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Abstract

High-quality non-intrusive human motion capture is nec-
essary for acquistion of model-based free-viewpoint video
of human actors. Silhouette-based approaches have demon-
strated that they are able to accurately recover a large
range of human motion from multi-view video. However,
they fail to make use of all available information, specif-
ically that of texture information. This paper presents an
algorithm that uses motion fields constructed from optical
flow in multi-view video sequences.

The use of motion fields augments the silhoutte-based
method by incorporating texture-information into the track-
ing process. The algorithm is a key-component in a larger
free-viewpoint video system of human actors. Our results
demonstrate that our method accurately estimates pose pa-
rameters and allows for realistic texture generation in 3D
video sequences.

1. Introduction

The synthesis of realistic images of humans in motion
is a challenging problem in Computer Graphics. Two as-
pects of this problem are the creation of natural human mo-
tion and the accurate rendering of a person’s physical ap-
pearance. Combining the small scale details of skin, mus-
cle, and cloth movement with the large scale motions of the
body into a realistic image has required the development of
new techniques which rely on the strengths of both Com-
puter Vision and Computer Graphics. Many conventional
methods for estimating motion parameters are intrusive, re-
quiring optical markers or complex mechanical setups, and
thus require a separation of the generation of realistic mo-
tion from the generation of realistic physical appearance.
However, in the field of Computer Vision, numerous tech-
niques have been developed for non-intrustive motion pa-
rameter estimation. Incorporating some of these techniques
into Computer Graphics allows us to capture body appear-

ance and motion at the same time, vastly simplifying the
problem of novel image synthesis.

We have developed a method which non-intrusively esti-
mates motion parameters using silhouette information. This
method employs the use of a detailed geometric body model
which, when combined with image-based rendering tech-
niques, generates highly realistic images of a body in mo-
tion. Silhouette-based techniques have demonstated their
power in capturing a broad range of complex body motion.
However, portions of the body with small scale details (such
as features of the face) are often not accurately represented.
To be maximally effective, an algorithm should make use
of all possible information. We propose to use texture in-
formation to augment the silhouette-fitting process.

Optical flow is a computer vision technique that employs
texture information to compute a 2D motion field in the im-
age plane. Making use of optical flow calculations from
multiple input views and an a-priori body model, it becomes
possible to construct a 3D motion field which estimates
body motion. We present a method for extracting heirar-
chial rigid body transformations from these motion fields
and show that it is best used in conjunction with, and not
in place of, silhouette-based tracking. At each time instant,
the generic body model is first fit to a set of input-camera
silhouettes. That pose is then updated to conform with es-
timates from the computed motion field. The use of mo-
tion fields in conjunction with silhouette-based fitting meth-
ods generates good results, precisely because each method
excels in aspects where the other does not. Non-intrusive
motion parameter estimation is a component in our larger
free-viewpoint video system. We demonstrate that this new
hybrid method improves motion parameter estimation and
consequently has a significant impact on the quality of gen-
erated free-viewpoint video sequences [4].

The paper proceeds with a discussion of previous work
in Section 2, and a general overview of the proposed motion
capture method in the context of our free-viewpoint video
system is given in Section 3. Our environment for acquir-
ing multi-view video streams is described in Section 4. The



employed body model and multi-view texture generation
are presented in Section 5 and Section 7 respectively, and
the silhouette fitting step of the motion capture system is
outlined in Section 6. Preliminaries about optical flow and
the reconstruction of 3D motion fields from 2D flows are
presented in Section 8. The algorithmic details on how to
compute differential pose update parameters from 3D flow
fields are explained in Section 9. Results with our algorithm
are presented in Section 10 and the the paper concludes in
Section 11.

2. Previous Work

In the Computer Vision literature, a variety of non-
intrusive optical human motion capture techniques from
video have been proposed (see [8] for a review). Some
methods work on a single 2D image and apply, for exam-
ple, frame differencing [14] or image skeletonization [10]
to fit simple body models to human motion. 3D human mo-
tion capture approaches typically employ an explicit human
body model consisting of a joint structure and some form
of surface representation. Simple shape primitives, such
as cylinders [11, 22] or superquadrics [9], are commonly
used to represent limbs. The body models are fitted to the
motion by aligning their projection with features in the im-
age plane, such as image discontinuities. The application of
silhouette images for human motion capture has also been
considered. In [6] a force field exerted by multiple image
silhouettes aligns a 3D body model. In [20] a combina-
tion of stereo and silhouette fitting is used to fit a human
body model, and in [4] a silhouette-based motion estima-
tion method is described that exploits graphics hardware to
maximize model and silhouette overlap. Recently, the ap-
plication of reconstructed volumetric models (visual hulls)
from silhouettes of a moving person for motion capture has
also been considered. Ellipsoidal body models [5] , kine-
matic skeletons [17], or skeleton models with attached vol-
ume samples [24] are fitted to the volume data.

In 3D video, dynamic models of scenes that were
recorded from several camera perspectives are recon-
structed for re-rendering from novel viewpoints. The meth-
ods applied involve shape-from silhouette-like approaches,
such as visual hull [18, 29] or stereo-based approaches [19].
The application of a generic human body model and a non-
intrusive human motion capture method for free-viewpoint
video was also considered [4].

None of the previously mentioned approaches explicitly
uses optical flow or computed 3D velocity fields for motion
parameter estimation or scene reconstruction. The optical
flow is the observed 2D motion field in the image plane of
a camera resulting from the projection of the 3D velocity
field of the recorded moving scene (see [1] for a compari-
son of optical flow techniques). The application of 2D opti-

cal flow has been investigated in model-based video coding
for deriving facial animation parameters of a generic head
model [7] or for recovering motion parameters of a body
model in a teleconferencing scenario [15]. Using optical
flow in one or more camera views for full body human mo-
tion estimation is presented in [3]. In their work, the authors
use a twist parameterization for rigid body transformations
to solve for the body pose parameters from 2D information
directly by solving a linear system. The algorithm computes
pose updates and performs image warping in an iterative
procedure. None of these methods explicitly reconstruct a
3D motion field. In [27], an algorithm for computing such a
3D motion field from optical flows in multiple camera views
is presented. It has been used to improve voxel-based scene
reconstruction [28] and to compute models of intermediate
time steps in a sequence of shape-from-silhouette represen-
tations [26]. Unfortunately, the methods employing optical
flow exhibit robustness problems if the typical optical flow
assumptions, such as brightness constancy over time and
flow similarity in a spatial neighborhood, are not fulfilled.
This can happen very easily if the motion in the scene is
quite large and effects such as self-shadowing come into
play. In contrast, we propose a method that uses a 3D mo-
tion field reconstructed from optical flow to update pose pa-
rameters computed via a silhouette-based model fitting pro-
cedure. The algorithm is an extension of our work presented
in [4]. We combine the strengths of silhouette-based fitting
for robust acquisition of a large range of motions with that
of motion estimation using texture information. Using tex-
ture information, pose updates can be recovered on a small
scale. For these small corrections, a linear approximation of
the motion of the body parts is valid, hence iteration towards
a solution is not necessary.

3. System Overview

In Figure 1, an overview of the proposed motion capture
algorithm within our free-viewpoint video system is shown.
The system takes synchronized multi-view video streams as
inputs and separates the person from the background. In an
initialization step, the employed body model is adapted to
the physical shape of the recorded person. For every time
step, the system computes multi-view textures for the body
model using image-based techniques. Starting with a body
pose recovered for time step t, the system first computes an
estimate of the pose parameters for time t+1 by optimizing
the overlap between the projected model and the silhouette
images at time t + 1. In a second step, this pose estimate
for time t + 1 is augmented by computing a 3D corrective
motion field from optical flows. The optical flows are com-
puted between images generated by a model textured with
the texture at time t and the input views at time t + 1.

The reconstructed motion field gives an estimate of dif-



ferential pose updates that are necessary to correct slight
pose inaccuracies in the result of the silhouette step. Least-
squares pose updates are computed and added to the pose
parameter estimate for time t + 1. With the new pose pa-
rameters the algorithm iterates to the next time step. In prin-
ciple, the described motion capture algorithm is a two-step
predictor corrector scheme.

Figure 1. Overview of the motion capture al-
gorithm within our free-viewpoint Video Sys-
tem.

4. Acquisition

The video sequences used as input to our system are
recorded in a multi-view camera studio [23]. IEEE1394
cameras are placed in a convergent setup around the cen-
ter of the scene. The video sequences used for this paper are
recorded from 8 static viewing positions arranged at approx-
imately equal angles and distances around the center of the
room. The cameras are synchronized via an external trigger.
Video frames are recorded at a resolution of 320x240 at 15
fps. The frame rate is fundamentally limited to 15 fps by the
external trigger. Using Tsai’s algorithm [25] the cameras’
intrinsic and extrinsic parameters are determined, calibrat-
ing every camera into a common global coordinate system.
The lighting conditions are controlled and the all cameras
are color-calibrated.

In each video frame, the person in the foreground is seg-
mented via background subtraction. The algorithm used
employs per-pixel color-statistics to generate silhouettes
(see [5] for details). Shadow regions that might lead to an
incorrect classification of background pixels as foreground

are eliminated via an additional angular threshold on pixel
hue values.

5. Body Model

The body model used throughout the system is a generic
model consisting of a hierarchic arrangement of 16 body
segments (head, upper arm, torso etc.), each of which is
represented by a closed triangle mesh. The model’s kine-
matics are defined via an underlying skeleton consisting of
17 joints connecting bone segments. Rigid transformations
at each of these joint locations define a specific body pose
for the model. These transformations are constrainted to im-
itate the actual motions of the body. Shoulder and hip joints
are represented by 3 degree-of-freedom (DOF) ball joints
and elbow and knee joints are represented by 1-DOF hinge
joints. Assuming the actor stands in a specific initialization
pose, the generic body model shape is conformed to that
of the person through a silhouette-based fitting process [4].
From this point on, bone lengths and segment geometry is
fixed and motion parameter estimation is performed using a
combination of silhouette and motion field information.

6. Silhouette Fitting

In a hierarchical non-linear optimization, a set of pose
parameters for the body model is computed that maximizes
the overlap between the model projected to each image
plane and the input silhouettes at time t + 1. The opti-
mization uses the pose parameters from time step t as an
input. The error function that drives motion capture can be
efficiently computed in graphics hardware. The method is
described in detail in [4]. It is relevant to this paper only in
that it is used as robust prediction scheme for pose parame-
ters.

7. Texture Generation

With any body pose, it becomes possible to generate a
textured body model by projecting the input camera views
onto the body model surface. The degree to which a spe-
cific input view is visible at a given surface location is vari-
able. Per-vertex blending weights are computed based on
visibilty and the angular difference between the vertex nor-
mal and the input view vector. Ref. [4] addresses texture
generation for the purpose of novel viewpoint generation.
We make use of texture generation for both rendering and
motion parameter estimation. This requires a slight mod-
ification. When rendering the textured model for motion
field computation, the texture coordinates generated from
the previous time step are used.



8. Motion Field Preliminaries

This sections briefly reviews the mathematical prelimi-
naries of optical flow and the reconstruction of 3D motion
fields.

8.1. 2D Optical Flow

The optical flow is the projection of the 3D velocity field
of a moving scene into the 2D image plane of a record-
ing camera. The determination of the 2D optical flow from
spatio-temporal intensity variations in images has been an
issue in Computer Vision for many years [1].

A number of simplifying assumptions are typically made
to compute the optical flow from the pixel intensities of two
subsequent images. First, it is assumed that the change in
image intensity is due to translation in the image plane only
(intensity constancy constraint)

I(x, t) = I(x − ot, 0) (1)

where o = (p, q)T is the optical flow at image point x, I

being the image intensity at x at time t. From the Taylor
expansion of Eq. 1, the optical flow constraint equation is
derived

∇I(x, t) · o + It(x, t) = 0 (2)

where It(x, t) is the temporal derivative. This is an equa-
tion with two unknowns which cannot be solved at a sin-
gle image plane location without additional assumptions.
To make the problem tractable, an assumption is typically
made about the smoothness of optical flow in a local spatial
neighborhood.

In the optical flow approach by Lucas and Kanade [16], a
weighted least-squares fit of the local first-order constraints
(Eq. 2) is computed by minimizing the functional

∑

x∈W

W 2(x)[∇I(x, t) · o + It(x, t)]2 (3)

where W (x) is a Gaussian neighborhood around the current
position x in the image plane. In our system, we use this
technique to compute the optical flow.

8.2. 3D Motion Fields

The optical flow observed in a camera is only a 2D-
projection of the real world 3D motion field. The goal of
motion capture is the recovery of the parameters of three-
dimensional motion. A reconstructed 3D motion field from
optical flows in multiple camera views can be used to com-
pute these parameters. The reconstruction of the 3D motion
field, also know as the scene flow, from the 2D optical flows
is possible using a technique described in Ref. [27].

Figure 2. 3D motion (scene flow) of a surface
point and the corresponding observed optical
flows in two camera views.

If correspondences in the image plane are known, i.e.
it is known to which locations 3D points project in each
camera view, the scene flow can be reconstructed by solv-
ing a linear system of equations. In our system, the corre-
spondences are known for each vertex because we have an
explicit body model and since, during calibration, the pro-
jection matrices Pi for each recording camera i were de-
termined. The projection matrices describe the relationship
between a 3D position of a vertex and its projection into the
image plane of the camera, ui = (ui, vi)

T .
The differential relationship between the vertex x with

coordinates (x, y, z)T and ui is described by the 2 × 3 Ja-
cobian matrix Ji = ∂ui

∂xi

:

dui

dt
= Ji

dx

dt
(4)

In other words, the Jacobian describes the relationship be-
tween a small change in 3D position of a vertex, and the
change of its projected image in camera i. The term dui

dt
is

the optical flow observed in camera i, dx
dt

is the correspond-
ing scene flow of the vertex (Figure 2). Having a mathemat-
ical camera model, the Jacobian can be computed analyti-
cally (see [27]).

If a vertex is visible from at least 2 camera views, an
equation system, B dx

dt
= U, can be formulated to solve for

the scene flow of this vertex given the optical flows in all
camera views, where

B =
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and N is the number of camera views. A least-squares solu-
tion to this equation system can be found via singular value
decomposition (SVD) [21].



9. Differential Pose Update

Optical flow operates under the assumption that the pro-
jection of the underlying motion is purely translational.
This is simply not a reasonable approximation for fast or
complex motion. We concede that a purely motion-field
based tracking system is suitable for a slow moving subject
only. However, by combining optical flow and silhouette
information, it becomes possible to bypass some of the lim-
itations of optical flow and capture complex, fast motions
of the body. Whereas a motion field describes the motion
of a scene between two time instants, our corrective motion
field describes the motion between an intermediary textured
model generated from silhouette based tracking and a time
instant. These motions are small translations and rotations
properly aligning texture information and consequentially
suitable for approximation by a linear model.

We apply the previously described scene flow recon-
struction algorithm to compute a corrective motion field at
each time step. Let Ij,t be the j-th input camera view at
time t, and Pt be the model pose at time t. The algorithm
then proceeds as follows:

• With Pt as the starting point, use silhouette fitting to
compute P ′

t+1, an estimated pose for time t + 1

• Generate I ′

j,t+1 by rendering model from camera j in
pose P ′

t+1 with textures from time t.

• Computation of corrective motion field D: For each
model vertex

– Determine the projection of the vertex into each
camera image plane.

– Determine vertex visibility in all cameras by
comparing the projected z-coordinate to the
OpenGL z-buffer value.

– If a vertex is visible from camera j, compute the
optical flow between images I ′

j,t+1 and Ij,t+1.

– If a vertex is visible in at least three camera views
(more robust reconstruction than with minimum
number of 2 views), compute a least squares so-
lution to Eq. 5 by applying a SVD as described
in Section 8.2.

• Update P ′

t+1 to conform with motion field to yield
Pt+1.

The computed corrective 3D motion field D describes
vertex position updates that correct slight inaccuracies in
the result of the silhouette step. Figure 6 shows examples
of corrective scene flow fields. The remainder of the sec-
tion describes the derivation of the differential pose updates
from P ′

t+1 to Pt+1 using D.

Figure 3. Body model with separated hierar-
chy levels.

9.1 Differential Pose Update

The corrective motion field D can be used to compute
differential pose parameter updates for each limb of the
body model. For the root which is located in the torso seg-
ment, three differential rotation and three differential trans-
lation parameters are computed. All the joints apart from
the root are purely rotational. This includes 3-DOF rota-
tions for the shoulders, hips, and neck, and a 1-DOF rota-
tion for the elbows and knees. The wrist and ankle joints
are currently not considered.

By adding each vector in D to the current 3D position of
its corresponding vertex, a set of goal positions is defined
for each model vertex. The goal is to find the set of differ-
ential joint parameters of the body model that best aligns
the vertices with these positions. The idea is to compute
the differential pose parameter updates for every joint only
from the goal positions of the vertices of the attached body
segment, e.g. using the upper arm goal positions to find the
shoulder parameters.

Both our artificial body model and the real human body
are hierarchical kinematic chains. This implies that trans-
formations of joints lower in the hierarchy involve all trans-
formation of preceding joints too. Taking this into account,
we solve for the differential model parameters for one hier-
archy level of the model at a time, proceeding from top to
bottom (level 1 being the highest level, see Figure 3). After
the pose updates for a higher level are found, the model pa-
rameters on this level are updated, leaving all lower levels
unchanged. The algorithm proceeds to the next lower level.
Through this method it is assured that the computed differ-
ential update corresponds only to a joint transformation on
this level.



Figure 4. The pictures from left to right show the original model pose with 3D motion field, the model
after correction on the first hierarchy level, the second and then the third level.

9.1.1 Registration Method for Pose Update

Finding a pose update for a joint corresponds to finding a
coordinate system transformation between two point sets, a
problem know as the absolute orientation problem in pho-
togrammetry [12]. For each joint, one point set consists of
the current 3D vertex positions of the attached body seg-
ment. The second point set defines the goal locations for
each vertex in 3D space.

In [13], Horn describes a closed form solution to the
absolute orientation problem, henceforth referred to as the
registration method. In his work, Horn uses quaternions to
parameterize rotations. All transformations are computed
with respect to the centers of gravity of both point sets. Let
x1,i and x2,i, i = {1, . . . , N} be corresponding points from
two point sets, then the solution to the absolute orientation
problem in the least-squares sense are the rotation R and
translation c that minimize the error function

N
∑

i

‖ x2,i − Rx1,i − c ‖2 (6)

It is shown in [13] that the optimal translation c is defined by
the difference between the centroid of set 2 and the rotated
centroid of set 1. To find the optimal rotation, the coordi-
nates of the points in both point sets are defined relative to
their center of gravity, respectively. It can be shown that
the optimal rotation in the sense of Eq. 6 can be found by
maximizing

N
∑

i

x2,i · Rx1,i (7)

The maximal solution to the Eq. 7 can efficiently be com-
puted in closed-form using a quaternion parameterization q

of the rotation. A quaternion can be regarded as a complex
number with one real component and three imaginary com-
ponents, q = q0+qxix+qyiy+qziz , and can be represented
by a 4-component vector. Rotations can be represented by
unit quaternions. A detailed description of quaternions is

beyond the scope of this paper, hence we refer the reader to
the paper by Horn [13].

Using quaternions, the sum (7) can be transformed into
the form

qT Nq (8)

The matrix N contains entries that are purely made up
of products of coordinates of corresponding points in the
two point sets that need to be registered (see Appendix).
The rotation q that maximizes this sum is the eigenvector
that corresponds to the largest eigenvalue of the symmetric
4x4-matrix N . The solution q is a unit vector in the same
direction as the eigenvector.

We apply the registration method to compute differ-
ential pose updates as follows. The adjustment starts at
hierarchy level 1 with the root of the model. To find the
corrective model update of the root joint, a differential
rotation and translation is computed using the torso seg-
ment start and destination positions computed from D. The
rotation component is computed by applying the previously
described registration method. The corrective translation is
simply the optimal translation of the registration method
transformed into the global coordinate system.

On the second level of the hierarchy, only differential ro-
tation parameters for 3-DOF shoulder, hip, and head joints
need to be computed. The rotations are to be performed
around the center of each joint, not around the center of
gravity of the vertex positions. However, it is valid to sim-
ply use the start and goal vertex coordinates, x1,i and x2,i,
defined with respect to the local joint coordinate system in-
stead of relative to the centers of gravity. The same algo-
rithm for finding the optimal rotation still applies that is part
of the registration method. The least-squares rotation for the
joint is found as the rotation R that minimizes

N
∑

i

‖ x2,i − Rx1,i ‖
2 (9)



This energy term can be expanded into

N
∑

i=1

‖ x2,i ‖
2 −2

N
∑

i=1

x2,i · Rx1,i +
N

∑

i=1

‖ x1,i ‖
2 (10)

which is minimized by maximizing the middle sum. This
sum can be maximized by the same quaternion-based eigen-
vector decomposition method as previously described.

On hierarchy level 3, there are 4 1-DOF joints (the el-
bows and the knees). The body model is designed in such
a way that the rotation axis for each of these joints coin-
cides with the x-axis of the local coordinate system. The
optimal rotations are found using the same procedure as on
hierarchy level 2. The 1-DOF constraint is incorporated by
simply projecting the start and goal vertex positions into the
local yz-planes.

In Figure 4 the different steps of the pose parameter up-
date computation are illustrated using an exaggerated flow
field for better visualization.

10. Results

The performance of our system was tested on two multi-
view video sequences that were recorded with 8 cameras at
a resolution of 320x240 pixels. The sequences show simple
gestures that exhibit a large amount of head motion which is
difficult to accurately recover from the silhouette step only.
The test machine used is a 1.8 GHz Pentium IV Xeon with
512 MB of main memory. For the different sub-components
of the algorithm, we obtained the following timing results.
For the two sequences, the silhouette fitting takes between
3 and 5s for each time step. The Lucas Kanade optical flow
algorithm takes 45s on 8 input views if 4 levels of an image
pyramid and a 20x20 Gaussian window are used. The al-
gorithm is configured to compute a motion field vector for
each model vertex. The runtime of the optical flow compu-
tation strongly depends on the chosen parameters. For only
one level in the pyramid and a 10x10-neighborhood, the op-
tical flows in 8 camera views can be computed in 8s. Our
system is flexible enough to include any other optical flow
method. The reconstruction of the three-dimensional mo-
tion field from the 2D optical flow takes on average 0.34s
for each time step.

The results obtained with both sequences show that the
motion field update step can noticeably improve the qual-
ity of the reconstructed motion and therefore also the re-
constructed 3D video. In Figure 5 screen-shots of the 3D
video system with and without motion field correction are
depicted side by side. The most obvious improvements are
visible in the face and on the torso. The silhouette step often
cannot exactly recover the head orientation. The additional
use of the texture information can correct for such small er-
rors. Slight changes in torso orientation are also discovered
more robustly if the motion field correction step is applied.

Difference Avg. Max. Difference
sequence1 0.33 dB 0.81 dB
sequence2 0.35 dB 0.93 dB

Table 1. PSNR measurements

To measure the improvements quantitatively, we com-
puted the peak signal-to-noise-ratio (PSNR) [2] in the lu-
minance channel for both the uncorrected and corrected re-
constructed scene with respect to the original segmented in-
put images. In our case, the PSNR is a measure of recon-
struction quality. We obtained positive differences between
the average PSNRs for both sequences, quantifying the im-
provement caused by the motion field correction step. The
difference in PSNR at one time instant can be even more
significant. Results are summarized in Table 1.

It is interesting to observe that, after only small differ-
ences at the beginning, at later points in both sequences, the
PSNR differences are larger. This validates the assumption
that the correction step improves the model fitting over time.
Result movies can be downloaded from http://www.mpi-
sb.mpg.de/∼theobalt/SceneFlowFitting/index.html.

11. Conclusion

We have presented a new approach for non-intrusively
estimating motion parameters which makes use of both sil-
houette and texture information. This hybrid fitting ap-
proach combines the robust fitting of silhouette based track-
ing with the small-scale accuracy of optical flow methods.
Accurate estimation of motion parameters in conjunction
with a realistic body model allows for the use of projective
texturing to synthesize realistic images of a body in motion.
We have demonstrated both empirically and quantitatively
that the incorporation of corrective motion fields into the
fitting process yields significant improvements, and thus is
a worthwhile enhancement to the process of capturing free-
viewpoint video.

12. Acknowledgements

The authors would like to thank Ming Li from the Max-
Planck-Institut für Informatik for his assistance in recording
the multi-view video sequences.

References

[1] J. Barron, D. Fleet, and S. Beauchemin. Performance of
optical flow techniques. IJCV, 12:1:43–77, 1994.

[2] V. Bhaskaran and K. Konstantinidis. Image and Video Com-
pression Standards. Kluwer, 1999.



Figure 5. Top row: 3 rendered body poses reconstructed with silhouette-fitting only. Second row :
Corresponding body poses with motion field correction from same camera positions. Third row: Two
pairs of closeups of the rendered model (left: only silhouette fit, right: with motion field correction).
The improvements obtained with the correction step are most obvious in the face since the head
pose is more accurately recovered. The torso orientation is improved as well.

Figure 6. Textured body model with reconstructed corrective 3D motion field rendered as green
arrows.



[3] C. Bregler and J. Malik. Tracking people with twists and
exponential maps. In Proc. of CVPR 98, pages 8–15, 1998.

[4] J. Carranza, C. Theobalt, M. A. Magnor, and H.-P. Sei-
del. Free-viewpoint video of human actors. In Proceedings
of SIGGRAPH2003, to appear, page nn, San Diego, USA,
2003. Association of Computing Machinery (ACM), ACM.

[5] K. Cheung, T. Kanade, J.-Y. Bouguet, and M. Holler. A real
time system for robust 3D voxel reconstruction of human
motions. In Proc. of CVPR, volume 2, pages 714 – 720,
June 2000.

[6] Q. Delamarre and O. Faugeras. 3D articulated models and
multi-view tracking with silhouettes. In Proc. of ICCV 99,
pages 716–721, 1999.

[7] P. Eisert, W. T., and B. Girod. Model-aided coding : A
new approach to incorporate facial animation into motion-
compensated video coding. Transactions on Circuits and
Systems for Video Technology, 10(3):244–258, 2000.

[8] D. Gavrila. The visual analysis of human movement. CVIU,
73(1):82–98, January 1999.

[9] D. Gavrila and L. Davis. 3D model-based tracking of hu-
mans in action: A multi-view approach. In CVPR 96, pages
73–80, 1996.

[10] Y. Guo, G. Xu, and S. Tsuji. Tracking human body motion
based on a stick-figure model. Journal of Visual Communi-
cation and Image Representation, 5(1):1–9, 1994.

[11] D. Hogg. Model-based vision : a program to see a walking
person. Image and Vision Computing, 1(1):5–20, 1983.

[12] B. Horn. Robot Vision. MIT Press, 1986.
[13] B. Horn. Closed-form solution of absolute orientation using

unit quaternions. Journal of the Optical Sociey of America,
4(4):629–642, 1987.

[14] Y. Kameda, M. Minoh, and K. Ikeda. Three dimensional
motion estimation of a human body using a difference im-
age sequence. In Proceedings of the Asian Conference On
Computer Vision ’95, pages 181–185, 1995.

[15] R. Koch. Dynamic 3D scene analysis through synthesis
feedback control. PAMI, 15(6):556–568, 1993.

[16] B. Lucas and T. Kanade. An iterative image registration
technique with an application to stereo vision. In Proc.
DARPA IU Workshop, pages 121–130, 1981.

[17] J. Luck and D. Small. Real-time markerless motion tracking
using linked kinematic chains. In Proc. of CVPRIP02, 2002.

[18] W. Matusik, C. Buehler, and L. McMillan. Polyhedral visual
hulls for real-time rendering. In Proceedings of 12th Euro-
graphics Workshop on Rendering, pages 116–126, 2001.

[19] P. Narayanan, P. Rander, and T. Kanade. Constructing vir-
tual worlds using dense stereo. In Proc. of ICCV 98, pages
3 – 10, January 1998.

[20] R. Plaenkers and P. Fua. Tracking and modeling people in
video sequences. CVIU, 81(3):285–302, March 2001.

[21] W. Press, S. Teukolsky, W. Vetterling, and B. Flannery. Nu-
merical Recipes. Cambridge University Press, 1992.

[22] K. Rohr. Incremental recognition of pedestrians from image
sequences. In Proc. of CVPR 93, pages 8–13, 1993.

[23] C. Theobalt, M. Li, M. Magnor, and H.-P. Seidel. A flex-
ible and versatile studio for synchronized multi-view video
recording 2003. In Proceedings of Vision, Video and Graph-
ics, pages 9–16, 2003.

[24] C. Theobalt, M. Magnor, P. Schueler, and H.-P. Seidel. Com-
bining 2D feature tracking and volume reconstruction for
online video-based human motion capture. In Proceedings
of Pacific Graphics 2002, pages 96–103, 2002.

[25] R. Tsai. An efficient and accurate camera calibration tech-
nique for 3D machine vision. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR’86), pages 364–374, June 1986.

[26] S. Vedula, S. Baker, and T. Kanade. Spatio-temporal view
interpolation. In Proceedings of the 13th ACM Eurographics
Workshop on Rendering, pages 65–75, June 2002.

[27] S. Vedula, S. Baker, P. Rander, R. Collins, and T. Kanade.
Three-dimensional scene flow. In Proceedings of the 7th
IEEE International Conference on Computer Vision (ICCV-
99) [6], pages 722–729.

[28] S. Vedula, S. Baker, S. Seitz, and T. Kanade. Shape and
motion carving in 6D. In Proceedings of CVPR, pages 592–
598, 2000.

[29] S. Wuermlin, E. Lamboray, O. Staadt, and M. Gross. 3D
video recorder. In Proceedings of Pacific Graphics 2002,
IEEE Computer Society Press, pages 325–334, 2002.

Appendix

Structure of Matrix N

The matrix N needed to compute the optimal rotation in
a joint is defined as follows : Let x1 and x2 be two point
sets of size n, each point defined via coordinates (x, y, z),
then

M =





Sxx Sxy Sxz

Syx Syy Syz

Szx Szy Szz



 ,

where

Sxy =

n
∑

i=1

x1,iy2,i ,

The entries in N are built via arithmetic operations on ele-
ments of M.

N =
[

N1 N2 N3 N4

]

N1 =









(Sxx + Syy + Szz)
Syz − Szy

Szx − Sxz

Sxy − Syx









N2 =









Syz − Szy

(Sxx + Syy + Szz)
Sxy + Syx

Szx + Sxz









N3 =









Szx − Sxz

Sxy + Syx

(−Sxx + Syy − Szz)
Syz + Szy









N4 =









Sxy − Syx

Szx + Sxz

Syz + Szy

(−Sxx − Syy + Szz)










