
Language-based methods for software security

Gilles Barthe

IMDEA Software, Madrid, Spain

lamotte
Text Box
Part 1

Motivation

Mobile code is ubiquitous: large distributed networks of JVM devices

aimed at providing a global and uniform access to services
provide support to untrusted mobile code

Security is a central concern: untrusted code may
use too many resources

CPU, memory. . .
perform unauthorized actions

open sockets
be hostile towards other applications

access, manipulate or reveal sensitive data
crash the system

destruction/corruption of files

Gilles Barthe Language-based methods for software security

Security challenge

Bytecode program

Compiler

Network
Runtime

Bytecode program

Source program

Code producer Code consumer

Gilles Barthe Language-based methods for software security

Proof carrying code: principles

Code

Execution platform

proof
checker

certifying
prover

Proof

Gilles Barthe Language-based methods for software security

Certificates

are condensed and formalized mathematical proofs/hints
are self-evident and unforgeable
can be checked efficiently. . .
independent of difficulty of certificate generation

Gilles Barthe Language-based methods for software security

Certificates

are condensed and formalized mathematical proofs/hints
are self-evident and unforgeable
can be checked efficiently. . .
independent of difficulty of certificate generation

Gilles Barthe Language-based methods for software security

Certificates

are condensed and formalized mathematical proofs/hints
are self-evident and unforgeable
can be checked efficiently. . .
independent of difficulty of certificate generation

Gilles Barthe Language-based methods for software security

Flavors of Proof Carrying Code

Type-based PCC

Compiler
Certifying
Compiler

BCV

Runtime environment
Program Cert.

Program

Widely deployed in KVM
Application to JVM typing
On-device checking possible

Logic-based PCC

Compiler

Certifying

Compiler

Runtime environment
Program

Program
VC

generator

Checker

Cert.

Original scenario
Application to type safety and
memory safety

Gilles Barthe Language-based methods for software security

Proof carrying code: standard framework

Code

Execution platform

Proof
checker

Certifying
prover

Proof

the program is annotated (loop invariants, function
specifications),

the VCGen computes a logic formula φ that if true
guarantees the program security,

the certifying prover computes a proof object πwhich
establishes the validity of φ,

the consumer rebuilds the formula φ and checks that π is a
valid proof of φ.

Gilles Barthe Language-based methods for software security

Proof carrying code: standard framework

Code

Execution platform

Proof
checker

Certifying
prover

Proof

Annotations

the program is annotated (loop invariants, function
specifications),

the VCGen computes a logic formula φ that if true
guarantees the program security,

the certifying prover computes a proof object πwhich
establishes the validity of φ,

the consumer rebuilds the formula φ and checks that π is a
valid proof of φ.

Gilles Barthe Language-based methods for software security

Proof carrying code: standard framework

Code

Execution platform

Proof
checker

Certifying
prover

Proof

Annotations

VCGen φ

the program is annotated (loop invariants, function
specifications),

the VCGen computes a logic formula φ that if true
guarantees the program security,

the certifying prover computes a proof object πwhich
establishes the validity of φ,

the consumer rebuilds the formula φ and checks that π is a
valid proof of φ.

Gilles Barthe Language-based methods for software security

Proof carrying code: standard framework

Code

Execution platform

Proof
checker

Certifying
prover

π

Annotations

VCGen φ

the program is annotated (loop invariants, function
specifications),

the VCGen computes a logic formula φ that if true
guarantees the program security,

the certifying prover computes a proof object πwhich
establishes the validity of φ,

the consumer rebuilds the formula φ and checks that π is a
valid proof of φ.

Gilles Barthe Language-based methods for software security

Proof carrying code: standard framework

Code

Execution platform

Proof
checker

Certifying
prover

π

Annotations

VCGen φ

VCGen

φ

the program is annotated (loop invariants, function
specifications),

the VCGen computes a logic formula φ that if true
guarantees the program security,

the certifying prover computes a proof object πwhich
establishes the validity of φ,

the consumer rebuilds the formula φ and checks that π is a
valid proof of φ.

Gilles Barthe Language-based methods for software security

Certifying prover

automatically proves the verification conditions (VC)
VC must fall in some logic fragments whose decision procedures
have been implemented in the prover

in the PCC context, proving is not sufficient, detailed proof must
be generated too

like decision procedures in skeptical proof assistants
proof producing decision procedures are more and more
considered as an important software engineering practice to
develop proof assistants

Touchstone’s certifying prover includes
congruence closure and linear arithmetic decision procedures
with a Nelson-Oppen architecture for cooperating decision
procedures

Gilles Barthe Language-based methods for software security

Annotation generation

Source
code

Machine
code

Annotations

Execution platform

Proof
checker

Certifying
prover

Certifying
compiler

πVCGen φ

VCGen

φ

the transmitted program is the result of the compilation
of a source program written in a type-safe language
the role of the certifying compiler is

to check type-safety of the source program
to generate corresponding annotations in the machine
code to help the VCGen

Gilles Barthe Language-based methods for software security

Trusted Computing Base (TCB)

The TCB of a program is the set of components that must be trusted
to ensure the soundness of the program. Any bug in the others
components will never affect the soundness.

What is the PCC TCB?
the proof checker
the VCGen
the Execution platform

Source
code

Machine
code

Annotations

Execution platform

Proof
checker

Certifying
prover

Certifying
compiler

πVCGen φ

VCGen

φ

You don’t need to trust ...

Gilles Barthe Language-based methods for software security

Trusted Computing Base (TCB)

The TCB of a program is the set of components that must be trusted
to ensure the soundness of the program. Any bug in the others
components will never affect the soundness.

What is the PCC TCB?
the proof checker
the VCGen
the Execution platform

Source
code

Machine
code

Annotations

Execution platform

Proof
checker

Certifying
prover

Certifying
compiler

πVCGen φ

VCGen

φ

You don’t need to trust ...

Gilles Barthe Language-based methods for software security

Trusted Computing Base (TCB)

The TCB of a program is the set of components that must be trusted
to ensure the soundness of the program. Any bug in the others
components will never affect the soundness.

What is the PCC TCB?
the proof checker
the VCGen
the Execution platform

Source
code

Machine
code

Annotations

Execution platform

Proof
checker

Certifying
prover

Certifying
compiler

πVCGen φ

VCGen

φ

You don’t need to trust ...

Gilles Barthe Language-based methods for software security

Trusted Computing Base (TCB)

The TCB of a program is the set of components that must be trusted
to ensure the soundness of the program. Any bug in the others
components will never affect the soundness.

What is the PCC TCB?
the proof checker
the VCGen
the Execution platform

Source
code

Machine
code

Annotations

Execution platform

Proof
checker

Certifying
prover

Certifying
compiler

πVCGen φ

VCGen

φ

You don’t need to trust the compiler ...

Gilles Barthe Language-based methods for software security

Trusted Computing Base (TCB)

The TCB of a program is the set of components that must be trusted
to ensure the soundness of the program. Any bug in the others
components will never affect the soundness.

What is the PCC TCB?
the proof checker
the VCGen
the Execution platform

Source
code

Machine
code

Annotations

Execution platform

Proof
checker

Certifying
prover

Certifying
compiler

πVCGen φ

VCGen

φ

You don’t need to trust the compiler, the annotations ...

Gilles Barthe Language-based methods for software security

Trusted Computing Base (TCB)

The TCB of a program is the set of components that must be trusted
to ensure the soundness of the program. Any bug in the others
components will never affect the soundness.

What is the PCC TCB?
the proof checker
the VCGen
the Execution platform

Source
code

Machine
code

Annotations

Execution platform

Proof
checker

Certifying
prover

Certifying
compiler

πVCGen φ

VCGen

φ

You don’t need to trust the compiler, the annotations, the prover ...

Gilles Barthe Language-based methods for software security

Trusted Computing Base (TCB)

The TCB of a program is the set of components that must be trusted
to ensure the soundness of the program. Any bug in the others
components will never affect the soundness.

What is the PCC TCB?
the proof checker
the VCGen
the Execution platform

Source
code

Machine
code

Annotations

Execution platform

Proof
checker

Certifying
prover

Certifying
compiler

πVCGen φ

VCGen

φ

You don’t need to trust the compiler, the annotations, the prover, the
proof ...

Gilles Barthe Language-based methods for software security

Other instances of PCC

Touchstone has achieved an impressive level of scalability
(programs with about one million instructions)
but1 “[...], there were errors in that code that escaped the thorough
testing of the infrastructure”.
the weak point was the VCGen (23,000 lines of C...)

The size of the TCB can be reduced
1 by relying on simpler checkers
2 by removing the VCGen: Foundational Proof-Carrying Code
3 by certifying the VCGen in a proof assistant

1G.C. Necula and R.R. Schneck. A Sound Framework for Untrusted
Verification-Condition Generators. LICS’03

Gilles Barthe Language-based methods for software security

Simpler checkers?

Proof

λJ • let Jt ′ = λl ∈ inPJPK•((l = atPJStK ? JatPJStK ṫAbexpJBK(J`) ¿ Jl)) in
let Jt ′′ = APostJStK(Jt ′) in
λl ∈ inPJPK•((l = `′ ? Jt ′′

`′ ṫ Jt ′′
afterPJStK ¿ Jt ′′

l))

(119)

Observe that monotony follows by induction hypothesis and the locality (113) and dependence
(114) properties by induction hypothesis and the labelling condition (59).

5.4 Since the case of theelse branch of the conditional is similar to (5.3), we can now
come back to the calculational design of APostJif B then St else Sf fi K as an upper
approximation of

˙̈αJPK(PostJif B then St else Sf fi K)
= Hdef. (110) of ˙̈αJPKI
α̈JPK B PostJif B then St else Sf fi K B γ̈ JPK

= Hdef. (103) of PostI
α̈JPK B post[τ ?Jif B then St else Sf fi K] B γ̈ JPK

= Hbig step operational semantics (93)I
α̈JPK B post[(16JPK ∪ τ B) B τ ?JStK B (16JPK ∪ τ t) ∪ (16JPK ∪ τ B̄) B τ ?JSf K B (16JPK ∪
τ f)] B γ̈ JPK

= HGalois connection (98) so that post preserves joinsI
α̈JPK B (post[(16JPK ∪ τ B) B τ ?JStK B (16JPK ∪ τ t)] ∪̇
post[(16JPK ∪ τ B̄) B τ ?JSf K B (16JPK ∪ τ f)]) B γ̈ JPK

= HGalois connection (106) so thatα̈JPK preserves joinsI
(α̈JPK B post[(16JPK ∪ τ B) B τ ?JSt K B (16JPK ∪ τ t)] B γ̈ JPK) ˙̈t (α̈JPK B
post[(16JPK ∪ τ B̄) B τ ?JSf K B (16JPK ∪ τ f)] B γ̈ JPK)
˙̈v Hlemma (5.3) and similar one for theelse branchI
λJ • let Jt ′ = λl ∈ inPJPK•((l = atPJStK ? JatPJStK ṫAbexpJBK(J`) ¿ Jl)) in

let Jt ′′ = APostJStK(Jt ′) in
λl ∈ inPJPK•((l = `′ ? Jt ′′

`′ ṫ Jt ′′
afterPJStK ¿ Jt ′′

l))

ẗ
let J f ′ = λl ∈ inPJPK•((l = atPJSf K ? JatPJSf K ṫAbexpJT(¬B)K(J`) ¿ Jl)) in

let J f ′′ = APostJSf K(J f ′) in

λl ∈ inPJPK•((l = `′ ? J f ′′
`′ ṫ J f ′′

afterPJSf K ¿ J f ′′
l))

(120)

= Hby grouping similar termsI
λJ • let Jt ′ = λl ∈ inPJPK•((l = atPJStK ? JatPJStK ṫAbexpJBK(J`) ¿ Jl))

andJ f ′ = λl ∈ inPJPK•((l = atPJSf K ? JatPJSf K ṫAbexpJT(¬B)K(J`) ¿ Jl)) in
let Jt ′′ = APostJStK(Jt ′)
andJ f ′′ = APostJSf K(J f ′) in

λl ∈ inPJPK•((l = `′ ? Jt ′′
`′ ṫ Jt ′′

afterPJStK ṫ J f ′′
`′ ṫ J f ′′

afterPJSf K ¿ Jt ′′
l ṫ J f ′′

l))

= Hby locality (113) and labelling scheme (59) so that in particularJt ′′
`′ = Jt ′

`′ = Jt
`′ = J f

`′

= J f ′
`′ = J f ′′

`′ and APostJStK and APostJSf K do not interfereI

69

Implementation

matrix_t* _matrix_alloc_int(const int mr, const int nc)

{

matrix_t* mat = (matrix_t*)malloc(sizeof(matrix_t));

mat->nbrows = mat->_maxrows = mr;

mat->nbcolumns = nc;

mat->_sorted = s;

if (mr*nc>0){

int i;

pkint_t* q;

mat->_pinit = _vector_alloc_int(mr*nc);

mat->p = (pkint_t**)malloc(mr * sizeof(pkint_t*));

q = mat->_pinit;

for (i=0;i<mr;i++){

mat->p[i]=q;

q=q+nc;

}}

return mat;

}

void backsubstitute(matrix_t* con, int rank)

{

int i,j,k;

for (k=rank-1; k>=0; k--) {

j = pk_cherni_intp[k];

for (i=0; i<k; i++) {

if (pkint_sgn(con->p[i][j]))

matrix_combine_rows(con,i,k,i,j);

}

for (i=k+1; i<con->nbrows; i++) {

if (pkint_sgn(con->p[i][j]))

matrix_combine_rows(con,i,k,i,j);

}}

}

Do the two parts connect?

Gilles Barthe Language-based methods for software security

Simpler checkers?

Proof

λJ • let Jt ′ = λl ∈ inPJPK•((l = atPJStK ? JatPJStK ṫAbexpJBK(J`) ¿ Jl)) in
let Jt ′′ = APostJStK(Jt ′) in
λl ∈ inPJPK•((l = `′ ? Jt ′′

`′ ṫ Jt ′′
afterPJStK ¿ Jt ′′

l))

(119)

Observe that monotony follows by induction hypothesis and the locality (113) and dependence
(114) properties by induction hypothesis and the labelling condition (59).

5.4 Since the case of theelse branch of the conditional is similar to (5.3), we can now
come back to the calculational design of APostJif B then St else Sf fi K as an upper
approximation of

˙̈αJPK(PostJif B then St else Sf fi K)
= Hdef. (110) of ˙̈αJPKI
α̈JPK B PostJif B then St else Sf fi K B γ̈ JPK

= Hdef. (103) of PostI
α̈JPK B post[τ ?Jif B then St else Sf fi K] B γ̈ JPK

= Hbig step operational semantics (93)I
α̈JPK B post[(16JPK ∪ τ B) B τ ?JStK B (16JPK ∪ τ t) ∪ (16JPK ∪ τ B̄) B τ ?JSf K B (16JPK ∪
τ f)] B γ̈ JPK

= HGalois connection (98) so that post preserves joinsI
α̈JPK B (post[(16JPK ∪ τ B) B τ ?JStK B (16JPK ∪ τ t)] ∪̇
post[(16JPK ∪ τ B̄) B τ ?JSf K B (16JPK ∪ τ f)]) B γ̈ JPK

= HGalois connection (106) so thatα̈JPK preserves joinsI
(α̈JPK B post[(16JPK ∪ τ B) B τ ?JSt K B (16JPK ∪ τ t)] B γ̈ JPK) ˙̈t (α̈JPK B
post[(16JPK ∪ τ B̄) B τ ?JSf K B (16JPK ∪ τ f)] B γ̈ JPK)
˙̈v Hlemma (5.3) and similar one for theelse branchI
λJ • let Jt ′ = λl ∈ inPJPK•((l = atPJStK ? JatPJStK ṫAbexpJBK(J`) ¿ Jl)) in

let Jt ′′ = APostJStK(Jt ′) in
λl ∈ inPJPK•((l = `′ ? Jt ′′

`′ ṫ Jt ′′
afterPJStK ¿ Jt ′′

l))

ẗ
let J f ′ = λl ∈ inPJPK•((l = atPJSf K ? JatPJSf K ṫAbexpJT(¬B)K(J`) ¿ Jl)) in

let J f ′′ = APostJSf K(J f ′) in

λl ∈ inPJPK•((l = `′ ? J f ′′
`′ ṫ J f ′′

afterPJSf K ¿ J f ′′
l))

(120)

= Hby grouping similar termsI
λJ • let Jt ′ = λl ∈ inPJPK•((l = atPJStK ? JatPJStK ṫAbexpJBK(J`) ¿ Jl))

andJ f ′ = λl ∈ inPJPK•((l = atPJSf K ? JatPJSf K ṫAbexpJT(¬B)K(J`) ¿ Jl)) in
let Jt ′′ = APostJStK(Jt ′)
andJ f ′′ = APostJSf K(J f ′) in

λl ∈ inPJPK•((l = `′ ? Jt ′′
`′ ṫ Jt ′′

afterPJStK ṫ J f ′′
`′ ṫ J f ′′

afterPJSf K ¿ Jt ′′
l ṫ J f ′′

l))

= Hby locality (113) and labelling scheme (59) so that in particularJt ′′
`′ = Jt ′

`′ = Jt
`′ = J f

`′

= J f ′
`′ = J f ′′

`′ and APostJStK and APostJSf K do not interfereI

69

Implementation

matrix_t* _matrix_alloc_int(const int mr, const int nc)

{

matrix_t* mat = (matrix_t*)malloc(sizeof(matrix_t));

mat->nbrows = mat->_maxrows = mr;

mat->nbcolumns = nc;

mat->_sorted = s;

if (mr*nc>0){

int i;

pkint_t* q;

mat->_pinit = _vector_alloc_int(mr*nc);

mat->p = (pkint_t**)malloc(mr * sizeof(pkint_t*));

q = mat->_pinit;

for (i=0;i<mr;i++){

mat->p[i]=q;

q=q+nc;

}}

return mat;

}

void backsubstitute(matrix_t* con, int rank)

{

int i,j,k;

for (k=rank-1; k>=0; k--) {

j = pk_cherni_intp[k];

for (i=0; i<k; i++) {

if (pkint_sgn(con->p[i][j]))

matrix_combine_rows(con,i,k,i,j);

}

for (i=k+1; i<con->nbrows; i++) {

if (pkint_sgn(con->p[i][j]))

matrix_combine_rows(con,i,k,i,j);

}}

}

Do the two parts connect?

Gilles Barthe Language-based methods for software security

Simpler checkers?

Proof

λJ • let Jt ′ = λl ∈ inPJPK•((l = atPJStK ? JatPJStK ṫAbexpJBK(J`) ¿ Jl)) in
let Jt ′′ = APostJStK(Jt ′) in
λl ∈ inPJPK•((l = `′ ? Jt ′′

`′ ṫ Jt ′′
afterPJStK ¿ Jt ′′

l))

(119)

Observe that monotony follows by induction hypothesis and the locality (113) and dependence
(114) properties by induction hypothesis and the labelling condition (59).

5.4 Since the case of theelse branch of the conditional is similar to (5.3), we can now
come back to the calculational design of APostJif B then St else Sf fi K as an upper
approximation of

˙̈αJPK(PostJif B then St else Sf fi K)
= Hdef. (110) of ˙̈αJPKI
α̈JPK B PostJif B then St else Sf fi K B γ̈ JPK

= Hdef. (103) of PostI
α̈JPK B post[τ ?Jif B then St else Sf fi K] B γ̈ JPK

= Hbig step operational semantics (93)I
α̈JPK B post[(16JPK ∪ τ B) B τ ?JStK B (16JPK ∪ τ t) ∪ (16JPK ∪ τ B̄) B τ ?JSf K B (16JPK ∪
τ f)] B γ̈ JPK

= HGalois connection (98) so that post preserves joinsI
α̈JPK B (post[(16JPK ∪ τ B) B τ ?JStK B (16JPK ∪ τ t)] ∪̇
post[(16JPK ∪ τ B̄) B τ ?JSf K B (16JPK ∪ τ f)]) B γ̈ JPK

= HGalois connection (106) so thatα̈JPK preserves joinsI
(α̈JPK B post[(16JPK ∪ τ B) B τ ?JSt K B (16JPK ∪ τ t)] B γ̈ JPK) ˙̈t (α̈JPK B
post[(16JPK ∪ τ B̄) B τ ?JSf K B (16JPK ∪ τ f)] B γ̈ JPK)
˙̈v Hlemma (5.3) and similar one for theelse branchI
λJ • let Jt ′ = λl ∈ inPJPK•((l = atPJStK ? JatPJStK ṫAbexpJBK(J`) ¿ Jl)) in

let Jt ′′ = APostJStK(Jt ′) in
λl ∈ inPJPK•((l = `′ ? Jt ′′

`′ ṫ Jt ′′
afterPJStK ¿ Jt ′′

l))

ẗ
let J f ′ = λl ∈ inPJPK•((l = atPJSf K ? JatPJSf K ṫAbexpJT(¬B)K(J`) ¿ Jl)) in

let J f ′′ = APostJSf K(J f ′) in

λl ∈ inPJPK•((l = `′ ? J f ′′
`′ ṫ J f ′′

afterPJSf K ¿ J f ′′
l))

(120)

= Hby grouping similar termsI
λJ • let Jt ′ = λl ∈ inPJPK•((l = atPJStK ? JatPJStK ṫAbexpJBK(J`) ¿ Jl))

andJ f ′ = λl ∈ inPJPK•((l = atPJSf K ? JatPJSf K ṫAbexpJT(¬B)K(J`) ¿ Jl)) in
let Jt ′′ = APostJStK(Jt ′)
andJ f ′′ = APostJSf K(J f ′) in

λl ∈ inPJPK•((l = `′ ? Jt ′′
`′ ṫ Jt ′′

afterPJStK ṫ J f ′′
`′ ṫ J f ′′

afterPJSf K ¿ Jt ′′
l ṫ J f ′′

l))

= Hby locality (113) and labelling scheme (59) so that in particularJt ′′
`′ = Jt ′

`′ = Jt
`′ = J f

`′

= J f ′
`′ = J f ′′

`′ and APostJStK and APostJSf K do not interfereI

69

Implementation

matrix_t* _matrix_alloc_int(const int mr, const int nc)

{

matrix_t* mat = (matrix_t*)malloc(sizeof(matrix_t));

mat->nbrows = mat->_maxrows = mr;

mat->nbcolumns = nc;

mat->_sorted = s;

if (mr*nc>0){

int i;

pkint_t* q;

mat->_pinit = _vector_alloc_int(mr*nc);

mat->p = (pkint_t**)malloc(mr * sizeof(pkint_t*));

q = mat->_pinit;

for (i=0;i<mr;i++){

mat->p[i]=q;

q=q+nc;

}}

return mat;

}

void backsubstitute(matrix_t* con, int rank)

{

int i,j,k;

for (k=rank-1; k>=0; k--) {

j = pk_cherni_intp[k];

for (i=0; i<k; i++) {

if (pkint_sgn(con->p[i][j]))

matrix_combine_rows(con,i,k,i,j);

}

for (i=k+1; i<con->nbrows; i++) {

if (pkint_sgn(con->p[i][j]))

matrix_combine_rows(con,i,k,i,j);

}}

}

Do the two parts connect?

Gilles Barthe Language-based methods for software security

Really simple checkers?

Bytecode verification (together with stack inspection) is the basis of
Java security.

Dataflow analysis ensures that values are manipulated with
correct types, methods are applied to correct arguments, no stack
underflows and overflows. . .
Preceeded by a structural analysis that ensures that the code is
well-formed and methods, names, and classes exist. . .
and that jumps remain with code!
In 2004, Godwiak exploited failure of BCV to verify targets of
jumps to launch attacks on Nokia phones
No verifier for a real language is really simple!

Gilles Barthe Language-based methods for software security

Really simple checkers?

Bytecode verification (together with stack inspection) is the basis of
Java security.

Dataflow analysis ensures that values are manipulated with
correct types, methods are applied to correct arguments, no stack
underflows and overflows. . .
Preceeded by a structural analysis that ensures that the code is
well-formed and methods, names, and classes exist. . .
and that jumps remain with code!
In 2004, Godwiak exploited failure of BCV to verify targets of
jumps to launch attacks on Nokia phones
No verifier for a real language is really simple!

Gilles Barthe Language-based methods for software security

Really simple checkers?

Bytecode verification (together with stack inspection) is the basis of
Java security.

Dataflow analysis ensures that values are manipulated with
correct types, methods are applied to correct arguments, no stack
underflows and overflows. . .
Preceeded by a structural analysis that ensures that the code is
well-formed and methods, names, and classes exist. . .
and that jumps remain with code!
In 2004, Godwiak exploited failure of BCV to verify targets of
jumps to launch attacks on Nokia phones
No verifier for a real language is really simple!

Gilles Barthe Language-based methods for software security

Really simple checkers?

Bytecode verification (together with stack inspection) is the basis of
Java security.

Dataflow analysis ensures that values are manipulated with
correct types, methods are applied to correct arguments, no stack
underflows and overflows. . .
Preceeded by a structural analysis that ensures that the code is
well-formed and methods, names, and classes exist. . .
and that jumps remain with code!
In 2004, Godwiak exploited failure of BCV to verify targets of
jumps to launch attacks on Nokia phones
No verifier for a real language is really simple!

Gilles Barthe Language-based methods for software security

Really simple checkers?

Bytecode verification (together with stack inspection) is the basis of
Java security.

Dataflow analysis ensures that values are manipulated with
correct types, methods are applied to correct arguments, no stack
underflows and overflows. . .
Preceeded by a structural analysis that ensures that the code is
well-formed and methods, names, and classes exist. . .
and that jumps remain with code!
In 2004, Godwiak exploited failure of BCV to verify targets of
jumps to launch attacks on Nokia phones
No verifier for a real language is really simple!

Gilles Barthe Language-based methods for software security

Foundational Proof Carrying Code

Theorem
Executions of program p are safe.

Proof proceeds by showing that safety is an invariant of
execution, under assumptions given for p
depends on the definition of execution.

For the JVM: a 400 pages book!

TCB of Foundational PCC:
1 the proof checker (as before)
2 the formal definition of the language semantics
3 the formal definition of the policy

This is also a large TCB
Still better to have 2,000 lines of formal definitions than with
20,000 lines of C code!

Gilles Barthe Language-based methods for software security

Foundational Proof Carrying Code

Theorem
Executions of program p are safe.

Proof proceeds by showing that safety is an invariant of
execution, under assumptions given for p
depends on the definition of execution.

For the JVM: a 400 pages book!

TCB of Foundational PCC:
1 the proof checker (as before)
2 the formal definition of the language semantics
3 the formal definition of the policy

This is also a large TCB
Still better to have 2,000 lines of formal definitions than with
20,000 lines of C code!

Gilles Barthe Language-based methods for software security

Foundational Proof Carrying Code

Theorem
Executions of program p are safe.

Proof proceeds by showing that safety is an invariant of
execution, under assumptions given for p
depends on the definition of execution.

For the JVM: a 400 pages book!

TCB of Foundational PCC:
1 the proof checker (as before)
2 the formal definition of the language semantics
3 the formal definition of the policy

This is also a large TCB
Still better to have 2,000 lines of formal definitions than with
20,000 lines of C code!

Gilles Barthe Language-based methods for software security

Foundational Proof Carrying Code

Theorem
Executions of program p are safe.

Proof proceeds by showing that safety is an invariant of
execution, under assumptions given for p
depends on the definition of execution.

For the JVM: a 400 pages book!

TCB of Foundational PCC:
1 the proof checker (as before)
2 the formal definition of the language semantics
3 the formal definition of the policy

This is also a large TCB
Still better to have 2,000 lines of formal definitions than with
20,000 lines of C code!

Gilles Barthe Language-based methods for software security

Foundational Proof Carrying Code

Theorem
Executions of program p are safe.

Proof proceeds by showing that safety is an invariant of
execution, under assumptions given for p
depends on the definition of execution.

For the JVM: a 400 pages book!

TCB of Foundational PCC:
1 the proof checker (as before)
2 the formal definition of the language semantics
3 the formal definition of the policy

This is also a large TCB
Still better to have 2,000 lines of formal definitions than with
20,000 lines of C code!

Gilles Barthe Language-based methods for software security

Executable checkers

In foundational PCC, certificates represent deductive proofs
Typing rules as lemmas

A better alternative is to program a type system/VCGen in the
proof checker and prove it correct!

Scalable and shorter proof terms
Allows extraction of certified checkers

Gilles Barthe Language-based methods for software security

Executable checkers vs Foundational PCC

Reflection
Use computations instead of deductions!
• A predicate P : T → Prop
• A decision procedure f : T → bool
• A correctness lemma C : ∀x : T. f x = true→ P x

If f a reduces to true, then C a (refl eq true) is a proof of P a

Executable checkers provide the same guarantees than FPCC
Executable checkers can be seen as efficient procedures to
generate compact certificates

Gilles Barthe Language-based methods for software security

TCB of certified PCC

Execution platform

Proof
checker

VCGen

φ
1 In standard PCC
2 If the VCGen is proved correct

+ the proof checker
+ the formal definition of the language semantics
+ the formal definition of the policy

(same as FPCC)

Gilles Barthe Language-based methods for software security

TCB of certified PCC

Execution platform

Proof
checker

VCGen

φ
1 In standard PCC
2 If the VCGen is proved correct

+ the proof checker
+ the formal definition of the language semantics
+ the formal definition of the policy

(same as FPCC)

Gilles Barthe Language-based methods for software security

TCB of certified PCC

Execution platform

Proof
checker

VCGen

φ
1 In standard PCC
2 If the VCGen is proved correct

+ the proof checker
+ the formal definition of the language semantics
+ the formal definition of the policy

(same as FPCC)

Gilles Barthe Language-based methods for software security

TCB of certified PCC

Execution platform

Proof
checker

VCGen

φ
1 In standard PCC
2 If the VCGen is proved correct

+ the proof checker
+ the formal definition of the language semantics
+ the formal definition of the policy

(same as FPCC)

Gilles Barthe Language-based methods for software security

TCB of certified PCC

Execution platform

Proof
checker

VCGen

φ
1 In standard PCC
2 If the VCGen is proved correct

+ the proof checker
+ the formal definition of the language semantics
+ the formal definition of the policy

(same as FPCC)

Gilles Barthe Language-based methods for software security

Using executable checkers

Producer

certified
verifier

untrusted solver

computes (certified) solution

untrusted
compressor

Consumer

semantics
+

policy

certified
verifier

certified verifier

(Coq file)

Coq kernel

certificate
verifier

checks certified solution

Safe?

solution

program

solution

inclusion
certificates

Gilles Barthe Language-based methods for software security

Using executable checkers

Producer

certified
verifier

untrusted solver

computes (certified) solution

untrusted
compressor

Consumer

semantics
+

policy

certified
verifier

certified verifier

(Coq file)

Coq kernel

certificate
verifier

checks certified solution

Safe?

solution

program

solution

inclusion
certificates

Gilles Barthe Language-based methods for software security

Using executable checkers

Producer

certified
verifier

untrusted solver

computes (certified) solution

untrusted
compressor

Consumer

semantics
+

policy

certified
verifier

certified verifier

(Coq file)

Coq kernel

certificate
verifier

checks certified solution

Safe?

solution

program

solution

inclusion
certificates

Gilles Barthe Language-based methods for software security

Using executable checkers

Producer

certified
verifier

untrusted solver

computes (certified) solution

untrusted
compressor

Consumer

semantics
+

policy

certified
verifier

certified verifier

(Coq file)

Coq kernel

certificate
verifier

checks certified solution

Safe?

solution

program

solution

inclusion
certificates

Gilles Barthe Language-based methods for software security

Using executable checkers

Producer

certified
verifier

untrusted solver

computes (certified) solution

untrusted
compressor

Consumer

semantics
+

policy

certified
verifier

certified verifier

(Coq file)

Coq kernel

certificate
verifier

checks certified solution

Safe?

solution

program

solution

inclusion
certificates

Gilles Barthe Language-based methods for software security

Using executable checkers

Producer

certified
verifier

untrusted solver

computes (certified) solution

untrusted
compressor

Consumer

semantics
+

policy

certified
verifier

certified verifier

(Coq file)

Coq kernel

certificate
verifier

checks certified solution

Safe?

solution

program

solution

inclusion
certificates

Gilles Barthe Language-based methods for software security

Application scenario: PCC with trusted intermediaries

Producer 1 Consumer 1

Producer 2 Consumer 2

Producer P
Consumer C

Phone Operator/

PCC PKI

 Manufacturer

Size of certificate not a major issue
Can check whether certified policy meets expected policy
Complex policies can be verified

Gilles Barthe Language-based methods for software security

Using executable checkers

Producer

certified
verifier

untrusted solver

computes (certified) solution

untrusted
compressor

Consumer and verifier

semantics
+

policy

certified
verifier

certified verifier

(Coq file)

Coq kernel
(+ Coq extraction)

(extracted)
certificate

verifier

checks certified solution

Safe?

solution

program

solution

inclusion
certificates

Gilles Barthe Language-based methods for software security

Application scenario: retail PCC

Trusted intermediary validates verifier
User validates application
Size of certificate an issue
Restricted to simpler policies
Increased flexibility

Gilles Barthe Language-based methods for software security

Objectives

Present two instances of certified Proof Carrying code and provide methods
to generate certificates from source code verification

Type system for information flow based confidentiality policies

Verification condition generator for logical specifications

Virtual machine
Operating system

Source program

Bytecode program

Interactive
proofs

API

JML specification

specification
Bytecode

Certificate

Certificate

Certificate
checker

Virtual machine

Source program
Jif type
checker

API

Bytecode program

Jif types

Operating system

Information flow
types

Security env
Regions

BCV

Inf flow

Gilles Barthe Language-based methods for software security

Objectives

Present two instances of certified Proof Carrying code and provide methods
to generate certificates from source code verification

Type system for information flow based confidentiality policies

Verification condition generator for logical specifications

Virtual machine
Operating system

Source program

Bytecode program

Interactive
proofs

API

JML specification

specification
Bytecode

Certificate

Certificate

Certificate
checker

Virtual machine

Source program
Jif type
checker

API

Bytecode program

Jif types

Operating system

Information flow
types

Security env
Regions

BCV

Inf flow

Gilles Barthe Language-based methods for software security

Objectives

Present two instances of certified Proof Carrying code and provide methods
to generate certificates from source code verification

Type system for information flow based confidentiality policies

Verification condition generator for logical specifications

Virtual machine
Operating system

Source program

Bytecode program

Interactive
proofs

API

JML specification

specification
Bytecode

Certificate

Certificate

Certificate
checker

Virtual machine

Source program
Jif type
checker

API

Bytecode program

Jif types

Operating system

Information flow
types

Security env
Regions

BCV

Inf flow

Gilles Barthe Language-based methods for software security

Proof assistants based on type theory

Type theory is a language for:

defining mathematical objects (including data structures,
algorithms, and mathematical theories)
performing computations on and with these objects
reasoning about these objects

It is a foundational language that underlies:
proof assistants (inc. Coq, Epigram, Agda)
programming languages (inc. Cayenne, DML).

Gilles Barthe Language-based methods for software security

Proof assistants

Implement type theories/higher order logics to specify and
reason about mathematics.
Interactive proofs, with mechanisms to guarantee that

theorems are applied with the right hypotheses
functions are applied to the right arguments
no missing cases in proofs or in function definitions
no illicit logical step (all reasoning is reduced to elementary steps)

Proof assistants include domain-specific tactics that help solving
specific problems efficiently.

Proof objects as certificates

Completed proofs are represented by proof objects that can
easily be checked by a proof-checker.
Proof checker is small.

Gilles Barthe Language-based methods for software security

Sample applications (many more)

Programming languages
Programming language semantics
Program transformations: compilers, partial evaluators,
normalizers
Program verification: type systems, Hoare logics, verification
condition generators,

Operating systems
Cryptographic protocols and algorithms

Dolev-Yao model (perfect cryptography assumption)
Computational model

Mathematics and logic:
Galois theory, category theory, real numbers, polynomials,
computer algebra systems, geometry, group theory, etc.
4-colors theorem
Type theory

Gilles Barthe Language-based methods for software security

Type theory and the Curry-Howard isomorphism

Type theory is a programming language for writing algorithms.
But all functions are total and terminating, so that convertibility is
decidable.

Type theory is a language for proofs, via the Curry-Howard
isomorphism:

Propositions = Types
Proofs = Terms

Proof-Checking = Type-Checking

But the underlying logic is constructive. (Classical logic can be
recovered with an axiom, or a control operator)

Gilles Barthe Language-based methods for software security

A Theory of Functions

Judgements
x1 : A1, . . . , xn : An `M : B

Typing rules

(x : A) ∈ Γ
Γ ` x : A

Γ ` M : A→ B Γ ` N : A
Γ ` M N : B

Γ , x : A ` M : B
Γ ` λx:A. M : A→ B

Evaluation: computing the application a function to an argument

(λx : A. M) N →β M{x := N}

The result of computation is unique

M =β N ⇒ M ↓β N

Evaluation preserves typing

Type-Checking: it is decidable whether Γ ` M : A.

Type-Inference: there exists a partial function inf s.t.

Γ ` M : A ⇔ Γ ` M : (inf(Γ , M)) ∧ (inf(Γ , M)) = A

Gilles Barthe Language-based methods for software security

A Language for Proofs

Minimal Intuitionistic Logic

Formulae:
F = X

| F → F

Judgements
A1, . . . , An ` B

Derivation rules

Γ ` A
A ∈ Γ

Γ ` A→ B Γ ` A
Γ ` B

Γ , A ` B
Γ ` A→ B

If Γ ` M : A then Γ ` A

If Γ ` A then Γ ` M : A for some M

(A tight correspondence between
derivation trees and λ-terms, and
between proof normalization and
β-reduction)

In a proof assistant M is often built
backwards.

Gilles Barthe Language-based methods for software security

BHK Interpretation

A proof of: is given by:

A ∧ B a proof of A and a proof of B
A ∨ B a proof of A or a proof of B
A→ B a method to transform proofs of A

into proofs of B
∀x. A a method to produce a proof of A(t)

for every t
∃x. A a witness t and a proof of A(t)
⊥ has no proof

Use dependent types (terms arise in types) to achieve the expressive
power of predicate logics

N : Type, O : N, P : N → Prop
` λx : (P O). x : (P O)→ P((λz : N. z) O)

Gilles Barthe Language-based methods for software security

Typing dependent types: Calculus of Constructions

Γ ` A : s1 Γ , x : A ` B : s2

Γ ` (Πx:A. B) : s2
(s1, s2) ∈ R

Γ ` F : (Πx:A. B) Γ ` a : A
Γ ` F a : B{x := a}

Γ , x : A ` b : B Γ ` (Πx:A. B) : s
Γ ` λx:A. b : Πx:A. B

Γ ` A : B Γ ` B ′ : s
Γ ` A : B ′

B =β B ′

Rules
(Prop, Prop)
implication
(Type, Type)
generalized function
space
(Type, Prop) universal
quantification
(Prop, Type)
precondition, etc

Gilles Barthe Language-based methods for software security

Inductive definitions

Inductive definitions provide mechanisms to define data
structures, to define recursive functions and to reason about
inhabitants of data structures

recursors/case-expressions and guarded fixpoints/pattern matching
induction principles

Encode a rich class of structures:
algebraic types: booleans, binary natural numbers, integers, etc
parameterized types: lists, trees, etc
inductive families and relations: vectors, accessibility relations (to
define functions by well-founded recursion), transition systems,
etc.

Extensively used in the formalization of mathematics,
programming languages, cryptographic algorithms, in reflexive
tactics, etc.

Gilles Barthe Language-based methods for software security

Typing rules for natural numbers

` Nat : s ` 0 : Nat Γ ` n : Nat
Γ ` S n : Nat

Γ ` n : Nat Γ ` f0 : A Γ ` fs : Nat→ A
Γ ` case n of{0⇒ f0 | s⇒ fs} : A

Γ ` n : Nat Γ ` P : Nat→ s
Γ ` f0 : P 0 Γ ` fs : Πn:Nat. P (S n)

Γ ` case n of{0⇒ f0 | s⇒ fs} : P n

Γ , f : Nat→ A ` e : Nat→ A
Γ ` letrec f = e : Nat→ A

Gilles Barthe Language-based methods for software security

Case expressions and fixpoints: reduction rules

case 0 of{0⇒ e0 | s⇒ es} → e0

case (s n) of{0⇒ e0 | s⇒ es} → es n
(letrec f = e) n → e{f := (letrec f = e)} n

To ensure termination

we use a side condition G(f , e), read f is guarded in e, in the
typing rule for fixpoint

we require n to be of the form c ~b in the reduction rule in the
reduction rule for fixpoint

Not sufficient to impose restrictions on fixpoint definitions. Must also
guarantee inductive definitions are well-formed.

Gilles Barthe Language-based methods for software security

Example: formalizing semantics of expressions

a ∈ AExp

a := n
| x
| a1 + a2
| a1 − a2
| a1 ∗ a2

b ∈ BExp

b := true
| false
| a1 = a2
| a1 < a2
| not b
| b1 and b2

c ∈ Comm

c := skip
| x := a
| c1; c2
| if b then c1 else c2
| while b do c

Gilles Barthe Language-based methods for software security

Shallow embedding

Expressions have type mem→ Nat
Memories have type mem = loc→ Nat

Num[v : Nat] = λs:mem. v
Loc[v : loc] = λs:mem. s v
Plus[e1, e2 : Exp] = λs:mem. (e1 s) + (e2 s)
Minus[e1, e2 : Exp] = λs:mem. (e1 s) − (e2 s)
Mult[e1, e2 : Exp] = λs:mem. (e1 s) ∗ (e2 s)

x, y : Exp ` Plus x (Minus y (Num 3)) : Exp

Expressions of the object language are (undistinguished) terms of
the specification language
Expressions are evaluated using the evaluation system of
underlying specification language
Cannot talk about expressions of the object language

Gilles Barthe Language-based methods for software security

Deep embedding

Represent explicitely the syntax of the object language
Possible to compute and reason about expressions of the object
language
Explicit function eval needed to evaluate terms

Inductive aExp : Set :=

Loc: loc -> aExp

| Num: nat -> aExp

| Plus: aExp -> aExp -> aExp

| Minus: aExp -> aExp -> aExp

| Mult: aExp -> aExp -> aExp .

Inductive bExp : Set :=

IMPtrue: bExp

| IMPfalse: bExp

| Equal: aExp -> aExp -> bExp

| LessEqual: aExp -> aExp -> bExp

| Not: bExp -> bExp

| Or: bExp -> bExp -> bExp

| And: bExp -> bExp -> bExp .

Inductive com : Set :=

Skip: com

| Assign: loc -> aExp -> com

| Scolon: com -> com -> com

| IfThenElse: bExp -> com -> com -> com

| WhileDo: bExp -> com -> com .

Gilles Barthe Language-based methods for software security

Semantics of arithmetic expressions: inductive style

Memory mem = loc→ Nat
Evaluation relation 〈a,σ〉 →a n, i.e. →a⊆ AExp× Σ×N
Evaluation rules

〈n,σ〉 →a n 〈x,σ〉 →a σ(x)
〈a1,σ〉 →a n1 〈a2,σ〉 →a n2

〈a1 + a2,σ〉 →a n1 + n2

Inductive evalaExp_ind : aExp -> memory -> nat -> Prop :=

eval_Loc: forall (v:locs)(n:nat)(s : memory),

(lookup s v)=n -> (evalaExp_ind (Loc v) s n)

| eval_Num: forall (n : nat) (s : memory),

(evalaExp_ind (Num n) s n)

| eval_Plus: forall (a0, a1 : aExp) (n0, n1, n : nat) (s : memory),

(evalaExp_ind a0 s n0) ->

(evalaExp_ind a1 s n1) ->

n = (plus n0 n1) -> (evalaExp_ind (Plus a0 a1) s n)

...

Gilles Barthe Language-based methods for software security

Semantics of arithmetic expressions – functional style

Fixpoint evalaExp_rec [a: aExp] : memory -> nat :=

fun (s : memory) =>

match a with

(Loc v) => (lookup s v)

| (Num n) => n

| (Plus a1 a2) => (plus (evalaExp_rec a1 s) (evalaExp_rec a2 s))

| ...

end.

Possible difficulties with functional semantics
Determinacy
Partiality
Termination

For commands:
Small-step semantics is possible to define but

many undefined cases to handle
still harder to reason about than inductive semantics

Big-step semantics is hard (requires well-founded recursion)

Gilles Barthe Language-based methods for software security

Certifying type-based methods

Bytecode verification
Abstraction-carrying code
Non-interference

Gilles Barthe Language-based methods for software security

Bytecode verification: goals

Bytecode verification aims to contribute to safe execution of programs
by enforcing:

Values are used with the right types
(no pointer arithmetic)
Operand stack is of appropriate length
(no overflow, no underflow)
Subroutines are correct
Object initialization

But well-typed programs do not go wrong

(With some limits: array bound checks, interfaces, etc)

Gilles Barthe Language-based methods for software security

Bytecode verification: principles

Exhibit for each program point an abstraction of the local variables and
of the operand stack, and verify that instructions are compatible with
the abstraction

Informally

` iadd : (rt, int :: int :: s)⇒ (rt, int :: s) 0 iadd : (rt, bool :: int :: s)⇒ (rt, int :: s)
` pop : (rt,α :: s)⇒ (rt, s) 0 pop : (rt, s)⇒ (rt, s)

Compatibility w.r.t. stack types is formalized by transfer rules

P[i] = ins
i ` lv, st⇒ lv ′, st ′

P[i] = ins
i ` lv, st⇒

Program P : τ is type-safe if there exists S : P→ RT × T? s.t.

S1 = (rt1, ε)
for all i, j ∈ P

i 7→ j⇒ ∃σ. i ` Si ⇒ σ v Sj;
i 7→⇒ ∃τ ′. i ` Si ⇒ τ ′ v τ

where v is inherited from JVM types

Gilles Barthe Language-based methods for software security

Bytecode verification: consequences

Programs do not go wrong

If S ` P : τ and s is type-correct w.r.t. Si and Γ , then:

P[i] = return then the return value has type τ

s{ s ′ and s ′ is type-correct w.r.t. Si′

(where i = pc(s) and i ′ = pc(s ′))

Run-time type checking is redundant

A typed state is a state that manipulates typed values (instead of
untyped values)

A defensive virtual machine checks types at execution, i.e.
{def⊆ tstate× (tstate + {TypeError})

If P is type-safe w.r.t. S, then executions of{ and{def coincide

Gilles Barthe Language-based methods for software security

Type inference

Goal is to exhibit S.

Entry point of program is typed with the empty stack

Propagation

Pick an program point i annotated with st
Compute rt ′, st ′ such that i ` rt, st⇒ rt ′, st ′.

If there is no rt ′, st ′, then reject program.
For all successors j of i

if j is not yet annotated, annotated it with rt ′, st ′
if j is annotated with rt ′′, st ′′, replace rt ′′, st ′′ by rt ′, st ′ t rt ′′, st ′′

Upon termination
accept program if no type error> in the computed S.

Termination is ensured by

tracking which states remain to be analyzed,
by ascending chain condition

Fixpoint computation!

Gilles Barthe Language-based methods for software security

Lightweight bytecode verification

Provide types of junction points

Entry point and junction points are typed

the entry point of the program is typed with the empty stack

Propagation

Pick an program point i annotated with st
Compute rt ′, st ′ such that i ` rt, st⇒ rt ′, st ′. If there is no rt ′, st ′,
then reject program.
For all successors j of i

if j is not yet annotated, annotated it with rt ′, st ′
if j is annotated with rt ′′, st ′′, check that (rt ′, st ′) v (rt ′′, st ′′). If not,
reject program

One pass verification, sound and complete wrt bytecode verification

Gilles Barthe Language-based methods for software security

Lightweight bytecode verification

Provide types of junction points

Entry point and junction points are typed

the entry point of the program is typed with the empty stack

Propagation

Pick an program point i annotated with st
Compute rt ′, st ′ such that i ` rt, st⇒ rt ′, st ′. If there is no rt ′, st ′,
then reject program.
For all successors j of i

if j is not yet annotated, annotated it with rt ′, st ′
if j is annotated with rt ′′, st ′′, check that (rt ′, st ′) v (rt ′′, st ′′). If not,
reject program

One pass verification, sound and complete wrt bytecode verification

Gilles Barthe Language-based methods for software security

Verified bytecode verification

A puzzle with 8 pieces,
Each piece interacts with its neighbors

Gilles Barthe Language-based methods for software security

Bicolano

a Coq formalisation of the JVM
the basis for certified PCC

Initially a joint work effort between INRIA Sophia-Antipolis and
IRISA, now developed/used by many other sites

Initial requirements

a direct translation of the reference book,
readable (even for non Coq expert),
easy to manipulate in proofs,
support executable checkers,
avoid implementation choices

Gilles Barthe Language-based methods for software security

Bicolano vs requirements

Bicolano should be
a direct translation of the reference book,

readable (even for non Coq expert),

easy to manipulate in proofs,

support executable checkers

Gilles Barthe Language-based methods for software security

Bicolano vs requirements

Bicolano should be
a direct translation of the reference book,

small step semantics, same level of details (not a JVM
implementation)

readable (even for non Coq expert),

easy to manipulate in proofs,

support executable checkers

Gilles Barthe Language-based methods for software security

Bicolano vs requirements

Bicolano should be
a direct translation of the reference book,

small step semantics, same level of details (not a JVM
implementation)

readable (even for non Coq expert),
use of module interfaces

easy to manipulate in proofs,

support executable checkers

Gilles Barthe Language-based methods for software security

Bicolano vs requirements

Bicolano should be
a direct translation of the reference book,

small step semantics, same level of details (not a JVM
implementation)

readable (even for non Coq expert),
use of module interfaces

easy to manipulate in proofs,
inductive definitions

support executable checkers

Gilles Barthe Language-based methods for software security

Bicolano vs requirements

Bicolano should be
a direct translation of the reference book,

small step semantics, same level of details (not a JVM
implementation)

readable (even for non Coq expert),
use of module interfaces

easy to manipulate in proofs,
inductive definitions

support executable checkers
implementation of module interfaces

Gilles Barthe Language-based methods for software security

Java fragment handled

numeric values : int, short, byte
no float, no double, no long
no 64 bits values: complex management of 64 and 32 bits elements
in the operand stack

objects, arrays
virtual method calls

class hierarchy is dynamically traversed to find a suitable
implementation

visibility modifiers
exceptions
programs are post-linked
(no constant pool, no dynamical linking)
no initialisation (use default values instead)
no subroutines (CLDC!)

Gilles Barthe Language-based methods for software security

Syntax

Factorisation:

Binary operations on int: ibinop op
(iadd ,iand ,idiv ,imul ,ior ,irem ,ishl ,ishr ,isub ,iushr ,ixor)

Tests on int value : if0 comp
(ifeq ,ifne ,iflt ,ifle ,ifgt ,ifge)

Push numerical constants on the operand stack: const t c
(bipush, iconst_<i>, ldc, sipush)

load value from local variables : aload, iload

load value from array : aaload, baload, iaload, saload

similar instructions to store values...

Gilles Barthe Language-based methods for software security

Wellformedness properties on programs
Some examples

all the classes have a super-class except java.lang.Object,
the class hierarchy is not cyclic,
all class have distinct names,
...

Coq packaging:
Record well formed program (p : Program) : Set := {

property1 : . . . ;
property2 : . . . ;
. . .

} .

D e f i n i t i o n check wf (p : Program) :
option (well formed program P) .

Proof on wellformed programs:
f o r a l l (p : Program) , well formed program p −> . . .

Gilles Barthe Language-based methods for software security

Verified bytecode verification

semantics
domains

Example: JVM states

〈〈h, 〈m, pc, l, v :: s〉, sf 〉〉
heap

method
program point

local variables

operand stack

frame
call stack

Gilles Barthe Language-based methods for software security

Formalization of JVM states
Values, local variables and operand stack

Induct ive value : Set :=
| I n t (v : Z) (∗ Numeric value ∗)
| NULL (∗ r e f e r e n c e ∗)
| UNDEF (∗ d e f a u l t value ∗) .

(∗ I n i t i a l (d e f a u l t) value . Must be compatible with the type of the f i e l d . ∗)
Parameter i n i t V a l u e : F i e l d −> value .

Module Type LOCALVAR.
Parameter t : Type .

Parameter get : t−> Var −> option value .
Parameter update : t −> Var −> value −> t .
Parameter get update new : f o r a l l l x v , get (update l x v) x = Some v .
Parameter get update old : f o r a l l l x y v ,

x<>y −> get (update l x v) y = get l y .
End LOCALVAR.
Declare Module LocalVar : LOCALVAR.

Module Type OPERANDSTACK.
D e f i n i t i o n t : Se t := l i s t value .
D e f i n i t i o n empty : t := n i l .
D e f i n i t i o n push : value −> t −> t := fun v t => cons v t .
D e f i n i t i o n s i z e : t −> nat := fun t => length t .
D e f i n i t i o n get n th : t −> nat −> option value := fun s n => n t h e r r o r s n .

End OPERANDSTACK.
Declare Module OperandStack : OPERANDSTACK.

(∗ ∗ Transfer f o n c t i o n between operand s tack and l o c a l v a r i a b l e s ∗ ∗)
Parameter s t a c k 2 l o c a l v a r : OperandStack −> nat −> LocalVar . t .

Gilles Barthe Language-based methods for software security

Formalization of JVM states
Heap

Module Type HEAP.
Parameter t : Type .

Induct ive AdressingMode : Set :=
| S t a t i c F i e l d : F i e l d S i g n a t u r e −> AdressingMode
| DynamicField : Locat ion −> F i e l d S i g n a t u r e −> AdressingMode
| ArrayElement : Locat ion −> I n t −> AdressingMode .

Induct ive LocationType : Set :=
| Locat ionObject : ClassName −> LocationType
| LocationArray : I n t −> type −> LocationType .

(∗ ∗ (LocationArray length element type) ∗)

Parameter typeof : t −> Location −> option LocationType .
(∗ ∗ typeof h l o c = None −> no o b j e c t , no array a l l o c a t e d at l o c a t i o n l o c ∗)

Parameter get : t −> AdressingMode −> option value .
Parameter update : t −> AdressingMode −> value −> t .

Parameter new : t −> Program −> LocationType −> option (Locat ion ∗ t) .

Parameter get update same : f o r a l l h am v , Compat h am −>
get (update h am v) am = Some v .

Parameter get update old : f o r a l l h am1 am2 v , am1<>am2 −>
get (update h am1 v) am2 = get h am2 .

Parameter n e w f r e s h l o c a t i o n :
f o r a l l (h : t) (p : Program) (l t : LocationType) (l o c : Locat ion) (h ’ : t) ,
new h p l t = Some (loc , h ’) −>
typeof h l o c = None .

. . .

Gilles Barthe Language-based methods for software security

Verified bytecode verification

semantics
domains

abstract
domains

is partially ordered,

with a top element > for errors,

and a “lub” operator t
w/o infinite increasing chains

x0 @ x1 @ · · · @ · · ·

Inherited from JVM types (extension to finite maps and stacks)

Gilles Barthe Language-based methods for software security

JVM types

>

Object

Prim

ttttttttttt
Interfaces Arrays

UUUUUUU

Instances

Null

⊥

zzzzzzzzzzzzz

Induct ive type : Set :=
| ReferenceType (r t : refType)
| PrimitiveType (pt : primitiveType)

with refType : Set :=
| ArrayType (typ : type)
| ClassType (c t : ClassName)
| In ter faceType (i t : InterfaceName)

with primitiveType : Set :=
| BOOLEAN | BYTE | SHORT | INT .

Specific challenges, e.g. interfaces
i n t e r f a c e I { . . . }
i n t e r f a c e J { . . . }
c l a s s C implements I , J { . . . }
c l a s s D implements I , J { . . . }

Both I and J are upper bounds for C and D, but they are incomparable.

Gilles Barthe Language-based methods for software security

Verified bytecode verification

semantics
domains

abstraction
relations

abstract
domains

Each type represents a property on concrete values
This correspondence is formalised by the relation value : type
(that respects subtyping)

Gilles Barthe Language-based methods for software security

Verified bytecode verification

semantics
domains

abstraction
relations

abstract
domains

semantic
rules

Operational semantics{ between states

P[(m, pc)] = push c
〈〈h, 〈m, pc, l, s〉, sf 〉〉{ 〈〈h, 〈m, pc + 1, l, c :: s〉, sf 〉〉

P[(m, pc)] = invokevirtual mid
m ′ = methodLookup(mid, h(loc))
V = v1 :: · · · :: vnbArguments(mid)

〈〈h, 〈m, pc, l, loc :: V :: s〉, sf 〉〉{ 〈〈h, 〈m ′, 1, V, ε〉, 〈m, pc, l, s〉 :: sf 〉〉

Gilles Barthe Language-based methods for software security

Formalization of rules

| c o n s t s t e p o k : f o r a l l h m pc pc ’ s l s f t z ,
i n s t r u c t i o n A t m pc = Some (Const t z) −>
next m pc = Some pc ’ −>
((t=BYTE / \ −2ˆ7 <= z < 2 ˆ 7)
\ / (t=SHORT / \ −2ˆ15 <= z < 2 ˆ 1 5)
\ / (t=INT / \ −2ˆ31 <= z < 2 ˆ 3 1)) −>

s tep p (St h (Fr m pc s l) s f) (S t h (Fr m pc ’ (Num (I (I n t . const z)) : : s) l) s f)

| i n v o k e v i r t u a l s t e p o k : f o r a l l h m pc s l s f mid cn M args l o c c l bM fnew ,
i n s t r u c t i o n A t m pc = Some (I n v o k e v i r t u a l (cn , mid)) −>
lookup p cn mid (pa i r c l M) −>
Heap . typeof h l o c = Some (Heap . Locat ionObject cn) −>
length args = length (METHODSIGNATURE. parameters mid) −>
METHOD. body M = Some bM −>
fnew = (Fr M

(BYTECODEMETHOD. f i r s t A d d r e s s bM)
OperandStack . empty

(s t a c k 2 l o c a l v a r (args ++(Ref l o c) : : s) (1+ (length args)))) −>

s tep p (St h (Fr m pc (args ++(Ref l o c) : : s) l) s f) (S t h fnew ((Fr m pc s l) : : s f))

Gilles Barthe Language-based methods for software security

Small step semantics

Two kinds of state:
normal state :
(S t h (Fr m pc s l) s f)

exception state (not yet caught)
(StE h (FrE m pc l o c l) s f)

The small step semantics is defined with a relation between state
s tep (p : Program) : S t a t e −> S t a t e −> Prop

Gilles Barthe Language-based methods for software security

Small step semantics
Four cases

1 normal→ normal
2 normal→ exception
3 exception→ normal
4 exception→ exception

Gilles Barthe Language-based methods for software security

Small step semantics
Four cases

1 normal→ normal
| p u t f i e l d s t e p o k : f o r a l l h m pc pc ’ s l s f f l o c cn v ,

i n s t r u c t i o n A t m pc = Some (P u t f i e l d f) −>
next m pc = Some pc ’ −>
Heap . typeof h l o c = Some (Heap . Locat ionObject cn) −>
d e f i n e d f i e l d p cn f −>
ass ign compat ib le p h v (FIELDSIGNATURE . type f) −>

s tep p (St h (Fr m pc (v : : (Ref l o c) : : s) l) s f)
(S t (Heap . update h (Heap . DynamicField l o c f) v)

(Fr m pc ’ s l) s f)

2 normal→ exception
3 exception→ normal
4 exception→ exception

Gilles Barthe Language-based methods for software security

Small step semantics
Four cases

1 normal→ normal
2 normal→ exception
| p u t f i e l d s t e p N u l l P o i n t e r E x c e p t i o n :

f o r a l l h m pc s l s f f v h ’ loc ’ ,

i n s t r u c t i o n A t m pc = Some (P u t f i e l d f) −>
Heap . new h p (Heap . Locat ionObject

(javaLang , Nul lPointerExcept ion))
= Some (loc ’ , h ’) −>

s tep p (St h (Fr m pc (v : : Null : : s) l) s f)
(StE h ’ (FrE m pc loc ’ l) s f)

3 exception→ normal
4 exception→ exception

Gilles Barthe Language-based methods for software security

Small step semantics
Four cases

1 normal→ normal
2 normal→ exception
3 exception→ normal
| except ion caught : f o r a l l h m pc l o c l s f bm pc ’ ,

METHOD. body m = Some bm −>
lookup handlers p

(BYTECODEMETHOD. exceptionHandlers bm) h pc l o c pc ’ −>

s tep p (StE h (FrE m pc l o c l) s f)
(S t h (Fr m pc ’ (Ref l o c : : n i l) l) s f)

4 exception→ exception

Gilles Barthe Language-based methods for software security

Small step semantics
Four cases

1 normal→ normal
2 normal→ exception
3 exception→ normal
4 exception→ exception
| exception uncaught : f o r a l l h m pc l o c l m’ pc ’ s ’ l ’ s f bm,

METHOD. body m = Some bm −>
(f o r a l l pc ’ ’ ,

˜ lookup handlers p
(BYTECODEMETHOD. exceptionHandlers bm) h pc l o c pc ’ ’) −>

s tep p (StE h (FrE m pc l o c l) ((Fr m’ pc ’ s ’ l ’) : : s f))
(StE h (FrE m’ pc ’ l o c l ’) s f)

Gilles Barthe Language-based methods for software security

Big step semantics

The small step semantics is not well suited to prove the
correctness of moduler verification methods
Better to reason relative to intermediate semantics with method
calls are performed in one-step, or relative to big-step semantics

m ` 〈h, k, pc, s, l〉intra ⇒
∗ v

Still necessary to prove correspondence with the small step
semantics.

Gilles Barthe Language-based methods for software security

Big step semantics

I n t r a B i g S t e p (P : Program) :
Method −> IntraNormalState −> ReturnState −> Prop

The big step semantics relies on 4 kinds of elementary steps:
1 normal intra step
2 exception step
3 call step
4 return step

These relations can be combined to obtain different kinds of big step
semantics.

Theorem
Big-step semantics and small-step semantics are equivalent (in some
precise mathematical sense based on complete executions)

Gilles Barthe Language-based methods for software security

Verified bytecode verification

semantics
domains

abstraction
relations

abstract
domains

semantic
rules

transfer
rules

the type system is specified by transfer rules
t s t e p (p : Program) : t S t a t e −> t S t a t e −> Prop .

whose definition is similar to operational semantics
the definition of typability is a direct application of transfer rules
a type is a solution of a fixpoint problem F](S) v (S) or
equivalently of a constraint system

Gilles Barthe Language-based methods for software security

Sample transfer rules

P[i] = iadd
i ` rt, int :: int :: st⇒ rt, int :: st

P[i] = iconst n |st| + 1 6 Mstack
i ` rt, st⇒ rt, int :: st

P[i] = aload n rt(n) = τ τ ≺ Object |st| + 1 6 Mstack
rt, st⇒ rt, τ :: st

P[i] = astore n τ ≺ Object 0 6 n < Mreg
i ` rt, τ :: st⇒ rt[n← τ], st
P[i] = getfield C f τ τ ′ ≺ C

i ` rt, τ ′ :: st⇒ rt, τ :: st
P[i] = putfield C f τ τ1 ≺ τ τ2 ≺ C

i ` rt, τ1 :: τ2 :: st⇒ rt, st

Gilles Barthe Language-based methods for software security

Verified bytecode verification

semantics
domains

abstraction
relations

abstract
domains

semantic
rules

soundness
proof

transfer
rules

If s{ s ′ and s is type-correct, then s ′ is type-correct

easy proof, but tedious: one proof by instruction
uses intermediate semantics
exceptions may be handled separately

Gilles Barthe Language-based methods for software security

Verified bytecode verification

semantics
domains

abstraction
relations

abstract
domains

semantic
rules

soundness
proof

transfer
rules

type
checker

From declarative definition of typable program to type checker
rely on generic construction
. . . but requires discharging hypotheses!

Gilles Barthe Language-based methods for software security

Verified bytecode verification

semantics
domains

abstraction
relations

abstract
domains

proofs of
checker

assumptions

semantic
rules

soundness
proof

transfer
rules

type
checker

implement functions for inclusion checking
provide hypotheses that guarantee termination (for bcv, not lbcv)

Gilles Barthe Language-based methods for software security

Verified bytecode verification

semantics
domains

abstraction
relations

abstract
domains

proofs of
checker

assumptions

semantic
rules

soundness
proof

transfer
rules

type
checker

Final results

check P = ok
sinit ⇓ sfinal

sinit type − correct

⇒ sfinal type − correct

progress
commutation defensive and offensive machine

Gilles Barthe Language-based methods for software security

Beyond bytecode verification

Types are properties:
being an integer
being a boolean

More precise types:
parity
interval
etc.

Properties organized as a lattice of abstract elements.
Transfer rules capture abstract behavior of functions

Gilles Barthe Language-based methods for software security

Examples

Parity

Abstract properties

odd even

Least upper bound

odd t even = >

Abstract semantics of addition

even + even = even
odd + odd = even

even + odd = odd
x +> = >
x +⊥ = ⊥

.

Intervals

Abstract properties

[i, j]

where i, j ∈ int t {+∞, −∞}

Least upper bound

[i, j] t [i ′, j ′] = [i ′′, j ′′]

where

i ′′ = min(i, i ′)
j ′′ = max(j, j ′)

Abstract semantics of addition

[i, j] + [i ′, j ′] = [i + i ′, j + j ′]

Gilles Barthe Language-based methods for software security

Concrete vs abstract semantics

Program semantics

Abstract representation

l1

l2

l3 l5

...
...

lf

{η1,η ′1,η ′′1 }

{η2,η ′2}

{η3} {η ′5}

{ηf ,η ′f ,η
′′
f }

l1

l2

l3 l5

...
...

lf

a1

a2

a3 a5

af

Gilles Barthe Language-based methods for software security

Concrete vs abstract semantics

Program semantics Abstract representation

l1

l2

l3 l5

...
...

lf

{η1,η ′1,η ′′1 }

{η2,η ′2}

{η3} {η ′5}

{ηf ,η ′f ,η
′′
f }

l1

l2

l3 l5

...
...

lf

a1

a2

a3 a5

af

Gilles Barthe Language-based methods for software security

Solution

l1

l2

l3 l5

...
...

lf

a1

a2

a3 a5

af

D] = 〈D],v,u, . . .〉,
T〈li ,lj〉 : D] → D] a monotonic transfer function
(for any edge 〈li, lj〉)

{a1, a2, . . . , af } a solution of (D, T) if:

T〈l1 ,l2〉(a1) v a2

T〈l2 ,l5〉(a2) v a5

T〈l1 ,lf 〉(a1) v af

. . .

Soundness w.r.t. program semantics (D, T): for all d : D and edge e

α(Te d) v T]
e (α d)

Gilles Barthe Language-based methods for software security

Partial solution

A partial annotation map is a partial mapping S : P ⇀ A

partial annotations generalize stackmaps

May be extended to Ŝ : P→ A

Ŝ(l ′) =
⋃
〈l,l′〉∈E

T〈l,l′〉(Ŝ(l))

provided the domain of S is sufficiently large

However checking vmay be...

Expensive
Undecidable

Gilles Barthe Language-based methods for software security

Certified solution

〈{a1 . . . an}, c〉 is a certified solution if for any edge 〈i, j〉
c(i, j) ∈ C(` T〈i,j〉(ai) v aj)

Every certified solution is a solution
A solution can be certified by exhibiting certificates:

If {a1 . . . an} is a solution of (D], T]), and cons s.t. for any edge 〈i, j〉

cons〈i,j〉 ∈ C(` T〈i,j〉(γ(a)) v γ(T]
〈i,j〉(a)))

then ({γ(a1) . . .γ(an)}, c) is a certified solution of (D, T) [for some c].

Gilles Barthe Language-based methods for software security

Abstraction-Carrying Code

Powerful generalization of lightweight bytecode verification

Programs come equipped with a partial solution

One pass verification (decidable assuming v is decidable)

May embed a notion of certificate

Verified abstraction carrying code

It is possible to generalize verified bytecode verification to verified
abstraction carrying code

Resource control

Array-out-of-bound exceptions

Non-interference

Generic lattice library

General lemmas about well-founded orders

Gilles Barthe Language-based methods for software security

Example of certified analyzer: memory consumption

The goal of the type system is to provide an upper bound on the
number of dynamically created objects.
Jugdments are of the form ` P : n to indicate that P creates at
most n objects.

Transfer rules

P[i] = new, newarray
i ` n⇒ n + 1

P[i] , new, newarray
i ` n⇒ n

Gilles Barthe Language-based methods for software security

Bounded programs

Typing rule for source level programs:

c : 0
while b do c : 0

One can enforce a similar constraint for bytecode using widening
A program is bounded iff for every i s.t. P[i] = new, newarray, i is
not in a loop, i.e. i 67→+ i
Assume P is safe. Then P is bounded iff there exists n s.t. ` P : n.

Gilles Barthe Language-based methods for software security

Non-interference

”Low-security behavior of the program is not affected by any
high-security data.” Goguen & Meseguer 1982

H1 L

H ′1 L ′

H2 L

H ′2 L ′

∼L

∼L

∀s1, s2, s1 ∼L s2 ∧ P, s1 ⇓ s ′1 ∧ P, s2 ⇓ s ′2 =⇒ s ′1 ∼L s ′2

High = confidential Low = public

Gilles Barthe Language-based methods for software security

Non-interference

”Low-security behavior of the program is not affected by any
high-security data.” Goguen & Meseguer 1982

H1 L

H ′1 L ′

H2 L

H ′2 L ′

∼L

∼L

∀s1, s2, s1 ∼L s2 ∧ P, s1 ⇓ s ′1 ∧ P, s2 ⇓ s ′2 =⇒ s ′1 ∼L s ′2

High = confidential Low = public

Gilles Barthe Language-based methods for software security

Non-interference

”Low-security behavior of the program is not affected by any
high-security data.” Goguen & Meseguer 1982

H1 L

H ′1 L ′

H2 L

H ′2 L ′

∼L

∼L

∀s1, s2, s1 ∼L s2 ∧ P, s1 ⇓ s ′1 ∧ P, s2 ⇓ s ′2 =⇒ s ′1 ∼L s ′2

High = confidential Low = public

Gilles Barthe Language-based methods for software security

Simple bytecode language SBC

A program is an array of instructions:

instr ::= prim op primitive operation
| push v push value on top of stack
| load x load value of x on stack
| store x store top of stack in x
| if j conditional jump
| goto j unconditional jump
| return return

where:
j ∈ P is a program point
v ∈ V is a value
x ∈ X is a variable

Gilles Barthe Language-based methods for software security

Semantics

States are of the form 〈〈i, ρ, s〉〉 where:
i : P is the program counter
ρ : X→ V maps variables to values
s : V? is the operand stack

Operational semantics is given by rules are of the form

P[i] = ins constraints
s{ s ′

Evaluation semantics: P,µ ⇓ ν, v iff 〈〈1,µ, ε〉〉{? 〈〈ν, v〉〉, where
{? is the reflexive transitive closure of{

Gilles Barthe Language-based methods for software security

Semantics: rules

P[i] = prim op n1 op n2 = n

〈〈i, ρ, n1 :: n2 :: s〉〉{ 〈〈i + 1, ρ, n :: s〉〉
P[i] = push n

〈〈i, ρ, s〉〉{ 〈〈i + 1, ρ, n :: s〉〉
P[i] = load x

〈〈i, ρ, s〉〉{ 〈〈i + 1, ρ, ρ(x) :: s〉〉
P[i] = store x

〈〈i, ρ, v :: s〉〉{ 〈〈i + 1, ρ(x := v), s〉〉
P[i] = if j

〈〈i, ρ, false :: s〉〉{ 〈〈j, ρ, s〉〉
P[i] = if j

〈〈i, ρ, true :: s〉〉{ 〈〈i + 1, ρ, s〉〉
P[i] = goto j

〈〈i, ρ, s〉〉{ 〈〈j, ρ, s〉〉
P[i] = return

〈〈i, ρ, v :: s〉〉{ 〈〈ρ, v〉〉

Gilles Barthe Language-based methods for software security

Examples of insecure programs

Direct flow

load yH
store xL
return

Indirect flow

load yH
if 5
push 0
store xL
return

Flow via return

load yH
if 5
push 1
return
push 0
return

Flow via operand stack

push 0
push 1
load yH
if 6
swap
store xL
return 0

Gilles Barthe Language-based methods for software security

Policy

A lattice of security levels S = {H, L} with L 6 H
Each program is given a security signature: Γ : X→ S and kret.
Γ determines an equivalence relation ∼L on memories: ρ ∼L ρ

′ iff

∀x ∈ X.Γ(x) 6 L⇒ ρ(x) = ρ ′(x)

Program P is non-interfering w.r.t. signature Γ , kret iff for every
µ,µ ′,ν,ν ′, v, v ′,

P,µ ⇓ ν, v
P,µ ′ ⇓ ν ′, v ′

µ ∼L µ
′

⇒ ν ∼L ν
′ ∧ (kret 6 L⇒ v = v ′)

Gilles Barthe Language-based methods for software security

Type system

Transfer rules of the form

P[i] = ins constraints
i ` st⇒ st ′

P[i] = ins constraints
i ` st⇒

where st, st ′ ∈ S?.
Types assign stack of security levels to program points

S : P→ S?

S ` P iff S1 = ε and for all i, j ∈ P

i 7→ j⇒ ∃st ′. i ` Si ⇒ st ′ ∧ st ′ 6 Sj;
i 7→⇒ i ` Si ⇒

The transfer rules and typability relation are implicitly parametrized
by a signature Γ , kret and additional information (next slide)

Gilles Barthe Language-based methods for software security

Control dependence regions
Approximating the scope of branching statements

A program point j is in a control dependence region of a branching point
i if

j is reachable from i,
there is a path from i to a return point which does not contain j

CDR can be computed using post-dominators of branching points.

Example :
a must belong to
region(i)
b does not necessary
belong to region(i)

exit

i

a

b

exit

exit

i

a

Gilles Barthe Language-based methods for software security

CDR usage : tracking implicit flows

In a typical type system for a structured language:

` exp : k [k1] ` c1 [k2] ` c2 k 6 k1 k 6 k2

[k] ` if exp then c1 else c2

In our context
se: a security environment that attaches a security level to each
program point
for each branching point i, we constrain se(j) for all j ∈ region(i)

P[i] = if i ′ ∀j ∈ region(i), k 6 se(j)
i ` k :: st⇒ · · ·

Gilles Barthe Language-based methods for software security

CDR soundness
SOAP (Safe Over Approximation Properties)

CDR soundness is ensured by local conditions (instead of path
properties) using region ∈ P→ ℘(P) and jun ∈ P ⇀ P.

SOAP1: for all program points i and all
successors j, k of i (i 7→ j and i 7→ k)
such that j , k (i is hence a
branching point), k ∈ region(i) or
k = jun(i);

SOAP2: for all program points i, j, k, if
j ∈ region(i) and j 7→ k, then either
k ∈ region(i) or k = jun(i);

SOAP3: for all program points i, j, if
j ∈ region(i) and j 7→ then jun(i) is
undefined.

Gilles Barthe Language-based methods for software security

CDR soundness
SOAP (Safe Over Approximation Properties)

CDR soundness is ensured by local conditions (instead of path
properties) using region ∈ P→ ℘(P) and jun ∈ P ⇀ P.

SOAP1: for all program points i and all
successors j, k of i (i 7→ j and i 7→ k)
such that j , k (i is hence a
branching point), k ∈ region(i) or
k = jun(i);

SOAP2: for all program points i, j, k, if
j ∈ region(i) and j 7→ k, then either
k ∈ region(i) or k = jun(i);

SOAP3: for all program points i, j, if
j ∈ region(i) and j 7→ then jun(i) is
undefined.

exit

i
j k

jun(i)

Gilles Barthe Language-based methods for software security

CDR soundness
SOAP (Safe Over Approximation Properties)

CDR soundness is ensured by local conditions (instead of path
properties) using region ∈ P→ ℘(P) and jun ∈ P ⇀ P.

SOAP1: for all program points i and all
successors j, k of i (i 7→ j and i 7→ k)
such that j , k (i is hence a
branching point), k ∈ region(i) or
k = jun(i);

SOAP2: for all program points i, j, k, if
j ∈ region(i) and j 7→ k, then either
k ∈ region(i) or k = jun(i);

SOAP3: for all program points i, j, if
j ∈ region(i) and j 7→ then jun(i) is
undefined.

exit

i

j

k

jun(i)

Gilles Barthe Language-based methods for software security

CDR soundness
SOAP (Safe Over Approximation Properties)

CDR soundness is ensured by local conditions (instead of path
properties) using region ∈ P→ ℘(P) and jun ∈ P ⇀ P.

SOAP1: for all program points i and all
successors j, k of i (i 7→ j and i 7→ k)
such that j , k (i is hence a
branching point), k ∈ region(i) or
k = jun(i);

SOAP2: for all program points i, j, k, if
j ∈ region(i) and j 7→ k, then either
k ∈ region(i) or k = jun(i);

SOAP3: for all program points i, j, if
j ∈ region(i) and j 7→ then jun(i) is
undefined.

exit

i

j

k
jun(i)

Gilles Barthe Language-based methods for software security

CDR soundness
SOAP (Safe Over Approximation Properties)

CDR soundness is ensured by local conditions (instead of path
properties) using region ∈ P→ ℘(P) and jun ∈ P ⇀ P.

SOAP1: for all program points i and all
successors j, k of i (i 7→ j and i 7→ k)
such that j , k (i is hence a
branching point), k ∈ region(i) or
k = jun(i);

SOAP2: for all program points i, j, k, if
j ∈ region(i) and j 7→ k, then either
k ∈ region(i) or k = jun(i);

SOAP3: for all program points i, j, if
j ∈ region(i) and j 7→ then jun(i) is
undefined.

exit

exit

i

j

Gilles Barthe Language-based methods for software security

