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Formal Verification

• “[Formal] software verification . . . has been the Holy Grail
of computer science for many decades”
- Bill Gates [Gat02]

• Formal verification techniques can, in theory, prove
beyond a doubt that a system is implemented correctly.

• In practice, there are still many challenges, but there are
also success stories, and the technology is getting better.
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Steps of Formal Verification

1. Modeling: Create a mathematical model of the system
• A modeling error can introduce false bugs or mask

real bugs
• For many systems, this step can be done automatically

2. Specification: The properties which the system should
satisfy must be stated in a formal language
• Challenge to translate informal specifications into

formal ones
• Many languages: UML, CTL, PSL, Spec#, etc.

3. Proof: Prove that the model satisfies the specification
• Better than testing: covers all cases
• ...when it succeeds: this is the hard part
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Automatic Theorem Provers

Many real-world verification efforts require human expertise
to complete the proofs

If a computer can do the proof automatically, this greatly
improves the feasibility of formal verification

Automatic theorem provers have improved significantly in
recent years, enabling formal verification of larger and more
complex systems

In these lectures, we will look at two techniques for
automated theorem proving: SAT solvers and SMT solvers.
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Circuit Example

In this example, the value of test is always supposed to be
True.
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Circuit Example

In this example, the value of test is always supposed to be
True.

Under what conditions does this hold?
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In this example, the value of test is always supposed to be
True.

Under what conditions does this hold?

How do we prove it?
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Circuit Example

In this example, the value of test is always supposed to be
True.

Under what conditions does this hold?

How do we prove it?

We will come back to this question.
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Roadmap

Boolean Satisfiability

• Propositional Logic
• Solving SAT
• Modeling for SAT
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The Language of SAT solvers: Propositional Logic

A SAT solver solves the Boolean satisfiabiliy problem.

In order to understand the satisfiability problem, we must first
define the language in which the problem is phrased.

The language is propositional logic [End00].
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What is Logic?

A formal logic is defined by its syntax and semantics.

Syntax

• An alphabet is a set of symbols.
• A finite sequence of these symbols is called an

expression.
• A set of rules defines the well-formed expressions.

Semantics

• Gives meaning to well-formed expressions
• Formal notions of induction and recursion are required to

provide a rigorous semantics.

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 9/98



Propositional Logic: Syntax

Alphabet

( Left parenthesis Begin group
) Right parenthesis End group
¬ Negation symbol English: not
∧ Conjunction symbol English: and
∨ Disjunction symbol English: or (inclusive)
→ Conditional symbol English: if, then
↔ Bi-conditional symbol English: if and only if
A1 First propositional symbol
A2 Second propositional symbol
. . .

An nth propositional symbol
. . .
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Propositional Logic: Syntax

Alphabet

• Propositional connective symbols: ¬, ∧, ∨, →, ↔.
• Logical symbols: ¬, ∧, ∨, →, ↔, (, ).
• Parameters or nonlogical symbols: A1, A2, A3, . . .

The meaning of logical symbols is always the same. The
meaning of nonlogical symbols depends on the context.
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Propositional Logic: Syntax

An expression is a sequence of symbols. A sequence is
denoted explicitly by a comma separated list enclosed in
angle brackets: <a1, . . . ,am>.

Examples

<(, A1, ∧, A3, )>

<(, (, ¬, A1, ), →, A2, )>

<), ), ↔, ), A5>
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Propositional Logic: Syntax

An expression is a sequence of symbols. A sequence is
denoted explicitly by a comma separated list enclosed in
angle brackets: <a1, . . . ,am>.

Examples

<(, A1, ∧, A3, )> (A1 ∧ A3)

<(, (, ¬, A1, ), →, A2, )> ((¬A1) → A2)

<), ), ↔, ), A5> )) ↔)A5

For convenience, we will write sequences as a simple string
of symbols.
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Propositional Logic: Syntax

An expression is a sequence of symbols. A sequence is
denoted explicitly by a comma separated list enclosed in
angle brackets: <a1, . . . ,am>.

Examples

<(, A1, ∧, A3, )> (A1 ∧ A3)

<(, (, ¬, A1, ), →, A2, )> ((¬A1) → A2)

<), ), ↔, ), A5> )) ↔)A5

For convenience, we will write sequences as a simple string
of symbols.

Not all expressions make sense. Part of the job of defining a
syntax is to restrict the kinds of expressions that will be
allowed.
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Propositional Logic: Well-Formed Formulas

We use a formal inductive definition to define the set W of
well-formed formulas (wffs) in propositional logic.

• U =

• B =

• F =
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Propositional Logic: Well-Formed Formulas

We use a formal inductive definition to define the set W of
well-formed formulas (wffs) in propositional logic.

• U = the set of all expressions.
• B =

• F =
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Propositional Logic: Well-Formed Formulas

We use a formal inductive definition to define the set W of
well-formed formulas (wffs) in propositional logic.

• U = the set of all expressions.
• B = the set of expressions consisting of a single

propositional symbol.
• F =
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Propositional Logic: Well-Formed Formulas

We use a formal inductive definition to define the set W of
well-formed formulas (wffs) in propositional logic.

• U = the set of all expressions.
• B = the set of expressions consisting of a single

propositional symbol.
• F = the set of formula-building operations:

◦ E¬(α) = (¬α)
◦ E∧(α, β) = (α ∧ β)
◦ E∨(α, β) = (α ∨ β)
◦ E→(α, β) = (α → β)
◦ E↔(α, β) = (α ↔ β)
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Propositional Logic: Well-Formed Formulas

We use a formal inductive definition to define the set W of
well-formed formulas (wffs) in propositional logic.

• U = the set of all expressions.
• B = the set of expressions consisting of a single

propositional symbol.
• F = the set of formula-building operations:

◦ E¬(α) = (¬α)
◦ E∧(α, β) = (α ∧ β)
◦ E∨(α, β) = (α ∨ β)
◦ E→(α, β) = (α → β)
◦ E↔(α, β) = (α ↔ β)

W is the set generated from F by B.
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Propositional Logic: Well-Formed Formulas

We use a formal inductive definition to define the set W of
well-formed formulas (wffs) in propositional logic.

• U = the set of all expressions.
• B = the set of expressions consisting of a single

propositional symbol.
• F = the set of formula-building operations:

◦ E¬(α) = (¬α)
◦ E∧(α, β) = (α ∧ β)
◦ E∨(α, β) = (α ∨ β)
◦ E→(α, β) = (α → β)
◦ E↔(α, β) = (α ↔ β)

In fact, W is freely generated, meaning there is only one way
to generate each member of the set.
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Propositional Logic: Semantics

Intuitively, given a wff α and a value (either T or F) for each
propositional symbol in α, we should be able to determine the
value of α.
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Propositional Logic: Semantics

Intuitively, given a wff α and a value (either T or F) for each
propositional symbol in α, we should be able to determine the
value of α.

How do we make this precise?
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Propositional Logic: Semantics

Intuitively, given a wff α and a value (either T or F) for each
propositional symbol in α, we should be able to determine the
value of α.

How do we make this precise?

Let v be a function from B to {F,T}. We call this function a
truth assignment.
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Propositional Logic: Semantics

Now, we define v, a function from W to {F,T} as follows (we
compute with F and T as if they were 0 and 1 respectively).

• For each propositional symbol Ai, v(Ai) = v(Ai).

• v(E¬(α)) = T − v(α)

• v(E∧(α, β)) = min(v(α), v(β))

• v(E∨(α, β)) = max(v(α), v(β))

• v(E→(α, β)) = max(T − v(α), v(β))

• v(E↔(α, β)) = T − |v(α) − v(β)|

The fact that W is freely generated ensures that v is
well-defined.
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Truth Tables

There are other ways to present the semantics which are less
formal but perhaps more intuitive.

α ¬α

T

F

α β α ∧ β

T T

T F

F T

F F

α β α ∨ β

T T

T F

F T

F F

α β α → β

T T

T F

F T

F F

α β α ↔ β

T T

T F

F T

F F

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 16/98



Truth Tables

There are other ways to present the semantics which are less
formal but perhaps more intuitive.

α ¬α

T F

F T

α β α ∧ β

T T

T F

F T

F F

α β α ∨ β

T T

T F

F T

F F

α β α → β

T T

T F

F T

F F

α β α ↔ β

T T

T F

F T

F F

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 16/98



Truth Tables

There are other ways to present the semantics which are less
formal but perhaps more intuitive.

α ¬α

T F

F T

α β α ∧ β

T T T

T F F

F T F

F F F

α β α ∨ β

T T

T F

F T

F F

α β α → β

T T

T F

F T

F F

α β α ↔ β

T T

T F

F T

F F

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 16/98



Truth Tables

There are other ways to present the semantics which are less
formal but perhaps more intuitive.

α ¬α

T F

F T

α β α ∧ β

T T T

T F F

F T F

F F F

α β α ∨ β

T T T

T F T

F T T

F F F

α β α → β
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T F F

F T T

F F T

α β α ↔ β

T T T

T F F

F T F

F F T
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Complex truth tables

Truth tables can also be used to calculate all possible values
of v for a given wff: We associate a column with each
propositional symbol and a column with each propositional
connective. There is a row for each possible truth assignment
to the propositional connectives.
A1 A2 A3 (A1 ∨ (A2 ∧ ¬A3))

T T T T T

T T F T T

T F T T F

T F F T F

F T T F T

F T F F T

F F T F F

F F F F F
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Complex truth tables

Truth tables can also be used to calculate all possible values
of v for a given wff: We associate a column with each
propositional symbol and a column with each propositional
connective. There is a row for each possible truth assignment
to the propositional connectives.
A1 A2 A3 (A1 ∨ (A2 ∧ ¬A3))

T T T T T T F F

T T F T T T T T

T F T T T F F F

T F F T T F F T

F T T F F T F F

F T F F T T T T

F F T F F F F F

F F F F F F F T
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Definitions

If α is a wff, then a truth assignment v satisfies α if v(α) = T.
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Definitions

If α is a wff, then a truth assignment v satisfies α if v(α) = T.

A wff α is satisfiable if there exists some truth assignment v

which satisfies α.
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Definitions

If α is a wff, then a truth assignment v satisfies α if v(α) = T.

A wff α is satisfiable if there exists some truth assignment v

which satisfies α.

Suppose Σ is a set of wffs. Then Σ tautologically implies α,
Σ |= α, if every truth assignment which satisfies each formula
in Σ also satisfies α.
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Definitions

If α is a wff, then a truth assignment v satisfies α if v(α) = T.

A wff α is satisfiable if there exists some truth assignment v

which satisfies α.

Suppose Σ is a set of wffs. Then Σ tautologically implies α,
Σ |= α, if every truth assignment which satisfies each formula
in Σ also satisfies α.

• If ∅ |= α, then we say α is a tautology or α is valid and
write |= α.
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Definitions

If α is a wff, then a truth assignment v satisfies α if v(α) = T.

A wff α is satisfiable if there exists some truth assignment v

which satisfies α.

Suppose Σ is a set of wffs. Then Σ tautologically implies α,
Σ |= α, if every truth assignment which satisfies each formula
in Σ also satisfies α.

• If ∅ |= α, then we say α is a tautology or α is valid and
write |= α.

• If Σ is unsatisfiable, then Σ |= α for every wff α.
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Definitions

If α is a wff, then a truth assignment v satisfies α if v(α) = T.

A wff α is satisfiable if there exists some truth assignment v

which satisfies α.

Suppose Σ is a set of wffs. Then Σ tautologically implies α,
Σ |= α, if every truth assignment which satisfies each formula
in Σ also satisfies α.

• If ∅ |= α, then we say α is a tautology or α is valid and
write |= α.

• If Σ is unsatisfiable, then Σ |= α for every wff α.

• If α |= β (shorthand for {α} |= β) and β |= α, then α and β

are tautologically equivalent.
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Definitions

If α is a wff, then a truth assignment v satisfies α if v(α) = T.

A wff α is satisfiable if there exists some truth assignment v

which satisfies α.

Suppose Σ is a set of wffs. Then Σ tautologically implies α,
Σ |= α, if every truth assignment which satisfies each formula
in Σ also satisfies α.

• If ∅ |= α, then we say α is a tautology or α is valid and
write |= α.

• If Σ is unsatisfiable, then Σ |= α for every wff α.

• If α |= β (shorthand for {α} |= β) and β |= α, then α and β

are tautologically equivalent.
• Σ |= α if and only if

∧
(Σ) → α is valid.
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Examples

• (A ∨ B) ∧ (¬A ∨ ¬B)
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Examples

• (A ∨ B) ∧ (¬A ∨ ¬B) is satisfiable, but not valid.
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Examples

• (A ∨ B) ∧ (¬A ∨ ¬B) is satisfiable, but not valid.

• (A ∨ B) ∧ (¬A ∨ ¬B) ∧ (A ↔ B)
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Examples

• (A ∨ B) ∧ (¬A ∨ ¬B) is satisfiable, but not valid.

• (A ∨ B) ∧ (¬A ∨ ¬B) ∧ (A ↔ B) is unsatisfiable.
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Examples

• (A ∨ B) ∧ (¬A ∨ ¬B) is satisfiable, but not valid.

• (A ∨ B) ∧ (¬A ∨ ¬B) ∧ (A ↔ B) is unsatisfiable.

• {A,A → B} |= B

• {A,¬A} |= (A ∧ ¬A)
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Examples

• (A ∨ B) ∧ (¬A ∨ ¬B) is satisfiable, but not valid.

• (A ∨ B) ∧ (¬A ∨ ¬B) ∧ (A ↔ B) is unsatisfiable.

• {A,A → B} |= B

• {A,¬A} |= (A ∧ ¬A)

• ¬(A ∧ B) is tautologically equivalent to ¬A ∨ ¬B
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Examples

• (A ∨ B) ∧ (¬A ∨ ¬B) is satisfiable, but not valid.

• (A ∨ B) ∧ (¬A ∨ ¬B) ∧ (A ↔ B) is unsatisfiable.

• {A,A → B} |= B

• {A,¬A} |= (A ∧ ¬A)

• ¬(A ∧ B) is tautologically equivalent to ¬A ∨ ¬B

Suppose you had an algorithm SAT which would take a wff α

as input and return True if α is satisfiable and False otherwise.

How would you use this algorithm to verify each of the claims
made above?
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Examples

• (A ∨ B) ∧ (¬A ∨ ¬B) is satisfiable, but not valid.

• (A ∨ B) ∧ (¬A ∨ ¬B) ∧ (A ↔ B) is unsatisfiable.

• {A,A → B} |= B (A ∧ (A → B) ∧ (¬B))

• {A,¬A} |= (A ∧ ¬A)

• ¬(A ∧ B) is tautologically equivalent to ¬A ∨ ¬B

Suppose you had an algorithm SAT which would take a wff α

as input and return True if α is satisfiable and False otherwise.

How would you use this algorithm to verify each of the claims
made above?
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• {A,A → B} |= B (A ∧ (A → B) ∧ (¬B))

• {A,¬A} |= (A ∧ ¬A) (A ∧ (¬A) ∧ ¬(A ∧ ¬A))
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Suppose you had an algorithm SAT which would take a wff α
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made above?
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Examples

• (A ∨ B) ∧ (¬A ∨ ¬B) is satisfiable, but not valid.

• (A ∨ B) ∧ (¬A ∨ ¬B) ∧ (A ↔ B) is unsatisfiable.

• {A,A → B} |= B (A ∧ (A → B) ∧ (¬B))

• {A,¬A} |= (A ∧ ¬A) (A ∧ (¬A) ∧ ¬(A ∧ ¬A))

• ¬(A ∧ B) is tautologically equivalent to ¬A ∨ ¬B

¬(¬(A ∧ B) ↔ (¬A ∨ ¬B))

Suppose you had an algorithm SAT which would take a wff α

as input and return True if α is satisfiable and False otherwise.

How would you use this algorithm to verify each of the claims
made above?
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Some tautologies

Associative and Commutative laws for ∧,∨,↔

Distributive Laws

• (A ∧ (B ∨ C)) ↔ ((A ∧ B) ∨ (A ∧ C)).

• (A ∨ (B ∧ C)) ↔ ((A ∨ B) ∧ (A ∨ C)).

De Morgan’s Laws

• ¬(A ∧ B) ↔ (¬A ∨ ¬B)

• ¬(A ∨ B) ↔ (¬A ∧ ¬B)

Implication

• (A → B) ↔ (¬A ∨ B)
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Determining Satisfiability using Truth Tables

An Algorithm for Satisfiability

To check whether α is satisfiable, form the truth table for α. If
there is a row in which T appears as the value for α, then α is
satisfiable. Otherwise, α is unsatisfiable.
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Determining Satisfiability using Truth Tables

An Algorithm for Satisfiability

To check whether α is satisfiable, form the truth table for α. If
there is a row in which T appears as the value for α, then α is
satisfiable. Otherwise, α is unsatisfiable.

An Algorithm for Tautological Implication

To check whether {α1, . . . , αk} |= β, check the satisfiability of
(α1 ∧ · · · ∧ αk) ∧ (¬β). If it is unsatisfiable, then
{α1, . . . , αk} |= β, otherwise {α1, . . . , αk} 6|= β.
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Determining Satisfiability using Truth Tables

Example

A ∧ ((B ∨ ¬A) ∧ (C ∨ ¬B))
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Determining Satisfiability using Truth Tables

Example

A ∧ ((B ∨ ¬A) ∧ (C ∨ ¬B))

A B C A ∧ ((B ∨ ¬A) ∧ (C ∨ ¬B))

F F F F T T T T T
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Determining Satisfiability using Truth Tables

What is the complexity of this algorithm?

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 23/98



Determining Satisfiability using Truth Tables

What is the complexity of this algorithm?

2n where n is the number of propositional symbols.
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What is the complexity of this algorithm?

2n where n is the number of propositional symbols.

Can we do better?
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Determining Satisfiability using Truth Tables

What is the complexity of this algorithm?

2n where n is the number of propositional symbols.

Can we do better?

SAT was the first problem shown to be NP-complete [Coo71]:
all of the problems in the class NP can be solved by
translating them (in polynomial time) into SAT.
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SAT was the first problem shown to be NP-complete [Coo71]:
all of the problems in the class NP can be solved by
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So, if we could somehow build a fast solver for SAT, it could
be used to solve lots of other problems.
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SAT was the first problem shown to be NP-complete [Coo71]:
all of the problems in the class NP can be solved by
translating them (in polynomial time) into SAT.

So, if we could somehow build a fast solver for SAT, it could
be used to solve lots of other problems.

In theory, this seems dubious, as problems in NP are known
to take exponential time in the worst case.
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Determining Satisfiability using Truth Tables

What is the complexity of this algorithm?

2n where n is the number of propositional symbols.

Can we do better?

SAT was the first problem shown to be NP-complete [Coo71]:
all of the problems in the class NP can be solved by
translating them (in polynomial time) into SAT.

So, if we could somehow build a fast solver for SAT, it could
be used to solve lots of other problems.

In theory, this seems dubious, as problems in NP are known
to take exponential time in the worst case.

Remarkably, modern SAT solvers are very fast most of the
time!
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Roadmap

Boolean Satisfiability

• Propositional Logic
• Solving SAT
• Modeling for SAT
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Converting to CNF

Given an arbitrary formula in propostitional logic, most
algorithms for determining satisfiability first convert the
formula into conjunctive normal form (CNF).

Some definitions:
• A literal is a propositional variable or its negation
• A clause is a disjunction of one or more literals
• A formula is in CNF if it consists of a conjunction of

clauses
• A propositional symbol occurs positively if it occurs

unnegated in a clause.
• A propositional symbol occurs negatively if it occurs

negated in a clause.
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Converting to CNF

Examples

• Literals: Pi, ¬Pi

• Clauses: (P1 ∨ ¬P3 ∨ P5), (P2 ∨ ¬P2)

• CNF: (P1 ∨ ¬P3) ∧ (¬P2 ∨ P3 ∨ P5)

• In the above formula, P1 occurs positively and P2 occurs
negatively

To provide intuition for how to convert to CNF, we first explore
the connection between propositional formulas and Boolean
circuits.
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Boolean Gates

Consider an electrical device having n inputs and one output.
Assume that to each input we apply a signal that is either T

or F, and that this uniquely determines whether the output is
T or F.

X2

X3

F (X1, X2, X3)

X1

The behavior of such a device is described by a Boolean
function:

F (X1, . . . , Xn) = the output signal given the input signals
X1, . . . , Xn.

We call such a device a Boolean gate.
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Boolean Gates

Some common Boolean gates include AND, OR, and NOT
gates.

ORAND NOT
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Boolean Circuits

The inputs and outputs of Boolean gates can be connected
together to form a combinational Boolean circuit.

D

C

B

A

A combinational Boolean circuit corresponds to a directed
acyclic graph (DAG) whose leaves are inputs and each of
whose nodes is labeled with the name of a Boolean gate.

One or more of the nodes may be identified as outputs.
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Boolean Circuits

The inputs and outputs of Boolean gates can be connected
together to form a combinational Boolean circuit.

D

C

B

A

There is a natrual correspondence between Boolean circuits
and formulas of propositional logic. The formula
corresponding to the above circuit is:

(D ∧ (A ∧ B)) ∨ ((A ∧ B) ∧ ¬C).
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Sharing Sub-Expressions

(D ∧ (A ∧ B)) ∨ ((A ∧ B) ∧ ¬C)

This formula highlights an inefficiency in the logic
representation as compared with the circuit representation.
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Sharing Sub-Expressions

(D ∧ (A ∧ B)) ∨ ((A ∧ B) ∧ ¬C)

This formula highlights an inefficiency in the logic
representation as compared with the circuit representation.

If we are only concerned with the satisfiability of the formula,
we can overcome this inefficiency by introducing new
propositional symbols:

((D ∧ E) ∨ (E ∧ ¬C)) ∧ (E ↔ (A ∧ B))
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(D ∧ (A ∧ B)) ∨ ((A ∧ B) ∧ ¬C)

This formula highlights an inefficiency in the logic
representation as compared with the circuit representation.

If we are only concerned with the satisfiability of the formula,
we can overcome this inefficiency by introducing new
propositional symbols:

((D ∧ E) ∨ (E ∧ ¬C)) ∧ (E ↔ (A ∧ B))

Note that the new formula is not tautologically equivalent to
the original formula: why?
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Sharing Sub-Expressions

(D ∧ (A ∧ B)) ∨ ((A ∧ B) ∧ ¬C)

This formula highlights an inefficiency in the logic
representation as compared with the circuit representation.

If we are only concerned with the satisfiability of the formula,
we can overcome this inefficiency by introducing new
propositional symbols:

((D ∧ E) ∨ (E ∧ ¬C)) ∧ (E ↔ (A ∧ B))

Note that the new formula is not tautologically equivalent to
the original formula: why?

But it is equisatisfiable: the original formula is satisfiable iff
the new formula is satisfiable.
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Converting to CNF

This same idea is behind a simple algorithm for converting
any formula to CNF [Tse70].

We view the formula as a directed acyclic graph (DAG).

Conversion to CNF

1. Label each non-leaf node of the DAG with a new
propositional symbol.

2. For each non-leaf node, construct a conjunction of
clauses relating the inputs of that node to its output.

3. Take the conjunction of all of these clauses together with
a single clause consisting of the symbol for the root node.

The resulting formula is satisfiable iff the original formula is
satisfiable.
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Converting to CNF: Example

D

C

B

A

F

E

G

H

I
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Converting to CNF: Example

D

C

B

A

F

E

G

H

I

(A ∧ B) ↔ E
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Converting to CNF: Example

D

C

B

A

F

E

G

H

I

(A ∧ B) ↔ E

((A ∧ B) → E) ∧ (E → (A ∧ B))
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Converting to CNF: Example

D

C

B

A

F

E

G

H

I

(A ∧ B) ↔ E

((A ∧ B) → E) ∧ (E → (A ∧ B))

(¬(A ∧ B) ∨ E) ∧ (¬E ∨ (A ∧ B))
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Converting to CNF: Example

D

C

B

A

F

E

G

H

I

(A ∧ B) ↔ E

((A ∧ B) → E) ∧ (E → (A ∧ B))

(¬(A ∧ B) ∨ E) ∧ (¬E ∨ (A ∧ B))

(¬A ∨ ¬B ∨ E) ∧ (¬E ∨ A) ∧ (¬E ∨ B)
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Converting to CNF: Example

D

C

B

A

F

E

G

H

I

(¬A ∨ ¬B ∨ E) ∧ (¬E ∨ A) ∧ (¬E ∨ B) ∧
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Converting to CNF: Example

D

C

B

A

F

E

G

H

I

(¬A ∨ ¬B ∨ E) ∧ (¬E ∨ A) ∧ (¬E ∨ B) ∧

(¬C ∨ F ) ∧ (¬F ∨ C) ∧
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Converting to CNF: Example

D

C

B

A

F

E

G

H

I

(¬A ∨ ¬B ∨ E) ∧ (¬E ∨ A) ∧ (¬E ∨ B) ∧

(¬C ∨ F ) ∧ (¬F ∨ C) ∧

(¬D ∨ ¬E ∨ G) ∧ (¬G ∨ D) ∧ (¬G ∨ E) ∧
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Converting to CNF: Example

D

C

B

A

F

E

G

H

I

(¬A ∨ ¬B ∨ E) ∧ (¬E ∨ A) ∧ (¬E ∨ B) ∧

(¬C ∨ F ) ∧ (¬F ∨ C) ∧

(¬D ∨ ¬E ∨ G) ∧ (¬G ∨ D) ∧ (¬G ∨ E) ∧

(¬E ∨ ¬F ∨ H) ∧ (¬H ∨ E) ∧ (¬H ∨ F ) ∧
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Converting to CNF: Example

D

C

B

A

F

E

G

H

I

(¬A ∨ ¬B ∨ E) ∧ (¬E ∨ A) ∧ (¬E ∨ B) ∧

(¬C ∨ F ) ∧ (¬F ∨ C) ∧

(¬D ∨ ¬E ∨ G) ∧ (¬G ∨ D) ∧ (¬G ∨ E) ∧

(¬E ∨ ¬F ∨ H) ∧ (¬H ∨ E) ∧ (¬H ∨ F ) ∧

(G ∨ H ∨ ¬I) ∧ (I ∨ ¬G) ∧ (I ∨ ¬H) ∧
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Converting to CNF: Example

D

C

B

A

F

E

G

H

I

(¬A ∨ ¬B ∨ E) ∧ (¬E ∨ A) ∧ (¬E ∨ B) ∧

(¬C ∨ F ) ∧ (¬F ∨ C) ∧

(¬D ∨ ¬E ∨ G) ∧ (¬G ∨ D) ∧ (¬G ∨ E) ∧

(¬E ∨ ¬F ∨ H) ∧ (¬H ∨ E) ∧ (¬H ∨ F ) ∧

(G ∨ H ∨ ¬I) ∧ (I ∨ ¬G) ∧ (I ∨ ¬H) ∧

(I)
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CNF: Alternative notations

(¬A ∨ ¬B ∨ E) ∧ (¬E ∨ A) ∧ (¬E ∨ B) ∧

(¬C ∨ F ) ∧ (¬F ∨ C) ∧

(¬D ∨ ¬E ∨ G) ∧ (¬G ∨ D) ∧ (¬G ∨ E) ∧

(¬E ∨ ¬F ∨ H) ∧ (¬H ∨ E) ∧ (¬H ∨ F ) ∧

(G ∨ H ∨ ¬I) ∧ (I ∨ ¬G) ∧ (I ∨ ¬H) ∧

(I)

(A′ + B′ + E)(E ′ + A)(E ′ + B)

(C ′ + F )(F ′ + C)

(D′ + E ′ + G)(G′ + D)(G′ + E)

(E ′ + F ′ + H)(H ′ + E)(H ′ + F )

(G + H + I ′)(I + G′)(I + H ′)

(I)
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CNF: Alternative notations

DIMACS standard

Each variable is represented by a positive integer. A negative
integer refers to the negation of the variable. Clauses are
given as sequences of integers separated by spaces. A 0
terminates the clause.

(A′ + B′ + E)(E ′ + A)(E ′ + B)

(C ′ + F )(F ′ + C)

(D′ + E ′ + G)(G′ + D)(G′ + E)

(E ′ + F ′ + H)(H ′ + E)(H ′ + F )

(G + H + I ′)(I + G′)(I + H ′)

(I)

-1 -2 5 0 -5 1 0 -5 2 0
-3 6 0 -6 3 0
-4 -5 7 0 -7 4 0 -7 5 0
-5 -6 8 0 -8 5 0 -8 6 0
7 8 -9 0 9 -7 0 9 -8 0
9 0
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Davis-Putnam Algorithm

From now on, unless otherwise indicated, we assume
formulas are in CNF, or, equivalently, that we have a set of
clauses to check for satisfiability (i.e. the conjunction is
implicit).

The first algorithm to try something more sophisticated than
the truth-table method was the Davis-Putnam (DP) algorithm,
published in 1960 [DP60].

It is often confused with the later, more popular algorithm
presented by Davis, Logemann, and Loveland in
1962 [DLL62], which we will refer to as
Davis-Putnam-Logemann-Loveland (DPLL).

We first consider the original DP algorithm.
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Davis-Putnam Algorithm

There are three satisfiability-preserving transformations in DP.

• The 1-literal rule
• The affirmative-negative rule
• The rule for eliminating atomic formulas

The first two steps reduce the total number of literals in the
formula.

The last step reduces the number of variables in the formula.

By repeatedly applying these rules, eventually we obtain a
formula containing an empty clause, indicating unsatisfiability,
or a formula with no clauses, indicating satisfiability.
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Davis-Putnam Algorithm

The 1-literal rule

Also called unit propagation.

Suppose (p) is a unit clause (clause containing only one
literal). Let −p denote the negation of p where double
negation is collapsed (i.e. −¬q ≡ q).

• Remove all instances of −p from clauses in the formula
(shortening the corresponding clauses).

• Remove all clauses containing p (including the unit clause
itself).
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Davis-Putnam Algorithm

The affirmative-negative rule

Also called the pure literal rule.

If a literal appears only positively or only negatively, delete all
clauses containing that literal.

Why does this preserve satisfiability?
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Davis-Putnam Algorithm

Rule for eliminating atomic formulas

Also called the resolution rule.
• Choose a propositional symbol p which occurs positively

in at least one clause and negatively in at least one other
clause.

• Let P be the set of all clauses in which p occurs positively.
• Let N be the set of all clauses in which p occurs

negatively.
• Replace the clauses in P and N with those obtained by

resolution on p using all pairs of clauses from P and N .

For a single pair of clauses, (p ∨ l1 ∨ · · · ∨ lm) and
(¬p ∨ k1 ∨ · · · ∨ kn), resolution on p forms the new clause
(l1 ∨ · · · ∨ lm ∨ k1 ∨ · · · ∨ kn).
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DPLL Algorithm

In the worst case, the resolution rule can cause a quadratic
expansion every time it is applied.

For large formulas, this can quickly exhaust the available
memory.

The DPLL algorithm replaces resolution with a splitting rule.

• Choose a propositional symbol p occuring in the formula.
• Let ∆ be the current set of clauses.
• Test the satisfiability of ∆ ∪ {(p)}.
• If satisfiable, return True.
• Otherwise, return the result of testing ∆ ∪ {(¬p)} for

satisfiability.
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Some Experimental Results [Har09]

Problem tautology dptaut dplltaut

prime 3 0.00 0.00 0.00

prime 4 0.02 0.06 0.04

prime 9 18.94 2.98 0.51

prime 10 11.40 3.03 0.96

prime 11 28.11 2.98 0.51

prime 16 >1 hour out of memory 9.15

prime 17 >1 hour out of memory 3.87

ramsey 3 3 5 0.03 0.06 0.02

ramsey 3 3 6 5.13 8.28 0.31

mk_adder_test 3 2 >>1 hour 6.50 7.34

mk_adder_test 4 2 >>1 hour 22.95 46.86

mk_adder_test 5 2 >>1 hour 44.83 170.98

mk_adder_test 5 3 >>1 hour 38.27 250.16

mk_adder_test 6 3 >>1 hour out of memory 1186.4

mk_adder_test 7 3 >>1 hour out of memory 3759.9
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DPLL Algorithm

The DPLL algorithm is the basis for most modern SAT
solvers.

We will look at DPLL in more detail, but first we consider two
more alternative algorithms.
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Incomplete SAT: GSAT [SLM92]

Input: a set of clauses F, MAX-FLIPS, MAX-TRIES
Output: a satisfying truth assignment of F

or ∅, if none found
for i := 1 to MAX-TRIES

v := a randomly generated truth assignment
for j := 1 to MAX-FLIPS

if v satisfies F then return v

p := a propositional variable such that a
change in its truth assignment gives the
largest increase in the total number of
clauses of F that are satisfied by v

v := v with the assignment to p reversed
end for

end for
return ∅
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Stålmarck’s Method [SS98]

Breadth-first approach instead of depth-first.

Dilemma Rule

Given a set of formulas ∆ and any basic deduction algorithm,
R, the dilemma rule performs a case split on some literal p by
considering the new sets of formulas ∆ ∪ {(¬p)} and
∆ ∪ {(p)}.

To each of these sets, the algorithm R is applied to yield ∆0

and ∆1 respectively.

The original set ∆ is then augmented with ∆0 ∩ ∆1.
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Stålmarck’s Method [SS98]

Breadth-first approach instead of depth-first.

Dilemma Rule

Given a set of formulas ∆ and any basic deduction algorithm,
R, the dilemma rule performs a case split on some literal p by
considering the new sets of formulas ∆ ∪ {(¬p)} and
∆ ∪ {(p)}.

To each of these sets, the algorithm R is applied to yield ∆0

and ∆1 respectively.

The original set ∆ is then augmented with ∆0 ∩ ∆1.

In 1994, Kunz and Pradhan developed a technique they
called recursive learning which is very similar to the dilemma
rule [KP94].
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Stålmarck’s Method

Stålmarck’s Method takes as input a set of formulas ∆ and a
set of basic deduction rules S0.

Applying S0 to ∆ until no further deductions are possible is
called 0-saturation.

Applying the dilemma rule with R = S0 until no further
deductions are possible is called 1-saturation, and the result
is denoted S1. Note that in order to acheive 1-saturation, the
dilemma rule is applied for every variable. This is why
Stålmarck’s Method can be classified as a breadth-first
strategy.

Repeatedly applying the dilemma rule with R = S1 is called
2-saturation, and denoted S2.

In general, Sn+1 or (n + 1)-saturation is obtained by applying
the dilemma rule with R = Sn.
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Stålmarck’s Method

If a set of formulas ∆ is decidable by n-saturation, then ∆ is
said to be n-easy. If, in addition, it is not decidable by
(n − 1)-saturation, it is said to be n-hard.

If ∆ contains at most n propositional symbols, then ∆ is
clearly n-easy. Why?
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Stålmarck’s Method

If a set of formulas ∆ is decidable by n-saturation, then ∆ is
said to be n-easy. If, in addition, it is not decidable by
(n − 1)-saturation, it is said to be n-hard.

If ∆ contains at most n propositional symbols, then ∆ is
clearly n-easy. Why?

The merit of Stålmarck’s method is that for some applications,
the problems are nearly always n-easy for small values of n,
often just n = 1.
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Stålmarck’s Method: Implementation

Triplets
Stålmarck’s Method does not use CNF. Instead, it first
translates a formula into a set of triplets: pi ↔ pj ⊲⊳ pk.

The translation is analagous to the conversion to CNF except
that the equivalences for each node are not transformed into
clauses: they are left as equivalences.

Example

D

C

B

A

F

E

G

H

I

(E ↔ A ∧ B),(G ↔ D ∧ E), (H ↔ E ∧ ¬C), (I ↔ G ∨ H)
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Stålmarck’s Method: Implementation

Simple Rules

The rules for 0-saturation simply enumerate the new
equivalences that can be deduced from a triplet given a set of
existing equivalences.

Example

Consider the triplet p ↔ q ∧ r

• If r ↔ True, then p ↔ q.
• If p ↔ True, then q ↔ True and r ↔ True.
• If q ↔ False, then p ↔ False.
• If q ↔ r, then p ↔ q and p ↔ r.
• If p ↔ ¬q, then q ↔ True and r ↔ False.
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Stålmarck’s Method: Implementation

These rules are called triggers.

0-saturation is done by using the triggers to deduce new
equivalences until nothing new can be obtained or a
contradiction (True ↔ False) is derived.
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Stålmarck’s Method: Implementation

The overall algorithm works as follows:

1. The formula is negated and converted to triplets.

2. 0-saturation is performed. If a contradiction is obtained,
we are done.

3. Otherwise, 1-saturation is performed: for each variable,
the dilemma rule is used with R = S0 to deduce new
equivalences. If a contradiction is obtained, we are done.

4. Continue performing additional levels of saturation until a
contradiction is obtained.

Note that the algorithm as given does not detect satisfiable
formulas, only unsatisfiable formulas.

With some modification, the algorithm can be adapted to
detect satisfiability as well.

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 51/98



Stålmarck’s Method: Performance

The procedure is quite effective in many cases.

For primality formulas, it is generally comparable to DPLL. For
Ramsey formulas, significantly worse. But for adder formulas
it is substantially better.

Another class of formulas on which Stålmarck performs well
is the so-called urquhart formulas:

p1 ↔ p2 ↔ · · · ↔ pn ↔ p1 ↔ p2 ↔ · · · ↔ pn.

These formulas are all 2-easy, whereas DPLL must search
through nearly all possible cases to prove them.

In general, if a formula with m connectives is n-easy,
Stålmarck’s Method can decide it in time O(m2n+1).
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Abstract DPLL

We now return to DPLL. To facilitate a deeper look at DPLL,
we use a high-level framework called Abstract DPLL [NOT06].
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Abstract DPLL

We now return to DPLL. To facilitate a deeper look at DPLL,
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Abstract DPLL

We now return to DPLL. To facilitate a deeper look at DPLL,
we use a high-level framework called Abstract DPLL [NOT06].

• Abstract DPLL uses states and transitions to model the
progress of the algorithm.

• Most states are of the form M || F , where
◦ M is a sequence of annotated literals denoting a

partial truth assignment, and
◦ F is the CNF formula being checked, represented as a

set of clauses.
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Abstract DPLL

We now return to DPLL. To facilitate a deeper look at DPLL,
we use a high-level framework called Abstract DPLL [NOT06].

• Abstract DPLL uses states and transitions to model the
progress of the algorithm.

• Most states are of the form M || F , where
◦ M is a sequence of annotated literals denoting a

partial truth assignment, and
◦ F is the CNF formula being checked, represented as a

set of clauses.
• The initial state is ∅ || F , where F is to be checked for

satisfiability.
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Abstract DPLL

We now return to DPLL. To facilitate a deeper look at DPLL,
we use a high-level framework called Abstract DPLL [NOT06].

• Abstract DPLL uses states and transitions to model the
progress of the algorithm.

• Most states are of the form M || F , where
◦ M is a sequence of annotated literals denoting a

partial truth assignment, and
◦ F is the CNF formula being checked, represented as a

set of clauses.
• The initial state is ∅ || F , where F is to be checked for

satisfiability.
• Transitions between states are defined by a set of

conditional transition rules.
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Abstract DPLL

The final state is either:
• a special fail state: fail , if F is unsatisfiable, or
• M || G, where G is a CNF formula equisatisfiable with the

original formula F , and M satisfies G

We write M |= C to mean that for every truth assignment v,
v(M) = True implies v(C) = True.
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Abstract DPLL Rules
UnitProp :

M || F, C ∨ l =⇒ M l || F, C ∨ l if

8

<

:

M |= ¬C

l is undefined in M

PureLiteral :

M || F =⇒ M l || F if

8

>

>

<

>

>

:

l occurs in some clause of F

−l occurs in no clause of F

l is undefined in M

Decide :

M || F =⇒ M ld || F if

8

<

:

l or ¬l occurs in a clause of F

l is undefined in M

Backtrack :

M ld N || F, C =⇒ M ¬l || F, C if

8

<

:

M ld N |= ¬C

N contains no decision literals

Fail :

M || F, C =⇒ fail if

8

<

:

M |= ¬C

M contains no decision literals
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Example

∅ || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (PureLiteral)

4 1d 2 3 ||
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Example

∅ || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (PureLiteral)

4 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4

4 1d 2 3 ||
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Example

∅ || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (PureLiteral)

4 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (Decide)

4 1d || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4

4 1d 2 3 ||
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Example

∅ || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (PureLiteral)

4 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (Decide)

4 1d || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (UnitProp)

4 1d 2 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4

4 1d 2 3 ||
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Example

∅ || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (PureLiteral)

4 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (Decide)

4 1d || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (UnitProp)

4 1d 2 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (UnitProp)

4 1d 2 3 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4
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Example

∅ || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (PureLiteral)

4 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (Decide)

4 1d || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (UnitProp)

4 1d 2 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (UnitProp)

4 1d 2 3 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (Backtrack)

4 1 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4
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Example

∅ || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (PureLiteral)

4 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (Decide)

4 1d || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (UnitProp)

4 1d 2 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (UnitProp)

4 1d 2 3 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (Backtrack)

4 1 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (UnitProp)

4 1 2 3 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4
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Example

∅ || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (PureLiteral)

4 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (Decide)

4 1d || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (UnitProp)

4 1d 2 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (UnitProp)

4 1d 2 3 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (Backtrack)

4 1 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (UnitProp)

4 1 2 3 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (Fail)

fail
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Example

∅ || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (PureLiteral)

4 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (Decide)

4 1d || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (UnitProp)

4 1d 2 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (UnitProp)

4 1d 2 3 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (Backtrack)

4 1 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (UnitProp)

4 1 2 3 || 1∨2, 1∨2, 2∨3, 3∨2, 1∨4 =⇒ (Fail)

fail

Result: Unsatisfiable
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Abstract DPLL: Backjumping and Learning

The basic rules can be improved by replacing the Backtrack
rule with the more powerful Backjump rule and adding a Learn
rule:

Backjump :

M ld N || F, C =⇒ M l′ || F, C if

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

M ld N |= ¬C, and there is

some clause C′ ∨ l′ such that:

F, C |= C′ ∨ l′ and M |= ¬C′,

l′ is undefined in M , and

l′ or ¬l′ occurs in F or in M ld N

Learn :

M || F =⇒ M || F, C if

8

<

:

all atoms of C occur in F

F |= C
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Abstract DPLL: Backjumping and Learning

The Backjump rule is best understood by introducing the notion
of implication graph, a directed graph associated with a state
M || F of Abstract DPLL:

• The vertices are the variables in M

• There is an edge from v1 to v2 if v2 was assigned a value
as the result of an application of UnitProp using a clause
containing v2.

When we reach a state in which M |= ¬C for some C ∈ F , we
add an extra conflict vertex and edges from each of the
variables in C to the conflict vertex.
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Abstract DPLL: Backjumping and Learning

The clause to use for backjumping (called the conflict clause)
is obtained from the resulting graph:

• We first cut the graph along edges in such a way that it
separates the conflict vertex from all of the decision
vertices.

• Then, every vertex with an outgoing edge that was cut is
marked.

• For each literal l in M whose variable is marked, −l is
added to the conflict clause.

To avoid ever having the same conflict again, we can learn
the conflict clause using the learn rule.
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Example

∅ || 1∨2, 3∨4, 5∨6, 2∨5∨6

1d 2 3d 5d 6 ||
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Example

∅ || 1∨2, 3∨4, 5∨6, 2∨5∨6 =⇒ (Decide)

1d || 1∨2, 3∨4, 5∨6, 2∨5∨6

1d 2 3d 5d 6 ||
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Example

∅ || 1∨2, 3∨4, 5∨6, 2∨5∨6 =⇒ (Decide)

1d || 1∨2, 3∨4, 5∨6, 2∨5∨6 =⇒ (UnitProp)

1d 2 || 1∨2, 3∨4, 5∨6, 2∨5∨6

1d 2 3d 5d 6 ||
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Example

∅ || 1∨2, 3∨4, 5∨6, 2∨5∨6 =⇒ (Decide)

1d || 1∨2, 3∨4, 5∨6, 2∨5∨6 =⇒ (UnitProp)

1d 2 || 1∨2, 3∨4, 5∨6, 2∨5∨6 =⇒ (Decide)

1d 2 3d || 1∨2, 3∨4, 5∨6, 2∨5∨6

1d 2 3d 5d 6 ||
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Example

∅ || 1∨2, 3∨4, 5∨6, 2∨5∨6 =⇒ (Decide)

1d || 1∨2, 3∨4, 5∨6, 2∨5∨6 =⇒ (UnitProp)

1d 2 || 1∨2, 3∨4, 5∨6, 2∨5∨6 =⇒ (Decide)

1d 2 3d || 1∨2, 3∨4, 5∨6, 2∨5∨6 =⇒ (Decide)

1d 2 3d 5d || 1∨2, 3∨4, 5∨6, 2∨5∨6

1d 2 3d 5d 6 ||
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Example

∅ || 1∨2, 3∨4, 5∨6, 2∨5∨6 =⇒ (Decide)

1d || 1∨2, 3∨4, 5∨6, 2∨5∨6 =⇒ (UnitProp)

1d 2 || 1∨2, 3∨4, 5∨6, 2∨5∨6 =⇒ (Decide)

1d 2 3d || 1∨2, 3∨4, 5∨6, 2∨5∨6 =⇒ (Decide)

1d 2 3d 5d || 1∨2, 3∨4, 5∨6, 2∨5∨6 =⇒ (UnitProp)

1d 2 3d 5d 6 || 1∨2, 3∨4, 5∨6, 2∨5∨6
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Example

∅ || 1∨2, 3∨4, 5∨6, 2∨5∨6 =⇒ (Decide)

1d || 1∨2, 3∨4, 5∨6, 2∨5∨6 =⇒ (UnitProp)

1d 2 || 1∨2, 3∨4, 5∨6, 2∨5∨6 =⇒ (Decide)

1d 2 3d || 1∨2, 3∨4, 5∨6, 2∨5∨6 =⇒ (Decide)

1d 2 3d 5d || 1∨2, 3∨4, 5∨6, 2∨5∨6 =⇒ (UnitProp)

1d 2 3d 5d 6 || 1∨2, 3∨4, 5∨6, 2∨5∨6 =⇒ (Learn)

1d 2 3d 5d 6 || 1∨2, 3∨4, 5∨6, 2∨5∨6, 2∨5
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Example

∅ || 1∨2, 3∨4, 5∨6, 2∨5∨6 =⇒ (Decide)

1d || 1∨2, 3∨4, 5∨6, 2∨5∨6 =⇒ (UnitProp)

1d 2 || 1∨2, 3∨4, 5∨6, 2∨5∨6 =⇒ (Decide)

1d 2 3d || 1∨2, 3∨4, 5∨6, 2∨5∨6 =⇒ (Decide)

1d 2 3d 5d || 1∨2, 3∨4, 5∨6, 2∨5∨6 =⇒ (UnitProp)

1d 2 3d 5d 6 || 1∨2, 3∨4, 5∨6, 2∨5∨6 =⇒ (Learn)

1d 2 3d 5d 6 || 1∨2, 3∨4, 5∨6, 2∨5∨6, 2∨5

=⇒ (Backjump)

1d 2 5 || 1∨2, 3∨4, 5∨6, 2∨5∨6, 2∨5
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Example

∅ || 1∨2, 3∨4, 5∨6, 2∨5∨6 =⇒ (Decide)

1d || 1∨2, 3∨4, 5∨6, 2∨5∨6 =⇒ (UnitProp)

1d 2 || 1∨2, 3∨4, 5∨6, 2∨5∨6 =⇒ (Decide)

1d 2 3d || 1∨2, 3∨4, 5∨6, 2∨5∨6 =⇒ (Decide)

1d 2 3d 5d || 1∨2, 3∨4, 5∨6, 2∨5∨6 =⇒ (UnitProp)

1d 2 3d 5d 6 || 1∨2, 3∨4, 5∨6, 2∨5∨6 =⇒ (Learn)

1d 2 3d 5d 6 || 1∨2, 3∨4, 5∨6, 2∨5∨6, 2∨5

=⇒ (Backjump)

1d 2 5 || 1∨2, 3∨4, 5∨6, 2∨5∨6, 2∨5

=⇒ (Decide)

1d 2 5 3d || 1∨2, 3∨4, 5∨6, 2∨5∨6, 2∨5
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Example

∅ || 1∨2, 3∨4, 5∨6, 2∨5∨6 =⇒ (Decide)

1d || 1∨2, 3∨4, 5∨6, 2∨5∨6 =⇒ (UnitProp)

1d 2 || 1∨2, 3∨4, 5∨6, 2∨5∨6 =⇒ (Decide)

1d 2 3d || 1∨2, 3∨4, 5∨6, 2∨5∨6 =⇒ (Decide)

1d 2 3d 5d || 1∨2, 3∨4, 5∨6, 2∨5∨6 =⇒ (UnitProp)

1d 2 3d 5d 6 || 1∨2, 3∨4, 5∨6, 2∨5∨6 =⇒ (Learn)

1d 2 3d 5d 6 || 1∨2, 3∨4, 5∨6, 2∨5∨6, 2∨5

=⇒ (Backjump)

1d 2 5 || 1∨2, 3∨4, 5∨6, 2∨5∨6, 2∨5

=⇒ (Decide)

1d 2 5 3d || 1∨2, 3∨4, 5∨6, 2∨5∨6, 2∨5

Result: Satisfiable
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Abstract DPLL Modulo Theories Rules

Two final rules also have to do with learning:
• If too many clauses are learned, performance suffers. It is

useful to forget some clauses (typically those that have
not participated in an application of UnitProp for a while).

• If we are stuck, we can restart by throwing away M .
Since we have learned clauses, this means our efforts
were not entirely wasted. Randomly restarting can
improve performance dramatically.

Forget :

M || F, C =⇒ M || F if

n

F |= C

Restart :

M || F =⇒ ∅ || F
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Decision Heuristics

The rules do not give any strategy for how to pick a variable
when applying Decide.

In practice, this is critical for performance.

There are many heuristics, but the most successful currently
use very cheap heuristics to try to prefer variables that are
frequently involved in conflicts.
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Boolean Constraint Propagation

The most expensive part of a SAT solver is the part that
checks for and applies instances of the UnitProp rule.

A key insight that can be used to speed this up is that as long
as a clause has at least two unassigned literals, it cannot
participate in an application of UnitProp.

For every clause, we assign two of its unassigned literals as
the watched literals.

Every time a literal is assigned, only those clauses in which it
is watched need to be checked for a possible triggering of the
UnitProp rule.

For those clauses that are inspected, if UnitProp is not
triggered, a new unassigned literal is chosen to be watched.
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Other Considerations

Modern SAT solvers [ES03, MMZ+01, MSS96, Zha97] have a
number of other tricks to speed things up:

• Highly tuned code
• Optimization for cache performance
• Preprocessing and clever CNF encodings
• Automatic tuning of program parameters
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What is the state-of-the-art?

D. le Berre, O. Roussel, L. Simon. “The SAT ’07 Contest”
http://www.cril.univ-artois.fr/SAT07/

SAT 2007 Competition

• 44 solvers
• 3 benchmark categories

◦ Industrial
◦ Crafted
◦ Random

Some of the winners:

• Industrial: RSat, picosat, minisat
• Crafted: SATzilla, minisat, March-KS
• Random: SATzilla, March-KS, gnovelty+
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Roadmap

Boolean Satisfiability

• Propositional Logic
• Solving SAT
• Modeling for SAT
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Modeling for SAT

Modeling

• Define a finite set of possibilities called states.
• Model states using (vectors of) propositional variables.
• Use propositional formulas to describe legal and illegal

states.
• Construct a propositional formula describing the desired

state.

Solving

• Translate the formula into CNF.
• If the formula is satisfiable, the satisfying assignment

gives the desired state.
• If the formula is not satisfiable, the desired state does not

exist.
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Example: Graph Coloring

Problems involving graph coloring are important in both
theoretical and applied computer science.

Recall that a graph consists of a set V of vertices and a set E

of edges, where each edge is an unordered pair of distinct
vertices.

A complete graph on n vertices is a graph with |V | = n such
that E contains all possible pairs of vertices.
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Example: Graph Coloring

Problems involving graph coloring are important in both
theoretical and applied computer science.

Recall that a graph consists of a set V of vertices and a set E

of edges, where each edge is an unordered pair of distinct
vertices.

A complete graph on n vertices is a graph with |V | = n such
that E contains all possible pairs of vertices.

How many edges are in a complete graph?

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 83/98



Example: Graph Coloring

Problems involving graph coloring are important in both
theoretical and applied computer science.

Recall that a graph consists of a set V of vertices and a set E

of edges, where each edge is an unordered pair of distinct
vertices.

A complete graph on n vertices is a graph with |V | = n such
that E contains all possible pairs of vertices.

How many edges are in a complete graph? n(n−1)
2
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Example: Graph Coloring

Suppose we wish to color each edge of a complete graph
without creating any triangles in which all the edges have the
same color.

What is the largest complete graph for which this is possible?
The answer depends on the number of colors we are allowed
to use.
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Example: Graph Coloring

Suppose we wish to color each edge of a complete graph
without creating any triangles in which all the edges have the
same color.

What is the largest complete graph for which this is possible?
The answer depends on the number of colors we are allowed
to use.

What if you are only allowed one color?
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Example: Graph Coloring

Suppose we wish to color each edge of a complete graph
without creating any triangles in which all the edges have the
same color.

What is the largest complete graph for which this is possible?
The answer depends on the number of colors we are allowed
to use.

What if you are only allowed one color? Answer: n = 2
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Example: Graph Coloring

Suppose we wish to color each edge of a complete graph
without creating any triangles in which all the edges have the
same color.

What is the largest complete graph for which this is possible?
The answer depends on the number of colors we are allowed
to use.

What if you are only allowed one color? Answer: n = 2

What if the number of colors is 2?
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Example: Graph Coloring

Suppose we wish to color each edge of a complete graph
without creating any triangles in which all the edges have the
same color.

What is the largest complete graph for which this is possible?
The answer depends on the number of colors we are allowed
to use.

What if you are only allowed one color? Answer: n = 2

What if the number of colors is 2? Answer: n = 5
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Example: Graph Coloring

Suppose we wish to color each edge of a complete graph
without creating any triangles in which all the edges have the
same color.

What is the largest complete graph for which this is possible?
The answer depends on the number of colors we are allowed
to use.

What if you are only allowed one color? Answer: n = 2

What if the number of colors is 2? Answer: n = 5

What if the number of colors is 3?
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Example: Graph Coloring

Suppose we wish to color each edge of a complete graph
without creating any triangles in which all the edges have the
same color.

What is the largest complete graph for which this is possible?
The answer depends on the number of colors we are allowed
to use.

What if you are only allowed one color? Answer: n = 2

What if the number of colors is 2? Answer: n = 5

What if the number of colors is 3? This is a job for SAT
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Example: Graph Coloring

• Define a finite set of possibilities called states.
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Example: Graph Coloring

• Define a finite set of possibilities called states.
For this problem, each possible coloring is a state. There
are 3|E| possible states.
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Example: Graph Coloring

• Define a finite set of possibilities called states.
For this problem, each possible coloring is a state. There
are 3|E| possible states.

• Model states using (vectors of) propositional variables.
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Example: Graph Coloring

• Define a finite set of possibilities called states.
For this problem, each possible coloring is a state. There
are 3|E| possible states.

• Model states using (vectors of) propositional variables.
A simple encoding uses two propositional variables for
each edge. Since there are 4 possible combinations of
values of two variables, this gives us a state space of 4|E|,
which is larger than we need, but keeps the encoding
simple.
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A simple encoding uses two propositional variables for
each edge. Since there are 4 possible combinations of
values of two variables, this gives us a state space of 4|E|,
which is larger than we need, but keeps the encoding
simple.

• Use propositional formulas to describe legal and illegal
states.
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Example: Graph Coloring

• Define a finite set of possibilities called states.
For this problem, each possible coloring is a state. There
are 3|E| possible states.

• Model states using (vectors of) propositional variables.
A simple encoding uses two propositional variables for
each edge. Since there are 4 possible combinations of
values of two variables, this gives us a state space of 4|E|,
which is larger than we need, but keeps the encoding
simple.

• Use propositional formulas to describe legal and illegal
states.
Since the color of each edge is modeled with 2 variables,
there are 4 possible colors. We can write a set of
formulas which disallow the fourth color.
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Example: Graph Coloring

• Define a finite set of possibilities called states.
For this problem, each possible coloring is a state. There
are 3|E| possible states.

• Model states using (vectors of) propositional variables.
A simple encoding uses two propositional variables for
each edge. Since there are 4 possible combinations of
values of two variables, this gives us a state space of 4|E|,
which is larger than we need, but keeps the encoding
simple.

• Use propositional formulas to describe legal and illegal
states.
For example, if e1 and e2 are the variables for edge e, we
simply require ¬(e1 ∧ e2).
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Example: Graph Coloring

• Construct a propositional formula describing the desired
state.
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Example: Graph Coloring

• Construct a propositional formula describing the desired
state.
The desired state is one in which there are no triangles of
the same color. For each triangle made up of edges
e, f, g, we require:
¬((e1 ↔ f1) ∧ (f1 ↔ g1) ∧ (e2 ↔ f2) ∧ (f2 ↔ g2)).
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Example: Graph Coloring

• Construct a propositional formula describing the desired
state.
The desired state is one in which there are no triangles of
the same color. For each triangle made up of edges
e, f, g, we require:
¬((e1 ↔ f1) ∧ (f1 ↔ g1) ∧ (e2 ↔ f2) ∧ (f2 ↔ g2)).

• Translate the formula into an equisatisfiable CNF formula.
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• Construct a propositional formula describing the desired
state.
The desired state is one in which there are no triangles of
the same color. For each triangle made up of edges
e, f, g, we require:
¬((e1 ↔ f1) ∧ (f1 ↔ g1) ∧ (e2 ↔ f2) ∧ (f2 ↔ g2)).

• Translate the formula into an equisatisfiable CNF formula.
This can be done using the CNF conversion algorithm
described earlier.
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Example: Graph Coloring

• Construct a propositional formula describing the desired
state.
The desired state is one in which there are no triangles of
the same color. For each triangle made up of edges
e, f, g, we require:
¬((e1 ↔ f1) ∧ (f1 ↔ g1) ∧ (e2 ↔ f2) ∧ (f2 ↔ g2)).

• Translate the formula into an equisatisfiable CNF formula.
This can be done using the CNF conversion algorithm
described earlier.

• If the formula is satisfiable, the satisfying assignment
gives the desired state.
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Example: Graph Coloring

• Construct a propositional formula describing the desired
state.
The desired state is one in which there are no triangles of
the same color. For each triangle made up of edges
e, f, g, we require:
¬((e1 ↔ f1) ∧ (f1 ↔ g1) ∧ (e2 ↔ f2) ∧ (f2 ↔ g2)).

• Translate the formula into an equisatisfiable CNF formula.
This can be done using the CNF conversion algorithm
described earlier.

• If the formula is satisfiable, the satisfying assignment
gives the desired state.
An actual coloring can be constructed by looking at the
values of each variable given by the satisfying
assignment.
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Example: Graph Coloring

• If the formula is not satisfiable, the desired state does not
exist.
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Example: Graph Coloring

• If the formula is not satisfiable, the desired state does not
exist.
If the formula can be shown to be unsatisfiable, this is
proof that there is no coloring.
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Example: Graph Coloring

• If the formula is not satisfiable, the desired state does not
exist.
If the formula can be shown to be unsatisfiable, this is
proof that there is no coloring.

What if the number of colors is 3?
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Example: Graph Coloring

• If the formula is not satisfiable, the desired state does not
exist.
If the formula can be shown to be unsatisfiable, this is
proof that there is no coloring.

What if the number of colors is 3?
Answer: n = 16
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Modeling

Let us consider again the circuit example we saw before.
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Circuit Example
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Modeling

One way to prove the property of the circuit is by induction.

The inductive step is essentially the following:
(y = x + 1 AND z = x + 2 AND
x’ = IF a THEN x ELSE y AND
y’ = IF a THEN y ELSE z AND
z’ = IF a THEN z ELSE y + 2) IMPLIES
y’ = x’ + 1 AND z’ = x’ + 2

We can prove this formula by showing that the negation is
unsatisfiable.

We can write this formula in propositional logic by using one
propositional variable for each bit in the current and next
states.
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Modeling

Assuming a bit-width of 2 for simplicity and skipping the
details, we get the following formula:

(z1 ↔ ¬x1) ∧ (z0 ↔ x0)∧
(y1 ↔ (x1 ⊕ x0)) ∧ (y0 ↔ ¬x0)∧
(a → ((xp1 ↔ x1) ∧ (xp0 ↔ x0)))∧
(¬a → ((xp1 ↔ y1) ∧ (xp0 ↔ y0)))∧
(a → ((yp1 ↔ y1) ∧ (yp0 ↔ y0)))∧
(¬a → ((yp1 ↔ z1) ∧ (yp0 ↔ z0)))∧
(a → ((zp1 ↔ z1) ∧ (zp0 ↔ z0)))∧
(¬a → ((zp1 ↔ ¬y1) ∧ (zp0 ↔ y0)))∧
(¬(zp1 ↔ ¬xp1) ∨ ¬(zp0 ↔ xp0)∨
¬(yp1 ↔ (xp1 ⊕ xp0)) ∧ (yp0 ↔ ¬xp0)
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Modeling: Transition Systems

Often, we want to model a system as a transition system: a
system with a set of states and a set of possible transitions
between states.

Suppose Q is a set of states, Q0 ⊆ Q a set of initial states,
and T a transition relation on states (i.e. T ⊆ Q × Q).

Since Q is finite, we can find an m such that 2m ≥ |Q|. We
can then use m variables: x = [x1, . . . , xm] to represent the
states. These are called state variables.

To represent T , we need m additional variables,
y = [y1, . . . , ym], which we call next-state variables.

We can write formulas FQ0(x) and FT (y) such that the
solutions of FQ0(x) correspond to initial states in Q0 and the
solutions of FT (x,y) correspond to valid transitions in T .
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Bounded Model Checking

Bounded Model Checking [BCCZ99, CBRZ01] can be used to
determine whether a state is reachable from the initial state in
some bounded number of transitions.

To perofrm bounded model checking to a depth of n using
SAT, we need n extra copies of the state variables and a set
of states QP that we are trying to reach.

Let x0, . . . ,xn be n + 1 copies of the state variables. And let
FQP

(x) be a formula that is true for the states in QP .

QP is reachable in n steps iff the following formula is
satisfiable:

FQ0(x0) ∧ FT (x0,x1) ∧ · · · ∧ FT (xn−1,x) ∧ FQP
(xn).

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 93/98



Exercise

You have probably seen the following puzzle before. There is
a triangle of 15 pegs with one missing. You have to jump pegs
until there is only one left.

X

X X

X O X

X X X X

X X X X X
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Exercise

Can you solve this puzzle?
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Exercise

Can you solve this puzzle?

Can you solve this puzzle using SAT?
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Exercise

Can you solve this puzzle?

Can you solve this puzzle using SAT?

Code for graph coloring problem is at
http://www.cs.nyu.edu/∼barrett/tmp/colors.tar
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Exercise

Can you solve this puzzle?

Can you solve this puzzle using SAT?

Code for graph coloring problem is at
http://www.cs.nyu.edu/∼barrett/tmp/colors.tar

Solution on Friday...
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