Model Checking of Action-Based Concurrent Systems

Radu Mateescu
INRIA Rhône-Alpes / VASY
http://www.inrialpes.fr/vasy

$I N R I A$

Why formal verification?

Therac-25 radiotherapy accidents (1985-1987)

Ariane-5 launch failure (1996)

Mars climate orbiter failure (1999)

- Characteristics of these systems
- Errors due to software
- Complex, often involving parallelism
- Safety-critical
\rightarrow formal verification is useful for early error detection

Outline

- Communicating automata
- Process algebraic languages
- Action-based temporal logics
- On-the-fly verification
- Case study
- Discussion and perspectives

Asynchronous concurrent systems

Characteristics:

- Set of distributed processes
- Message-passing communication
- Nondeterminism

Applications:

- Hardware
- Software
- Telecommunications

CADP toolbox:

Construction and Analysis of Distributed Processes
(http://www.inrialpes.fr/vasy/cadp)

- Description languages:
- ISO standards (LOTOS, E-LOTOS)
- Networks of communicating automata
- Functionalities:
- Compilation and rapid prototyping
- Interactive and guided simulation
- Equivalence checking and model checking
- Test generation
- Case-studies and applications:
- >100 industrial case-studies
- >30 derived tools
- Distribution: over 400 sites (2008)

Communicating automata

- Basic notions
- Implicit and explicit representations
- Parallel composition and synchronization
- Hiding and renaming
- Behavioural equivalences

Transformational

systems

- Work by computing a result in function of the entries
- Absence of termination undesirable
- Upon termination, the result is unique
- Sequential programming (sorting algorithms, graph traversals, syntax analysis, ...)

Reactive

systems

- Work by reacting to the stimuli of the environment
- Absence of termination desirable
- Different occurrences of the same request may produce different results
- Parallel programming (operating systems, communication protocols, Web services, ...)
- Concurrent execution
- Communication + synchronization

Communicating automata

- Simple formalism describing the behaviour of concurrent systems
- Black-box approach:
- One cannot inspect directly the state of the system
- The behaviour of the system can be known only through its interactions with the environment

- Synchronization on a gate requires the participation of the process and of its environment (rendezvous)

Automaton (LTS)

- Labeled Transition System $M=\left\langle S, A, T, s_{0}\right\rangle$
- S: set of states (s_{1}, s_{2}, \ldots)
- A: set of visible actions (a_{1}, a_{2}, \ldots)
- T: transition relation $\left(s_{1}-a \rightarrow s_{2} \in T\right)$
- $s_{0} \in S$: initial state
- Example: process client ${ }_{1}$

- Other kinds of automata:
internal action (noted ior τ)
every state is reachable from the initial state
deadlock (sink) state:
no outgoing transitions
- Kripke strictures (information associated to states)
- Input/output automata [Lynch-Tuttle]

LTS representations in CADP

(http://www.inrialpes.fr/vasy/cadp)

Explicit

- List of transitions
- Allows forward and backward exploration
- Suitable for global verification
- BCG (Binary Coded Graphs) environment
- API in C for reading/writing
- Tools and libraries for explicit graph manipulation (bcg_io, bcg_draw, bcg_info, bcg_edit, bcg_labels, ...)
- Global verification tools (XTL)
- "Successor" function
- Allows forward exploration only
- Suitable for local (or on-the-fly) verification
- Open/Caesar environment [Garavel-98]
- API in C for LTS exploration
- Libraries with data structures for implicit graph manipulation (stacks, tables, edge lists, hash functions, ...)
- On-the-fly verification tools (Bisimulator, Evaluator, ...)

Server example

(modeled using a single automaton)

- Server able to process two requests concurrently
- State variables $\mathrm{u}_{1}, \mathrm{u}_{2}$ storing the request status:
- Empty (e)
- Received (r)
- Handled (h)
- A state: couple $<\mathrm{u}_{1}, \mathrm{u}_{2}>$

- Initial state: <e, e> (ee for short)
- Gates (actions):
- req1, req2: receive a request
- res1, res2: send a response
- \mathfrak{i} : internal action

LTS of the server

(9 states, 16 transitions)

Remarks

- All the theoretical states are reachable:

$$
\left|u_{1}\right|^{*}\left|u_{2}\right|=3 * 3=9
$$

(no synchronization between request processings)

- There is no sink state (the system is deadlock-free)
- From every state, it is possible to reach the initial state again (the server can be re-initialized)
- Shortcomings of modeling with a single automaton:
- One must predict all the possible request arrival orders
- For more complex systems, the LTS size grows rapidly
\rightarrow need of higher-level modeling features

Server example

(modeled using two concurrent automata)

- Decomposition of the system in two subsystems
- Every type of request is handled by a subsystem
- In the server example, subsystems are independent
- Simpler description w.r.t. single automaton: $3+3=6$ states

Decomposition in concurrent subsystems

Required at physical level

- Modeling of distributed activities
- Multiprocessor/multitask ing execution platform

Chosen at logical level

- Simplified design of the system
- Well-structured programs
- Communication and synchronization between subsystems may introduce behavioural errors (e.g., deadlocks)
- In practice, even simple parallel programs may reveal difficult to analyze
\rightarrow need of computer-assisted verification

Parallel composition ("product") of automata

- Goals:
- Define internal composition laws

$$
\otimes: \operatorname{LTS} \times \ldots \times \text { LTS } \rightarrow \text { LTS }
$$

expressing the parallel composition of 2 (or more) LTSs

- Allow synchronizations on one or several actions (gates)
- Allow hierarchical decomposition of a system
- Consequences:
- A product of automata can always be translated into a single (sequential) automaton
- The logical parallelism can be implemented sequentially (e.g., time-sharing OS)

Binary parallel composition

 (syntax)- EXP language [Lang-05]
- Description of communicating automata
- Extensive set of operators
- Parallel compositions (binary, general, ...)
- Synchronization vectors
- Hiding / renaming, cutting, priority, ...
- Exp.Open compiler \rightarrow implicit LTS representation
- Binary parallel composition:
"lts1.bcg" |[G1, ..., Gn]| "lts2.bcg"

"lts1.bcg"

"lts2.bcg"

Binary parallel composition

 (semantics)Let $M_{1}=\left\langle S_{1}, A_{1}, T_{1}, S_{01}\right\rangle, M_{2}=\left\langle S_{2}, A_{2}, T_{2}, S_{02}\right\rangle$ and
$\mathrm{L} \subseteq \mathrm{A}_{1} \cap \mathrm{~A}_{2}$ a set of visible actions to be synchronized.

$$
\begin{aligned}
& M_{1}|[L]| M_{2}=\left\langle S, A, T, s_{0}\right\rangle \\
& \text { - } S=S_{1} \times S_{2} \\
& \text { - } A=A_{1} \cup A_{2} \\
& \text { - } \mathrm{s}_{0}=\left\langle\mathrm{s}_{01}, \mathrm{~s}_{02}\right\rangle \\
& \text { - } \mathrm{T} \subseteq \mathrm{~S} \times \mathrm{A} \times \mathrm{S} \\
& \text { defined by } \mathrm{R}_{1}-\mathrm{R}_{3} \\
& \left(R_{1}\right) \xrightarrow[{s_{1} \xrightarrow{a} s^{\prime}{ }_{1} \wedge a \notin} L]{\left\langle s_{1}, s_{2}\right\rangle \xrightarrow{a}\left\langle s^{\prime}{ }_{1}, s_{2}\right\rangle} \\
& \left(R_{2}\right) \xrightarrow{\left\langle s_{1}, s_{2}\right\rangle \xrightarrow{a}\left\langle s_{1}, s^{\prime}{ }_{2}\right\rangle} \\
& \left(R_{3}\right) \xrightarrow{\left\langle s_{1}, s_{2}\right\rangle \xrightarrow{a}\left\langle S_{1}^{\prime}{ }_{1}, s^{\prime}{ }_{2}\right\rangle}
\end{aligned}
$$

Example

Interleaving semantics

- Hypothesis:
- Every action is atomic
- One can observe at most one action at a time
\rightarrow suitable paradigm for distributed systems

interleaving lozenge
- Parallelism can be expressed in terms of choice and sequence (expansion theorem [Milner-89])

Internal and external choice

- External choice (the environment decides which branch of the choice will be executed)

the environment can force the execution of a and b by synchronizing on that action
- Internal choice (the system decides)
 not remove the nondeterminism

Example of modeling with communicating automata

- Mutual exclusion problem:

Given two parallel processes P_{0} and P_{1} competing for a shared resource, guarantee that at most one process accesses the resource at a given time.

- Several solutions were proposed at software level:
- In centralized setting (Peterson, Dekker, Knuth, ...)
- In distributed setting (Lamport, ...)
\rightarrow M. Raynal. Algorithmique du parallélisme: le problème de l'exclusion mutuelle. Dunod Informatique, 1984.

Peterson's algorithm [1968]

var d0 : bool := false
var d1 : bool := false var $t \in\{0,1\}:=0$
loop forever \{ P0 \}
1 : \{ncs0 \}
2 : d0 := true
$3: t:=0$
4: wait (d1 = false or $t=1$)
5 : \{b_cs0 \}
6 : $\left\{\mathrm{e} _\right.$cs0 0
7 : d0 := false
endloop
\{ read by P1, written by P0 \}
\{ read by P0, written by P1 \}
\{ read/written by P0 and P1 \}

Automata of P_{0} and P_{1}

Automata of $\mathrm{d}_{0}, \mathrm{~d}_{1}$, and t

Architecture of the system

 (graphical)

- Synchronized actions: «d0:=false», «d0:=true», ...
- Non synchronized actions: ncs0, b_cs0, e_cs0, ...

Architecture of the system (textual)

- Using binary parallel composition:
(P0 ||| P1)
|["d0:=false", "d0:=true", ...]|
(d0 ||| d1 ||| t)
- Using general parallel composition:
par

$$
\begin{aligned}
& \text { "d0:=false", "d0:=true", ... } \rightarrow \text { P0 } \\
& \text { || "d1:=false", "d1:=true", ... } \rightarrow \text { P1 } \\
& \text { || "d0:=false", "d0:=true", "d0=false?" } \rightarrow \text { d0 } \\
& \text { || "d1:=false", "d1:=true", "d1=false?" } \rightarrow \text { d1 } \\
& \text { || "t:=0", "t:=1", "t=0?", "t=1?" } \rightarrow \text { t } \\
& \text { end par }
\end{aligned}
$$

Construction of the LTS ("product automaton")

- Explicit-state method:
- LTS construction by exploring forward the transition relation, starting at the initial state
- Transitions are generated by using the R_{1}, R_{2}, R_{3} rules
- Detect already visited states in order to avoid cycling
- Several possible exploration strategies:
- Breadth-first, depth-first
- Guided by a criterion / property, ...
- Several types of algorithms:
- Sequential, parallel, distributed, ...

Construction of the LTS

$$
\begin{aligned}
& S=\{F, V\} \times\{F, V\} \times\{0,1\} \times\{1 . .7\} \times\{1 . .7\} \\
& A=\{n c s 0, n c s 1, \ldots, " d 0:=\text { true", } . . .\} \\
& S_{0}=\langle F, F, 0,1,1\rangle=\mathrm{FF} 011 \\
& \mathrm{~T}=
\end{aligned}
$$

Remarks

- The LTS of Peterson's algorithm is finite:

$$
|S| \cong 50 \leq 2 \times 2 \times 2 \times 7 \times 7=392
$$

- In the presence of synchronizations, the number of reachable states is (much) smaller than the size of the cartesian product of the variable domains
- Some tools of CADP for LTS manipulation:
- OCIS (step-by-step and guided simulation)
- Executor (random exploration)
- Exhibitor (search for regular sequences)
- Terminator (search for deadlocks)
\rightarrow can be used in conjunction with Exp.Open

Verification

- Once the LTS is generated, one can formulate and verify automatically the desired properties of the system
- For Peterson's algorithm:
- Deadlock freedom: each state has at least one successor
- Mutual exclusion: at most one process can be in the critical section at a given time
- Liveness: no process can indefinitely overtake the other when accessing its critical section
[see the chapter on temporal logics]

Limitations of binary parallel composition

- Several ways of modeling a process network:
- Absence of canonical form
- Difficult to determine whether two composition expressions denote the same process network
- Difficult to retrieve the process network from a composition expression
- The semantics of " $\left|\left[G_{1}, \ldots, G_{n}\right]\right|$ " (rule R_{3}) does not prevent that other processes synchronize on $\mathrm{G}_{1}, \ldots, \mathrm{G}_{\mathrm{n}}$ (maximal cooperation)
- Some networks cannot be modeled using "|[]|":

binary synchronization on G

Example

(ring network [Garavel-Sighireanu-99])

- Description using binary parallel composition:

$\left(P_{1}\left|\left[G_{1}\right]\right| P_{2}\left|\left[G_{2}\right]\right| P_{3}\left|\left[G_{3}\right]\right| P_{4}\right)$
$\left|\left[G_{4}, G_{5}\right]\right|$
P_{5}

General parallel composition

[Garavel-Sighireanu-99]

- "Graphical" parallel composition operator allowing the composition of several automata and their m among n synchronization:
$\operatorname{par}\left[\mathrm{g}_{1} \# \mathrm{~m}_{1}, \ldots, \mathrm{~g}_{\mathrm{p}} \# \mathrm{~m}_{\mathrm{p}}\right.$ in]

General parallel composition

 (semantics - rules without synchronization degrees)$$
\begin{equation*}
\frac{\exists a, \mathrm{i} . \mathrm{B}_{\mathrm{i}}-a \rightarrow \mathrm{~B}_{\mathrm{i}}^{\prime} \wedge a \notin \mathrm{G}_{\mathrm{i}} \wedge \forall \mathrm{j} \neq \mathrm{i} . \mathrm{B}_{\mathrm{j}}^{\prime}=\mathrm{B}_{\mathrm{j}}}{\operatorname{par} \mathrm{G}_{1} \rightarrow \mathrm{~B}_{1}, \ldots, \mathrm{G}_{\mathrm{n}} \rightarrow \mathrm{~B}_{\mathrm{n}}-a \rightarrow \operatorname{par} \mathrm{G}_{1} \rightarrow \mathrm{~B}_{1}^{\prime}, \ldots, \mathrm{G}_{\mathrm{n}} \rightarrow \mathrm{~B}_{\mathrm{n}}}, \tag{GR1}
\end{equation*}
$$

mandatory interleaved execution of non-synchronized actions

$\exists a . \forall$ i. if $a \in G_{i}$ then $B_{i}-a \rightarrow B_{i}^{\prime}$ else $B_{j}^{\prime}=B_{j}$
$\operatorname{par} \mathrm{G}_{1} \rightarrow \mathrm{~B}_{1}, \ldots, \mathrm{G}_{\mathrm{n}} \rightarrow \mathrm{B}_{\mathrm{n}}-a \rightarrow \operatorname{par} \mathrm{G}_{1} \rightarrow \mathrm{~B}_{1}{ }^{\prime}, \ldots, \mathrm{G}_{\mathrm{n}} \rightarrow \mathrm{B}_{\mathrm{n}}{ }^{\prime}$
execution in maximal cooperation of synchronized actions

Example (1/3)

- Process network unexpressible using "|[]|":
- Description using general parallel composition:
par G\#2 in

$$
\begin{aligned}
& \quad G \rightarrow P_{1} \\
& \text { I| } G \rightarrow P_{2} \\
& \text { II } G \rightarrow P_{3} \\
& \text { end par }
\end{aligned}
$$

maximal cooperation avoided by means of synchronization degrees

Example (2/3)

(ring network [Garavel-Sighireanu-99])

- Description using general parallel composition:

par

$$
\begin{aligned}
& \text { l| } G_{5}, G_{4} \rightarrow P_{5} \\
& \text { end par }
\end{aligned}
$$

the symmetry of the process network is also present in the composition expression

Example (3/3)

- Definition of "|[]|" in terms of "par":

$$
\begin{aligned}
B_{1}\left|\left[G_{1}, \ldots, G_{n}\right]\right| B_{2}= & \text { par } G_{1}, \ldots, G_{n} \rightarrow B_{1} \\
& \text { I| } G_{1}, \ldots, G_{n} \rightarrow B_{2} \\
& \text { end par }
\end{aligned}
$$

- CREW (Concurrent Read / Exclusive Write): par W\#2 in
$\quad R, W \rightarrow P_{1}$
$\| R, W \rightarrow P_{2}$
$\| R, W \rightarrow P_{3}$
$\|$
\| $R, W \rightarrow$ VAR
end par

Parallel composition using synchronization vectors

- Primitive form of n -ary parallel composition
- Proposed in various networks of automata: MEC [Arnold-Nivat], FC2 [deSimone-Bouali-Madelaine]
- Synchronizations are made explicit by means of synchronization vectors
- Syntax in the EXP language [Lang-05]:
par $\mathrm{V}_{1}, \ldots, \mathrm{~V}_{\mathrm{m}}$ in
$\mathrm{B}_{1}| | \ldots| | \mathrm{B}_{\mathrm{n}} \quad$ synchronization vectors
end par
$V::=\left(G_{1} \mid{ }_{-}\right){ }^{*} \ldots{ }^{*}\left(G_{n} \mid{ }_{-}\right) \rightarrow G_{0}$

Example

(client-server with gate multiplexing)

binary synchronization on gates req and res

- Description using synchronization vectors:

in

Client $_{1}$ || Client $_{2}$ || Server end par

Behavioural equivalence

- Useful for determining whether two LTSs denote the same behaviour
- Allows to:
- Understand the semantics of languages (communicating automata, process algebras) having LTS models
- Define and assess translations between languages
- Refine specifications whilst preserving the equivalence of their corresponding LTSs
- Replace certain system components by other, equivalent ones (maintenance)
- Exploit identities between behaviour expressions (e.g., $B_{1}|[G]| B_{2}=B_{2}|[G]| B_{1}$) in analysis tools

Equivalence relations between LTSs

equivalent?

- A large spectrum of equivalence relations proposed:
- Trace equivalence (\cong language equivalence)
- Strong bisimulation [Park-81]
- Weak bisimulation [Milner-89]
- Branching bisimulation [Bergstra-Klop-84]
- Safety equivalence [Bouajjani-et-al-90]

Trace equivalence

- Trace: sequence of visible actions (e.g., $\sigma=r e q_{1} r e s_{1} r e q_{2} r e s_{2}$)
- Notations ($a=$ visible action):
- $s=a=>$: there exists a transition sequence

$$
s-i \rightarrow s_{1}-i \rightarrow s_{2} \ldots-a \rightarrow s_{k}
$$

- $s=\sigma=>$: there exists a transition sequence

$$
s=a_{1}=>s_{1} \ldots=a_{n}=>s_{n} \text { such that } \sigma=a_{1} \ldots a_{n}
$$

- Two state are trace equivalents iff they are the source of the same traces:

$$
s \approx_{\text {tr }} s^{\prime} \quad \text { iff } \quad \forall \sigma .(s=\sigma=>\quad \text { iff } \quad s=\sigma=>)
$$

Example

(coffee machine)

- The two LTSs below are trace equivalent:

M_{1}

M_{2}

Traces $\left(M_{1}\right)=\operatorname{Traces}\left(M_{2}\right)=$ $\{\varepsilon$, money, money coffee, money tea \}
\rightarrow have the two coffee machines the same behaviour w.r.t. a user?
M_{1} : risk of deadlock

Bisimulation

- Trace equivalence is not sufficiently precise to characterize the behaviour of a system w.r.t. its interaction with its environment
\rightarrow stronger relations (bisimulations) are necessary
- Two states s_{1} et s_{2} are bisimilar iff they are the origin of the same behaviour (execution tree):

$$
\begin{aligned}
& \forall s_{1}-a \rightarrow s_{1}^{\prime} \cdot \exists s_{2}-a \rightarrow s_{2}^{\prime} \cdot s_{1}^{\prime} \approx s_{2}^{\prime} \\
& \forall s_{2}-a \rightarrow s_{2}^{\prime} \cdot \exists s_{1}-a \rightarrow s_{1}^{\prime} \cdot s_{2}^{\prime} \approx s_{1}^{\prime}
\end{aligned}
$$

- Bisimulation is an equivalence relation (reflexive, symmetric, and transitive) on states
- Two LTSs are bisimilar iff $s_{01} \approx s_{02}$

Strong bisimulation

- Strong bisimulation: the largest bisimulation
\rightarrow to show that two LTSs are strongly bisimilar, it is sufficient to find a bisimulation between them

Is strong bisimulation sufficient?

- Trace equivalence ignores internal actions (i) and does not capture the branching of transitions
\rightarrow does not distinguish the LTSs below

- Strong bisimulation captures the branching, but handles internal and visible actions in the same way
\rightarrow does not abstract away the internal behaviour

Weak bisimulation

(or observational equivalence)

- In practice, it is necessary to compare LTSs
- By abstracting away internal actions
- By distinguishing the branching
- Weak bisimulation [Milner-89]:

> every a-transition corresponds to an
> a-transition preceded and followed by 0 or more τ-transitions

every τ-transition corresponds to 0 or more τ-transitions

Weak bisimulation

(formal definition)

- Let $M_{1}=\left\langle S_{1}, A, T_{1}, S_{01}\right\rangle$ and $M_{2}=\left\langle S_{2}, A, T_{2}, s_{02}\right\rangle$
- A weak bisimulation is a relation $\approx \subseteq S_{1} \times S_{2}$ such that $s_{1} \approx s_{2}$ iff:

$$
\begin{aligned}
& \forall s_{1}-a \rightarrow s_{1}^{\prime} \cdot \exists s_{2}-\tau^{*} \cdot a \cdot \tau^{*} \rightarrow s_{2}^{\prime} \cdot s_{1}^{\prime} \text { eq } s_{2}^{\prime} \\
& \forall s_{1}-\tau \rightarrow s_{1}^{\prime} \cdot \exists s_{2}-\tau^{*} \rightarrow s_{2}^{\prime} \cdot s_{1}^{\prime} \text { eq } s_{2}^{\prime}
\end{aligned}
$$

and

$$
\begin{aligned}
& \forall s_{2}-a \rightarrow s_{2}^{\prime} \cdot \exists s_{1}-\tau^{*} \cdot a \cdot \tau^{*} \rightarrow s_{1}^{\prime} \cdot s_{1}^{\prime} \text { eq } s_{2}^{\prime} \\
& \forall s_{2}-\tau \rightarrow s_{2}^{\prime} \cdot \exists s_{1}-\tau^{*} \rightarrow s_{1}^{\prime} \cdot s_{1}^{\prime} \text { eq } s_{2}^{\prime}
\end{aligned}
$$

$\bullet \approx_{o b s}$ is the largest weak bisimulation

- $M_{1} \approx_{o b s} M_{2}$ iff $s_{01} \approx_{o b s} s_{02}$

Example

- To show that two LTSs are weakly bisimilar, it is sufficient to find a weak bisimulation between them

Communicating automata (summary)

- Advantages:
- Simple model for describing concurrency
- Powerful tools for manipulation
- MEC (University of Bordeaux)
- Auto/Autograph/FC2 (INRIA, Sophia-Antipolis)
- CADP (INRIA, Grenoble)
- Some industrial applications
- Shortcomings:
- Limited expressiveness
- No dynamic creation and destruction of automata
- Impossible to express: A then (B || C) then D
- No handling of data (each variable = an automaton), unacceptable for complex types (numbers, lists, structures, ...)
- Maintenance difficult and error-prone (large automata)

Process algebraic languages

- Basic notions
- Parallel composition and hiding
- Sequential composition and choice
- Value-passing and guards
- Process definition and instantiation

Process algebras

- PAs: theoretical formalisms for describing and studying concurrency and communication
- Examples of PAs for asynchronous systems:
- CCS (Calculus of Communicating Systems) [Milner-89]
- CSP (Communicating Sequential Processes) [Hoare-85]
- ACP (Algebra of Communicating Processes) [Bergstra-Klop-84]
- Basic idea of PAs:
- Provide a small number of operators
- Construct behaviours by freely combining operators (lego)
- Standardized specification languages:
- LOTOS [ISO-1988], E-LOTOS [ISO-2001]

LOTOS
 (Language Of Temporal Ordering Specification)

- International standard [ISO 8807] for the formal specification of telecommunication protocols and distributed systems
http://www.inrialpes.fr/vasy/cadp/tutorial
- Enhanced LOTOS (E-LOTOS): revised standard [2001]
- LOTOS contains two "orthogonal" sublanguages:
- data part (for data structures)
- process part (for behaviours)
- Handling data is necessary for describing realistic systems. "Basic LOTOS" (the dataless fragment of LOTOS) is useful only for small examples.

LOTOS - data part

- Based on algebraic abstract data types (ActOne):

```
type Natural is
    sorts Nat
    opns 0:-> Nat
                succ : Nat -> Nat
                + : Nat, Nat -> Nat
    eqns forall M, N : Nat
        ofsort Nat
        O + N = N;
        succ(M) + N = succ(M + N);
endtype
```

- Caesar.Adt compiler of CADP [Garavel-Turlier-92]
- ADTs tend to become cumbersome for complex data manipulations (removed in E-LOTOS).

LOTOS - process part

- Combines the best features of the process algebras CCS [Milner-89] and CSP [Hoare-85]
- Terminal symbols (identifiers):
- Variables: X_{1}, \ldots, X_{n}
- Gates: G_{1}, \ldots, G_{n}
- Processes: $P_{1}, \ldots, P_{\mathrm{n}}$
- Sorts (\approx types): S_{1}, \ldots, S_{n}
- Functions: F_{1}, \ldots, F_{n}
- Comments: (* ... *)
- Caesar compiler of CADP [Garavel-Sifakis-90]

Value expressions and offers

- Value expressions: V_{1}, \ldots, V_{n}

$$
\begin{aligned}
V::= & X \\
\mid & F\left(V_{1}, \ldots, V_{n}\right) \\
& \mid V_{1} F V_{2}
\end{aligned}
$$

- Offers: O_{1}, \ldots, O_{n}

$$
\begin{aligned}
O::=!V & \text { emission of a value } V \\
& ? X: S
\end{aligned} \begin{aligned}
& \text { reception of a value to be stored } \\
&
\end{aligned}
$$

Behaviour expressions (Lots Of Terribly Obscure Symbols :-)

- Behaviours: $B_{1}, \ldots, B_{\mathrm{n}}$

$$
\begin{array}{rll}
B::= & \text { stop } & \text { inaction } \\
\text { | } & G_{0} O_{1} \ldots O_{\mathrm{n}}[V] ; B_{0} & \text { action prefix } \\
\text { | } & B_{1}[] B_{2} & \text { choice } \\
\text { | } & B_{1}\left|\left[G_{1}, \ldots, G_{\mathrm{n}}\right]\right| B_{2} & \begin{array}{l}
\text { parallel with synchroni- } \\
\text { zation on } G_{1}, \ldots, G_{\mathrm{n}}
\end{array} \\
\mid & B_{1}| | \mid B_{2} & \text { interleaving } \\
\text { | } & \text { hide } G_{1}, \ldots, G_{\mathrm{n}} \text { in } B_{0} & \text { hiding } \\
\mid & {[V]->B_{0}} & \text { guard } \\
\text { | let } X: S=V \text { in } B_{0} & \text { variable definition } \\
\text { | } & \operatorname{choice} X: S[] B_{0} & \text { choice over values } \\
\text { | } & P\left[G_{1}, \ldots, G_{n}\right]\left(V_{1}, \ldots, V_{n}\right) & \text { process call }
\end{array}
$$

Process definitions

process $P\left[G_{1}, \ldots, G_{n}\right]\left(X_{1}: S_{1}, \ldots, X_{n}: S_{n}\right):=$ B
endproc
where:

- $P=$ process name
- $G_{1}, \ldots, G_{\mathrm{n}}=$ formal gate parameters of P
- $X_{1}, \ldots, X_{\mathrm{n}}=$ formal value parameters of P, of sorts S_{1}, \ldots, S_{n}
- $B=$ body (behaviour) of P

Remarks

- LOTOS process: "black box" equipped with communication points (gates) with the outside

- Each process has its own local (private) variables, which are not accessible from the outside
\rightarrow communication by rendezvous and not by shared variables
- Parallel composition and encapsulation of boxes: described using the $|[\ldots]|,|| |$, and hide operators

Example

(Sender [PUT, A, D] I\| Receiver [GET, B, C])
| [A, B, C, D]|
(Medium1 [A, B] | || Medium2 [C, D])
or
(Sender [PUT, A, D] $|[A]|$ Medium1 [A, B])
| [B, D]|
(Receiver [GET, B, C] |[C]| Medium2 [C, D])

Multiple rendezvous

- LOTOS parallel operators allow to specify the synchronization of $n \geq 2$ processes on the same gate

Binary rendezvous

- The I|| operator allows to specify binary rendezvous (2 among n) on the same gate

Example (client-server):
(C1 [A] ||| C2 [A] ||| C3 [A]) |[A]|
S [A]
the three client processes are competing to access the server on gate A but only one can get access at a given moment

Abstraction

(hiding)

- In LOTOS, when a synchronization takes place on a gate G between two processes, another one can also synchronize on G (maximal cooperation)
- If this is undesirable, it can be forbidden by hiding the gate (renaming it into i) using the hide operator:

$$
\text { hide } G_{1}, \ldots, G_{\mathrm{n}} \text { in } B
$$

which means that all actions performed by B on gates G_{1}, \ldots, G_{n} are hidden

- The gates $G_{1}, \ldots, G_{\mathrm{n}}$ are "abstracted away" (hidden from the outside world)

Example

process Network [PUT, GET] :=
hide A, B, C, D in
(Sender [PUT, A, D] I\| Receiver [GET, B, C])
| [A, B, C, D] |
(Medium1 [A, B] ||| Medium2 [C, D])
endproc

Operational semantics

- Notations:
- G: gate list (or set)
- L: action (transition label), of the form

$$
G V_{1}, \ldots, V_{n}
$$

where G is a gate and V_{1}, \ldots, V_{n} is the list of values exchanged on G during the rendezvous

- gate $(L)=G$
- B [v/X]: syntactic substitution of all free occurrences of X inside B by a value v (having the same sort as X)
- $V[v / X]$: idem, substitution of X by v in V

Semantics of "|[...]|"

$$
\begin{array}{ll}
\frac{B_{1} \rightarrow_{L} B_{1}^{\prime} \wedge \text { gate }(L) \notin \underline{G}}{B_{1}|[\underline{G}]| B_{2} \rightarrow_{L} B_{1}^{\prime}|[\underline{G}]| B_{2}} & B_{1} \text { evolves } \\
\frac{B_{2} \rightarrow_{L} B_{2}^{\prime} \wedge \text { gate }(L) \notin \underline{G}}{B_{1}|[\underline{G}]| B_{2} \rightarrow_{L} B_{1}|[\underline{G}]| B_{2}^{\prime}} & B_{2} \text { evolves } \\
B_{1} \rightarrow_{L} B_{1}^{\prime} \wedge B_{2} \rightarrow_{L} B_{2}^{\prime} \wedge \text { gate }(L) \in \underline{G} & B_{1} \text { and } B_{2} \\
\hline B_{1}|[\underline{G}]| B_{2} \rightarrow_{L} B_{1}^{\prime}|[\underline{G}]| B_{2}^{\prime} & \text { evolve }
\end{array}
$$

- Gates have no direction of communication

Semantics of "hide"

$B \rightarrow_{L} B^{\prime} \wedge$ gate $(L) \notin \underline{G}$

hide \underline{G} in $B \rightarrow_{L}$ hide \underline{G} in B^{\prime}
$B \rightarrow_{L} B^{\prime} \wedge$ gate $(L) \in \underline{G}$
hide \underline{G} in $B \rightarrow_{\mathrm{i}}$ hide \underline{G} in B^{\prime}

normal gate

hidden gate

- In LOTOS, i is a keyword: use with care

Sequential behaviours

- LOTOS allows to encode sequential automata by means of the choice ("[]") and sequence operators (";" and "stop"), and recursive processes

```
process P [A, B, C, D, E] : noexit :=
```


A; (
B; stop
[]
C; (
D ; stop

)
)
endproc

Remarks

- The description of automata in LOTOS is not far from regular expressions (operators ".", "|", "*"), except that:
- The ";" operator of LOTOS is asymmetric (\neq from ".")

$$
G O_{1} \ldots O_{n} ; B \quad \text { but not } \quad B_{1} ; B_{2}
$$

- There is no iteration operator "*", one must use a recursive process call instead
- LOTOS allows to describe automata with data values (\approx functions in sequential languages) by using processes with value parameters

Semantics of "stop"

- The "stop" operator (inaction) has no associated semantic rule, because no transition can be derived from it
- A call of a "pathological" recursive process like
process P [A] : noexit := P [A]
endproc
has a behaviour equivalent to stop (unguarded recursion)

Prefix operator (";")

- Allows to describe:
- Sequential composition of actions
- Communication (emission / reception) of data values
- Simplest variant: actions on gates, without valuepassing (basic LOTOS)
$a ; b ; c ; d ;$ stop

Semantics of ";"

Case 1: action without reception offers (?X:S)
$\left(\forall 1 \leq i \leq n . O_{i} \equiv!V_{i}\right) \wedge V=$ true
$G O_{1} \ldots O_{\mathrm{n}}[V] ; B \rightarrow_{G V 1 \ldots{ }^{\prime}} B$

- The boolean guard and the offers are optional
- If the guard V is false, the rendezvous does not happen (deadlock):

$$
G O_{1} \ldots O_{\mathrm{n}}[V] ; B \approx \text { stop }
$$

Example (1/2)

Sequential composition:

A !true; B !4; stop

A !true; B !4; stop

A !true

B !4; stop

B!4
stop

Example (2/2)

- Synchronization by value matching: two processes send to each other the same values on a gate

$$
G!1 ; B_{1}|[G]| \mid G!1 ; B_{2}
$$

$G!1 ; B_{1}|[G]| \quad G!2 ; B_{2}$
deadlock (different values)
deadlock
(different types)
$G!1 ; B_{1}|[G]| \quad G!t r u e ; B_{2}$

Semantics of ";"

Case 2: action containing reception offer(s) (?X:S)
$(v \in S) \wedge(V[v / X]=$ true $)$
G ? $X: S[V] ; B \rightarrow_{G v} B[v / X]$

- The variables defined in the offers ?X:S are visible in the boolean guard V and inside B
- An action can freely mix emission and reception offers

Example (1/3)

G ?X:Bool; stop

G ? X :Nat $[\mathrm{X}<4]$;
H! X;
stop

- The semantics handles the reception by branching on all possible values that can be received

Example (2/3)

- Emission of a value $=$ guarded reception:

$$
G!V \equiv G ? X: S[X=V]
$$

where S = type (V)

- Synchronization by value generation: two processes receive values of the same type on a gate
$G ? n_{1}: \operatorname{Nat}\left[n_{1}<=5\right] ; B_{1}$
[G]|
G ? n_{2} :Nat $\left[n_{2}>2\right] ; B_{2}$

Example (3/3)

- Synchronization by value-passing:

G ?X:Bool ; stop |[G]| G !true; stop

G ?X:Bool ; stop |[G]| G!3; stop

deadlock: the semantics of the "|[...]|" operator requires that the two labels be identical (same type for the emitted value and the reception offer)

Rendezvous

(summary)

- General form:

$$
G O_{1} \ldots O_{\mathrm{m}}\left[V_{1}\right] ; B_{1} \quad|[\underline{G}]| \quad G^{\prime} O_{1}^{\prime} \ldots O_{\mathrm{n}}^{\prime}\left[V_{2}\right] ; B_{2}
$$

- Conditions for the rendezvous:
- $G=G^{\prime}$ and $G \in \underline{G}$
- $m=n$
- V_{1} and V_{2} are true in the context of $O_{1}, \ldots, O_{n}{ }^{\prime}$
$-\forall 1 \leq i \leq n$. type $\left(O_{i}\right)=$ type $\left(O_{i}{ }^{\prime}\right)$
- $\forall 1 \leq i \leq n . \operatorname{prop}\left(O_{i}\right) \cap \operatorname{prop}\left(O_{i}{ }^{\prime}\right) \neq \varnothing$
where $\operatorname{prop}(0)=$ set of values accepted by offer 0
- prop $(!V)=\{V\}$
- prop (?X:S) = S

Choice operator ("[]")

- "[]": notation inherited from the programs with guarded commands [Dijkstra]
- Allows to specify the choice between several alternatives:

$$
\left(B_{1}[] B_{2}[] B_{3}\right)
$$

can execute either B_{1}, or B_{2}, or B_{3}

- Example:

$$
\begin{aligned}
& a ; \\
& (b ; \text { stop } \\
& {[]} \\
& c \text {; stop })
\end{aligned}
$$

Semantics of "[]"

$$
\begin{array}{ll}
\frac{B_{1} \rightarrow_{L} B_{1}^{\prime}}{B_{1}[] B_{2} \rightarrow_{L} B_{1}^{\prime}} & \text { execution of } B_{1} \\
\frac{B_{2} \rightarrow_{L} B_{2}^{\prime}}{B_{1}[] B_{2} \rightarrow_{L} B_{2}^{\prime}} & \text { execution of } B_{2}
\end{array}
$$

- After the choice, one of the two behaviours disappears (the execution was engaged on a branch of the choice and the other one is abandoned)

Internal / external choice

$\left(G_{1} ; B_{1}[] \quad G_{2} ; B_{2}\right)$

- External choice: the environment can decide which branch will be executed
- Internal choice: the program decides
- Example (coffee machine):

Internal action ("i")

- In LOTOS, the special gate i denotes an internal event on which the environment cannot act:

$$
\begin{aligned}
& \left(\mathbf{i} ; G_{1} ;\right. \text { stop } \\
& {[]} \\
& \left.\mathbf{i} ; G_{2} ; \text { stop }\right)
\end{aligned}
$$

(G_{1}; stop
[]
$\mathbf{i} ; G_{2}$; stop)

still internal choice

Guard operator ("[...] ->")

- LOTOS does not possess an "if-then-else" construct
- Guards (boolean conditions) can be used instead
- Informal semantics:
$[V]->B \approx$ if V then B else stop
- Frequent usage in conjunction with "[]":

READ ?m,n:Nat ;
([m >= n] -> PRINT !m; stop
$\left[\begin{array}{l}{[\mathrm{m}<\mathrm{n}] \quad \text {-> PRINT ! } n \text {; stop) }}\end{array}\right.$

emission of max (m, n) on gate PRINT

Semantics of "[...] ->"

$$
(V=\text { true }) \wedge B \rightarrow_{L} B^{\prime}
$$

[V] $->B \rightarrow_{L} B^{\prime}$

- If the boolean expression V evaluates to false, no semantic rule applies (deadlock):
[false] ->B \approx stop

Examples

- "if-then-else":

$$
[V]->B_{1}
$$

[]

$$
[\operatorname{not}(V)]->B_{2}
$$

"case":

$$
[X<0]->B_{1}
$$

[]
[$X=0]$-> B_{2}
[]
[$X>0$] -> B_{3}

- Beware of overlapping guards:

$$
\begin{aligned}
& {[X \leq 0]->B_{1}} \\
& {[]}
\end{aligned}
$$

if $X=0$ then this is equivalent to an unguarded choice B1 [] B2

Operator "let"

- LOTOS allows to define variables for storing the results of expressions
- Variable definition:
let $X: S=V$ in B
declares variable X and initializes it with the value of V. X is visible in B.
- Write-once variables (no multiple assignments):
let X :Bool $=$ true in $G!X ; \quad\left({ }^{*}\right.$ first $\left.X^{*}\right)$
let X :Bool $=$ false in $G!X ; \quad\left(*\right.$ second $\left.X^{*}\right)$
stop

Semantics of "let"

$B[V / X] \rightarrow_{L} B^{\prime}$
let $X: S=V$ in $B \rightarrow_{L} B^{\prime}$

- Example:
let X :NatList $=$ cons (0 , nil) in
$G!X ;$
H !cons (1, X); stop

Remarks

LOTOS is a functional language:

- No uninitialized variable (forbidden by the syntax)
- No assignment operator (":="), the value of a variable does not change after its initialization
- No "global" or "shared" variables between functions or processes
- Each process has its own local variables
- Communication by rendezvous only
- No side-effects

Operator "choice"

- Operator "choice": similar to "let", except that variable X takes a nondeterministic value in the domain of its sort S
- Semantics:

$$
(v \in S) \wedge B[v / X] \rightarrow_{L} B^{\prime}
$$

choice $X: S[] B \rightarrow_{L} B^{\prime}$

- Example:
choice X :Bool []
$G!X$; stop

Examples

- Reception of a value = particular case of "choice":
G ? $X: S$; $B=$ choice $X: S[] B$
- Iteration over the values of an enumerated type:
choice A:Addr []

SEND !m ! A; stop

- Generation of a random value:
choice rand:Nat []

$$
\text { [rand <= } 10 \text {] -> PRINT !rand ; stop }
$$

Operator "exit"

- LOTOS allows to express normal termination of a behaviour, possibly with the return of one or several values:
exit (V_{1}, \ldots, V_{n})
denotes a behaviour that terminates and produces the values V_{1}, \ldots, V_{n}
- Example:

$$
\begin{aligned}
& \text { REC ?x:Nat }[x<2] ; \\
& \quad \text { exit }(x+1)
\end{aligned}
$$

Semantics of "exit"

true
exit $\left(V_{1}, \ldots, V_{n}\right) \rightarrow_{\text {exit } V 1 \ldots V_{n}}$ stop

- exit = special gate, synchronized by the "|[...]|" operator (see later)
- The values V_{1}, \ldots, V_{n} are optional ("exit" means normal termination without producing any value)

Operator ">>"

- LOTOS allows to express the sequential composition between a behaviour B_{1} that terminates and a behaviour B_{2} that begins:

$$
B_{1} \gg \text { accept } X_{1}: S_{1}, \ldots, X_{n}: S_{n} \text { in } B_{2}
$$

means that when B_{1} terminates by producing values V_{1}, \ldots, V_{n}, the execution continues with B_{2} in which $X_{1}, \ldots, X_{\mathrm{n}}$ are replaced by the values $V_{1}, \ldots, V_{\mathrm{n}}$

- Example:
exit (1) >> accept $\mathrm{n}:$ Nat in
PRINT !n ; stop

Semantics of ">>"

$\left(B_{1} \rightarrow_{L} B_{1}{ }^{\prime}\right) \wedge($ gate $(L) \neq$ exit)
$\left(B_{1} \gg\right.$ accept $\underline{X}: \underline{S}$ in $\left.B_{2}\right) \rightarrow_{L}\left(B_{1}^{\prime} \gg\right.$ accept $\underline{X}: \underline{S}$ in $\left.B_{2}\right)$
$B_{1} \rightarrow_{\text {exit } \underline{v}} B_{1}{ }^{\prime}$
$\left(B_{1} \gg\right.$ accept $\underline{X}: \underline{S}$ in $\left.B_{2}\right) \rightarrow_{i} B_{2}[\underline{V} / \underline{X}]$

- The \underline{V} values must belong pairwise to the \underline{S} sorts
- The exit gate is hidden (renamed into i) when sequential composition takes place
- The ">>" operator is also called enabling (B_{2} 's execution is made possible by B_{1} 's termination)

Example (1/4)

- Sequential composition without value-passing:
($\ln 1 ; \ln 2 ;$ exit [] ln2; In1; exit)
>>
>>
(Out1; Out2; stop [] Out2; Out1; stop)

Example (2/4)

- Sequential composition with value-passing:

READ ?m, n:Nat ;
([m >= n] -> exit (m)
[]
[m < n] -> exit (n))
>>
accept max:Nat in
PRINT !max ; stop

Example (3/4)

- Definition of terminating process: process Login [LogReq, LogConf, LogAbort] : exit := LogReq;
(i ; LogConf ; exit
[]
i ; LogAbort ; Login [LogReq, LogConf, LogAbort]) endproc
- Example of call:

Login [Req,Conf,Abort] >> Transfer ; Logout ; stop

Example (4/4)

- Combination of "exit" and parallel composition: the two behaviours are synchronized on the exit gate (they terminate simultaneously)
($a ; b$; exit) \|\| (c; exit)

Sequential composition

 (summary)- In LOTOS, difference between ";" (asymmetric)
and
">>" (symmetric):

$G ; B$

$$
B_{1} \gg B_{2}
$$

Process call

- Let a process P defined by: process $P\left[G_{1}, \ldots, G_{n}\right]\left(X_{1}: S_{1}, \ldots, X_{n}: S_{n}\right):=$ B
endproc
- Semantics of a call to P :

$$
B\left[g_{1} / G_{1}, \ldots, g_{n} / G_{n}\right]\left[v_{1} / X_{1}, \ldots, v_{n} / X_{n}\right] \rightarrow_{L} B^{\prime}
$$

$P\left[g_{1}, \ldots, g_{n}\right]\left(v_{1}, \ldots, v_{n}\right) \rightarrow_{L} B^{\prime}$

- This semantics explains why a call to process P[G] : noexit := P[G] endproc is equivalent to stop.

Example

- Boolean variable:

process VAR [READ, WRITE] (b:Bool) : noexit :=
READ !b;
VAR [READ, WRITE] (b)
[]
WRITE ?b2:Bool;
VAR [READ, WRITE] (b2)
endproc

Static semantics

(summary)

- Scope of variables inside behaviours:
$B::=G!V_{0} ? X: S \ldots[V] ; B_{0}$
$\mid \quad$ hide G in B_{0}
| let $X: S=V$ in B_{0}
| choice $X: S$ [] B_{0}
| $\quad B_{1} \gg$ accept $X: S$ in B_{0}
$p(X)=\left\{V, B_{0}\right\}$
$p(G)=\left\{B_{0}\right\}$
$p(X)=\left\{B_{0}\right\}$
$p(X)=\left\{B_{0}\right\}$
$p(X)=\left\{B_{0}\right\}$
- Scope of process parameters: process P [G] (X:S) := B_{0}
$p(G)=\left\{B_{0}\right\}$
$p(X)=\left\{B_{0}\right\}$
endproc

LOTOS specification

- A LOTOS specification is similar to a process definition:
specification Protocol [SEND, RECEIVE] : noexit := (* ... type definitions *)
behaviour
(* ... behaviour = body of the specification *)
where
(* ... process definitions *)
endspec

Example: Peterson's mutual exclusion algorithm

var d0 : bool := false
var d1 : bool := false
$\operatorname{var} \mathrm{t} \in\{0,1\}:=0$

```
loop forever \{P0 \}
1 : \(\{\mathrm{ncs} 0\}\)
2 : d0 := true
\(3: t:=0\)
4: wait (d1 = false or \(t=1\) )
\(5:\{\operatorname{cs} 0\}\)
6 : d0 := false
endloop
loop forever { P0 }
1:{ncs0 }
2:d0 := true
3:t:=0
4 : wait (d1 = false or t=1)
5:{ cs0 }
6 : d0 := false
endloop
```

\{ read by P1, written by P0 \}
\{ read by P0, written by P1 \}
\{ read/written by P0 and P1\}

1 : \{ncs1 \}
2 : d1 := true
$3: t:=1$
4 : wait (d0 = false or $t=0$)
$5:\{\operatorname{cs1}\}$
6 : d1 := false
endloop

Description of variables d0, d1

- Each variable: instance of the same process D
- Current value of the variable: parameter of D
\bullet Reading and writing: RdV on gates R et W

process $D[R, W]$ (b:Bool) : noexit := R !b ; D [R, W] (b)
 []
 W ?b2:Bool ; D [R, W] (b2)
 endproc

$\bullet d 0 \equiv D[R 0, W 0]$ (false), d1 $\equiv D[R 1, W 1]$ (false)

Description of variable t

- Variable t : instance of process T
- Current value of the variable: parameter of T
- Reading and writing: RdV on gates R et W

$$
\begin{aligned}
& \text { process T }[R, W](n: \text { Nat }): \text { noexit := } \\
& \text { R !n ; T }[R, W](n) \\
& \quad[] \\
& \quad W \text { ?n2: Bool ; T }[R, W](n 2) \\
& \text { endproc }
\end{aligned}
$$

$\bullet t \equiv T[R T, W T](0)$

Description of processes P0 and P1

- Process P_{m} : instance of the same process P - Index m of the process: parameter of P
process P [Rm, Wm, Rn, Wn, RT, WT, NCS, CS] (m:Nat) : noexit :=
NCS !m ; Wm !true ; WT !m ;
P2 [Rm, Wm, Rn, Wn, RT, WT, NCS, CS] (m)
endproc
- P0 ミP [R0, W0, R1, W1, RT, WT, NCS, CS] (0)
- P1 $\equiv \mathrm{P}[\mathrm{R} 1, \mathrm{~W} 1, \mathrm{R} 0, \mathrm{~W} 0, \mathrm{RT}, \mathrm{WT}, \mathrm{NCS}, \mathrm{CS}]$ (1)

Processes P0 et P1
 (continued)

- Auxiliairy process to describe busy waiting:
process P2 [Rm, Wm, Rn, Wn, RT, WT, NCS, CS]
(m:Nat) : noexit :=
Rn ?dn:Bool ; RT ?t:Nat ;
([dn and (t eq m)] ->
P2 [Rm, Wm, Rn, Wn, RT, WT, NCS, CS] (m)
[]
[not (dn) or (t eq ((m+1) mod 2))] ->
CS !m ; Wn !false ;
P [Rm, Wm, Rn, Wn, RT, WT, NCS, CS] (m))
endproc

Architecture of the system

 (graphical)

Architecture of the system

 (textual)hide R0, W0, R1, W1, RT, WT in
P [R0, W0, R1, W1, RT, WT, NCS, CS] (0)
|||
P [R1, W1, R0, W0, RT, WT, NCS, CS] (1)
)
|[R0, W0, R1, W1, RT, WT]|
(
T [RT, WT] (0)
|||
D [R0, W0] (false)
|||
D [R1, W1] (false)
)

LTS model

- 55 states
- 110 transitions

Process algebraic languages (summary)

- More concise than communicating automata: process parameterization, value-passing communication (Exercise: model variables d0, d1, t using a single gate allowing both reading / writing)
- In general, there are several ways of describing the parallel composition of processes (Exercise: write a different expression for the architecture of Peterson's algorithm)
- Modeling of nested loops: mutually recursive LOTOS processes (Exercise: model processes P0, P1 using a single LOTOS process)
- But: E-LOTOS process part is much more convenient

