 640× 480-pixel output resolution. Even though the
reconstructed visual hulls are only very approximate geom-
etry models, the Floating Textures method is able to remove
most of the ghosting artefacts prevailent in Unstructured Lu-
migraph rendering, Fig. 1.

In the offline acquisition setup, we recorded a dancer us-
ing eight cameras arranged in a full circle. Excessive blur-
ring is the result if bandlimited and filtered blending are ap-
plied, Fig. 8. With a linear blending scheme, ghosting and
projection errors degrade rendering quality of the face and
at the shoulders. These artefacts are efficiently removed by
Floating Textures without introducing any additional blur.

Free-Viewpoint Video For Free-Viewpoint Video acqui-
sition, eight cameras are regularly spaced around a full cir-
cle [CTMS03]. Due to the cameras’ far spacing, bandlim-
ited and filtered blending eliminate all texture details, Fig.8.
Since in Free-Viewpoint Video, a generic, 3D model is fit
to the video streams by adapting only a good handful of
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animation parameters, the model surface corresponds only
approximately to the person’s actual 3D geometry, even
though model geometry is very detailed. This causes no-
ticeable ghosting artefacts if linear blending schemes are ap-
plied. The Floating Textures approach corrects for the pro-
jective texture mismatch and yields well-defined facial de-
tails, Fig.8.

SurfCap This data set was kindly provided to us from
the SurfCap: SurfaceMotion Capture project [SH07]. Again,
eight cameras are regularly spaced all around a full circle. In
computationally elaborate off-line processing, a highly tes-
selated, smooth geometry mesh is reconstructed, Fig. 7. Far
camera spacing prevents bandlimited and filtered blending
to preserve details. Even though the mesh consists of 260k+
triangles, ghosting and occlusion artefacts still degrade ren-
dering quality if Unstructured Lumigraph rendering is ap-
plied. With Floating Textures, in contrast, virtually artefact-
free rendering results are obtained.

Light Field Rendering We down-sampled the Stanford
Buddha light field data set to 8× 8 images. While bandlim-
ited rendering indiscriminately blurs away all details, more
details are preserved in filtered blending, Fig. 8. Unstruc-
tured Lumigraph rendering (which corresponds to quadralin-
ear interpolation for light field rendering) introduces ghost-
ing, as the assumption of dense sampling is violated. The
simple planar proxy is not enough to focus the light rays.
With Floating Textures, in contrast, we achieve rendering
results that are visually almost indistinguishable from the
ground-truth. By using the Floating Textures approach in
conjunction with light field rendering, comparable rendering
results are obtainable from considerably fewer input images.

7. Discussion & Conclusions

We have presented a new, general method to improve pro-
jective texturing using multi-view imagery in conjunction
with some 3D geometry proxy. Our Floating Textures ap-
proach strongly reduces ghosting and occlusion artefacts and
achieves improved rendering quality from coarser 3D geom-
etry, fewer input images, and less accurate calibration. This
saves memory, bandwidth, acquisition time, and money.

While we did not observe any problems during our evalua-
tion experiments, it is obvious that strongly specular surfaces
or badly colour-calibrated cameras will cause problems for
the optical flow estimation. Also, if texture mismatch (ghost-
ing) is too large, due to a very coarse geometry proxy or
too few input images, the optical flow algorithm might not
be able to find correct correspondences. But with more so-
phisticated, future optical flows techniques, the robustness
of the Floating Textures will increase accordingly. In gen-
eral, however, the results with Floating Textures will not
be worse than linear interpolation schemes. In our Floating
Textures method, we deliberately disregard the epipolar con-
straint and allow textures to locally “float” in all directions.

This is not a bug but a feature: this way, Floating Textures
can compensate for imprecise camera calibration, while the
small shifting of the texture on the surface is visually com-
pletely imperceptible.

One source for artefacts remaining in rendering dynamic
scenes is that of temporally incoherent geometry. In the fu-
ture, we intend to investigate how Floating Textures might be
extended to compensate for temporal inconsistencies of the
geometry proxy. Finally, for highly reflective or transparent
objects, motion layer decomposition promises to be another
interesting research direction.
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Figure 8: Comparison of different texturing schemes in conjunction with a number of IBMR approaches. From left to right:

Ground truth image (where available), bandlimited reconstruction [CCST00], Filtered Blending [ESM07], Unstructured Lu-

migraph Rendering [BBM∗01], and Floating Textures. The different IBMR methods are (from top to bottom): Synthetic data

set, Polyhedral Visual Hull Rendering [FB03], Free-Viewpoint Video [CTMS03], SurfCap [SH07], and Light Field Render-

ing [LH96].
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