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Abstract. We present a novel variational method for the simultaneous estimation

of dense scene flow and structure from stereo sequences. In contrast to existing

approaches that rely on a fully calibrated camera setup, we assume that only the

intrinsic camera parameters are known. To couple the estimation of motion, struc-

ture and geometry, we propose a joint energy functional that integrates spatial and

temporal information from two subsequent image pairs subject to an unknown

stereo setup. We further introduce a normalisation of image and stereo constraints

such that deviations from model assumptions can be interpreted in a geometrical

way. Finally, we suggest a separate discontinuity-preserving regularisation to im-

prove the accuracy. Experiments on calibrated and uncalibrated data demonstrate

the excellent performance of our approach.We even outperform recent techniques

for the rectified case that make explicit use of the simplified geometry.

1 Introduction

For many tasks in computer vision, such as vehicle navigation, motion capture and

dynamic rendering, it is essential to recover the three-dimensional displacement field

of a scene. This so called scene flow represents the real 3D motion of objects – as

opposed to optical flow that only describes the projection of this motion on the 2D

image plane [23]. Since depth information is required to determine 3D motion, scene

flow can not be computed without estimating the scene structure as well. In contrast to

structure from motion, scene flow does not relate to a static world. Instead, objects in

the scene are allowed to move freely and in a non-rigid fashion. Thus, for estimating

scene flow, stereo sequences are required that provide two views per time instance.

Existing scene flow algorithms often treat stereo and motion independently. In

fact, most of them rely on a sequential computation of the scene flow and structure

[23, 19, 26, 20, 24]. However, to improve the quality of the estimation it is important

that 3D motion and shape estimation are coupled. This can be achieved by exploiting

the spatial and temporal dependencies in the image sequence [26, 12, 4, 18, 6]. Among

those methods that solve for the scene flow and structure simultaneously, variational ap-

proaches play a major role. Some of these techniques parameterise the problem directly

in 3D space [6]. Others are based on optical flow computation [26, 12, 18] and have

consistently improved their results in the wake of increasing optical flow accuracy.
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All of the afore mentioned methods have one aspect in common: they assume that the

cameras have been calibrated beforehand. However, in order to deal with general stereo

setups without requiring an explicit calibration step, it would be desirable to jointly

estimate the scene flow, the scene structure and the stereo geometry.

In this paper we thus propose a variational scene flowmethod for uncalibrated stereo

sequences. We do this by integrating the spatial and temporal information from two

stereo pairs in a global energy functional while simultaneously estimating the unknown

stereo geometry in consecutive time steps. Assuming that the internal camera parame-

ters are known, our method allows to recover the dense scene structure and the dense

scene flow up to a scale factor. Apart from this novel generalised model, we make

two additional contributions: First, within the multiresolution framework required to

handle large displacements, we introduce a tensor-based notation for linearised con-

straints. This notation allows to normalise these constraints such that deviations from

the model can be interpreted as geometrical distances. Secondly, we propose a reg-

ularisation strategy that penalises discontinuities in the different displacement fields

separately. This makes sense, since motion and depth continuities do not necessarily

coincide. Our experiments clearly demonstrate the benefits of both contributions and

show the favourable performance of our method compared to recent techniques for the

rectified case.

Related Work. In the context of scene flow estimation, closely related to our work

are the methods [26, 12, 18], which jointly compute spatial and temporal motion fields

by minimising a single energy. In particular the method of Huguet and Devernay [12]

uses similar data constraints as our approach. However, it applies a joint smoothness

term to all displacement fields. A more adequate separate treatment of the smoothness

term is proposed by Wedel et al. [25] who decouple the estimation of structure and

motion to achieve real-time performance. However, in their case, the separate smooth-

ness term does not yield more accurate results than their preceding work with joint

regularisation [24]. All of the previous approaches are based on rectified sequences and

do not consider a suitable constraint normalisation. Apart from these methods that pa-

rameterise the displacements in terms of image coordinates, there are also techniques

that work directly in 3D space. Such techniques include methods based on reprojection

errors [6], space carving and nonlinear optimisation [4], deformable meshes [9] and

Markov Random Fields [13]. Moreover, all these methods rely on a previous calibra-

tion step, since they involve the use of projection matrices.

In the context of optical flow estimation, the work of Valgaerts et al. [22] and Zimmer

et al. [27] are closest related to our approach. While the first one shows the benefit of

jointly estimating dense displacements and the underlying stereo geometry, the second

one proposes a normalisation of the data constraints to penalise a geometrically mean-

ingful distance. In our approach we extend both ideas to scene flow and unify them by

normalising both data and stereo constraints.

Paper Organisation. In Sect. 2 we derive our variational model for the uncalibrated

case. Important issues like incremental computation and constraint normalisation are

then discussed in Sect. 3. While Sect. 4 is dedicated to the alternating minimisation

of the proposed energy, our results and a comparison to the literature are presented in

Sect. 5. The paper concludes with a summary in Sect. 6.
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2 A Scene Flow Model for Uncalibrated Stereo Sequences

In the following we consider the classical four-frame case depicted in Fig. 1. It consists

of two consecutive image pairs of a stereo sequence: the left image g1l(x) and the right
image g1r(x) at time t and the left image g2l(x) and right image g2r(x) at time t + 1.
Here x = (x, y)⊤ denotes the location in a rectangular image domain Ω ⊂ R

2 that

is assumed to be the same for all images. We furthermore assume that the sequence

has been recorded by a single fixed stereo rig, i.e. there exists a common fundamental

matrix F that describes the epipolar geometry [7] of the stereo pairs at time t and t+1.

x

x + wf
x + wf + wst + wd

x + wst

1

3

4

2

time t

time t + 1

first stereo flow

left optical flow

second stereo flow

right optical flow

wst, F

wst + wd, F

wf wf + wd

g1l

g2l

g1r

g2r

occlusion score o1r

occlusion score o2rocclusion score o2l

Fig. 1. The correspondences between the four frames of a binocular stereo sequence.

In contrast to previous variational methods that start out from a rectified stereo se-

quence [24, 12], our method assumes a general stereo geometry with unknown fun-

damental matrix. As a consequence, the stereo correspondences do not take on the

form of a scalar valued disparity but of a 2-dimensional displacement field that we

will refer to as stereo flow. In total, we consider four types of correspondences in our

model: two optical flows between consecutive frames of the same camera (left, right)

and two stereo flows between the left and right frame at the same time instance (t,

t + 1). Exploiting the dependencies in Fig. 1, these correspondences can be parame-
terised by six unknown functions with respect to the reference image g1l(x): the first
stereo flow wst = (ust, vst)

⊤, the left optical flow wf = (uf , vf)
⊤ and the difference

flow wd = (ud, vd)⊤ that can be interpreted as a change in optical flow or a change
in stereo flow. Moreover, we have seven degrees of freedom from the fundamental ma-

trix F , which restricts points to lie on corresponding epipolar lines, as shown in Fig. 1.

These degrees of freedom arise from the fact that F is a 3 × 3 matrix of rank 2 that is
defined up to a scale factor. For given intrinsic camera parameters, knowing the funda-

mental matrix is sufficient to recover projection matrices (P1, P2) for the left and the
right image sequence [10]. Together with the stereo flow wst at time t, these matrices

allow to reconstruct a reference image point up to a scale in the camera coordinate sys-

tem. To obtain a reconstruction at time t + 1 and the scene flow relative to the cameras,
the left optical flow wf and the flow change wd have to be known additionally.
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Since we are interested in a joint computation of the 3Dmotion, structure and geom-

etry, that are parameterised by (wf ,wst,wd)⊤ and F , we propose to minimise a global

energy functional that combines the spatial and temporal information of the different

views while imposing geometric consistency. This functional has the form

E =

∫

Ω

(ED + EE + ES) dx , (1)

where Ed is the data term that models the assumption that certain image features remain

constant between the four frames, EE is the epipolar term that relates the stereo views

by the unknown epipolar geometry, and ES is the smoothness term that assumes the

solution to be piecewise smooth. In the following we will detail on the different terms.

2.1 Data Constraints

Let us now derive the four constraints that model the relation between the four input

images w.r.t. the reference image. For simplicity, let us assume for the moment that

the brightness of corresponding image points remains constant between all frames [11].

Following the enumeration of constraints in Fig. 1 we obtain the expressions

ED1 = Ψ
(
|g2l(x + wf) − g1l(x)|2

)
, (2)

ED2 = Ψ
(
|g2r(x + wf + wst + wd) − g1r(x + wst)|2

)
, (3)

ED3 = Ψ
(
|g1r(x + wst) − g1l(x)|2

)
, (4)

ED4 = Ψ
(
|g2r(x + wf + wst + wd) − g2l(x + wf)|2

)
. (5)

The first two terms correspond to an optical flow constraint between two time instances,

while the last two terms arise from a stereo correspondence at consecutive time steps.

As in [12] we choose to penalise all constraints separately since outliers for optical

flow and stereo do not necessarily occur in the same location. As penalty function Ψ

we choose the regularised L1 norm Ψ(s2) =
√

s2 + ǫ2 with ǫ = 0.001 as proposed e.g.
in [2]. In our final model we include the gradient constancy assumption to cope with

varying illumination and extend the expressions above to RGB colour images. Then the

first term (2) becomes

ED1 = Ψ

(
3∑

i=1

(∣∣gi
2l(x + wf) − gi

1l(x)
∣∣2+γ

∣∣∇gi
2l(x + wf) −∇gi

1l(x)
∣∣2

))
, (6)

where γ ≥ 0 is a weighting factor, the symbol ∇ = (∂x, ∂y)⊤ denotes the spatial
gradient operator, and g1, g2, and g3 represent the three RGB colour channels. The

constraints ED2, ED3 and ED4 are extended in the same way.

2.2 Occlusion Scores

In order to handle situations, where parts of the scene become occluded due to motion or

a change of camera viewpoint, we additionally introduce occlusion scores. For instance,
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the score o1r : Ω → {0, 1} takes on the value 1 for points in the reference image
g1l that are visible in g1r, and 0 otherwise. Once the fundamental matrix is known

and the projection matrices (P1, P2) have been computed, the values of o1r can be

determined by projecting the reconstruction at time t back on the image plane using

P2. Of all the points that reproject onto the same location, the one that lies closest
to the optical centre of P2 will be marked as visible. This technique is also known
as Z-buffering. The scores o2l and o2r for the image pairs (g1l, g2l) and (g1l, g2r) are
determined analogously by reprojection on time t + 1 with P1 and P2, respectively.

The four data terms are multiplied by the occlusion scores to switch them off where the

constancy assumptions can not be fulfilled. This yields the final data term

ED = o2l ED1 + o1r o2r ED2 + o1r ED3 + o2l o2r ED4 . (7)

Note that each term has to be multiplied by the occlusion scores of the images that

occur in the according data constraint, since the reappearance of points in g2r that are

occluded in g1r or g2l is not noticed by the reference image.

2.3 Epipolar Constraints

Let us now model the geometric relation between the left and right images of the stereo

pairs (g1l, g1r) and (g2l, g2r). To this end we introduce two terms that relate the un-
known flows and the fundamental matrix F via the respective epipolar constraints [16]:

EE1 = Ψ
((

(x + wst)
⊤

h F (x)h
)2

)
, and (8)

EE2 = Ψ
((

(x + wf + wst + wd)⊤h F (x + wf)h
)2

)
. (9)

Here the subscript h denotes the use of homogeneous coordinates, i.e. (x)h = (x, y, 1)⊤.
Both terms EE1 and EE2 are soft constraints that penalise deviations of a point from its

epipolar line. The use of Ψ increases the robustness of the estimation of F with respect

to outliers. While the first epipolar term can be modelled completely in accordance

with [22], the second epipolar constraint is much more complicated: Although it is lin-

ear inwst andwd, it is quadratic with respect to the left optical flowwf . This makes the

minimisation of the corresponding energy difficult. To nevertheless obtain a linear ex-

pression in all flows we thus propose to introduce an auxiliary variablewa = (ua, va)
⊤,

which is assumed to be close to wf , and split up the epipolar constraint such that wf

and wa take on symmetric roles. In this way we can approximate term (9) via

EE2 = Ψ
(

1

2

(
(x + wf + wst + wd)⊤h F (x + wa)h

)2
(10)

+ 1

2

(
(x + wa + wst + wd)⊤h F (x + wf)h

)2
)

+ µ
(
|wf − wa|2

)
,

where µ is the weight of the additional similarity term that is required to couplewa and

wf . Introducing the weights β1 and β2 we obtain the final epipolar term

EE = β1 EE1 + β2 EE2 . (11)

To avoid the trivial solution we additionally impose the constraint ‖F‖2

Frob
= 1 on the

Frobenius norm of the fundamental matrix F as proposed in [14].
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2.4 Smoothness Constraints

Let us finally detail on the design of the smoothness term. Its task is to regularise the

problem in locations where the remaining terms do not guarantee a unique solution

(aperture problem) or to fill in information in the presence of outliers, e.g. occlusions.

Because there often exists an overlap between the discontinuities of wf , wst and wd,

the authors of [12] suggested a joint piecewise smoothness assumption on all flows.

With our method, however, we want to cover the general case where the flow and stereo

discontinuities do not necessarily coincide, e.g. for different in-plane motions. There-

fore we propose a separate penalisation of the flow gradients:

ES1 = Ψ
(
|∇wf |2

)
, ES2 = Ψ

(
|∇wst|2

)
, and ES3 = Ψ

(
|∇wd|2

)
, (12)

with |∇w∗|2 := |∇u∗|2 + |∇v∗|2, where ∗ stands for f, st or d. The penalisation via
the subquadratic function Ψ , as defined before, equals total variation (TV) regularisa-

tion [21]. This gives rise to the smoothness term

ES = α1 ES1 + α2 ES2 + α3 ES3 , (13)

where α1, α2, α3 are positive weights that balance the smoothness assumptions for the

three displacement fields.

3 Linearisation and Normalisation

Substituting all data, epipolar and smoothness terms into (1) we obtain an energy func-

tional that is rather complicated. Moreover, it is non-convex, since the unknown flows

appear implicitly in the arguments of the data term. A common strategy to resolve this

problem is to perform an incremental computation of the unknowns within a coarse-

to-fine multiscale approach. This can either be done by a fixed point iteration on the

Euler-Lagrange equations [2] or by a series of energies that approximate the original

model on every resolution level [17]. In the following we stick to the second strategy

and discuss how the corresponding energy for each level can be derived. Assuming that

solutions wf , wst, wd and wa are available from a coarser scale, we aim at expressing

the total energy in terms of the increments dwf = (duf , dvf), dwst = (dust, dvst),
dwd = (dud, dvd), and dwa = (dua, dva). This allows us to introduce a tensor nota-
tion which offers two advantages: (i) The convexity of the resulting energy functional

in the flow increments becomes explicit, and (ii) a normalisation strategy can be applied

that makes deviations from the model assumptions interpretable in a geometric way.

3.1 Linearisation in the Data Term

Let us first discuss the differential form of the data term by the example of the simplified

data constraint from expression (3). Using a first order Taylor expansion to linearise this

expression with respect to all increments we obtain the approximation

g2r(x + wf + dwf + wst + dwst + wd + dwd) − g1r(x + wst + dwst)

≈ g2r + ∂xg2r · (duf + dust + dud) + ∂yg2r · (dvf + dvst + dvd)

− g1r − ∂xg1r · (dust) − ∂yg1r · (dvst) . (14)



7

Rearranging the terms and using the following abbreviations

g2z = g2r(x + wf + wst + wd) − g1r(x + wst) , (15)

g2rx = ∂xg2r(x + wf + wst + wd) , g2xz = ∂xg2z , (16)

g2ry = ∂yg2r(x + wf + wst + wd) , g2yz = ∂yg2z , (17)

we can rewrite the linearised term in (14) as inner product

g⊤

2 d = g2rxduf + g2rydvf + g2xzdust + g2yzdvst + g2rxdud + g2rydvd + g2z , (18)

where the two vectors are defined as g2 := (g2rx, g2ry, g2xz, g2yz, g2rx, g2ry, g2z)
⊤ and

d := (duf , dvf , dust, dvst, dud, dvd, 1)⊤. The equation g⊤

2 d = 0 can be seen as a
multidimensional extension of the classical optical flow constraint [11]. Inserting it as

squared argument into the penaliser Ψ yields the robustified quadratic form

ED2 = Ψ
(
(g⊤

2 d)2
)

= Ψ
(
d⊤J2 d

)
, (19)

where J2 = g2 g⊤

2 is a 7 × 7 matrix that provides coupling between all increments.
By analogy to the motion tensor notation in optical flow estimation [3], we denote J2

as scene flow tensor. The linearisation of the three remaining data constraints is carried

out accordingly, and results in the 7 × 7 scene flow tensors J1, J3 and J4. Missing

dependencies between the variables give rise to zero tensor entries. Including the gra-

dient constancy assumption and extending it to RGB colour images as in equation (6)

is straightforward and leads to a weighted sum of the corresponding tensors [27].

3.2 Treatment of the Epipolar Term

The first epipolar term (x+wst+dwst)
⊤

h
F (x)

h
is already linear in the increment dwst.

As in the case of the data terms we can thus define the vector d1 = (dust, dvst, 1)⊤ and
write the argument of the first epipolar term (8) as a quadratic form

EE1 = Ψ
(
d⊤

1 E1 d1

)
. (20)

The corresponding epipolar tensorE1 of size 3×3 is defined as (a1, b1, q1)
⊤(a1, b1, q1),

where a1 and b1 are the coefficients of the epipolar line l = F (x)h, and q1 is the scaled

distance of the point x to this line [22]. However, care has to be taken with respect to

symmetry when introducing the flow increments in the second epipolar term (10). The

expanded differential variant of its argument reads

1

4

(
(x + wf + dwf + wst + dwst + wd + dwd)

⊤

h
F (x + wa)h

)2

+ 1

4

(
(x + wa + dwa + wst + dwst + wd + dwd)

⊤

h
F (x + wf)h

)2

+ 1

4

(
(x + wa + dwa)

⊤

h
F⊤ (x + wf + wst + wd)

h

)2

+ 1

4

(
(x + wf + dwf)

⊤

h
F⊤ (x + wa + wst + wd)

h

)2
, (21)

where we have additionally included the last two terms with the transposed fundamental

matrix to ensure a symmetrical treatment of the left and right flow increments. This is
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required since as opposed to the first epipolar constraint variations can occur in both

the left and the right image position. Since all terms of expression (21) are linear in the

increments, the second epipolar term can be written as

EE2 = Ψ
(

1

4
d⊤

2 E2 d2 + 1

4
d⊤

3 E3 d3 + 1

4
d⊤

4 E4 d4 + 1

4
d⊤

5 E5 d5

)

+µ (|wf + dwf − wa − dwa|)2 , (22)

where we have defined the following vectors:

d2 = (duf + dust + dud, dvf + dvst + dvd, 1) , d3 = (dua, dva, 1) , (23)

d4 = (dua + dust + dud, dva + dvst + dvd, 1) , d5 = (duf , dvf , 1) . (24)

As in the case of the first epipolar tensor, the entries of the other epipolar tensors Ei =
(ai, bi, qi)

⊤(ai, bi, qi), for 2≤ i≤5, are related to the coefficients of the epipolar lines.

3.3 Constraint Normalisation

In [27] the authors demonstrate that the linearised brightness constancy assumption for

optical flow can be interpreted geometrically as a weighted distance of the estimated

flow to the line described by the optical flow constraint. Equivalently, the multidimen-

sional brightness constancy constraint in (18) can be considered as the weighted dis-

tance of the scene flow to the hyperplane described by g⊤

2 d = 0. To obtain the actual
distance to the hyperplane we have to normalise the constraint by dividing it by the mag-

nitude of the hyperplane normal. Since the last entry of d is constant, this normal vector

is given by the first six components of g2, i.e. n = (g2rx, g2ry, g2xz, g2yz, g2rx, g2ry)⊤.
Now it becomes explicit why it is desirable to penalise the actual distance to the hy-

perplane: Unlike the original constraint this distance does not scale with the magnitude

of the derivatives contained in g2. This prevents overweighting at unreliable structures

such as noise or occlusions that typically manifest themselves in large image gradients.

The corresponding normalised quadratic form is given by

1

|n|2 + ζ2
(g⊤

2 d)2 = d⊤

(
J2∑6

i=1
(J2)ii + ζ2

)
d = d⊤Ĵ2 d , (25)

where ζ = 0.1 is a constant that avoids division by zero, and Ĵ2 denotes the normalised

version of J2. We apply the same normalisation strategy to the remaining data terms.

For the extension to the gradient constancy and colour images we refer to [27] .

Our normalisation idea is, however, not restricted to the scene flow tensors only.

By normalising the epipolar tensors as well we obtain a widely used geometrical error

measure from computer vision: the distance to the epipolar lines [16]. Analogously to

(25), we can derive the normalisation factor for the epipolar tensors. It reads

|ni|2 + ζ2 =
∑2

j=1
(Ei)jj + ζ2 = a2

i + b2
i + ζ2 . (26)

Division by this factor then results in the normalised epipolar tensors Êi, for 1≤ i≤5.
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4 Minimisation and Numerical Solution

By combining all terms derived in Sect. 3, we obtain the following differential form of

our energy that has to be minimised at each level of the coarse-to-fine approach:

E(dwf , dwst, dwd, dwa, F ) =

∫

Ω

(
o2l Ψ

(
d⊤Ĵ1 d

)
+ o1r o2r Ψ

(
d⊤Ĵ2 d

)
+ o1r Ψ

(
d⊤Ĵ3 d

)
+ o2l o2r Ψ

(
d⊤Ĵ4 d

)

+ β1 Ψ
(
d⊤

1 Ê1 d1

)
+ β2 Ψ

(
1

4
d⊤

2 Ê2 d2 + 1

4
d⊤

3 Ê3 d3 + 1

4
d⊤

4 Ê4 d4 + 1

4
d⊤

5 Ê5 d5

)

+ α1 Ψ
(
|∇(wf + dwf)|2

)
+ α2 Ψ

(
|∇(wst + dwst)|2

)
+ α3 Ψ

(
|∇(wd + dwd)|2

)

+ β2 µ
(
|wf + dwf − wa − dwa|2

))
dx , with ‖F‖2

Frob = 1 . (27)

Note that this energy is convex in the flow increments dwf , dwst, dwd and the auxiliary

variable dwa, since only squared arguments and convex penaliser functions are used.

In order to minimise it under the given constraint ‖F‖2

Frob
= 1, we follow [22] and use

the method of the Lagrange multipliers. We thus obtain the Lagrangian

L(dwf , dwst, dwd, dwa, F, λ) = E(dwf , dwst, dwd, dwa, F )+λ(1−f⊤f) , (28)

where λ is the Lagrangian multiplier, and f is a vector that contains all 9 entries of F .

This formulation suggests an alternating minimisation with two steps:

(i) Minimising the Lagrangian with respect to the flow increments leads to the corre-

sponding Euler-Lagrange equations. By discretising them via finite difference approxi-

mations, one ends up with a nonlinear system of equations due to the robust function Ψ .

To ensure fast convergence, we solve this system with a bidirectional multigrid frame-

work based on a nonlinear point coupled Gauß-Seidel solver [3]. In the coarse-to-fine

pyramid we use a downsampling factor of η = 0.9, while the images are warped onto
the reference image using Coons patches based on bicubic interpolation [5].

(ii) Differentiation of the Lagrangian with respect to the fundamental matrix re-

sults in an eigenvalue problem [22] that is nonlinear due to Ψ and the normalisation

weights (26). To solve this eigenvalue problem we apply a reweighted total least squares

method in which the weights and the arguments of Ψ are fixed iteratively. We would like

to point out that this step of the minimisation estimates the fundamental matrix from

the dense correspondences of both stereo pairs.

The alternating computation of the flow increments and the fundamental matrix

works as follows: The Euler-Lagrange equations are solved with a current estimate

of the fundamental matrix. Using the newly computed flows, the fundamental matrix

is updated by solving the eigenvalue problem. We extract a pair of camera matrices

and perform a dense scene reconstruction by triangulation [10]. After recomputing the

occlusion scores, the Euler-Lagrange equations are then solved again. This iterative

process is repeated until convergence. We initialise the occlusion scores with 1 and

compute the first iteration with disabled epipolar constraints.
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Table 1. Evaluation of different methods on the rectified sphere sequence. Runtime on Intel Core2

1.86 GHz: ∼420 seconds. Parameters: α1 =2, α2 =1.5, α3 =0.3, β1 =β2 =0.1, γ =0.1, µ=1.

RMSE AAE
Method

(uf , vf , ud, vd) (uf , vf) (ust, vst) (uf , vf)

Our method initialised with [8] 1.76 0.63 3.8 1.17

Our method 1.78 0.63 5.5 1.16

Wedel et al. [24] with ground truth 2.40 0.65 − 1.40

Wedel et al. [24] (87%) 2.45 0.66 2.9 1.50

Huguet and Devernay [12] 2.51 0.69 3.8 1.75

Wedel et al. [24] (100%) 2.55 0.77 10.9 2.76

5 Experiments

We evaluate the performance of our method on synthetic stereo sequences with ground

truth and on real world images. To assess the quality we compute the root mean square

error RMSE of the scene flow (uf , vf , ud, vd), the optical flow (uf , vf) and the stereo
flow (ust, vst), as well as the absolute angular error AAE of the optical flow, see [24].
As a quality measure for the fundamental matrix we use the error dF according to [7].

It is determined by using the estimated fundamental matrix to randomly create a large

number (100,000) of correspondences and the ground truth fundamental matrix to es-

tablish their epipolar lines. After computing the average distance between all points and

lines, the roles of the matrices are reversed to obtain a symmetric measure in pixel units.

In a first experiment we consider the synthetic sphere sequence of Huguet and De-

vernay [12] (http://devernay.free.fr/vision/varsceneflow/), which is composed of four

512×512 images of a textured sphere with rotating hemispheres. Despite the fact that
this sequence is rectified, and thus constitutes a special case with vanishing vertical

components of the stereo flow, it is a good benchmark for comparison against existing

techniques. Additionally it requires to estimate large stereo displacements which pose

a challenge to variational methods. In this context we follow the idea of [24] and [12],

and initialise (ust, vst)with a dedicated method for large displacements. To this end, we
use a variant of the recent optical flow technique of [1] with constraint normalisation

and SIFT matches [15] as prior. For consistency we also included results for initiali-

sation with the belief propagation algorithm of [8], as used by Huguet and Devernay.

However, this initialisation is only applicable for rectified images.

Table 1 compares our results with those of the variational methods of Huguet and

Devernay [12] and Wedel et al. [24] and lists the errors computed within the sphere.

With a substantial improvement in the RMSE for (uf , vf , ud, vd) and in the AAE we
consistently outperform the other approaches for the scene flow, although these methods

are specifically tailored to the rectified case. The lower RMSE of the method of Wedel

et al. for (ust, vst) is due to the fact it uses sparse stereo correspondences that do not
provide results in occluded regions. However, the accuracy of their estimated scene flow

is significantly lower than ours. This even holds if they use ground truth for the stereo

correspondences. The good performance of our method is also reflected in the accurate

estimation of the stereo geometry: We obtain a subpixel precision of dF = 0.019.
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In a second experiment we evaluate the performance for a general stereo geometry.

To this end we generated a synthetic sequence of four frames with ground truth (avail-

able at http://www.mia.uni-saarland.de/valgaerts/eccv10/sceneflow). It is similar to the

one of the previous experiment: A textured sphere with rotating hemispheres is posi-

tioned against a plane in the background as shown in Fig. 2. To demonstrate the benefits

of the different design steps in our model we start from a variant that performs a joint

regularisation of the flows as in [12] and does not include constraint normalisation. We

then refine the model by subsequently adding the normalisation and the separate regu-

lariser. Table 2 lists the progressively improving results. The errors are computed in the

non-occluded regions of the whole image domain. The AAE is not listed because it is

not defined for the zero flow in the background. In Fig. 2 the computed flow fields are

shown together with the obtained occlusion scores, the 3D reconstruction and the scene

flow. As one can see, the estimated displacements resemble the ground truth very well.

Again, this is confirmed by a subpixel precision of dF = 0.021 for the stereo geometry.

Fig. 2. Results for the general sphere sequence (image size 512×512). Top Row: (a) Left frame
at first time step. (b) + (c) + (d) Ground truth of left optical flow, first stereo flow and flow

change. Colour encodes the direction, brightness the magnitude (see colour circle). Occlusions

are coloured pink. Middle Row: (e) Left frame at second time step. (f) + (g) + (h) Estimated

left optical flow, first stereo flow and flow change. Bottom Row: (i) + (j) Estimated occlusion

scores o1r and o2r. (k) Estimated scene reconstruction. (l) Estimated scene flow. Runtime: ∼420
seconds. Parameters: α1 =1.5, α2 =2, α3 =0.8, β1 =β2 =0.03, γ =0.1, µ=1.
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Table 2. Evaluation of different variants of our method on the general sphere sequence.

RMSE
Method

(uf , vf , ud, vd) (uf , vf) (ust, vst)

joint regularisation 0.67 0.64 2.08

joint regularisation + normalisation 0.63 0.59 1.86

separate regularisation + normalisation 0.61 0.59 1.61

Fig. 3. Results for real world sequences (image size 470×340). Top Row: (a) + (b) Smiling, left
frames at consecutive time steps. (c) + (d) Closing Mouth, left frames at consecutive time steps.

Bottom Row: (e) Reconstruction and overlayed scene flow for Smiling. Increasing magnitude

from green to red. (f) Close-up Smiling. (g) Close-up Closing Mouth. Runtime: ∼260 seconds.
Parameters: α1 =15, α2 =20, α3 =15, β1 =β2 =0.5, γ =30, µ=1.

For our last experiment we have recorded two uncalibrated stereo sequences to test

the performance of our method on real world data. The results are shown in Fig. 3 for the

sequences Smiling and Closing Mouth. As one can verify in both cases the 3D structure

and the motion of the face are captured well and look very realistic. We emphasise that

these two results are obtained from only four frames. Additional real world results can

be found at http://www.mia.uni-saarland.de/valgaerts/eccv10/sceneflow.
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6 Conclusions

We have presented a general approach for the dense estimation of scene flow, scene

structure and geometry from uncalibrated stereo sequences. Our contributions are three-

fold: (i) We generalise the classical four-frame case to arbitrary stereo setups by em-

bedding epipolar constraints into a joint energy functional with data and smoothness

terms. (ii) We introduce a tensor notation which allows us to normalise the data and

stereo constraints such that they become geometrically interpretable. (iii) We present a

separate robustfication of the smoothness terms to handle scenarios where flow discon-

tinuities do not coincide. Our evaluation has demonstrated that the proposed approach is

not only more general than existing methods but also more accurate: Even without ex-

plicitly knowing the stereo geometry, we outperform recent techniques that have been

specifically designed for the rectified case. Furthermore, the stereo geometry is esti-

mated with sub-pixel precision and reconstructions for real world data show that scene

structure and motion are determined with high quality. This clearly demonstrates the

benefit of a joint computation of flow, structure and geometry.
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