
SMT Solvers: Theory and Practice

Clark Barrett

barrett@cs.nyu.edu

New York University

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 1/125



Exercise

There is a triangle of 15 pegs with one missing. You have to
jump pegs until there is only one left.

X

X X

X O X

X X X X

X X X X X

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 2/125



SMT solvers: Motivation

SAT solvers are automatic and efficient.

As a result, they are frequently used as the “engine” behind
verification applications.

However, systems are usually designed and modeled at a
higher level than the Boolean level and the translation to
Boolean logic can be expensive.

A primary goal of research in Satisfiability Modulo Theories
(SMT) is to create verification engines that can reason
natively at a higher level of abstraction, while still retaining the
speed and automation of today’s Boolean engines.

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 3/125



Roadmap

Satisfiability Modulo Theories

• First-Order Logic
• Specific Theories
• Theory Solvers
• Combining Theory Solvers
• Combining with SAT
• Modeling in SMT

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 4/125



SMT Solvers: Language

Whereas the language of SAT solvers is Boolean logic, the
language of SMT solvers is first-order logic [End00].

The language includes the Boolean operations of Boolean
logic, but instead of propositional variables, more complicated
expressions involving constant, function, and predicate
symbols are used.

Examples of predicates

• f(x) = f(y)

• x+ y < z

• a ∈ S

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 5/125



First-Order Logic: Syntax

As with propositional logic, expressions in first-order logic are
made up of sequences of symbols.

Symbols are divided into logical symbols and non-logical
symbols or parameters.

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 6/125



First-Order Logic: Syntax

Logical Symbols

• Parentheses: (, )

• Propositional connectives: ¬, ∨, ∧, →, ↔
• Variables: v1, v2, . . .
• Quantifiers: ∀, ∃

Parameters

• Equality symbol (optional): =

• Predicate symbols: e.g. p(x), x > y

• Constant symbols: e.g. 0, John, π
• Function symbols: e.g. f(x), x+ y, x+[2] y

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 7/125



First-Order Logic: Syntax

Each predicate and function symbol has an associated arity:
a natural number indicating how many arguments it takes.

Equality is a special predicate symbol of arity 2.

Constant symbols can also be thought of as functions whose
arity is 0.

A first-order language must first specify its parameters.

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 8/125



First-Order Languages: Examples

Propositional Logic

• Equality: no
• Predicate symbols: A1, A2, . . .
• Constant symbols: none
• Function symbols: none

Set Theory

• Equality: yes
• Predicate symbols: ∈
• Constant symbols: ∅
• Function symbols: none

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 9/125



First-Order Languages: Examples

Elementary Number Theory

• Equality: yes
• Predicate symbols: <
• Constant symbols: 0

• Function symbols: S (successor), +, ×, exp

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 10/125



First-Order Logic: Terms

The first important concept on the way to defining well-formed
formulas is that of terms.

For each function symbol f of arity n, we define a
term-building operation Ff :

Ff (α1, . . . , αn) = fα1, . . . , αn

Note that we are using prefix notation to avoid ambiguity.

The set of terms is the set of expressions generated from the
constant symbols and variables by the Ff operations.

Terms are expressions which name objects.

Theorem
The set of terms is freely generated from the set of variables
and constant symbols by the Ff operations.

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 11/125



First-Order Logic: Formulas

Atomic Formulas
An atomic formula is an expression of the form: Pt1, . . . , tn
where P is a predicate symbol of arity n and t1,. . . ,tn are
terms.

If the language includes the equality symbol, we consider the
equality symbol to be a special predicate of arity 2.

Formulas
We define the following formula-building operations:

• E¬(α) = (¬α)

• E→(α, β) = (α→ β)

• Qi(α) = ∀ vi α

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 12/125



First-Order Logic: Formulas

The set of well-formed formulas is the set of expressions
generated from the atomic formulas by the operations E¬, E→,
and Qi i = 1, 2, . . . .

This set is also freely generated.

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 13/125



Formula Examples

In the language of elementary number theory introduced
above, which of the following are terms?
1. v6

v2 + v3 yes

∀ v1. 0 × v1 = 0

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 14/125



Formula Examples

In the language of elementary number theory introduced
above, which of the following are terms?
1. v6 yes
2. v2 + v3

v2 + v3 yes

∀ v1. 0 × v1 = 0

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 14/125



Formula Examples

In the language of elementary number theory introduced
above, which of the following are terms?
1. v6 yes
2. v2 + v3 yes
3. P1 ∧ P2

∀ v1. 0 × v1 = 0

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 14/125



Formula Examples

In the language of elementary number theory introduced
above, which of the following are terms?
1. v6 yes
2. v2 + v3 yes
3. P1 ∧ P2 no

atomic formulas?
1. (v1 + 0)v2 = S(v3)

∀ v1. 0 × v1 = 0

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 14/125



Formula Examples

In the language of elementary number theory introduced
above, which of the following are terms?
1. v6 yes
2. v2 + v3 yes
3. P1 ∧ P2 no

atomic formulas?
1. (v1 + 0)v2 = S(v3) yes
2. ¬(v2 = v3)

∀ v1. 0 × v1 = 0

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 14/125



Formula Examples

In the language of elementary number theory introduced
above, which of the following are terms?
1. v6 yes
2. v2 + v3 yes
3. P1 ∧ P2 no

atomic formulas?
1. (v1 + 0)v2 = S(v3) yes
2. ¬(v2 = v3) no

well-formed formulas?
1. ¬(v2 = v3)

∀ v1. 0 × v1 = 0

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 14/125



Formula Examples

In the language of elementary number theory introduced
above, which of the following are terms?
1. v6 yes
2. v2 + v3 yes
3. P1 ∧ P2 no

atomic formulas?
1. (v1 + 0)v2 = S(v3) yes
2. ¬(v2 = v3) no

well-formed formulas?
1. ¬(v2 = v3) no

∀ v1. 0 × v1 = 0

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 14/125



Formula Examples

In the language of elementary number theory introduced
above, which of the following are terms?
1. v6 yes
2. v2 + v3 yes
3. P1 ∧ P2 no

atomic formulas?
1. (v1 + 0)v2 = S(v3) yes
2. ¬(v2 = v3) no

well-formed formulas?
1. ¬(v2 = v3) no
2. 0 × v1

∀ v1. 0 × v1 = 0

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 14/125



Formula Examples

In the language of elementary number theory introduced
above, which of the following are terms?
1. v6 yes
2. v2 + v3 yes
3. P1 ∧ P2 no

atomic formulas?
1. (v1 + 0)v2 = S(v3) yes
2. ¬(v2 = v3) no

well-formed formulas?
1. ¬(v2 = v3) no
2. 0 × v1 no
3. ∀ v1. 0 × v1 = 0

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 14/125



Formula Examples

In the language of elementary number theory introduced
above, which of the following are terms?
1. v6 yes
2. v2 + v3 yes
3. P1 ∧ P2 no

atomic formulas?
1. (v1 + 0)v2 = S(v3) yes
2. ¬(v2 = v3) no

well-formed formulas?
1. ¬(v2 = v3) no
2. 0 × v1 no
3. ∀ v1. 0 × v1 = 0 yes

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 14/125



Free and Bound Variables

We define by recursion what it means for a variable x to occur
free in a wff α:

• If α is an atomic formula, then x occurs free in α iff x
occurs in α.

• x occurs free in (¬α) iff x occurs free in α.

• x occurs free in (α→ β) iff x occurs free in α or in β.
• x occurs free in ∀ vi α iff x occurs free in α and x 6= vi.

If ∀ vi appears in α, then vi is said to be bound in α.

If no variable occurs free in a wff α, then α is a sentence.

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 15/125



First-Order Logic: Semantics

In propositional logic, the truth of a formula was determined
by a truth assignment over the propositional symbols.

In first-order logic, we use a model (also called a structure) to
determine the truth of a formula.

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 16/125



First-Order Logic: Semantics

A signature is a set of non-logical symbols (predicates,
constants, and functions). Given a signature Σ, a model M of
Σ consists of the following:

1. A nonempty set called the domain of M , written dom(M).
Elements of dom(M) are also referred to as elements of
M .

2. A mapping from each constant c in Σ to an element cM of
M .

3. A mapping from each n-ary function symbol f in Σ to fM ,
an n-ary function from [dom(M)]n to dom(M).

4. A mapping from each n-ary predicate symbol p in Σ to
pM ⊆ [dom(M)]n, an n-ary relation on the set dom(M).

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 17/125



Example

Consider the signature corresponding to the language of set
theory which has a single predicate symbol ∈ and a single
constant symbol ∅.

A possible model M for this signature has dom(M) = N , the
set of natural numbers, ∈M=<, and ∅M = 0.

Now consider the sentence ∃x ∀ y ¬y ∈ x.

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 18/125



Example

Consider the signature corresponding to the language of set
theory which has a single predicate symbol ∈ and a single
constant symbol ∅.

A possible model M for this signature has dom(M) = N , the
set of natural numbers, ∈M=<, and ∅M = 0.

Now consider the sentence ∃x ∀ y ¬y ∈ x.

What does this sentence mean in this model?

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 18/125



Example

Consider the signature corresponding to the language of set
theory which has a single predicate symbol ∈ and a single
constant symbol ∅.

A possible model M for this signature has dom(M) = N , the
set of natural numbers, ∈M=<, and ∅M = 0.

Now consider the sentence ∃x ∀ y ¬y ∈ x.

What does this sentence mean in this model?

The translation of the sentence in the model M is that there is
a natural number x such that no other natural number is
smaller than x.

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 18/125



Example

Consider the signature corresponding to the language of set
theory which has a single predicate symbol ∈ and a single
constant symbol ∅.

A possible model M for this signature has dom(M) = N , the
set of natural numbers, ∈M=<, and ∅M = 0.

Now consider the sentence ∃x ∀ y ¬y ∈ x.

What does this sentence mean in this model?

The translation of the sentence in the model M is that there is
a natural number x such that no other natural number is
smaller than x.

Is this sentence true in the model?

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 18/125



Example

Consider the signature corresponding to the language of set
theory which has a single predicate symbol ∈ and a single
constant symbol ∅.

A possible model M for this signature has dom(M) = N , the
set of natural numbers, ∈M=<, and ∅M = 0.

Now consider the sentence ∃x ∀ y ¬y ∈ x.

What does this sentence mean in this model?

The translation of the sentence in the model M is that there is
a natural number x such that no other natural number is
smaller than x.

Is this sentence true in the model?

Since 0 has this property, the sentence is true in this model.

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 18/125



First-Order Logic: Semantics

We will often use a shorthand when discussing both
signatures and models. The signature shorthand lists each
symbol in the signature.

The model shorthand lists the domain and the interpretation
of each symbol of the signature.

The signature for set theory can thus be described as (∈, ∅),
and the above model as (N , <, 0).

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 19/125



First-Order Logic: Semantics

Given a model M , a variable assignment s is a function which
assigns to each variable an element of M .

Given a wff φ, we say that M satisfies φ with s and write
|=M φ[s] if φ is true in the model M with variable assignment
s.

To define this formally, we first define the extension
s : T → dom(M), a function from the set T of all terms into the
domain of M :

1. For each variable x, s(x) = s(x).

2. For each constant symbol c, s(c) = cM .

3. If t1,. . . ,tn are terms and f is an n-ary function symbol,
then s(ft1, . . . , tn) = fM(s(t1), . . . , s(tn)).

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 20/125



First-Order Logic: Semantics

Atomic Formulas

1. |=M= t1t2[s] iff s(t1) = s(t2).

2. For an n-ary predicate symbol P ,
|=M Pt1, . . . , tn[s] iff 〈s(t1), . . . , s(tn)〉 ∈ PM .

Other wffs

1. |=M (¬φ)[s] iff 6|=M φ[s].

2. |=M (φ→ ψ)[s] iff 6|=M φ[s] or |=M ψ[s].

3. |=M ∀x φ[s] iff |=M φ[s(x|d)] for every d ∈ dom(M).

s(x|d) signifies the function which is the same as s
everywhere except at x where its value is d.

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 21/125



Logical Definitions

Suppose Σ is a signature. A Σ-formula is a well-formed
formula whose non-logical symbols are contained in Σ.

Let Γ be a set of Σ-formulas. We write |=M Γ[s] to signify that
|=M φ[s] for every φ ∈ Γ.

If Γ is a set of Σ-formulas and φ is a Σ-formula, then Γ
logically implies φ, written Γ |= φ, iff for every model M of Σ
and every variable assignment s, if |=M Γ[s] then |=M φ[s].

We write ψ |= φ as an abbreviation for {ψ} |= φ.

ψ and φ are logically equivalent (written ψ |= |=φ) iff ψ |= φ and
φ |= ψ.

A Σ-formula φ is valid, written |= φ iff ∅ |= φ (i.e. |=M φ[s] for
every M and s).

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 22/125



Examples

Suppose that P is a unary predicate and Q a binary
predicate. Which of the following are true?
1. ∀ v1 Pv1 |= Pv2

∀x ∃ y Qxy |= ∃ y ∀x Qxy

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 23/125



Examples

Suppose that P is a unary predicate and Q a binary
predicate. Which of the following are true?
1. ∀ v1 Pv1 |= Pv2 True

2. Pv1 |= ∀ v1 Pv1

∀x ∃ y Qxy |= ∃ y ∀x Qxy

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 23/125



Examples

Suppose that P is a unary predicate and Q a binary
predicate. Which of the following are true?
1. ∀ v1 Pv1 |= Pv2 True

2. Pv1 |= ∀ v1 Pv1 False

3. ∀ v1 Pv1 |= ∃ v2 Pv2

∀x ∃ y Qxy |= ∃ y ∀x Qxy

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 23/125



Examples

Suppose that P is a unary predicate and Q a binary
predicate. Which of the following are true?
1. ∀ v1 Pv1 |= Pv2 True

2. Pv1 |= ∀ v1 Pv1 False

3. ∀ v1 Pv1 |= ∃ v2 Pv2 True

4. ∃x ∀ y Qxy |= ∀ y ∃x Qxy

∀x ∃ y Qxy |= ∃ y ∀x Qxy

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 23/125



Examples

Suppose that P is a unary predicate and Q a binary
predicate. Which of the following are true?
1. ∀ v1 Pv1 |= Pv2 True

2. Pv1 |= ∀ v1 Pv1 False

3. ∀ v1 Pv1 |= ∃ v2 Pv2 True

4. ∃x ∀ y Qxy |= ∀ y ∃x Qxy True

5. ∀x ∃ y Qxy |= ∃ y ∀x Qxy

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 23/125



Examples

Suppose that P is a unary predicate and Q a binary
predicate. Which of the following are true?
1. ∀ v1 Pv1 |= Pv2 True

2. Pv1 |= ∀ v1 Pv1 False

3. ∀ v1 Pv1 |= ∃ v2 Pv2 True

4. ∃x ∀ y Qxy |= ∀ y ∃x Qxy True

5. ∀x ∃ y Qxy |= ∃ y ∀x Qxy False

6. |= ∃x (Px→ ∀ y Py)

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 23/125



Examples

Suppose that P is a unary predicate and Q a binary
predicate. Which of the following are true?
1. ∀ v1 Pv1 |= Pv2 True

2. Pv1 |= ∀ v1 Pv1 False

3. ∀ v1 Pv1 |= ∃ v2 Pv2 True

4. ∃x ∀ y Qxy |= ∀ y ∃x Qxy True

5. ∀x ∃ y Qxy |= ∃ y ∀x Qxy False

6. |= ∃x (Px→ ∀ y Py) True

Which models satisfy the following sentences?
1. ∀x ∀ y x = y

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 23/125



Examples

Suppose that P is a unary predicate and Q a binary
predicate. Which of the following are true?
1. ∀ v1 Pv1 |= Pv2 True

2. Pv1 |= ∀ v1 Pv1 False

3. ∀ v1 Pv1 |= ∃ v2 Pv2 True

4. ∃x ∀ y Qxy |= ∀ y ∃x Qxy True

5. ∀x ∃ y Qxy |= ∃ y ∀x Qxy False

6. |= ∃x (Px→ ∀ y Py) True

Which models satisfy the following sentences?
1. ∀x ∀ y x = y Models with exactly one element.
2. ∀x ∀ y Qxy

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 23/125



Examples

Suppose that P is a unary predicate and Q a binary
predicate. Which of the following are true?
1. ∀ v1 Pv1 |= Pv2 True

2. Pv1 |= ∀ v1 Pv1 False

3. ∀ v1 Pv1 |= ∃ v2 Pv2 True

4. ∃x ∀ y Qxy |= ∀ y ∃x Qxy True

5. ∀x ∃ y Qxy |= ∃ y ∀x Qxy False

6. |= ∃x (Px→ ∀ y Py) True

Which models satisfy the following sentences?
1. ∀x ∀ y x = y Models with exactly one element.
2. ∀x ∀ y Qxy Models (A,R) where R = A× A.
3. ∀x ∃ y Qxy

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 23/125



Examples

Suppose that P is a unary predicate and Q a binary
predicate. Which of the following are true?
1. ∀ v1 Pv1 |= Pv2 True

2. Pv1 |= ∀ v1 Pv1 False

3. ∀ v1 Pv1 |= ∃ v2 Pv2 True

4. ∃x ∀ y Qxy |= ∀ y ∃x Qxy True

5. ∀x ∃ y Qxy |= ∃ y ∀x Qxy False

6. |= ∃x (Px→ ∀ y Py) True

Which models satisfy the following sentences?
1. ∀x ∀ y x = y Models with exactly one element.
2. ∀x ∀ y Qxy Models (A,R) where R = A× A.
3. ∀x ∃ y Qxy Models (A,R) where dom(R) = A.

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 23/125



Validity and Satisfiability Modulo Theories

A theory is a set of sentences. For a given signature Σ, a
Σ-theory is a set of sentences, each of which is a Σ-formula.

We will assume for convenience that theories are closed
under logical implication.

Given a Σ-theory T , a Σ-formula φ is

1. T -valid if |=M φ[s] for all models M of T and all variable
assignments s.

2. T -satisfiable if there exists some model M of T and
variable assignment s such that |=M φ[s].

3. T -unsatisfiable if 6|=M φ[s] for all models M of T and all
variable assignments s.

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 24/125



Validity and Satisfiability Modulo Theories

The validity problem for T is the problem of deciding, for each
Σ-formula φ, whether φ is T -valid.

The satisfiability problem for T is the problem of deciding, for
each Σ-formula φ, whether φ is T -satisfiable.

Similarly, one can define the quantifier-free validity problem
and the quantifier-free satisfiability problem for a Σ-theory T
by restricting the formula φ to be quantifier-free.

Note that validity problems can always be reduced to
satisfiability problems:

φ is T -valid iff ¬φ is T -unsatisfiable.

We will consider a few examples of theories which are of
particular interest in verification applications [MZ03].

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 25/125



Roadmap

Satisfiability Modulo Theories

• First-Order Logic
• Specific Theories
• Theory Solvers
• Combining Theory Solvers
• Combining with SAT
• Modeling in SMT

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 26/125



The Theory TE of Equality

The theory TE of equality is the empty theory.

The theory does not restrict the possible values of symbols in
any way. For this reason, it is sometimes called the theory of
equality with uninterpreted functions (EUF).

The satisfiability problem for TE is just the satisfiability
problem for first order logic, which is undecidable.

The satisfiability problem for conjunctions of literals in TE is
decidable in polynomial time using congruence closure.

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 27/125



The Theory TZ of Integers

Let ΣZ be the signature (0, 1,+,−,≤).

Let AZ be the standard model of the integers with domain Z.

Then TZ is defined to be the set of all ΣZ-sentences true in
the model AZ .

As showed by Presburger in 1929, the general satisfiability
problem for TZ is decidable, but its complexity is
triply-exponential.

The quantifier-free satisfiability problem for TZ is “only”
NP-complete.

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 28/125



The Theory TZ of Integers

Let Σ×
Z be the same as ΣZ with the addition of the symbol ×

for multiplication, and define A×
Z and T×

Z in the obvious way.

The satisfiability problem for T×
Z is undecidable (a

consequence of Gödel’s incompleteness theorem).

In fact, even the quantifier-free satisfiability problem for T×
Z is

undecidable.

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 29/125



The Theory TR of Reals

Let ΣR be the signature (0, 1,+,−,≤).

Let AR be the standard model of the reals with domain R.

Then TR is defined to be the set of all ΣR-sentences true in
the model AR.

The satisfiability problem for TR is decidable, but the
complexity is doubly-exponential.

The quantifier-free satisfiability problem for conjunctions of
literals (atomic formulas or their negations) in TR is solvable in
polynomial time, though exponential methods (like Simplex or
Fourier-Motzkin) tend to perform best in practice.

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 30/125



The Theory TR of Reals

Let Σ×
R be the same as ΣR with the addition of the symbol ×

for multiplication, and define A×
R and T×

R in the obvious way.

In contrast to the theory of integers, the satisfiability problem
for T×

R is decidable though the complexity is inherently
doubly-exponential.

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 31/125



The Theory TA of Arrays

Let ΣA be the signature (read ,write ).

Let ΛA be the following axioms:

∀ a ∀ i ∀ v (read (write (a, i, v), i) = v)
∀ a ∀ i ∀ j ∀ v (i 6= j → read (write (a, i, v), j) = read (a, j))
∀ a ∀ b ((∀ i (read (a, i) = read (b, i))) → a = b)

Then TA = Cn ΛA.

The satisfiability problem for TA is undecidable, but the
quantifier-free satisfiability problem for TA is decidable (the
problem is NP-complete).

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 32/125



Theories of Inductive Data Types

An inductive data type (IDT) defines one or more
constructors, and possibly also selectors and testers.

Example: list of int

• Constructors: cons : (int, list) → list, null : list

• Selectors: car : list → int, cdr : list → list

• Testers: is cons, is null

The first order theory of a inductive data type associates a
function symbol with each constructor and selector and a
predicate symbol with each tester.

Example: ∀x : list. (x = null ∨ ∃ y : int, z : list. x = cons(y, z))

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 33/125



Theories of Inductive Data Types

An inductive data type (IDT) defines one or more
constructors, and possibly also selectors and testers.

Example: list of int

• Constructors: cons : (int, list) → list, null : list

• Selectors: car : list → int, cdr : list → list

• Testers: is cons, is null

For IDTs with a single constructor, a conjunction of literals is
decidable in polynomial time [Opp80].

For more general IDTs, the problem is NP complete, but
reasonbly efficient algorithms exist in practice
[ZSM04a, ZSM04b, BST07].

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 33/125



Other Interesting Theories

Some other interesting theories include:

• Theories of bit-vectors
[CMR97, Möl97, BDL98, BP98, EKM98, GBD05]

• Fragments of set theory [CZ00]
• Theories of pointers and reachability:

[RBH07, YRS+06, LQ08]

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 34/125



Roadmap

Satisfiability Modulo Theories

• First-Order Logic
• Specific Theories
• Theory Solvers
• Combining Theory Solvers
• Combining with SAT
• Modeling in SMT

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 35/125



Theory Solvers

The theory reasoning in an SMT solver is done with a theory
solver.

Given a Σ-theory T , a theory solver for T takes as input a set
of Σ-literals and determines whether the set is satisfiable or
unsatisfiable.

We next consider some examples of theory solvers.

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 36/125



Congruence Closure [NO80]

Let G = (V,E) be a directed graph such that for each vertex v
in G, the successors of v are ordered.

Let C be any equivalence relation on V .

The congruence closure C∗ of C is the finest equivalence
relation on V that contains C and satisfies the following
property for all vertices v and w:

Let v and w have successors v1, . . . , vk and w1, . . . , wl

respectively. If k = l and (vi, wi) ∈ C∗ for 1 ≤ i ≤ k,
then (v, w) ∈ C∗.

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 37/125



Congruence Closure

In other words, if the corresponding successors of v and w
are equivalent under C∗, then v and w are themselves
equivalent under C∗.
Often, the vertices are labeled by some labeling function λ. In
this case, the property becomes:

If λ(v) = λ(w) and if k = l and (vi, wi) ∈ C∗ for
1 ≤ i ≤ k, then (v, w) ∈ C∗.

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 38/125



A Simple Algorithm

Let C0 = C and i = 0.
1. Number the equivalence classes in Ci starting with 1.

2. Let α assign to each vertex v the number α(v) of the
equivalence class containing v.

3. For each vertex v construct a signature
s(v) = λ(v)(α(v1), . . . , α(vk)), where v1, . . . , vk are the
successors of v.

4. Group the vertices into classes of vertices having equal
signatures.

5. Let Ci+1 be the finest equivalence relation on V such that
two vertices equivalent under Ci or having the same
signature are equivalent under Ci+1.

6. If Ci+1 = Ci, let C∗ = Ci; otherwise increment i and
repeat.

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 39/125



Congruence Closure and TE

Recall that TE is the empty theory with equality over some
signature Σ containing only function symbols.

If Γ is a set of ground Σ-equalities and ∆ is a set of ground
Σ-disequalities, then the satisfiability of Γ ∪ ∆ can be
determined as follows.

• Let G be a graph which corresponds to the abstract
syntax trees of terms in Γ ∪ ∆, and let vt denote the
vertex of G associated with the term t.

• Let C be the equiavlence relation on the vertices of G
induced by Γ.

• Γ ∪ ∆ is satisfiable iff for each s 6= t ∈ ∆, (vs, vt) 6∈ C∗.

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 40/125



An Algorithm for TE

union and find are abstract operations for manipulating
equivalence classes.

union(x, y) merges the equivalence classes of x and y.

find(x) returns a unique representative of the equivalence
class of x.

CC(Γ,∆)
Construct G(V,E) from terms in Γ and ∆.
while Γ 6= ∅
Remove some equality a = b from Γ;
Merge(a, b);

if find(a) = find(b) for some a 6= b ∈ ∆ then
return False;

return True;

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 41/125



An Algorithm for TE

Merge(a, b)
if find(a) = find(b) then return ;
Let A be the set of all predecessors
of all vertices equivalent to a;

Let B be the set of all predecessors
of all vertices equivalent to b;

union(a, b);
foreach x ∈ A and y ∈ B

if s(x) = s(y) then Merge(x, y);

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 42/125



Shostak’s Method

In 1984 [Sho84], Robert Shostak published a paper which
detailed a particular strategy for deciding satisfiability of
quantifier-free formulas in certain kinds of theories.

The original version promises three main things:

1. For theories T which meet the criteria (we will call these
Shostak theories), the method gives a decision procedure
for quantifier-free T -satisfiability.

2. The method has the theory TE “built-in”, so for any
Shostak theory T , the method gives a decision procedure
for quantifier-free T ∪ TE-satisfiability.

3. Any two Shostak theories T1 and T2 can be combined to
form a new Shostak theory T1 ∪ T2.

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 43/125



Shostak’s Method

Unfortunately, the original paper contains many errors and a
number of papers have since been dedicated to correcting
them [CLS96, RS01, Gan02, BDS02b, KC03].

When the dust settled, it finally became clear that the first two
claims can be justified, but the last one is false.

Most proponents of the method now agree that any attempt to
combine theories is best understood in the context of the
Nelson-Oppen method.

However, in this context, there is much that can be learned
from Shostak’s method.

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 44/125



Shostak’s Method

The first helpful insight is how to build a decision procedure
for a single Shostak theory.

Recall that the Nelson-Oppen method gives a decision
procedure for a combination of theories given decision
procedures for the component theories.

However, the Nelson-Oppen method provides no help on how
to build the decision procedures for the component theories.

Shostak provides one solution for the special case of Shostak
theories.

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 45/125



Shostak Theories

A consistent theory T with signature Σ is a Shostak theory if
the following conditions hold.

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 46/125



Shostak Theories

A consistent theory T with signature Σ is a Shostak theory if
the following conditions hold.

1. Σ does not contain any predicate symbols.

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 46/125



Shostak Theories

A consistent theory T with signature Σ is a Shostak theory if
the following conditions hold.

1. Σ does not contain any predicate symbols.

2. T is convex.

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 46/125



Shostak Theories

A consistent theory T with signature Σ is a Shostak theory if
the following conditions hold.

1. Σ does not contain any predicate symbols.

2. T is convex.
Recall that a theory T is convex if for any conjunction of
literals ϕ and variables x1, . . . xn, y1, . . . , yn,

T ∪ φ |= x1 = y1 ∨ · · · ∨ xn = yn implies
T ∪ φ |= xi = yi for some 1 ≤ i ≤ n.

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 46/125



Shostak Theories

A consistent theory T with signature Σ is a Shostak theory if
the following conditions hold.

1. Σ does not contain any predicate symbols.

2. T is convex.

3. T has a solver solve.

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 46/125



Shostak Theories

A consistent theory T with signature Σ is a Shostak theory if
the following conditions hold.

1. Σ does not contain any predicate symbols.

2. T is convex.

3. T has a solver solve.
The solver solve must be a computable function from
Σ-equations to sets of Σ-formulas defined as follows:

(a) If T |= a 6= b, then solve(a = b) ≡ {False}.
(b) Otherwise, solve(a = b) returns a set E of equations in

solved form such that T |= [(a = b) ↔ ∃w. E ], where w
are fresh variables not appearing in a or b.

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 46/125



Shostak Theories

A consistent theory T with signature Σ is a Shostak theory if
the following conditions hold.

1. Σ does not contain any predicate symbols.

2. T is convex.

3. T has a solver solve.
The solver solve must be a computable function from
Σ-equations to sets of Σ-formulas defined as follows:

(a) If T |= a 6= b, then solve(a = b) ≡ {False}.
(b) Otherwise, solve(a = b) returns a set E of equations in

solved form such that T |= [(a = b) ↔ ∃w. E ], where w
are fresh variables not appearing in a or b.

E is in solved form iff the left-hand side of each equation
in E is a variable which appears only once in E .

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 46/125



Shostak Theories

A consistent theory T with signature Σ is a Shostak theory if
the following conditions hold.

1. Σ does not contain any predicate symbols.

2. T is convex.

3. T has a solver solve.
The solver solve must be a computable function from
Σ-equations to sets of Σ-formulas defined as follows:

(a) If T |= a 6= b, then solve(a = b) ≡ {False}.
(b) Otherwise, solve(a = b) returns a set E of equations in

solved form such that T |= [(a = b) ↔ ∃w. E ], where w
are fresh variables not appearing in a or b.

We denote by E(X) the result of applying E as a
substitution to X.

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 46/125



Shostak Theories

A consistent theory T with signature Σ is a Shostak theory if
the following conditions hold.

1. Σ does not contain any predicate symbols.

2. T is convex.

3. T has a solver solve.

4. T has a canonizer canon.

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 46/125



Shostak Theories

A consistent theory T with signature Σ is a Shostak theory if
the following conditions hold.

1. Σ does not contain any predicate symbols.

2. T is convex.

3. T has a solver solve.

4. T has a canonizer canon.
The canonizer canon must be a computable function from
Σ-terms to Σ-terms with the property that

T |= a = b iff canon(a) ≡ canon(b).

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 46/125



Algorithm Sh

Algorithm Sh checks the satisfiability in T of a set of
equalities, Γ, and an set of disequalities, ∆.
Sh(Γ,∆, canon, solve)
1. E := ∅;
2. while Γ 6= ∅ do begin
3. Remove some equality a = b from Γ;
4. a∗ := E(a); b∗ := E(b);
5. E∗ := solve(a∗ = b∗);
6. if E∗ = {False} then return False;
7. E := E∗(E) ∪ E∗;
8. end
9. if canon(E(a)) ≡ canon(E(b)) for some a 6= b ∈ ∆

then return False;
10. return True;

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 47/125



Example

The most obvious example of a Shostak theory is TR
(without ≤).

• Step 1: Use the solver to convert Γ into an equisatisfiable
set E of equations in solved form.

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 48/125



Example

The most obvious example of a Shostak theory is TR
(without ≤).

• Step 1: Use the solver to convert Γ into an equisatisfiable
set E of equations in solved form.

Γ E

−x− 3y + 2z = 1 −x− 3y + 2z = 1

x− y − 6z = 1

2x+ y − 10z = 3

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 48/125



Example

The most obvious example of a Shostak theory is TR
(without ≤).

• Step 1: Use the solver to convert Γ into an equisatisfiable
set E of equations in solved form.

Γ E

−x− 3y + 2z = 1 −x− 3y + 2z = 1

x− y − 6z = 1

2x+ y − 10z = 3

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 48/125



Example

The most obvious example of a Shostak theory is TR
(without ≤).

• Step 1: Use the solver to convert Γ into an equisatisfiable
set E of equations in solved form.

Γ E

x = −3y + 2z + 1 −x− 3y + 2z = 1

x− y − 6z = 1

2x+ y − 10z = 3

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 48/125



Example

The most obvious example of a Shostak theory is TR
(without ≤).

• Step 1: Use the solver to convert Γ into an equisatisfiable
set E of equations in solved form.

Γ E

x− y − 6z = 1 x = −3y + 2z + 1

2x+ y − 10z = 3

2x+ y − 10z = 3

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 48/125



Example

The most obvious example of a Shostak theory is TR
(without ≤).

• Step 1: Use the solver to convert Γ into an equisatisfiable
set E of equations in solved form.

Γ E

x− y − 6z = 1 x = −3y + 2z + 1

2x+ y − 10z = 3

2x+ y − 10z = 3

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 48/125



Example

The most obvious example of a Shostak theory is TR
(without ≤).

• Step 1: Use the solver to convert Γ into an equisatisfiable
set E of equations in solved form.

Γ E

−4y − 4z + 1 = 1 x = −3y + 2z + 1

2x+ y − 10z = 3

2x+ y − 10z = 3

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 48/125



Example

The most obvious example of a Shostak theory is TR
(without ≤).

• Step 1: Use the solver to convert Γ into an equisatisfiable
set E of equations in solved form.

Γ E

y = −z x = −3y + 2z + 1

2x+ y − 10z = 3

2x+ y − 10z = 3

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 48/125



Example

The most obvious example of a Shostak theory is TR
(without ≤).

• Step 1: Use the solver to convert Γ into an equisatisfiable
set E of equations in solved form.

Γ E

y = −z x = 3z + 2z + 1

2x+ y − 10z = 3

2x+ y − 10z = 3 x = −3y + 2z + 1

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 48/125



Example

The most obvious example of a Shostak theory is TR
(without ≤).

• Step 1: Use the solver to convert Γ into an equisatisfiable
set E of equations in solved form.

Γ E

2x+ y − 10z = 3 x = 5z + 1

y = −z

2x+ y − 10z = 3 x = −3y + 2z + 1

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 48/125



Example

The most obvious example of a Shostak theory is TR
(without ≤).

• Step 1: Use the solver to convert Γ into an equisatisfiable
set E of equations in solved form.

Γ E

2x+ y − 10z = 3 x = 5z + 1

y = −z

2x+ y − 10z = 3 x = −3y + 2z + 1

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 48/125



Example

The most obvious example of a Shostak theory is TR
(without ≤).

• Step 1: Use the solver to convert Γ into an equisatisfiable
set E of equations in solved form.

Γ E

z = −1 x = 5z + 1

y = −z

2x+ y − 10z = 3 x = −3y + 2z + 1

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 48/125



Example

The most obvious example of a Shostak theory is TR
(without ≤).

• Step 1: Use the solver to convert Γ into an equisatisfiable
set E of equations in solved form.

Γ E

z = −1 x = 5(−1) + 1

y = −(−1)

2x+ y − 10z = 3 x = −3y + 2z + 1

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 48/125



Example

The most obvious example of a Shostak theory is TR
(without ≤).

• Step 1: Use the solver to convert Γ into an equisatisfiable
set E of equations in solved form.

Γ E

x = −4

y = 1

2x+ y − 10z = 3 z = −1

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 48/125



Example

The most obvious example of a Shostak theory is TR
(without ≤).

• Step 1: Use the solver to convert Γ into an equisatisfiable
set E of equations in solved form.

Γ E

x = −4

y = 1

2x+ y − 10z = 3 z = −1

Note that for this theory, the main loop of Shostak’s algorithm
is equivalent to Gaussian elimination with back-substitution.

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 48/125



Example

The most obvious example of a Shostak theory is TR
(without ≤).

• Step 1: Use the solver to convert Γ into an equisatisfiable
set E of equations in solved form.

• Step 2: Use E and canon to check if any disequality is
violated:

For each a 6= b ∈ ∆, check if
canon(E(a)) ≡ canon(E(b)).

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 49/125



Example

The most obvious example of a Shostak theory is TR
(without ≤).

• Step 1: Use the solver to convert Γ into an equisatisfiable
set E of equations in solved form.

• Step 2: Use E and canon to check if any disequality is
violated:

For each a 6= b ∈ ∆, check if
canon(E(a)) ≡ canon(E(b)).

E ∆

x = −4 x 6= 4y

y = 1 x+ w 6= w + z − 3y

z = −1 −4 + w 6= w + (−1) − 3(1)

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 49/125



Example

The most obvious example of a Shostak theory is TR
(without ≤).

• Step 1: Use the solver to convert Γ into an equisatisfiable
set E of equations in solved form.

• Step 2: Use E and canon to check if any disequality is
violated:

For each a 6= b ∈ ∆, check if
canon(E(a)) ≡ canon(E(b)).

E ∆

x = −4 x 6= 4y

y = 1 x+ w 6= w + z − 3y

z = −1 −4 + w 6= w + (−1) − 3(1)

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 49/125



Example

The most obvious example of a Shostak theory is TR
(without ≤).

• Step 1: Use the solver to convert Γ into an equisatisfiable
set E of equations in solved form.

• Step 2: Use E and canon to check if any disequality is
violated:

For each a 6= b ∈ ∆, check if
canon(E(a)) ≡ canon(E(b)).

E ∆

x = −4 −4 6= 4(1)

y = 1 x+ w 6= w + z − 3y

z = −1 −4 + w 6= w + (−1) − 3(1)

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 49/125



Example

The most obvious example of a Shostak theory is TR
(without ≤).

• Step 1: Use the solver to convert Γ into an equisatisfiable
set E of equations in solved form.

• Step 2: Use E and canon to check if any disequality is
violated:

For each a 6= b ∈ ∆, check if
canon(E(a)) ≡ canon(E(b)).

E ∆

x = −4 −4 6= 4

y = 1 x+ w 6= w + z − 3y

z = −1 −4 + w 6= w + (−1) − 3(1)

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 49/125



Example

The most obvious example of a Shostak theory is TR
(without ≤).

• Step 1: Use the solver to convert Γ into an equisatisfiable
set E of equations in solved form.

• Step 2: Use E and canon to check if any disequality is
violated:

For each a 6= b ∈ ∆, check if
canon(E(a)) ≡ canon(E(b)).

E ∆

x = −4 −4 6= 4

y = 1 x+ w 6= w + z − 3y

z = −1 −4 + w 6= w + (−1) − 3(1)

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 49/125



Example

The most obvious example of a Shostak theory is TR
(without ≤).

• Step 1: Use the solver to convert Γ into an equisatisfiable
set E of equations in solved form.

• Step 2: Use E and canon to check if any disequality is
violated:

For each a 6= b ∈ ∆, check if
canon(E(a)) ≡ canon(E(b)).

E ∆

x = −4 −4 6= 4

y = 1 −4 + w 6= w + (−1) − 3(1)

z = −1 −4 + w 6= w + (−1) − 3(1)

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 49/125



Example

The most obvious example of a Shostak theory is TR
(without ≤).

• Step 1: Use the solver to convert Γ into an equisatisfiable
set E of equations in solved form.

• Step 2: Use E and canon to check if any disequality is
violated:

For each a 6= b ∈ ∆, check if
canon(E(a)) ≡ canon(E(b)).

E ∆

x = −4 −4 6= 4

y = 1 w + (−4) 6= w + (−4)

z = −1 −4 + w 6= w + (−1) − 3(1)

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 49/125



Other Shostak Theories

A few other theories can be handled using this algorithm:
• TZ (without ≤) is also a Shostak theory.
• A simple theory of lists (without the NULL list).

However, the idea of using solvers and canonizers can be
applied to help decide other theories as well:

• One component in decision procedures for TR and TZ
(with ≤).

• Partial canonizing and solving is useful in TA.
• Partial canonizing and solving is useful for the theory of

bit-vectors.

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 50/125



Shostak and Theory Combination

As mentioned, Shostak’s second claim is that a combination
with TE can be easily achieved.

The details are a bit technical, and the easiest way to
understand it is as a special case of a Nelson-Oppen
combination.

The special part is that the abstract Nelson-Oppen is refined
in several ways that make implementation easier.

We will look at this next.

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 51/125



Shostak’s Method: Summary

Shostak’s method provides
• a simple decision procedure for Shostak theories
• insight into the usefulness of solvers and canonizers
• insight into practical ways to refine Nelson-Oppen (next)

Shostak’s method does not provide
• a general method for combining theories

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 52/125



Roadmap

Satisfiability Modulo Theories

• First-Order Logic
• Specific Theories
• Theory Solvers
• Combining Theory Solvers
• Combining with SAT
• Modeling in SMT

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 53/125



The Nelson-Oppen Method

A very general method for combining decision procedures is
the Nelson-Oppen method [NO79, TH96].

This method is applicable when

1. The signatures Σi are disjoint.

2. The theories Ti are stably-infinite.
A Σ-theory T is stably-infinite if every T -satisfiable
quantifier-free Σ-formula is satisfiable in an infinite
model.

3. The formulas to be tested for satisfiability are
conjunctions of quantifier-free literals.

In practice, only the requirement that formulas be
quantifier-free is a significant restriction.

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 54/125



The Nelson-Oppen Method

Definitions

1. A member of Σi is an i-symbol.

2. A term t is an i-term if it starts with an i-symbol.

3. An atomic i-formula is an application of an i-predicate ,
an equation whose lhs is an i-term, or an equation whose
lhs is a variable and whose rhs is an i-term.

4. An i-literal is an atomic i-formula or the negation of one.

5. An occurrence of a term t in either an i-term or an i-literal
is i-alien if t is a j-term with i 6= j and all of its
super-terms (if any) are i-terms.

6. An expression is pure if it contains only variables and
i-symbols for some i.

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 55/125



The Nelson-Oppen Method

Now we can explain step one of the Nelson-Oppen method:

1. Conversion to Separate Form

Given a conjunction of literals, φ, we desire to convert it into a
separate form: a T -equisatisfiable conjunction of literals
φ1 ∧ φ2 ∧ · · · ∧ φn, where each φi is a Σi-formula.

The following algorithm accomplishes this:

1. Let ψ be some literal in φ.

2. If ψ is a pure i-literal, for some i, remove ψ from φ and
add ψ to φi; if φ is empty then stop; otherwise goto step 1.

3. Otherwise, ψ is an i-literal for some i. Let t be a term
occuring i-alien in ψ. Replace t in φ with a new variable z,
and add z = t to φ. Goto step 1.

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 56/125



The Nelson-Oppen Method

It is easy to see that φ is T -satisfiable iff φ1 ∧ · · · ∧ φn is
T -satisfiable.

Furthermore, because each φi is a Σi-formula, we can run
Sat i on each φi.

Clearly, if Sat i reports that any φi is unsatisfiable, then φ is
unsatisfiable.

But the converse is not true in general.

We need a way for the decision procedures to communicate
with each other about shared variables.

First a definition: If S is a set of terms and ∼ is an
equivalence relation on S, then the arrangement of S induced
by ∼ is Ar∼ = {x = y | x ∼ y} ∪ {x 6= y | x 6∼ y}.

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 57/125



The Nelson-Oppen Method

Suppose that T1 and T2 are theories with disjoint signatures
Σ1 and Σ2 respectively. Let T = Cn

⋃
Ti and Σ =

⋃
Σi. Given

a Σ-formula φ and decision procedures Sat 1 and Sat 2 for T1

and T2 respectively, we wish to determine if φ is T -satisfiable.
The non-deterministic Nelson-Oppen algorithm for this is as
follows:

1. Convert φ to its separate form φ1 ∧ φ2.

2. Let S be the set of variables shared between φ1 and φ2.
Guess an equivalence relation ∼ on S.

3. Run Sat 1 on φ1 ∪ Ar∼.

4. Run Sat 2 on φ2 ∪ Ar∼.

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 58/125



The Nelson-Oppen Method

If there exists an equivalence relation ∼ such that both Sat 1

and Sat 2 succeed, then φ is T -satisfiable.

If no such equivalence relation exists, then φ is
T -unsatisfiable.

The generalization to more than two theories is
straightforward.

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 59/125



Example

Consider the following ΣE ∪ ΣZ formula:

φ = 1 ≤ x ∧ x ≤ 2 ∧ f(x) 6= f(1) ∧ f(x) 6= f(2).

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 60/125



Example

Consider the following ΣE ∪ ΣZ formula:

φ = 1 ≤ x ∧ x ≤ 2 ∧ f(x) 6= f(1) ∧ f(x) 6= f(2).

We first convert φ to a separate form:

φE = f(x) 6= f(y) ∧ f(x) 6= f(z)
φZ = 1 ≤ x ∧ x ≤ 2 ∧ y = 1 ∧ z = 2

The shared variables are {x, y, z}. There are 5 possible
arrangements based on equivalence classes of x, y, and z.

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 60/125



Example

φE = f(x) 6= f(y) ∧ f(x) 6= f(z)
φZ = 1 ≤ x ∧ x ≤ 2 ∧ y = 1 ∧ z = 2

1. {x = y, x = z, y = z}

2. {x = y, x 6= z, y 6= z}

3. {x 6= y, x = z, y 6= z}

4. {x 6= y, x 6= z, y = z}

5. {x 6= y, x 6= z, y 6= z}

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 61/125



Example

φE = f(x) 6= f(y) ∧ f(x) 6= f(z)
φZ = 1 ≤ x ∧ x ≤ 2 ∧ y = 1 ∧ z = 2

1. {x = y, x = z, y = z}: inconsistent with φE .

2. {x = y, x 6= z, y 6= z}

3. {x 6= y, x = z, y 6= z}

4. {x 6= y, x 6= z, y = z}

5. {x 6= y, x 6= z, y 6= z}

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 61/125



Example

φE = f(x) 6= f(y) ∧ f(x) 6= f(z)
φZ = 1 ≤ x ∧ x ≤ 2 ∧ y = 1 ∧ z = 2

1. {x = y, x = z, y = z}: inconsistent with φE .

2. {x = y, x 6= z, y 6= z}: inconsistent with φE .

3. {x 6= y, x = z, y 6= z}

4. {x 6= y, x 6= z, y = z}

5. {x 6= y, x 6= z, y 6= z}

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 61/125



Example

φE = f(x) 6= f(y) ∧ f(x) 6= f(z)
φZ = 1 ≤ x ∧ x ≤ 2 ∧ y = 1 ∧ z = 2

1. {x = y, x = z, y = z}: inconsistent with φE .

2. {x = y, x 6= z, y 6= z}: inconsistent with φE .

3. {x 6= y, x = z, y 6= z}: inconsistent with φE .

4. {x 6= y, x 6= z, y = z}

5. {x 6= y, x 6= z, y 6= z}

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 61/125



Example

φE = f(x) 6= f(y) ∧ f(x) 6= f(z)
φZ = 1 ≤ x ∧ x ≤ 2 ∧ y = 1 ∧ z = 2

1. {x = y, x = z, y = z}: inconsistent with φE .

2. {x = y, x 6= z, y 6= z}: inconsistent with φE .

3. {x 6= y, x = z, y 6= z}: inconsistent with φE .

4. {x 6= y, x 6= z, y = z}: inconsistent with φZ .

5. {x 6= y, x 6= z, y 6= z}

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 61/125



Example

φE = f(x) 6= f(y) ∧ f(x) 6= f(z)
φZ = 1 ≤ x ∧ x ≤ 2 ∧ y = 1 ∧ z = 2

1. {x = y, x = z, y = z}: inconsistent with φE .

2. {x = y, x 6= z, y 6= z}: inconsistent with φE .

3. {x 6= y, x = z, y 6= z}: inconsistent with φE .

4. {x 6= y, x 6= z, y = z}: inconsistent with φZ .

5. {x 6= y, x 6= z, y 6= z}: inconsistent with φZ .

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 61/125



Correctness of Nelson-Oppen

We define an interpretation of a signature Σ to be a model of
Σ together with a variable assignment. If A is an
interpretation, we write A |= φ to mean that φ is satisfied by
the model and variable assignment contained in A.

Two interpretations A and B are isomorphic if there exists an
isomorphism h of the model of A into the model of B and
h(xA) = xB for each variable x (where xA signifies the value
assigned to x by the variable assignment of A).

We furthermore define AΣ,V to be the restriction of A to the
symbols in Σ and the variables in V .

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 62/125



Correctness of Nelson-Oppen

Theorem

Let Σ1 and Σ2 be signatures, and for i = 1, 2, let φi be a set of
Σi-formulas, and Vi the set of variables appearing in φi. Then
φ1 ∪ φ2 is satisfiable iff there exists a Σ1-interpretation A
satisfying φ1 and a Σ2-interpretation B satisfying φ2 such that:

AΣ1∩Σ2,V1∩V2 is isomorphic to BΣ1∩Σ2,V1∩V2 .

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 63/125



Correctness of Nelson-Oppen

Proof

Let Σ = Σ1 ∩ Σ2 and V = V1 ∩ V2.
Suppose φ1 ∪ φ2 is satisfiable. Let M be an interpretation
satisfying φ1 ∪ φ2. If we let A = MΣ1,V1 and B = MΣ2,V2 , then
clearly:

• A |= φ1

• B |= φ2

• AΣ,V is isomorphic to BΣ,V

On the other hand, suppose that we have A and B satisfying
the three conditions listed above. Let h be an isomorphism
from AΣ,V to BΣ,V .

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 64/125



Correctness of Nelson-Oppen

We define an interpretation M as follows:
• dom(M) = dom(A)

• For each variable or constant u, uM =
{

uA if u ∈ (ΣC
1 ∪ V1)

h−1(uB) otherwise

• For function symbols of arity n,

fM(a1, . . . , an) =

{
fA(a1, . . . , an) if f ∈ ΣF

1

h−1(fB(h(a1), . . . , h(an))) otherwise

• For predicate symbols of arity n,
(a1, . . . , an) ∈ PM iff (a1, . . . , an) ∈ PA if P ∈ ΣP

1

(a1, . . . , an) ∈ PM iff (h(a1), . . . , h(an)) ∈ PB

otherwise

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 65/125



Correctness of Nelson-Oppen

By construction, MΣ1,V1 is isomorphic to A. In addition, it is
easy to verify that h is an isomorphism of MΣ2,V2 to B.

It follows by the homomorphism theorem (a standard theorem
of first-order logic) that M satisfies φ1 ∪ φ2.

�

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 66/125



Correctness of Nelson-Oppen

Theorem

Let Σ1 and Σ2 be signatures, with Σ1 ∩Σ2 = ∅, and for i = 1, 2,
let φi be a set of Σi-formulas, and Vi the set of variables
appearing in φi. As before, let V = V1 ∩ V2. Then φ1 ∪ φ2 is
satisfiable iff there exists an interpretation A satisfying φ1 and
an interpretation B satisfying φ2 such that:

1. |A| = |B|, and

2. xA = yA iff xB = yB for every pair of variables x, y ∈ V .

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 67/125



Correctness of Nelson-Oppen

Proof

Clearly, if φ1 ∪ φ2 is satisfiable in some interpretation M , then
the only if direction holds by letting A = M and B = M .

Consider the converse. Let h : V A → V B be defined as
h(xA) = xB. This definition is well-formed by property 2
above.

In fact, h is bijective. To show that h is injective, let
h(a1) = h(a2). Then there exist variables x, y ∈ V such that
a1 = xA, a2 = yA, and xB = yB. By property 2, xA = yA, and
therefore a1 = a2.

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 68/125



Correctness of Nelson-Oppen

To show that h is surjective, let b ∈ V B. Then there exists a
variable x ∈ V B such that xB = b. But then h(xA) = b.

Since h is bijective, it follows that |V A| = |V B|, and since
|A| = |B|, we also have that |A− V A| = |B − V B|. We can
therefore extend h to a bijective function h′ from A to B.

By construction, h′ is an isomorphism of AV to BV . Thus, by
the previous theorem, we can obtain an interpretation
satisfying φ1 ∪ φ2.

�

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 69/125



Correctness of Nelson-Oppen

We can now prove the correctness of the non-deterministic
Nelson-Oppen method:

Theorem

Let Ti be a stably-infinite Σi-theory, for i = 1, 2, and suppose
that Σ1 ∩Σ2 = ∅. Also, let φi be a set of Σi literals, i = 1, 2, and
let S be the set of variables appearing in both φ1 and φ2. Then
φ1 ∪ φ2 is T1 ∪ T2-satisfiable iff there exists an equivalence
relation ∼ on S such that φi ∪ Ar∼ is Ti-satisfiable, i = 1, 2.

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 70/125



Correctness of Nelson-Oppen

Proof

(⇒) Suppose M is an interpretation satisfying φ1 ∪ φ2. Define
x ∼ y iff x, y ∈ S and xM = yM . By construction, M is a
Ti-interpretation satisfying φi ∪ Ar∼, i = 1, 2.

(⇐) Suppose there exists ∼ such that φi ∪ Ar∼ is
Ti-satisfiable, i = 1, 2. Since each Ti is stably-infinite, there is
are infinite interpretations A and B such that A satisfies
φ1 ∪ Ar∼ and B satisfies φ2 ∪ Ar∼.

By another standard theorem (LST), we can take the least
upper bound of |A| and |B| and obtain interpretations of that
cardinality.

Then we have |A| = |B| and xA = yA iff xB = yB for every
variable x, y ∈ S. By the previous theorem, there exists of a
(Σ1 ∪ Σ2)-interpretation satisfying φ1 ∪ φ2. �

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 71/125



Nelson-Oppen Example

Consider the following example in a combination of TE , TZ ,
and TA:

¬p(y) ∧ s = write (t, i, 0) ∧ x− y − z = 0 ∧
z + read (s, i) = f(x− y) ∧ p(x− f(f(z))).

After purification, we have the following:

ϕE ϕZ ϕA

¬p(y) l − z = j s = write (t, i, j)

m = f(l) j = 0 k = read (s, i)

p(v) l = x− y

n = f(f(z)) m = z + k

v = x− n

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 72/125



Example

ϕE ϕZ ϕA

¬p(y) l − z = j s = write (t, i, j)

m = f(l) j = 0 k = read (s, i)

p(v) l = x− y

n = f(f(z)) m = z + k

v = x− n

There are 12 constants in this example:
• Shared: l, z, j, y,m, k, v, n
• Unshared: x, s, t, i

There are 21147 arrangements of {l, z, j, y,m, k, v, n}.
Clearly, a practical implementation cannot consider all of
these separately.

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 73/125



Implementing Nelson-Oppen

In order to obtain a more practical implementation of
Nelson-Oppen, we will consider the following refinements:

• Eliminating the purification step
• Incremental processing with theory-specific rewrites
• Strategies for searching through arrangements

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 74/125



Implementing Nelson-Oppen

As most implementers of SMT systems will tell you, the
purification step is not really necessary in practice.

In fact, a simple variation of Nelson-Oppen can be obtained
that does not require purification [BDS02b].

Given a set of mixed (impure) literals Γ, define a shared term
to be any term in Γ which occurs i-alien for some i in some
literal or sub-term in Γ.

Note that these are exactly the terms that would have been
replaced with new constants in the purification step.

Assume also that each Sat i is modified so that it treats alien
terms as constants.

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 75/125



Implementing Nelson-Oppen

The following is a variation of Nelson-Oppen which does not
use purification.

1. Partition Γ into sets ϕi, where each literal in ϕi is an
i-literal (literals containing only equalities between
variables can go anywhere).

2. Let S be the set of shared terms in Γ.

3. For each arrangement ∆ of S,
Check Sat i(ϕi ∧ ∆) for each i.

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 76/125



Example

Consider again the example from before:

¬p(y) ∧ s = write (t, i, 0) ∧ x− y − z = 0 ∧
z + read (s, i) = f(x− y) ∧ p(x− f(f(z))).

After partitioning, we have the following:

ϕE ϕZ ϕA

¬p(y) x− y − z = 0 s = write (t, i, 0)

p(x− f(f(z))) z + read (s, i) = f(x− y)

The shared terms are:

read (s, i), x− y, f(x− y), 0, y, z, f(f(z)), x− f(f(z)).

Unfortunately, there are still too many arrangements.

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 77/125



Implementing Nelson-Oppen

The next refinement is to process Γ incrementally, allowing
theory-specific rewrites that can potentially reduce the
number of shared terms.

Examples of theory-specific rewrites include canonization or
partial canonization and simplification based on previously
seen literals.

1. For each ϕ ∈ Γ

(a) (Optionally) apply theory-specific rewrites to ϕ to get ϕ′

(b) Identify the shared terms in ϕ′ and add these to S
(c) Where ϕ′ is an i-literal, add ϕ′ to ϕi

2. For each arrangement ∆ of S,
Check Sat i(ϕi ∧ ∆) for each i.

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 78/125



Example

Let’s see what happens if we process our example
incrementally:

¬p(y) ∧ s = write (t, i, 0) ∧ x− y − z = 0 ∧
z + read (s, i) = f(x− y) ∧ p(x− f(f(z))).

ϕE ϕZ ϕA

¬p(y) x = y + z s = write (t, i, 0)

p(y) z = f(z)

The shared terms are: 0, y, z, f(z). There are only 52
arrangements now.

More importantly, ϕE is now inconsistent in the theory TE ,
making it unnecessary to examine any arrangements.

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 79/125



Implementing Nelson-Oppen

We have seen two ways to avoid searching through too many
arrangements:

1. Reduce the number of shared terms

2. Detect an inconsistency early

As a further example of (2), we can build arrangements
incrementally, backtracking if any theory detects an
inconsistency.

For convex theories, this strategy is very efficient.

For non-convex theories, we may have to explore the entire
search space of arrangements.

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 80/125



Implementing Nelson-Oppen

The strategies we have looked at so far do not assume any
help from the theory decision procedures (beyond the ability
to determine inconsistency).

If the theory decision procedures are able to give additional
information, it may significantly help to prune the arrangement
search.

The next refinement of our algorithm captures this.

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 81/125



Implementing Nelson-Oppen

1. For each ϕ ∈ Γ

(a) (Optional) Apply theory-specific rewrites to ϕ to get ϕ′

(b) Identify the shared terms in ϕ′ and add these to S
(c) Where ϕ′ is an i-literal, add ϕ′ to ϕi

(d) (Optional) If ϕi |= s1 = s2 or ϕi |= s1 6= s2, s1, s2 ∈ S,
add this fact to Γ.

2. Incrementally search through arrangements ∆ of S that
are consistent with

∧
ϕi. For each arrangement, check

Sat i(ϕi ∧ ∆) for each i.

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 82/125



Implementing Nelson-Oppen

Finally, for maximum efficiency and flexibility, we can push the
entire burden of arrangement finding onto the theory decision
procedures.

Suppose Φ =
∧
ϕi is the partition of literals from Γ that have

been processed so far and that S is the set of shared terms.

The equivalence relation R on S induced by Φ is defined as
follows: for x, y ∈ S, xRy iff x = y ∈ ϕi for some i.

The arrangement ∆(Φ) of S induced by Φ is the arrangement
induced by R.

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 83/125



Implementing Nelson-Oppen

For each ϕ ∈ Γ:

1. (Optional) Apply theory-specific rewrites to ϕ to get ϕ′

2. Identify the shared terms in ϕ′ and add these to S

3. Where ϕ′ is an i-literal, add ϕ′ to ϕi

4. If ϕi ∧ ∆(Φ) is not satisfiable, compute some formula ψ
such that ϕi |= ψ and ψ∧∆(Φ) is inconsistent. Add ψ to Γ.

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 84/125



Implementing Nelson-Oppen

For each ϕ ∈ Γ:

1. (Optional) Apply theory-specific rewrites to ϕ to get ϕ′

2. Identify the shared terms in ϕ′ and add these to S

3. Where ϕ′ is an i-literal, add ϕ′ to ϕi

4. If ϕi ∧ ∆(Φ) is not satisfiable, compute some formula ψ
such that ϕi |= ψ and ψ∧∆(Φ) is inconsistent. Add ψ to Γ.

Some notes:
• In general, ψ does not have to be a literal. In this case, ψ

must be processed by the SAT solver (more on this next).
• Theories can be lazy until Γ is empty.
• Termination becomes the responsibility of the theory

decision procedures.

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 84/125



Implementing Nelson-Oppen

For each ϕ ∈ Γ:

1. (Optional) Apply theory-specific rewrites to ϕ to get ϕ′

2. Identify the shared terms in ϕ′ and add these to S

3. Where ϕ′ is an i-literal, add ϕ′ to ϕi

4. If ϕi ∧ ∆(Φ) is not satisfiable, compute some formula ψ
such that ϕi |= ψ and ψ∧∆(Φ) is inconsistent. Add ψ to Γ.

More notes:
• It is not hard to fit a Shostak-style decision procedure into

this framework.
• This is essentially the algorithm used in the CVC

tools [Bar03].

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 84/125



Roadmap

Satisfiability Modulo Theories

• First-Order Logic
• Specific Theories
• Theory Solvers
• Combining Theory Solvers
• Combining with SAT
• Modeling in SMT

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 85/125



Combining with SAT

Theory solvers check the satisfiability of conjunctions of
literals.

What about more general Boolean combinations of literals?

What is needed is a combination of SAT reasoning and theory
reasoning.

The so-called eager approach to SMT tries to find ways of
encoding everything into SAT. There are a variety of
techniques and for some theories, this works quite well.

Here, I will focus on the lazy combination of SAT and Theory
reasoning. The lazy approach is the basis for most modern
SMT solvers [? BDS02a].

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 86/125



Abstract DPLL Modulo Theories

The Abstract DPLL Modulo Theories framework extends the
Abstract DPLL framework, providing an abstract and formal
setting for reasoning about the combination of SAT and
theory reasoning [NOT06].

Assume we have a theory T with signature Σ and a solver
Sat T that can check T -satisfiability of conjunctions of
Σ-literals.

Suppose we want to check the satisfiability of an arbitray
(quantifier-free) Σ-formula φ.

We start by converting φ to CNF.

Now, let’s consider using the Abstract DPLL rules (allowing
any first-order literal where before we had propositional
literals).

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 87/125



Abstract DPLL Rules

UnitProp :

M || F, C ∨ l =⇒ M l || F, C ∨ l if

8

<

:

M |= ¬C

l is undefined in M

PureLiteral :

M || F =⇒ M l || F if

8

>

>

<

>

>

:

l occurs in some clause of F

−l occurs in no clause of F

l is undefined in M

Decide :

M || F =⇒ M ld || F if

8

<

:

l or ¬l occurs in a clause of F

l is undefined in M

Fail :

M || F, C =⇒ fail if

8

<

:

M |= ¬C

M contains no decision literals

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 88/125



Abstract DPLL Rules

Backjump :

M ld N || F, C =⇒ M l′ || F, C if

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

M ld N |= ¬C, and there is

some clause C′ ∨ l′ such that:

F, C |= C′ ∨ l′ and M |= ¬C′,

l′ is undefined in M , and

l′ or ¬l′ occurs in F or in M ld N

Learn :

M || F =⇒ M || F, C if

8

<

:

all atoms of C occur in F

F |= C

Forget :

M || F, C =⇒ M || F if

n

F |= C

Restart :

M || F =⇒ ∅ || F

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 89/125



Abstract DPLL Modulo Theories

The first change is to the definition of a final state. A final
state is now:

• the special fail state: fail , or
• M || F , where M |= F , and Sat T (M) reports satisfiable.

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 90/125



Abstract DPLL Modulo Theories

The first change is to the definition of a final state. A final
state is now:

• the special fail state: fail , or
• M || F , where M |= F , and Sat T (M) reports satisfiable.

What happens if we reach a state in which: M || F , M |= F ,
and Sat T (M) reports unsatisfiable? (call this a pseudo-final
state)

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 90/125



Abstract DPLL Modulo Theories

The first change is to the definition of a final state. A final
state is now:

• the special fail state: fail , or
• M || F , where M |= F , and Sat T (M) reports satisfiable.

What happens if we reach a state in which: M || F , M |= F ,
and Sat T (M) reports unsatisfiable? (call this a pseudo-final
state)

We need to backtrack. The SAT solver will take care of this
automatically if we can add a clause C such that M |= ¬C.

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 90/125



Abstract DPLL Modulo Theories

The first change is to the definition of a final state. A final
state is now:

• the special fail state: fail , or
• M || F , where M |= F , and Sat T (M) reports satisfiable.

What happens if we reach a state in which: M || F , M |= F ,
and Sat T (M) reports unsatisfiable? (call this a pseudo-final
state)

We need to backtrack. The SAT solver will take care of this
automatically if we can add a clause C such that M |= ¬C.

What clause should we add?

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 90/125



Abstract DPLL Modulo Theories

The first change is to the definition of a final state. A final
state is now:

• the special fail state: fail , or
• M || F , where M |= F , and Sat T (M) reports satisfiable.

What happens if we reach a state in which: M || F , M |= F ,
and Sat T (M) reports unsatisfiable? (call this a pseudo-final
state)

We need to backtrack. The SAT solver will take care of this
automatically if we can add a clause C such that M |= ¬C.

What clause should we add? How about ¬M?

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 90/125



Abstract DPLL Modulo Theories

The justification for adding ¬M is that T |= ¬M .

We can generalize this to any clause C such that T |= C. The
following modified Learn rule allows this (we also modify the
Forget rule in an analagous way):

Theory Learn :

M || F =⇒ M || F, C if

8

<

:

all atoms of C occur in F

F |=T C

Theory Forget :

M || F, C =⇒ M || F if

n

F |=T C

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 91/125



Abstract DPLL Modulo Theories

The resulting set of rules is almost enough to correctly
implement an SMT solver. We need one more change.

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 92/125



Abstract DPLL Modulo Theories

The resulting set of rules is almost enough to correctly
implement an SMT solver. We need one more change.

A somewhat surprising observation is that the pure literal rule
has to be abandoned. Why?

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 92/125



Abstract DPLL Modulo Theories

The resulting set of rules is almost enough to correctly
implement an SMT solver. We need one more change.

A somewhat surprising observation is that the pure literal rule
has to be abandoned. Why?

Propositional literals are independent of each other, but first
order literals may not be.

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 92/125



Abstract DPLL Modulo Theories

The resulting set of rules is almost enough to correctly
implement an SMT solver. We need one more change.

A somewhat surprising observation is that the pure literal rule
has to be abandoned. Why?

Propositional literals are independent of each other, but first
order literals may not be.

The remaining rules form a sound and complete procedure
for SMT.

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 92/125



From SAT to SMT

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2

∨ g(a) = d
︸ ︷︷ ︸

3

∧ c 6= d
︸ ︷︷ ︸

4

∨ g(a) 6= d
︸ ︷︷ ︸

3

∅ || 1, 2 ∨ 3, 4 ∨ 3

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 93/125



From SAT to SMT

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2

∨ g(a) = d
︸ ︷︷ ︸

3

∧ c 6= d
︸ ︷︷ ︸

4

∨ g(a) 6= d
︸ ︷︷ ︸

3

∅ || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (UnitProp)

1 || 1, 2 ∨ 3, 4 ∨ 3

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 93/125



From SAT to SMT

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2

∨ g(a) = d
︸ ︷︷ ︸

3

∧ c 6= d
︸ ︷︷ ︸

4

∨ g(a) 6= d
︸ ︷︷ ︸

3

∅ || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (UnitProp)

1 || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Decide)

1 2
d

|| 1, 2 ∨ 3, 4 ∨ 3

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 93/125



From SAT to SMT

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2

∨ g(a) = d
︸ ︷︷ ︸

3

∧ c 6= d
︸ ︷︷ ︸

4

∨ g(a) 6= d
︸ ︷︷ ︸

3

∅ || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (UnitProp)

1 || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Decide)

1 2
d

|| 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Decide)

1 2
d

4
d

|| 1, 2 ∨ 3, 4 ∨ 3

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 93/125



From SAT to SMT

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2

∨ g(a) = d
︸ ︷︷ ︸

3

∧ c 6= d
︸ ︷︷ ︸

4

∨ g(a) 6= d
︸ ︷︷ ︸

3

∅ || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (UnitProp)

1 || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Decide)

1 2
d

|| 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Decide)

1 2
d

4
d

|| 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Theory Learn)

1 2
d

4
d

|| 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2 ∨ 4

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 93/125



From SAT to SMT

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2

∨ g(a) = d
︸ ︷︷ ︸

3

∧ c 6= d
︸ ︷︷ ︸

4

∨ g(a) 6= d
︸ ︷︷ ︸

3

∅ || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (UnitProp)

1 || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Decide)

1 2
d

|| 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Decide)

1 2
d

4
d

|| 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Theory Learn)

1 2
d

4
d

|| 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2 ∨ 4 =⇒ (Backjump)

1 2
d

4 || 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2 ∨ 4

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 93/125



From SAT to SMT

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2

∨ g(a) = d
︸ ︷︷ ︸

3

∧ c 6= d
︸ ︷︷ ︸

4

∨ g(a) 6= d
︸ ︷︷ ︸

3

∅ || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (UnitProp)

1 || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Decide)

1 2
d

|| 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Decide)

1 2
d

4
d

|| 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Theory Learn)

1 2
d

4
d

|| 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2 ∨ 4 =⇒ (Backjump)

1 2
d

4 || 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2 ∨ 4 =⇒ (UnitProp)

1 2
d

4 3 || 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2 ∨ 4

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 93/125



From SAT to SMT

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2

∨ g(a) = d
︸ ︷︷ ︸

3

∧ c 6= d
︸ ︷︷ ︸

4

∨ g(a) 6= d
︸ ︷︷ ︸

3

∅ || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (UnitProp)

1 || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Decide)

1 2
d

|| 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Decide)

1 2
d

4
d

|| 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Theory Learn)

1 2
d

4
d

|| 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2 ∨ 4 =⇒ (Backjump)

1 2
d

4 || 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2 ∨ 4 =⇒ (UnitProp)

1 2
d

4 3 || 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2 ∨ 4 =⇒ (Theory Learn)

1 2
d

4 3 || 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2 ∨ 4, 1 ∨ 2 ∨ 4 ∨ 3

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 93/125



From SAT to SMT

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2

∨ g(a) = d
︸ ︷︷ ︸

3

∧ c 6= d
︸ ︷︷ ︸

4

∨ g(a) 6= d
︸ ︷︷ ︸

3

∅ || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (UnitProp)

1 || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Decide)

1 2
d

|| 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Decide)

1 2
d

4
d

|| 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Theory Learn)

1 2
d

4
d

|| 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2 ∨ 4 =⇒ (Backjump)

1 2
d

4 || 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2 ∨ 4 =⇒ (UnitProp)

1 2
d

4 3 || 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2 ∨ 4 =⇒ (Theory Learn)

1 2
d

4 3 || 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2 ∨ 4, 1 ∨ 2 ∨ 4 ∨ 3 =⇒ (Backjump)

1 2 || 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2 ∨ 4, 1 ∨ 2 ∨ 4 ∨ 3

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 93/125



From SAT to SMT

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2

∨ g(a) = d
︸ ︷︷ ︸

3

∧ c 6= d
︸ ︷︷ ︸

4

∨ g(a) 6= d
︸ ︷︷ ︸

3

∅ || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (UnitProp)

1 || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Decide)

1 2
d

|| 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Decide)

1 2
d

4
d

|| 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Theory Learn)

1 2
d

4
d

|| 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2 ∨ 4 =⇒ (Backjump)

1 2
d

4 || 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2 ∨ 4 =⇒ (UnitProp)

1 2
d

4 3 || 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2 ∨ 4 =⇒ (Theory Learn)

1 2
d

4 3 || 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2 ∨ 4, 1 ∨ 2 ∨ 4 ∨ 3 =⇒ (Backjump)

1 2 || 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2 ∨ 4, 1 ∨ 2 ∨ 4 ∨ 3 =⇒ (UnitProp)

1 2 3 4 || 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2 ∨ 4, 1 ∨ 2 ∨ 4 ∨ 3

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 93/125



From SAT to SMT

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2

∨ g(a) = d
︸ ︷︷ ︸

3

∧ c 6= d
︸ ︷︷ ︸

4

∨ g(a) 6= d
︸ ︷︷ ︸

3

∅ || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (UnitProp)

1 || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Decide)

1 2
d

|| 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Decide)

1 2
d

4
d

|| 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Theory Learn)

1 2
d

4
d

|| 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2 ∨ 4 =⇒ (Backjump)

1 2
d

4 || 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2 ∨ 4 =⇒ (UnitProp)

1 2
d

4 3 || 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2 ∨ 4 =⇒ (Theory Learn)

1 2
d

4 3 || 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2 ∨ 4, 1 ∨ 2 ∨ 4 ∨ 3 =⇒ (Backjump)

1 2 || 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2 ∨ 4, 1 ∨ 2 ∨ 4 ∨ 3 =⇒ (UnitProp)

1 2 3 4 || 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2 ∨ 4, 1 ∨ 2 ∨ 4 ∨ 3 =⇒ (Theory Learn)

1 2 3 4 || 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2 ∨ 4, 1 ∨ 2 ∨ 4 ∨ 3, 1 ∨ 2 ∨ 3 ∨ 4

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 93/125



From SAT to SMT

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2

∨ g(a) = d
︸ ︷︷ ︸

3

∧ c 6= d
︸ ︷︷ ︸

4

∨ g(a) 6= d
︸ ︷︷ ︸

3

∅ || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (UnitProp)

1 || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Decide)

1 2
d

|| 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Decide)

1 2
d

4
d

|| 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Theory Learn)

1 2
d

4
d

|| 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2 ∨ 4 =⇒ (Backjump)

1 2
d

4 || 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2 ∨ 4 =⇒ (UnitProp)

1 2
d

4 3 || 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2 ∨ 4 =⇒ (Theory Learn)

1 2
d

4 3 || 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2 ∨ 4, 1 ∨ 2 ∨ 4 ∨ 3 =⇒ (Backjump)

1 2 || 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2 ∨ 4, 1 ∨ 2 ∨ 4 ∨ 3 =⇒ (UnitProp)

1 2 3 4 || 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2 ∨ 4, 1 ∨ 2 ∨ 4 ∨ 3 =⇒ (Theory Learn)

1 2 3 4 || 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2 ∨ 4, 1 ∨ 2 ∨ 4 ∨ 3, 1 ∨ 2 ∨ 3 ∨ 4 =⇒ (Fail)

fail

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 93/125



Improving Abstract DPLL Modulo Theories

We will mention three ways to improve the algorithm.

• Minimizing learned clauses
• Eager conflict detection
• Theory propagation

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 94/125



Minimizing Learned Clauses

The main difficulty with the approach as it stands is that
learned clauses can be highly redundant.

Suppose that F contains n+ 2 propositional variables.

When a pseudo-final state is reached, M will determine a
value for all n+ 2 variables.

But what if only 2 of these assignments are already
T -unsatisfiable?

If we always learn ¬M in a pseudo-final state, in the worst
case, 2n clauses will be need to be learned when a single
clause containing the two offending literals would have
sufficed.

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 95/125



Minimizing Learned Clauses

To avoid this kind of redundancy, we can be smarter about
the clauses that are learned with Theory Learn.

In particular, when Sat T (M) is called, we should make an
effort to find the smallest possible subset of M which is
inconsistent.

We can then learn a clause derived from only these literals.

One way to implement this is to start removing literals one at
a time from M and repeatedly call Sat T until a minimal
inconsistent set is found.

However, this is typically too slow to be practical.

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 96/125



Minimizing Learned Clauses

A better, but more difficult way to implement this is to
instrument Sat T to keep track of which facts are used to
derive an inconsistency.

We can use a data structure similar to the implication graph
discussed earlier.

Alternatively, if Sat T happens to produce proofs, the proof of
unsatisfiability of M can be traversed to obtain this
information.

This is the approach used in the CVC tools.

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 97/125



From SAT to SMT — Minimized Clauses

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2

∨ g(a) = d
︸ ︷︷ ︸

3

∧ c 6= d
︸ ︷︷ ︸

4

∨ g(a) 6= d
︸ ︷︷ ︸

3

∅ || 1, 2 ∨ 3, 4 ∨ 3

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 98/125



From SAT to SMT — Minimized Clauses

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2

∨ g(a) = d
︸ ︷︷ ︸

3

∧ c 6= d
︸ ︷︷ ︸

4

∨ g(a) 6= d
︸ ︷︷ ︸

3

∅ || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (UnitProp)

1 || 1, 2 ∨ 3, 4 ∨ 3

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 98/125



From SAT to SMT — Minimized Clauses

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2

∨ g(a) = d
︸ ︷︷ ︸

3

∧ c 6= d
︸ ︷︷ ︸

4

∨ g(a) 6= d
︸ ︷︷ ︸

3

∅ || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (UnitProp)

1 || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Decide)

1 2
d

|| 1, 2 ∨ 3, 4 ∨ 3

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 98/125



From SAT to SMT — Minimized Clauses

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2

∨ g(a) = d
︸ ︷︷ ︸

3

∧ c 6= d
︸ ︷︷ ︸

4

∨ g(a) 6= d
︸ ︷︷ ︸

3

∅ || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (UnitProp)

1 || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Decide)

1 2
d

|| 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Decide)

1 2
d

4
d

|| 1, 2 ∨ 3, 4 ∨ 3

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 98/125



From SAT to SMT — Minimized Clauses

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2

∨ g(a) = d
︸ ︷︷ ︸

3

∧ c 6= d
︸ ︷︷ ︸

4

∨ g(a) 6= d
︸ ︷︷ ︸

3

∅ || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (UnitProp)

1 || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Decide)

1 2
d

|| 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Decide)

1 2
d

4
d

|| 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Theory Learn)

1 2
d

4
d

|| 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 98/125



From SAT to SMT — Minimized Clauses

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2

∨ g(a) = d
︸ ︷︷ ︸

3

∧ c 6= d
︸ ︷︷ ︸

4

∨ g(a) 6= d
︸ ︷︷ ︸

3

∅ || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (UnitProp)

1 || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Decide)

1 2
d

|| 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Decide)

1 2
d

4
d

|| 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Theory Learn)

1 2
d

4
d

|| 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2 =⇒ (Backjump)

1 2 || 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 98/125



From SAT to SMT — Minimized Clauses

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2

∨ g(a) = d
︸ ︷︷ ︸

3

∧ c 6= d
︸ ︷︷ ︸

4

∨ g(a) 6= d
︸ ︷︷ ︸

3

∅ || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (UnitProp)

1 || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Decide)

1 2
d

|| 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Decide)

1 2
d

4
d

|| 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Theory Learn)

1 2
d

4
d

|| 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2 =⇒ (Backjump)

1 2 || 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2 =⇒ (UnitProp)

1 2 3 4 || 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 98/125



From SAT to SMT — Minimized Clauses

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2

∨ g(a) = d
︸ ︷︷ ︸

3

∧ c 6= d
︸ ︷︷ ︸

4

∨ g(a) 6= d
︸ ︷︷ ︸

3

∅ || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (UnitProp)

1 || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Decide)

1 2
d

|| 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Decide)

1 2
d

4
d

|| 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Theory Learn)

1 2
d

4
d

|| 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2 =⇒ (Backjump)

1 2 || 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2 =⇒ (UnitProp)

1 2 3 4 || 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2 =⇒ (Theory Learn)

1 2 3 4 || 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2, 1 ∨ 3 ∨ 4

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 98/125



From SAT to SMT — Minimized Clauses

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2

∨ g(a) = d
︸ ︷︷ ︸

3

∧ c 6= d
︸ ︷︷ ︸

4

∨ g(a) 6= d
︸ ︷︷ ︸

3

∅ || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (UnitProp)

1 || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Decide)

1 2
d

|| 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Decide)

1 2
d

4
d

|| 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Theory Learn)

1 2
d

4
d

|| 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2 =⇒ (Backjump)

1 2 || 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2 =⇒ (UnitProp)

1 2 3 4 || 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2 =⇒ (Theory Learn)

1 2 3 4 || 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2, 1 ∨ 3 ∨ 4 =⇒ (Fail)

fail

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 98/125



Eager Conflict Detection

Currently, we have indicated that we will check M for
T -satisfiability only when a pseudo-final state is reached.

In contrast, a more eager policy would be to check M for
T -satisfiability every time M changes.

Experimental results show that this approach is significantly
better.

It requires Sat T be online: able quickly to determine the
consistency of incrementally more literals or to backtrack to a
previous state.

It also requires that the SAT solver be instrumented to call
Sat T every time a variable is assigned a value.

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 99/125



From SAT to SMT — Eager Conflict Detection

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2

∨ g(a) = d
︸ ︷︷ ︸

3

∧ c 6= d
︸ ︷︷ ︸

4

∨ g(a) 6= d
︸ ︷︷ ︸

3

∅ || 1, 2 ∨ 3, 4 ∨ 3

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 100/125



From SAT to SMT — Eager Conflict Detection

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2

∨ g(a) = d
︸ ︷︷ ︸

3

∧ c 6= d
︸ ︷︷ ︸

4

∨ g(a) 6= d
︸ ︷︷ ︸

3

∅ || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (UnitProp)

1 || 1, 2 ∨ 3, 4 ∨ 3

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 100/125



From SAT to SMT — Eager Conflict Detection

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2

∨ g(a) = d
︸ ︷︷ ︸

3

∧ c 6= d
︸ ︷︷ ︸

4

∨ g(a) 6= d
︸ ︷︷ ︸

3

∅ || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (UnitProp)

1 || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Decide)

1 2
d

|| 1, 2 ∨ 3, 4 ∨ 3

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 100/125



From SAT to SMT — Eager Conflict Detection

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2

∨ g(a) = d
︸ ︷︷ ︸

3

∧ c 6= d
︸ ︷︷ ︸

4

∨ g(a) 6= d
︸ ︷︷ ︸

3

∅ || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (UnitProp)

1 || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Decide)

1 2
d

|| 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Theory Learn)

1 2
d

|| 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 100/125



From SAT to SMT — Eager Conflict Detection

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2

∨ g(a) = d
︸ ︷︷ ︸

3

∧ c 6= d
︸ ︷︷ ︸

4

∨ g(a) 6= d
︸ ︷︷ ︸

3

∅ || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (UnitProp)

1 || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Decide)

1 2
d

|| 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Theory Learn)

1 2
d

|| 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2 =⇒ (Backjump)

1 2 || 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 100/125



From SAT to SMT — Eager Conflict Detection

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2

∨ g(a) = d
︸ ︷︷ ︸

3

∧ c 6= d
︸ ︷︷ ︸

4

∨ g(a) 6= d
︸ ︷︷ ︸

3

∅ || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (UnitProp)

1 || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Decide)

1 2
d

|| 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Theory Learn)

1 2
d

|| 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2 =⇒ (Backjump)

1 2 || 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2 =⇒ (UnitProp)

1 2 3 4 || 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 100/125



From SAT to SMT — Eager Conflict Detection

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2

∨ g(a) = d
︸ ︷︷ ︸

3

∧ c 6= d
︸ ︷︷ ︸

4

∨ g(a) 6= d
︸ ︷︷ ︸

3

∅ || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (UnitProp)

1 || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Decide)

1 2
d

|| 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Theory Learn)

1 2
d

|| 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2 =⇒ (Backjump)

1 2 || 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2 =⇒ (UnitProp)

1 2 3 4 || 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2 =⇒ (Theory Learn)

1 2 3 4 || 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2, 1 ∨ 3 ∨ 4

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 100/125



From SAT to SMT — Eager Conflict Detection

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2

∨ g(a) = d
︸ ︷︷ ︸

3

∧ c 6= d
︸ ︷︷ ︸

4

∨ g(a) 6= d
︸ ︷︷ ︸

3

∅ || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (UnitProp)

1 || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Decide)

1 2
d

|| 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Theory Learn)

1 2
d

|| 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2 =⇒ (Backjump)

1 2 || 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2 =⇒ (UnitProp)

1 2 3 4 || 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2 =⇒ (Theory Learn)

1 2 3 4 || 1, 2 ∨ 3, 4 ∨ 3, 1 ∨ 2, 1 ∨ 3 ∨ 4 =⇒ (Fail)

fail

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 100/125



Theory Propagation

A final improvement is to add the following rule:
Theory Propagate :

M || F =⇒ M l || F if

8

>

>

<

>

>

:

M |=T l

l or ¬l occurs in F

l is undefined in M

This rule allows a theory solver to inform the SAT solver if it
happens to know that an unassigned literal is entailed by M .

Experimental results show that this can also be very helpful in
practice.

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 101/125



From SAT to SMT — Theory Propagation

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2

∨ g(a) = d
︸ ︷︷ ︸

3

∧ c 6= d
︸ ︷︷ ︸

4

∨ g(a) 6= d
︸ ︷︷ ︸

3

∅ || 1, 2 ∨ 3, 4 ∨ 3

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 102/125



From SAT to SMT — Theory Propagation

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2

∨ g(a) = d
︸ ︷︷ ︸

3

∧ c 6= d
︸ ︷︷ ︸

4

∨ g(a) 6= d
︸ ︷︷ ︸

3

∅ || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (UnitProp)

1 || 1, 2 ∨ 3, 4 ∨ 3

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 102/125



From SAT to SMT — Theory Propagation

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2

∨ g(a) = d
︸ ︷︷ ︸

3

∧ c 6= d
︸ ︷︷ ︸

4

∨ g(a) 6= d
︸ ︷︷ ︸

3

∅ || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (UnitProp)

1 || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Theory Propagate)

1 2 || 1, 2 ∨ 3, 4 ∨ 3

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 102/125



From SAT to SMT — Theory Propagation

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2

∨ g(a) = d
︸ ︷︷ ︸

3

∧ c 6= d
︸ ︷︷ ︸

4

∨ g(a) 6= d
︸ ︷︷ ︸

3

∅ || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (UnitProp)

1 || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Theory Propagate)

1 2 || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (UnitProp)

1 2 3 || 1, 2 ∨ 3, 4 ∨ 3

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 102/125



From SAT to SMT — Theory Propagation

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2

∨ g(a) = d
︸ ︷︷ ︸

3

∧ c 6= d
︸ ︷︷ ︸

4

∨ g(a) 6= d
︸ ︷︷ ︸

3

∅ || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (UnitProp)

1 || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Theory Propagate)

1 2 || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (UnitProp)

1 2 3 || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Theory Propagate)

1 2 3 4 || 1, 2 ∨ 3, 4 ∨ 3

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 102/125



From SAT to SMT — Theory Propagation

g(a) = c
︸ ︷︷ ︸

1

∧ f(g(a)) 6= f(c)
︸ ︷︷ ︸

2

∨ g(a) = d
︸ ︷︷ ︸

3

∧ c 6= d
︸ ︷︷ ︸

4

∨ g(a) 6= d
︸ ︷︷ ︸

3

∅ || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (UnitProp)

1 || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Theory Propagate)

1 2 || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (UnitProp)

1 2 3 || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Theory Propagate)

1 2 3 4 || 1, 2 ∨ 3, 4 ∨ 3 =⇒ (Fail)

fail

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 102/125



Extensions

We briefly mention two extensions.

The first is to allow the theory solver to use the SAT solver for
internal case splitting [BNOT06]

We do this by allowing the learning rule to introduce new
variables and terms

Extended T-Learn :

M || F =⇒ M || F, C if

8

<

:

each atom of C occurs in F or in L(M)

F |=T ∃∗(C)

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 103/125



Example: Theory of Sets

Let F = (x = {y}), (x = y ∪ z), (y 6= ∅ ∨ x 6= z):

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 104/125



Example: Theory of Sets

Let F = (x = {y}), (x = y ∪ z), (y 6= ∅ ∨ x 6= z):

∅ || F

x = {y}, x = y ∪ z, y = ∅d, x 6= z || F

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 104/125



Example: Theory of Sets

Let F = (x = {y}), (x = y ∪ z), (y 6= ∅ ∨ x 6= z):

∅ || F =⇒ UnitProp

x = {y}, x = y ∪ z || F

x = {y}, x = y ∪ z, y = ∅d, x 6= z || F

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 104/125



Example: Theory of Sets

Let F = (x = {y}), (x = y ∪ z), (y 6= ∅ ∨ x 6= z):

∅ || F =⇒ UnitProp

x = {y}, x = y ∪ z || F =⇒ Decide

x = {y}, x = y ∪ z, y = ∅d || F

x = {y}, x = y ∪ z, y = ∅d, x 6= z || F

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 104/125



Example: Theory of Sets

Let F = (x = {y}), (x = y ∪ z), (y 6= ∅ ∨ x 6= z):

∅ || F =⇒ UnitProp

x = {y}, x = y ∪ z || F =⇒ Decide

x = {y}, x = y ∪ z, y = ∅d || F =⇒ UnitProp

x = {y}, x = y ∪ z, y = ∅d, x 6= z || F

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 104/125



Example: Theory of Sets

Let F = (x = {y}), (x = y ∪ z), (y 6= ∅ ∨ x 6= z):

∅ || F =⇒ UnitProp

x = {y}, x = y ∪ z || F =⇒ Decide

x = {y}, x = y ∪ z, y = ∅d || F =⇒ UnitProp

x = {y}, x = y ∪ z, y = ∅d, x 6= z || F =⇒ Extended T-Learn

x = {y}, x = y ∪ z, y = ∅d, x 6= z || F, (x = z ∨ w ∈ x ∨ w ∈ z), (x = z ∨ w 6∈ x ∨ w 6∈ z)

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 104/125



Example: Theory of Sets

Let F = (x = {y}), (x = y ∪ z), (y 6= ∅ ∨ x 6= z):

∅ || F =⇒ UnitProp

x = {y}, x = y ∪ z || F =⇒ Decide

x = {y}, x = y ∪ z, y = ∅d || F =⇒ UnitProp

x = {y}, x = y ∪ z, y = ∅d, x 6= z || F =⇒ Extended T-Learn

x = {y}, x = y ∪ z, y = ∅d, x 6= z || F, (x = z ∨ w ∈ x ∨ w ∈ z), (x = z ∨ w 6∈ x ∨ w 6∈ z)

=⇒ Decide

x = {y}, x = y ∪ z, y = ∅d, x 6= z

w ∈ xd
|| F, (x = z ∨ w ∈ x ∨ w ∈ z), (x = z ∨ w 6∈ x ∨ w 6∈ z)

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 104/125



Example: Theory of Sets

Let F = (x = {y}), (x = y ∪ z), (y 6= ∅ ∨ x 6= z):

∅ || F =⇒ UnitProp

x = {y}, x = y ∪ z || F =⇒ Decide

x = {y}, x = y ∪ z, y = ∅d || F =⇒ UnitProp

x = {y}, x = y ∪ z, y = ∅d, x 6= z || F =⇒ Extended T-Learn

x = {y}, x = y ∪ z, y = ∅d, x 6= z || F, (x = z ∨ w ∈ x ∨ w ∈ z), (x = z ∨ w 6∈ x ∨ w 6∈ z)

=⇒ Decide

x = {y}, x = y ∪ z, y = ∅d, x 6= z

w ∈ xd
|| F, (x = z ∨ w ∈ x ∨ w ∈ z), (x = z ∨ w 6∈ x ∨ w 6∈ z)

=⇒ UnitProp

x = {y}, x = y ∪ z, y = ∅d, x 6= z

w ∈ xd, w 6∈ z
|| F, (x = z ∨ w ∈ x ∨ w ∈ z), (x = z ∨ w 6∈ x ∨ w 6∈ z)

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 104/125



Example: Theory of Sets

Let F = (x = {y}), (x = y ∪ z), (y 6= ∅ ∨ x 6= z):

∅ || F =⇒ UnitProp

x = {y}, x = y ∪ z || F =⇒ Decide

x = {y}, x = y ∪ z, y = ∅d || F =⇒ UnitProp

x = {y}, x = y ∪ z, y = ∅d, x 6= z || F =⇒ Extended T-Learn

x = {y}, x = y ∪ z, y = ∅d, x 6= z || F, (x = z ∨ w ∈ x ∨ w ∈ z), (x = z ∨ w 6∈ x ∨ w 6∈ z)

=⇒ Decide

x = {y}, x = y ∪ z, y = ∅d, x 6= z

w ∈ xd
|| F, (x = z ∨ w ∈ x ∨ w ∈ z), (x = z ∨ w 6∈ x ∨ w 6∈ z)

=⇒ UnitProp

x = {y}, x = y ∪ z, y = ∅d, x 6= z

w ∈ xd, w 6∈ z
|| F, (x = z ∨ w ∈ x ∨ w ∈ z), (x = z ∨ w 6∈ x ∨ w 6∈ z)

Theory: w ∈ y ∪ z

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 104/125



Example: Theory of Sets

Let F = (x = {y}), (x = y ∪ z), (y 6= ∅ ∨ x 6= z):

∅ || F =⇒ UnitProp

x = {y}, x = y ∪ z || F =⇒ Decide

x = {y}, x = y ∪ z, y = ∅d || F =⇒ UnitProp

x = {y}, x = y ∪ z, y = ∅d, x 6= z || F =⇒ Extended T-Learn

x = {y}, x = y ∪ z, y = ∅d, x 6= z || F, (x = z ∨ w ∈ x ∨ w ∈ z), (x = z ∨ w 6∈ x ∨ w 6∈ z)

=⇒ Decide

x = {y}, x = y ∪ z, y = ∅d, x 6= z

w ∈ xd
|| F, (x = z ∨ w ∈ x ∨ w ∈ z), (x = z ∨ w 6∈ x ∨ w 6∈ z)

=⇒ UnitProp

x = {y}, x = y ∪ z, y = ∅d, x 6= z

w ∈ xd, w 6∈ z
|| F, (x = z ∨ w ∈ x ∨ w ∈ z), (x = z ∨ w 6∈ x ∨ w 6∈ z)

Theory: w ∈ y ∪ z . . . w ∈ y

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 104/125



Example: Theory of Sets

Let F = (x = {y}), (x = y ∪ z), (y 6= ∅ ∨ x 6= z):

∅ || F =⇒ UnitProp

x = {y}, x = y ∪ z || F =⇒ Decide

x = {y}, x = y ∪ z, y = ∅d || F =⇒ UnitProp

x = {y}, x = y ∪ z, y = ∅d, x 6= z || F =⇒ Extended T-Learn

x = {y}, x = y ∪ z, y = ∅d, x 6= z || F, (x = z ∨ w ∈ x ∨ w ∈ z), (x = z ∨ w 6∈ x ∨ w 6∈ z)

=⇒ Decide

x = {y}, x = y ∪ z, y = ∅d, x 6= z

w ∈ xd
|| F, (x = z ∨ w ∈ x ∨ w ∈ z), (x = z ∨ w 6∈ x ∨ w 6∈ z)

=⇒ UnitProp

x = {y}, x = y ∪ z, y = ∅d, x 6= z

w ∈ xd, w 6∈ z
|| F, (x = z ∨ w ∈ x ∨ w ∈ z), (x = z ∨ w 6∈ x ∨ w 6∈ z)

Theory: w ∈ y ∪ z . . . w ∈ y . . . w ∈ ∅

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 104/125



Example: Theory of Sets

Let F = (x = {y}), (x = y ∪ z), (y 6= ∅ ∨ x 6= z):

∅ || F =⇒ UnitProp

x = {y}, x = y ∪ z || F =⇒ Decide

x = {y}, x = y ∪ z, y = ∅d || F =⇒ UnitProp

x = {y}, x = y ∪ z, y = ∅d, x 6= z || F =⇒ Extended T-Learn

x = {y}, x = y ∪ z, y = ∅d, x 6= z || F, (x = z ∨ w ∈ x ∨ w ∈ z), (x = z ∨ w 6∈ x ∨ w 6∈ z)

=⇒ Decide

x = {y}, x = y ∪ z, y = ∅d, x 6= z

w ∈ xd
|| F, (x = z ∨ w ∈ x ∨ w ∈ z), (x = z ∨ w 6∈ x ∨ w 6∈ z)

=⇒ UnitProp

x = {y}, x = y ∪ z, y = ∅d, x 6= z

w ∈ xd, w 6∈ z
|| F, (x = z ∨ w ∈ x ∨ w ∈ z), (x = z ∨ w 6∈ x ∨ w 6∈ z)

Theory: w ∈ y ∪ z . . . w ∈ y . . . w ∈ ∅ . . . ⊥

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 104/125



Example: Theory of Sets

Let F = (x = {y}), (x = y ∪ z), (y 6= ∅ ∨ x 6= z):

∅ || F =⇒ UnitProp

x = {y}, x = y ∪ z || F =⇒ Decide

x = {y}, x = y ∪ z, y = ∅d || F =⇒ UnitProp

x = {y}, x = y ∪ z, y = ∅d, x 6= z || F =⇒ Extended T-Learn

x = {y}, x = y ∪ z, y = ∅d, x 6= z || F, (x = z ∨ w ∈ x ∨ w ∈ z), (x = z ∨ w 6∈ x ∨ w 6∈ z)

=⇒ Decide

x = {y}, x = y ∪ z, y = ∅d, x 6= z

w ∈ xd
|| F, (x = z ∨ w ∈ x ∨ w ∈ z), (x = z ∨ w 6∈ x ∨ w 6∈ z)

=⇒ UnitProp

x = {y}, x = y ∪ z, y = ∅d, x 6= z

w ∈ xd, w 6∈ z
|| F, (x = z ∨ w ∈ x ∨ w ∈ z), (x = z ∨ w 6∈ x ∨ w 6∈ z)

Theory: w ∈ y ∪ z . . . w ∈ y . . . w ∈ ∅ . . . ⊥

=⇒ Backjump

. . .

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 104/125



Quantifiers

The Abstract DPLL Modulo Theories framework can also be
extended to include rules for quantifier instantiation [GBT07].

• First, we extend the notion of literal to that of an abstract
literal which may include quantified formulas in place of
atomic formulas.

• Add two additional rules:

Inst_∃ :

M || F =⇒ M || F, (¬∃x. P ∨ P [x/sk]) if

8

<

:

∃x P is an abstract literal in M

sk is a fresh constant.

Inst_∀ :

M || F =⇒ M || F, (¬∀x. P ∨ P [x/t]) if

8

<

:

∀x P is an abstract literal in M

t is a ground term.

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 105/125



An Example

Suppose a and b are constant symbols and f is an
uninterpreted function symbol. We show how to prove the
validity of the following formula:

(0 ≤ b ∧ (∀x. 0 ≤ x→ f(x) = a)) → f(b) = a

We first negate the formula and put it into abstract CNF. The
result is three unit clauses:

(0 ≤ b) ∧ (∀x. (¬0 ≤ x ∨ f(x) = a)) ∧ (¬f(b) = a)

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 106/125



An Example

Let l1, l2, l3 denote the three abstract literals in the above
clauses. Then the following is a derivation in the extended
framework:

∅ || (l1)(l2)(l3) =⇒ (UnitProp)

l1, l2, l3 || (l1)(l2)(l3) =⇒ (Inst_∀)

l1, l2, l3 || (l1)(l2)(l3)(¬(0 ≤ b) ∨ f(b) = a) =⇒ (Fail)

fail

The last transition is possible because M falsifies the last
clause in F and contains no decisions (case-splits). As a
result, we may conclude that the original set of clauses is
unsatisfiable, which implies that the original formula is valid.

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 107/125



Quantifiers

The simple technique of quantifier instantiation is remarkably
effective on verification benchmarks.

The main difficulty is coming up with the right terms to
instantiate.

Matching techniques pioneered by Simplify [DNS03] have
recently been adopted and improved by several modern SMT
solvers [BdM07, GBT07].

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 108/125



SMT Solvers: State of the Art

Building on the fast SAT technology, SMT solvers have
improving dramatically.

The winners of this year’s SMT competition are orders of
magnitude faster than those of just a couple of years ago.

Current leading solvers include:
• Barcelogic (U Barcelona, Spain)
• CVC3 (NYU, U Iowa)
• MathSAT (U Trento, Italy)
• Yices (SRI)
• Z3 (Microsoft)

SMT solvers are becoming the engine of choice for an
ever-increasing set of verification applications.

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 109/125



Roadmap

Satisfiability Modulo Theories

• First-Order Logic
• Specific Theories
• Theory Solvers
• Combining Theory Solvers
• Combining with SAT
• Modeling in SMT

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 110/125



Modeling

The language of SMT allows us to model at a higher level of
abstraction.

Consider again the circuit example.

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 111/125



Running Example

��

��

��

��

=

+1

+2

1

0

1

0

1

0

test

x

y

z

a

a

a

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 112/125



Modeling

Recall that the invariant of the circuit is captured by the
following formula:
(y = x + 1 AND z = x + 2 AND
x’ = IF a THEN x ELSE y AND
y’ = IF a THEN y ELSE z AND
z’ = IF a THEN z ELSE y + 2) IMPLIES
y’ = x’ + 1 AND z’ = x’ + 2

When using a SAT solver, this formula had to be encoded into
propositional logic

Using an SMT solver, the formula can be solved as it is

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 113/125



Modeling

Notice that at this level of abstraction, we can prove the
formula is true for arbitrary integers, eliminating the need to
consider the size of the registers

Alternatively, if we are concerned about overflow, we can use
the theory of bitvectors, which still has the advantage that the
size of the formula does not increase with increasing
bit-width.

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 114/125



Modeling Software Using SMT

Consider the following lines of code:

l0 : a[i] := a[i] + 1;

l1 : a[i+ 1] := a[i− 1] − 1;

l2 :

This can be modeled in SMT as follows:

i0, i1, i2 : INT;

a0, a1, a2 : ARRAY INT OF INT;

ASSERT (a1 = a0 WITH [i0] := a0[i0]+1) AND (i1 = i0);

ASSERT (a2 = a1 WITH [i1+1] := a1[i1-1]-1) AND (i2 = i1);

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 115/125



Modeling Software Using SMT

A proof rule used in compiler verification needs to check
whether the result is equivalent when the two statements are
swapped. This can be modeled as follows:

i0, i1, i2, i3, i4 : INT;

a0, a1, a2, a3, a4 : ARRAY INT OF INT;

ASSERT (a1 = a0 WITH [i0] := a0[i0]+1) AND (i1 = i0);

ASSERT (a2 = a1 WITH [i1+1] := a1[i1-1]-1) AND (i2 = i1);

ASSERT (a3 = a0 WITH [i0+1] := a0[i0-1]-1) AND (i3 = i0);

ASSERT (a4 = a3 WITH [i3] := a3[i3]+1) AND (i4 = i3);

QUERY (i2 = i4 AND a2 = a4);

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 116/125



Modeling Reactive Systems Using CVC3

A more efficient encoding ignores variables that do not
change and uses the LET construct to introduce temporary
expressions.

i : INT;

a : ARRAY INT OF INT;

QUERY

(LET a1 = a WITH [i] := a[i]+1 IN

a1 WITH [i+1] := a1[i-1]-1) =

(LET a1 = a WITH [i+1] := a[i-1]-1 IN

a1 WITH [i] := a1[i]+1);

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 117/125



Some Challenges

• Better integration of SAT and SMT
• More complete techniques for quantifiers
• Parallel SMT
• Improving the SMT-LIB standard
• Producing and Checking Proofs
• Nonlinear arithmetic

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 118/125



References

[Bar03] Clark Barrett. Checking Validity of Quantifier-Free Formulas in Combinations of
First-Order Theories. PhD thesis, Stanford University, 2003

[BdM07] Nikolaj Bjørner and Leonardo de Moura. Efficient E-matching for SMT solvers. In
Frank Pfenning, editor, Proceedings of the 21st International Conference on
Automated Deduction (CADE ’07), volume 4603 of Lecture Notes in Artificial
Intelligence, pages 183–198. Springer-Verlag, July 2007

[BDL98] Clark W. Barrett, David L. Dill, and Jeremy R. Levitt. A decision procedure for
bit-vector arithmetic. In Proceedings of the 35th Design Automation Conference (DAC
’98), pages 522–527. Association for Computing Machinery, June 1998. San
Francisco, California. Best paper award

[BDS02a] Clark W. Barrett, David L. Dill, and Aaron Stump. Checking satisfiability of
first-order formulas by incremental translation to SAT. In Ed Brinksma and
Kim Guldstrand Larsen, editors, Proceedings of the 14th International Conference on
Computer Aided Verification (CAV ’02), volume 2404 of Lecture Notes in Computer
Science, pages 236–249. Springer-Verlag, July 2002. Copenhagen, Denmark

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 119/125



References

[BDS02b] Clark W. Barrett, David L. Dill, and Aaron Stump. A generalization of Shostak’s
method for combining decision procedures. In Alessandro Armando, editor,
Proceedings of the 4th International Workshop on Frontiers of Combining Systems
(FroCoS ’02), volume 2309 of Lecture Notes in Artificial Intelligence, pages 132–146.
Springer-Verlag, April 2002. Santa Margherita Ligure, Italy

[BNOT06] Clark Barrett, Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Splitting on
demand in SAT modulo theories. In Miki Hermann and Andrei Voronkov, editors,
Proceedings of the 13th International Conference on Logic for Programming, Artificial
Intelligence, and Reasoning (LPAR ’06), volume 4246 of Lecture Notes in Computer
Science, pages 512–526. Springer-Verlag, November 2006. Phnom Penh, Cambodia

[BP98] Nikolaj Bjørner and Mark C. Pichora. Deciding fixed and non-fixed size bit-vectors. In
TACAS ’98: Proceedings of the 4th International Conference on Tools and Algorithms
for Construction and Analysis of Systems, pages 376–392. Springer-Verlag, 1998

[BST07] Clark Barrett, Igor Shikanian, and Cesare Tinelli. An abstract decision procedure for
a theory of inductive data types. Journal on Satisfiability, Boolean Modeling and
Computation, 3:21–46, 2007

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 120/125



References

[CLS96] D. Cyrluk, P. Lincoln, and N. Shankar. On shostak’s decision procedure for
combinations of theories. In M. McRobbie and J. Slaney, editors, 13th International
Conference on Computer Aided Deduction, volume 1104 of Lecture Notes in
Computer Science, pages 463–477. Springer-Verlag, 1996

[CMR97] David Cyrluk, M. Oliver Möller, and Harald Ruess. An efficient decision procedure
for the theory of fixed-size bit-vectors. In Proceedings of the 9th International
Conference on Computer Aided Verification (CAV ’97), pages 60–71. Springer-Verlag,
1997

[CZ00] Domenico. Cantone and Calogero G. Zarba. A new fast tableau-based decision
procedure for an unquantified fragment of set theory. In Ricardo Caferra and Gernot
Salzer, editors, Automated Deduction in Classical and Non-Classical Logics, volume
1761 of Lecture Notes in Artificial Intelligence, pages 127–137. Springer, 2000

[dMRS02] L. de Moura, H. Rueß, and M. Sorea. Lazy Theorem Proving for Bounded Model
Checking over Infinite Domains. In Proc. of the 18th International Conference on
Automated Deduction, volume 2392 of LNCS, pages 438–455. Springer, July 2002

[DNS03] David Detlefs, Greg Nelson, and James B. Saxe. Simplify: A theorem prover for
program checking. Technical Report HPL-2003-148, HP Laboratories Palo Alto, 2003

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 121/125



References
[End00] Herbert B. Enderton. A Mathematical Introduction to Logic. Undergraduate Texts in

Mathematics. Academic Press, second edition edition, 2000

[EKM98] Jacob Elgaard, Nils Klarlund, and Anders Möller. Mona 1.x: New techniques for
WS1S and WS2S. In Proceedings of the 10th International Conference on Computer
Aided Verification (CAV ’98), volume 1427 of Lecture Notes in Computer Science.
Springer-Verlag, 1998

[Gan02] Harald Ganzinger. Shostak light. In Andrei Voronkov, editor, Automated Deduction –
CADE-18, volume 2392 of Lecture Notes in Computer Science, pages 332–346.
Springer, 2002

[GBD05] Vijay Ganesh, Sergey Berezin, and David L. Dill. A decision procedure for
fixed-width bit-vectors, January 2005. Unpublished Manuscript

[GBT07] Yeting Ge, Clark Barrett, and Cesare Tinelli. Solving quantified verification
condisions using satisfiability modulo theories. In Proceedings of the 21st International
Conference on Automated Deduction (CADE ’07), Lecture Notes in Artificial
Intelligence. Springer-Verlag, July 2007. Bremen, Germany

[KC03] Sava Krstic and Sylvain Conchon. Canonization for disjoint union of theories. In
Proceedings of the 19th International Conference on Computer Aided Deduction
(CADE ’03), 2003

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 122/125



References

[LQ08] S. K. Lahiri and S. Qadeer. Back to the future: Revisiting precise program verification
using smt solvers. In Proceedings of the 35th Annual ACM SIGPLAN - SIGACT
Symposium on Principles of Programming Languages, 2008

[Möl97] M. Oliver Möller. Solving Bit-Vector Equations – a Decision Procedure for Hardware
Verification. PhD thesis, University of Ulm, 1997

[MZ03] Zohar Manna and Calogero Zarba. Combining decision procedures. In Formal
Methods at the Crossroads: from Panacea to Foundational Support, volume 2787 of
Lecture Notes in Computer Science, pages 381–422. Springer-Verlag, November 2003

[NO79] Greg Nelson and Derek C. Oppen. Simplification by cooperating decision
procedures. ACM Trans. on Programming Languages and Systems, 1(2):245–257,
October 1979

[NO80] Greg Nelson and Derek C. Oppen. Fast decision procedures based on congruence
closure. Journal of the ACM, 27(2):356–364, 1980

[NOT06] Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Solving SAT and SAT
Modulo Theories: from an Abstract Davis-Putnam-Logemann-Loveland Procedure to
DPLL(T). Journal of the ACM, 53(6):937–977, November 2006

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 123/125



References

[Opp80] Derek C. Oppen. Reasoning about recursively defined data structures. J. ACM,
27(3):403–411, 1980

[RBH07] Zvonimir Rakamarić, Jesse Bingham, and Alan J. Hu. An inference-rule-based
decision procedure for verification of heap-manipulating programs with mutable data
and cyclic data structures. In Verification, Model Checking, and Abstract Interpretation:
8th International Conference, pages 106–121. Springer, 2007. Lecture Notes in
Computer Science Vol. 4349

[RS01] H. Ruess and N. Shankar. Deconstructing shostak. In 16th Annual IEEE Symposium
on Logic in Computer Science, pages 19–28, June 2001

[Sho84] R. Shostak. Deciding combinations of theories. Journal of the Association for
Computing Machinery, 31(1):1–12, 1984

[TH96] C. Tinelli and M. Harandi. A new correctness proof of the nelson-oppen combination
procedure. In F. Baader and K. Schulz, editors, 1st International Workshop on
Frontiers of Combining Systems (FroCoS’96), volume 3 of Applied Logic Series.
Kluwer Academic Publishers, 1996

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 124/125



References

[YRS+06] Greta Yorsh, Alexander Rabinovich, Mooly Sagiv, Antoine Meyer, and Ahmed
Bouajjani. A logic of reachable patterns in linked data-structures. In Proceedings of
Foundations of Software Science and Computation Structures (FOSSACS ’06), 2006

[ZSM04a] T. Zhang, H. B. Sipma, and Z. Manna. Decision procedures for term algebras with
integer constraints. In Proceedings of the 2nd International Joint Conference on
Automated Reasoning (IJCAR ’04) LNCS 3097, pages 152–167, 2004

[ZSM04b] Ting Zhang, Henny B. Sipma, and Zohar Manna. Term algebras with length
function and bounded quantifier alternation. In Proceedings of the 17th International
Conference on Theorem Proving in Higher Order Logics (TPHOLs ’04), volume 3223
of Lecture Notes in Computer Science, pages 321–336, 2004

Summer School on Verification Technology, Systems & Applications, September 17, 2008 – p. 125/125


	Exercise
	SMT solvers: Motivation
	Roadmap
	SMT Solvers: Language
	First-Order Logic: Syntax
	First-Order Logic: Syntax
	First-Order Logic: Syntax
	First-Order Languages: Examples
	First-Order Languages: Examples
	First-Order Logic: Terms
	First-Order Logic: Formulas
	First-Order Logic: Formulas
	Formula Examples
	Formula Examples
	Formula Examples
	Formula Examples
	Formula Examples
	Formula Examples
	Formula Examples
	Formula Examples
	Formula Examples
	Formula Examples

	Free and Bound Variables
	First-Order Logic: Semantics
	First-Order Logic: Semantics
	Example
	Example
	Example
	Example
	Example

	First-Order Logic: Semantics
	First-Order Logic: Semantics
	First-Order Logic: Semantics
	Logical Definitions
	Examples
	Examples
	Examples
	Examples
	Examples
	Examples
	Examples
	Examples
	Examples
	Examples

	Validity and Satisfiability Modulo Theories
	Validity and Satisfiability Modulo Theories
	Roadmap
	The Theory mth {T_{mathcal {E}}} of Equality
	The Theory mth {T_{zahlen }} of Integers
	The Theory mth {T_{zahlen }} of Integers
	The Theory mth {T_{eals }} of Reals
	The Theory mth {T_{eals }} of Reals
	The Theory mth {T_mathcal {A}} of Arrays
	Theories of Inductive Data Types
	Theories of Inductive Data Types

	Other Interesting Theories
	Roadmap
	Theory Solvers
	Congruence Closure~cite {NO80}
	Congruence Closure
	A Simple Algorithm
	Congruence Closure and mth {T_mathcal {E}}
	An Algorithm for mth {T_mathcal {E}}
	An Algorithm for mth {T_mathcal {E}}
	Shostak's Method
	Shostak's Method
	Shostak's Method
	Shostak Theories
	Shostak Theories
	Shostak Theories
	Shostak Theories
	Shostak Theories
	Shostak Theories
	Shostak Theories
	Shostak Theories
	Shostak Theories
	Shostak Theories

	Algorithm Sh
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example

	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example

	Other Shostak Theories
	Shostak and Theory Combination
	Shostak's Method: Summary
	Roadmap
	The Nelson-Oppen Method
	The Nelson-Oppen Method
	The Nelson-Oppen Method
	The Nelson-Oppen Method
	The Nelson-Oppen Method
	The Nelson-Oppen Method
	Example
	Example

	Example
	Example
	Example
	Example
	Example
	Example

	Correctness of Nelson-Oppen
	Correctness of Nelson-Oppen
	Correctness of Nelson-Oppen
	Correctness of Nelson-Oppen
	Correctness of Nelson-Oppen
	Correctness of Nelson-Oppen
	Correctness of Nelson-Oppen
	Correctness of Nelson-Oppen
	Correctness of Nelson-Oppen
	Correctness of Nelson-Oppen
	Nelson-Oppen Example
	Example
	Implementing Nelson-Oppen
	Implementing Nelson-Oppen
	Implementing Nelson-Oppen
	Example
	Implementing Nelson-Oppen
	Example
	Implementing Nelson-Oppen
	Implementing Nelson-Oppen
	Implementing Nelson-Oppen
	Implementing Nelson-Oppen
	Implementing Nelson-Oppen
	Implementing Nelson-Oppen
	Implementing Nelson-Oppen

	Roadmap
	Combining with SAT
	Abstract DPLL Modulo Theories
	Abstract DPLL Rules
	Abstract DPLL Rules
	Abstract DPLL Modulo Theories
	Abstract DPLL Modulo Theories
	Abstract DPLL Modulo Theories
	Abstract DPLL Modulo Theories
	Abstract DPLL Modulo Theories

	Abstract DPLL Modulo Theories
	Abstract DPLL Modulo Theories
	Abstract DPLL Modulo Theories
	Abstract DPLL Modulo Theories
	Abstract DPLL Modulo Theories

	From SAT to SMT
	From SAT to SMT
	From SAT to SMT
	From SAT to SMT
	From SAT to SMT
	From SAT to SMT
	From SAT to SMT
	From SAT to SMT
	From SAT to SMT
	From SAT to SMT
	From SAT to SMT
	From SAT to SMT

	Improving Abstract DPLL Modulo Theories
	Minimizing Learned Clauses
	Minimizing Learned Clauses
	Minimizing Learned Clauses
	From SAT to SMT --- Minimized Clauses
	From SAT to SMT --- Minimized Clauses
	From SAT to SMT --- Minimized Clauses
	From SAT to SMT --- Minimized Clauses
	From SAT to SMT --- Minimized Clauses
	From SAT to SMT --- Minimized Clauses
	From SAT to SMT --- Minimized Clauses
	From SAT to SMT --- Minimized Clauses
	From SAT to SMT --- Minimized Clauses

	Eager Conflict Detection
	From SAT to SMT --- Eager Conflict Detection
	From SAT to SMT --- Eager Conflict Detection
	From SAT to SMT --- Eager Conflict Detection
	From SAT to SMT --- Eager Conflict Detection
	From SAT to SMT --- Eager Conflict Detection
	From SAT to SMT --- Eager Conflict Detection
	From SAT to SMT --- Eager Conflict Detection
	From SAT to SMT --- Eager Conflict Detection

	Theory Propagation
	From SAT to SMT --- Theory Propagation
	From SAT to SMT --- Theory Propagation
	From SAT to SMT --- Theory Propagation
	From SAT to SMT --- Theory Propagation
	From SAT to SMT --- Theory Propagation
	From SAT to SMT --- Theory Propagation

	Extensions
	Example: Theory of Sets
	Example: Theory of Sets
	Example: Theory of Sets
	Example: Theory of Sets
	Example: Theory of Sets
	Example: Theory of Sets
	Example: Theory of Sets
	Example: Theory of Sets
	Example: Theory of Sets
	Example: Theory of Sets
	Example: Theory of Sets
	Example: Theory of Sets
	Example: Theory of Sets

	Quantifiers
	An Example
	An Example
	Quantifiers
	SMT Solvers: State of the Art
	Roadmap
	Modeling
	Running Example
	Modeling
	Modeling
	Modeling Software Using SMT
	Modeling Software Using SMT
	Modeling Reactive Systems Using CVC3
	Some Challenges
	References
	References
	References
	References
	References
	References
	References

