Model Checking of Action-Based Concurrent Systems

Radu Mateescu INRIA Rhône-Alpes / VASY http://www.inrialpes.fr/vasy

Why formal verification?

Therac-25 radiotherapy accidents (1985-1987)

Ariane-5 launch failure (1996) Mars climate orbiter failure (1999)

- Characteristics of these systems
 - Errors due to software
 - Complex, often involving parallelism
 - Safety-critical

➔ formal verification is useful for early error detection

VTSA'08 - Max Planck Institute, Saarbrücken

Outline

- Communicating automata
- Process algebraic languages
- Action-based temporal logics
- On-the-fly verification
- Case study
- Discussion and perspectives

VTSA'08 - Max Planck Institute, Saarbrücken

Asynchronous concurrent systems

Characteristics:

- Set of distributed processes
- Message-passing communication
- Nondeterminism

Applications:

- Hardware
- Software
- Telecommunications

CADP toolbox:

Construction and Analysis of Distributed Processes (http://www.inrialpes.fr/vasy/cadp)

• Description languages:

- ISO standards (LOTOS, E-LOTOS)
- Networks of communicating automata

• Functionalities:

- Compilation and rapid prototyping
- Interactive and guided simulation
- Equivalence checking and model checking
- Test generation

Case-studies and applications:

- >100 industrial case-studies
- >30 derived tools

• Distribution: over 400 sites (2008)

Communicating automata

- Basic notions
- Implicit and explicit representations
- Parallel composition and synchronization
- Hiding and renaming
- Behavioural equivalences

Transformational systems

- Work by computing a result in function of the entries
- Absence of termination undesirable
- Upon termination, the result is unique
- Sequential programming (sorting algorithms, graph traversals, syntax analysis, ...)

Reactive systems

- Work by reacting to the stimuli of the environment
- Absence of termination desirable
- Different occurrences of the same request may produce different results
- Parallel programming (operating systems, communication protocols, Web services, ...)
- Concurrent execution
- Communication + synchronization

Communicating automata

- Simple formalism describing the behaviour of concurrent systems
- Black-box approach:
 - One cannot inspect directly the state of the system
 - The behaviour of the system can be known only through its interactions with the environment

 Synchronization on a gate requires the participation of the process and of its environment (*rendezvous*)

Automaton (LTS)

- Labeled Transition System $M = \langle S, A, T, s_0 \rangle$
 - S: set of *states* ($s_1, s_2, ...$)
 - A: set of visible *actions* (a_1, a_2, \ldots)
 - *T*: *transition* relation $(s_1 a \rightarrow s_2 \in T)$
 - $s_0 \in S$: initial state
- Example: process client₁

internal action (noted i or τ)

every state is reachable from the initial state

deadlock (sink) state: no outgoing transitions

sequential model of a reactive system behaviour

- Other kinds of automata:
 - Kripke strictures (information associated to states)
 - Input/output automata [Lynch-Tuttle]

VTSA'08 - Max Planck Institute, Saarbrücken

LTS representations in CADP

(http://www.inrialpes.fr/vasy/cadp)

Explicit

- List of transitions
- Allows forward and backward exploration
- Suitable for global verification
- BCG (Binary Coded Graphs) environment
 - API in C for reading/writing
 - Tools and libraries for explicit graph manipulation (bcg_io, bcg_draw, bcg_info, bcg_edit, bcg_labels, ...)
 - Global verification tools (XTL)

Implicit

- "Successor" function
- Allows forward exploration only
- Suitable for local (or onthe-fly) verification
- Open/Caesar environment [Garavel-98]
 - API in C for LTS exploration
 - Libraries with data structures for implicit graph manipulation (stacks, tables, edge lists, hash functions, ...)
 - On-the-fly verification tools (Bisimula**tor**, Evalua**tor**, ...)

Server example

(modeled using a single automaton)

Server able to process two requests concurrently

- State variables u_1 , u_2 storing the request status:
 - Empty (e)
 - Received (r)
 - Handled (h)
- A state: couple <u₁, u₂>
- Initial state: <e, e> (ee for short)
- Gates (actions):
 - req1, req2: receive a request
 - res1, res2: send a response
 - i: internal action

Remarks

• All the theoretical states are reachable:

$$| u_1 | * | u_2 | = 3 * 3 = 9$$

(no synchronization between request processings)

- There is no sink state (the system is *deadlock-free*)
- From every state, it is possible to reach the initial state again (the server can be re-initialized)
- Shortcomings of modeling with a single automaton:
 - One must predict all the possible request arrival orders
 - For more complex systems, the LTS size grows rapidly

need of higher-level modeling features

Server example (modeled using two concurrent automata)

Decomposition of the system in two subsystems

- Every type of request is handled by a subsystem
- In the server example, subsystems are independent
- Simpler description w.r.t. single automaton:
 - 3 + 3 = 6 states

VTSA'08 - Max Planck Institute, Saarbrücken

Decomposition in concurrent subsystems

Required at physical level

- Modeling of distributed activities
- Multiprocessor/multitask ing execution platform

Chosen at logical level

- Simplified design of the system
- Well-structured programs
- Communication and synchronization between subsystems may introduce behavioural errors (e.g., *deadlocks*)
- In practice, even simple parallel programs may reveal difficult to analyze

→ need of computer-assisted verification

Parallel composition ("product") of automata

Goals:

- Define internal composition laws

 \otimes : LTS $\times \ldots \times$ LTS \rightarrow LTS

expressing the parallel composition of 2 (or more) LTSs

- Allow synchronizations on one or several actions (gates)
- Allow hierarchical decomposition of a system

• Consequences:

- A product of automata can always be translated into a single (sequential) automaton
- The logical parallelism can be implemented sequentially (e.g., time-sharing OS)

Binary parallel composition (syntax)

• EXP language [Lang-05]

- Description of communicating automata
- Extensive set of operators
 - Parallel compositions (binary, general, ...)
 - Synchronization vectors
 - Hiding / renaming, cutting, priority, ...
- Exp.Open compiler \rightarrow implicit LTS representation

• Binary parallel composition:

"lts1.bcg" |[G1, ..., Gn]| "lts2.bcg"

with synchronization on G1, ..., Gn

"lts1.bcg"

without synchronization (interleaving)

Binary parallel composition (semantics)

Let $M_1 = \langle S_1, A_1, T_1, s_{01} \rangle$, $M_2 = \langle S_2, A_2, T_2, s_{02} \rangle$ and $L \subseteq A_1 \cap A_2$ a set of visible actions to be synchronized.

 $\begin{array}{l} \mathsf{M}_{1} \mid [\mathsf{L}] \mid \mathsf{M}_{2} = \langle \mathsf{S}, \mathsf{A}, \mathsf{T}, \mathsf{s}_{0} \rangle \\ \bullet \; \mathsf{S} = \mathsf{S}_{1} \times \mathsf{S}_{2} \\ \bullet \; \mathsf{A} = \mathsf{A}_{1} \cup \mathsf{A}_{2} \\ \bullet \; \mathsf{S}_{0} = \langle \mathsf{s}_{01}, \mathsf{s}_{02} \rangle \\ \bullet \; \mathsf{T} \subseteq \mathsf{S} \times \mathsf{A} \times \mathsf{S} \\ \text{ defined by } \mathsf{R}_{1} \cdot \mathsf{R}_{3} \end{array} \left\{ \begin{array}{l} (\mathsf{R}_{1}) & \frac{\mathsf{s}_{1} \stackrel{a}{\longrightarrow} \mathsf{s}'_{1} \wedge \mathsf{a} \notin \mathsf{L}}{\langle \mathsf{s}_{1}, \mathsf{s}_{2} \rangle \stackrel{a}{\longrightarrow} \langle \mathsf{s}'_{1}, \mathsf{s}_{2} \rangle} \\ (\mathsf{R}_{2}) & \frac{\mathsf{s}_{2} \stackrel{a}{\longrightarrow} \mathsf{s}'_{2} \wedge \mathsf{a} \notin \mathsf{L}}{\langle \mathsf{s}_{1}, \mathsf{s}_{2} \rangle \stackrel{a}{\longrightarrow} \langle \mathsf{s}_{1}, \mathsf{s}'_{2} \rangle} \\ (\mathsf{R}_{3}) & \frac{\mathsf{s}_{1} \stackrel{a}{\longrightarrow} \mathsf{s}'_{1} \wedge \mathsf{s}_{2} \stackrel{a}{\longrightarrow} \mathsf{s}'_{2} \wedge \mathsf{a} \in \mathsf{L}}{\langle \mathsf{s}_{1}, \mathsf{s}_{2} \rangle \stackrel{a}{\longrightarrow} \langle \mathsf{s}'_{1}, \mathsf{s}'_{2} \rangle} \end{array}$

Example

Interleaving semantics

- Hypothesis:
 - Every action is atomic
 - One can observe at most one action at a time
 - → suitable paradigm for distributed systems

interleaving lozenge

 Parallelism can be expressed in terms of choice and sequence (expansion theorem [Milner-89])

Internal and external choice

 External choice (the environment decides which branch of the choice will be executed)

the environment can force the execution of a and b by synchronizing on that action

• Internal choice (the system decides)

the environment may synchronize on a, but this will not remove the nondeterminism

VTSA'08 - Max Planck Institute, Saarbrücken

Example of modeling with communicating automata

• Mutual exclusion problem:

Given two parallel processes P_0 and P_1 competing for a shared resource, guarantee that at most one process accesses the resource at a given time.

• Several solutions were proposed *at software level*:

- In centralized setting (Peterson, Dekker, Knuth, ...)
- In distributed setting (Lamport, ...)

M. Raynal. Algorithmique du parallélisme: le problème de l'exclusion mutuelle. Dunod Informatique, 1984.

Peterson's algorithm [1968]

```
var d0 : bool := false
                             { read by P1, written by P0 }
                             { read by P0, written by P1 }
var d1 : bool := false
var t ∈ {0, 1} := 0
                             { read/written by P0 and P1 }
loop forever { P0 }
                                   loop forever { P1 }
1 : \{ ncs0 \}
                                  1 : { ncs1 }
2 : d0 := true
                                  2 : d1 := true
3 : t := 0
                                  3 : t := 1
4 : wait (d1 = false or t = 1)
                                  4 : wait (d0 = false or t = 0)
                                  5:{b_cs1}
5 : { b_cs0 }
6 : { e_cs0 }
                                  6:{e_cs1}
7 : d0 := false
                                   7 : d1 := false
endloop
                                  endloop
```


Automata of P₀ and P₁

Automata of d_0 , d_1 , and t

- Synchronized actions: «d0:=false», «d0:=true», ...
- Non synchronized actions: ncs0, b_cs0, e_cs0, ...

Architecture of the system (textual)

 Using binary parallel composition: (P0 ||| P1) ["d0:=false", "d0:=true", ...]| (d0 ||| d1 ||| t)

• Using general parallel composition:

par

"d0:=false", "d0:=true", ... → P0 || "d1:=false", "d1:=true", ... → P1 || "d0:=false", "d0:=true", "d0=false?" → d0 || "d1:=false", "d1:=true", "d1=false?" → d1 || "t:=0", "t:=1", "t=0?", "t=1?" → t end par

Construction of the LTS ("product automaton")

• Explicit-state method:

- LTS construction by exploring forward the transition relation, starting at the initial state
- Transitions are generated by using the R_1 , R_2 , R_3 rules
- Detect already visited states in order to avoid cycling
- Several possible exploration strategies:
 - Breadth-first, depth-first
 - Guided by a criterion / property, ...
- Several types of algorithms:
 - Sequential, parallel, distributed, ...

Construction of the LTS

Remarks

• The LTS of Peterson's algorithm is finite:

 $|~S~|~\cong 50 \leq 2 \times 2 \times 2 \times 7 \times 7 = 392$

- In the presence of synchronizations, the number of reachable states is (much) smaller than the size of the cartesian product of the variable domains
- Some tools of CADP for LTS manipulation:
 - OCIS (step-by-step and guided simulation)
 - Executor (random exploration)
 - Exhibitor (search for regular sequences)
 - Terminator (search for deadlocks)
 - → can be used in conjunction with Exp.Open

Verification

- Once the LTS is generated, one can formulate and verify automatically the desired properties of the system
- For Peterson's algorithm:
 - Deadlock freedom: each state has at least one successor
 - Mutual exclusion: at most one process can be in the critical section at a given time
 - Liveness: no process can indefinitely overtake the other when accessing its critical section

[see the chapter on temporal logics]

Limitations of binary parallel composition

• Several ways of modeling a process network:

- Absence of *canonical form*
- Difficult to determine whether two composition expressions denote the same process network
- Difficult to retrieve the process network from a composition expression
- The semantics of " $|[G_1, ..., G_n]|$ " (rule R_3) does not prevent that other processes synchronize on $G_1, ..., G_n$ (maximal cooperation)
- Some networks cannot be modeled using "|[]|":

P2

G

P3

 $|[G_4, G_5]|$ the composition expression does not reflect the symmetry of the process network

P₅

General parallel composition [Garavel-Sighireanu-99]

 "Graphical" parallel composition operator allowing the composition of several automata and their m among n synchronization:

par [$g_1 \# m_1, \ldots, g_p \# m_p$ in] $\underline{G}_1 \rightarrow B_1$ $|| \quad \underline{G}_2 \rightarrow B_2$ $gates with their associated synchronization degrees<math>|| \quad \underline{G}_n \rightarrow B_n$ automata (processes)end parcommunication interfaces (gate lists)

General parallel composition (semantics - rules without synchronization degrees)

$$\exists a, i . B_i - a \rightarrow B_i' \land a \notin G_i \land \forall j \neq i . B_j' = B_j$$

par $G_1 \rightarrow B_1, ..., G_n \rightarrow B_n - a \rightarrow par G_1 \rightarrow B_1', ..., G_n \rightarrow B_n'$ (GR1)

mandatory interleaved execution of non-synchronized actions

 $\exists a. \forall i. if a \in G_i \text{ then } B_i - a \rightarrow B_i' \text{ else } B_j' = B_j$ par $G_1 \rightarrow B_1, ..., G_n \rightarrow B_n - a \rightarrow par G_1 \rightarrow B_1', ..., G_n \rightarrow B_n'^{(GR2)}$

execution in maximal cooperation of synchronized actions

VTSA'08 - Max Planck Institute, Saarbrücken
Example (1/3)

Process network unexpressible using "|[]|":

• Description using general parallel composition: par G#2 in $G \rightarrow P_1$ $|| \quad G \rightarrow P_2$ $|| \quad G \rightarrow P_3$ maximal means of par

maximal cooperation avoided by means of synchronization degrees

Example (2/3) (ring network [Garavel-Sighireanu-99])

 Description using general parallel composition:

par

$$G_1, G_5 \rightarrow P_1$$

$$|| \quad G_2, G_1 \rightarrow P_2$$

$$|| \quad G_3, G_2 \rightarrow P_3$$

$$|| \quad G_4, G_3 \rightarrow P_4$$

$$|| \quad G_5, G_4 \rightarrow P_5$$
end par

the symmetry of the process network is also present in the composition expression

Example (3/3)

- Definition of "|[]|" in terms of "par": $B_1 | [G_1, ..., G_n] | B_2 = par G_1, ..., G_n \rightarrow B_1$ $| | G_1, ..., G_n \rightarrow B_2$ end par
- CREW (Concurrent Read / Exclusive Write):
 par W#2 in

Parallel composition using synchronization vectors

- Primitive form of n-ary parallel composition
- Proposed in various networks of automata: MEC [Arnold-Nivat], FC2 [deSimone-Bouali-Madelaine]
- Synchronizations are made explicit by means of synchronization vectors
- Syntax in the EXP language [Lang-05]:

par V_1, \ldots, V_m in $B_1 \parallel \ldots \parallel B_n$ synchronization vectors end par

$$V ::= (G_1 | _) * ... * (G_n | _) \rightarrow G_0$$

wildcard

Example

(client-server with gate multiplexing)

binary synchronization on gates req *and* res

Description using synchronization vectors:

par req * _ * req \rightarrow req, rep * _ * rep \rightarrow rep, _ * req * req \rightarrow req, _ * rep * rep \rightarrow rep in Client₁ || Client₂ || Server

end par

Behavioural equivalence

- Useful for determining whether two LTSs denote the same behaviour
- Allows to:
 - Understand the semantics of languages (communicating automata, process algebras) having LTS models
 - Define and assess translations between languages
 - Refine specifications whilst preserving the equivalence of their corresponding LTSs
 - Replace certain system components by other, equivalent ones (maintenance)
 - Exploit identities between behaviour expressions (e.g., $B_1 | [G] | B_2 = B_2 | [G] | B_1$) in analysis tools

Equivalence relations between LTSs

• A large spectrum of equivalence relations proposed:

- *Trace* equivalence (\cong language equivalence)
- Strong bisimulation [Park-81]
- Weak bisimulation [Milner-89]
- Branching bisimulation [Bergstra-Klop-84]
- Safety equivalence [Bouajjani-et-al-90]

Trace equivalence

- Trace: sequence of visible actions
 (e.g., σ = req₁ res₁ req₂ res₂)
- Notations (*a* = visible action):
 - s = a = >: there exists a transition sequence $s - i \rightarrow s_1 - i \rightarrow s_2 \dots - a \rightarrow s_k$
 - $s = \sigma = >$: there exists a transition sequence $s = a_1 = > s_1 \dots = a_n = > s_n$ such that $\sigma = a_1 \dots a_n$
- Two state are trace equivalents iff they are the source of the same traces:
 - $s \approx_{tr} s'$ iff $\forall \sigma . (s = \sigma =>)$ iff $s = \sigma =>)$

Example (coffee machine)

• The two LTSs below are trace equivalent:

Traces (*M*₁) = Traces (*M*₂) = { ε, money, money coffee, money tea }

have the two coffee machines the same behaviour w.r.t. a user?
M₁: risk of deadlock

Bisimulation

- Trace equivalence is not sufficiently precise to characterize the behaviour of a system w.r.t. its interaction with its environment
 - → stronger relations (bisimulations) are necessary
- Two states s_1 et s_2 are *bisimilar* iff they are the origin of the same behaviour (execution tree):

$$\forall s_1 - a \rightarrow s_1' : \exists s_2 - a \rightarrow s_2' : s_1' \approx s_2' \forall s_2 - a \rightarrow s_2' : \exists s_1 - a \rightarrow s_1' : s_2' \approx s_1'$$

- Bisimulation is an equivalence relation (reflexive, symmetric, and transitive) on states
- Two LTSs are bisimilar iff $s_{01} \approx s_{02}$

Strong bisimulation

Strong bisimulation: the largest bisimulation

➔ to show that two LTSs are strongly bisimilar, it is sufficient to find a bisimulation between them

Is strong bisimulation sufficient?

- Trace equivalence ignores internal actions (i) and does not capture the branching of transitions
 - ➔ does not distinguish the LTSs below

 Strong bisimulation captures the branching, but handles internal and visible actions in the same way

Joes not abstract away the internal behaviour

Weak bisimulation

(or observational equivalence)

In practice, it is necessary to compare LTSs

a

- By abstracting away internal actions
- By distinguishing the branching
- Weak bisimulation [Milner-89]:

every a-transition corresponds to an a-transition preceded and followed by 0 or more τ -transitions

Weak bisimulation (formal definition)

- Let $M_1 = \langle S_1, A, T_1, S_{01} \rangle$ and $M_2 = \langle S_2, A, T_2, S_{02} \rangle$
- A weak bisimulation is a relation $\approx \subseteq S_1 \times S_2$ such that $s_1 \approx s_2$ iff:

$$\forall s_1 - a \rightarrow s_1' : \exists s_2 - \tau^* \cdot a \cdot \tau^* \rightarrow s_2' : s_1' \text{ eq } s_2'' \\ \forall s_1 - \tau \rightarrow s_1' : \exists s_2 - \tau^* \rightarrow s_2' : s_1' \text{ eq } s_2''$$

and

$$\forall s_2 -a \rightarrow s_2' : \exists s_1 -\tau^* \cdot a \cdot \tau^* \rightarrow s_1' : s_1' \text{ eq } s_2''$$

$$\forall s_2 -\tau \rightarrow s_2' : \exists s_1 -\tau^* \rightarrow s_1' : s_1' \text{ eq } s_2'$$

• \approx_{obs} is the largest weak bisimulation

•
$$M_1 \approx_{obs} M_2$$
 iff $s_{01} \approx_{obs} s_{02}$

Example

 To show that two LTSs are weakly bisimilar, it is sufficient to find a weak bisimulation between them

Communicating automata (summary)

• Advantages:

- Simple model for describing concurrency
- Powerful tools for manipulation
 - MEC (University of Bordeaux)
 - Auto/Autograph/FC2 (INRIA, Sophia-Antipolis)
 - CADP (INRIA, Grenoble)
- Some industrial applications

Shortcomings:

- Limited expressiveness
 - No dynamic creation and destruction of automata
 - Impossible to express: A then (B || C) then D
 - No handling of data (each variable = an automaton), unacceptable for complex types (numbers, lists, structures, ...)
- Maintenance difficult and error-prone (large automata)

Process algebraic languages

- Basic notions
- Parallel composition and hiding
- Sequential composition and choice
- Value-passing and guards

Process definition and instantiation

VTSA'08 - Max Planck Institute, Saarbrücken

Process algebras

- PAs: theoretical formalisms for describing and studying concurrency and communication
- Examples of PAs for asynchronous systems:
 - CCS (Calculus of Communicating Systems) [Milner-89]
 - CSP (Communicating Sequential Processes) [Hoare-85]
 - ACP (Algebra of Communicating Processes) [Bergstra-Klop-84]
- Basic idea of PAs:
 - Provide a small number of operators
 - Construct behaviours by freely combining operators (lego)
- Standardized specification languages:
 - LOTOS [ISO-1988], E-LOTOS [ISO-2001]

LOTOS

(Language Of Temporal Ordering Specification)

 International standard [ISO 8807] for the formal specification of telecommunication protocols and distributed systems

http://www.inrialpes.fr/vasy/cadp/tutorial

Enhanced LOTOS (E-LOTOS): revised standard [2001]

- LOTOS contains two "orthogonal" sublanguages:
 - data part (for data structures)
 - *process* part (for behaviours)

 Handling data is necessary for describing realistic systems. "Basic LOTOS" (the dataless fragment of LOTOS) is useful only for small examples.

LOTOS - data part

Based on algebraic abstract data types (ActOne):

```
type Natural is
  sorts Nat
  opns 0 : -> Nat
    succ : Nat -> Nat
    + : Nat, Nat -> Nat
  eqns forall M, N : Nat
  ofsort Nat
    0 + N = N;
    succ(M) + N = succ(M + N);
endtype
```

• Caesar.Adt compiler of CADP [Garavel-Turlier-92]

 ADTs tend to become cumbersome for complex data manipulations (removed in E-LOTOS).

VTSA'08 - Max Planck Institute, Saarbrücken

LOTOS - process part

- Combines the best features of the process algebras CCS [Milner-89] and CSP [Hoare-85]
- Terminal symbols (identifiers):
 - Variables: *X*₁, ..., *X*_n
 - Gates: *G*₁, ..., *G*_n
 - Processes: P₁, ..., P_n
 - Sorts (\approx types): S_1 , ..., S_n
 - Functions: *F*₁, ..., *F*_n
 - Comments: (* ... *)
- Caesar compiler of CADP [Garavel-Sifakis-90]

Value expressions and offers

• Value expressions: $V_1, ..., V_n$ V ::= X $| F(V_1, ..., V_n)$ $| V_1 F V_2$

Behaviour expressions (Lots Of Terribly Obscure Symbols :-)

$$B ::= stop$$

$$| G_0 O_1 ... O_n [V]; B_0$$

$$| B_1 [] B_2$$

$$| B_1 |[G_1, ..., G_n]| B_2$$

$$| B_1 || | B_2$$

$$| hide G_1, ..., G_n in B_0$$

$$| [V] -> B_0$$

$$| let X : S = V in B_0$$

$$| choice X : S [] B_0$$

$$| P [G_1, ..., G_n] (V_1, ..., V_n)$$

inaction action prefix choice parallel with synchronization on G_1, \ldots, G_n interleaving hiding guard variable definition choice over values process call

Process definitions

where:

• P = process name

G₁, ..., G_n = formal *gate* parameters of P
X₁, ..., X_n = formal *value* parameters of P, of sorts S₁, ..., S_n

• B = body (behaviour) of P

Remarks

 LOTOS process: "black box" equipped with communication points (gates) with the outside

process *P* [*G*₁, *G*₂, *G*₃] (...) :=

endproc

 Each process has its own local (private) variables, which are not accessible from the outside

communication by rendezvous and not by shared variables

 Parallel composition and encapsulation of boxes: described using the [[...]], []], and hide operators

(Sender [PUT, A, D] ||| Receiver [GET, B, C]) |[A, B, C, D]| (Medium1 [A, B] ||| Medium2 [C, D])

or

```
(Sender [PUT, A, D] |[A]| Medium1 [A, B])
|[B, D]|
(Receiver [GET, B, C] |[C]| Medium2 [C, D])
```

VTSA'08 - Max Planck Institute, Saarbrücken

Multiple rendezvous

• LOTOS parallel operators allow to specify the synchronization of $n \ge 2$ processes on the same gate

Binary rendezvous

• The ||| operator allows to specify binary rendezvous (2 among *n*) on the same gate

Example (client-server):

```
(C1 [A] ||| C2 [A] ||| C3 [A])
|[A]|
S [A]
```

the three client processes are competing to access the server on gate A but only one can get access at a given moment

Abstraction (hiding)

- In LOTOS, when a synchronization takes place on a gate G between two processes, another one can also synchronize on G (*maximal cooperation*)
- If this is undesirable, it can be forbidden by hiding the gate (renaming it into *i*) using the hide operator:

hide G_1 , ..., G_n in B

which means that all actions performed by B on gates G_1 , ..., G_n are hidden

• The gates G_1 , ..., G_n are "abstracted away" (hidden from the outside world)

Example

process Network [PUT, GET] :=
 hide A, B, C, D in
 (Sender [PUT, A, D] ||| Receiver [GET, B, C])
 |[A, B, C, D]|
 (Medium1 [A, B] ||| Medium2 [C, D])
endproc

Operational semantics

• Notations:

- <u>G</u>: gate list (or set)
- L: action (transition label), of the form

*G V*₁, ..., *V*_n

where G is a gate and V_1 , ..., V_n is the list of values exchanged on G during the rendezvous

- gate (L) = G
- B [v / X]: syntactic substitution of all free occurrences of X inside B by a value v (having the same sort as X)
- V [v / X]: idem, substitution of X by v in V

Semantics of "|[...]|" $\frac{B_1 \rightarrow_L B_1' \wedge gate (L) \notin \underline{G}}{B_1 \mid [\underline{G}] \mid B_2 \rightarrow_L B_1' \mid [\underline{G}] \mid B_2} \qquad B_1 \text{ evolves}$

 $\frac{B_2 \rightarrow_L B_2' \wedge gate (L) \notin \underline{G}}{B_1 \mid [\underline{G}] \mid B_2 \rightarrow_L B_1 \mid [\underline{G}] \mid B_2'} \qquad B_2 \text{ evolves}$

 $\begin{array}{ll} B_1 \rightarrow_L B_1' \wedge B_2 \rightarrow_L B_2' \wedge gate \ (L) \in \underline{G} \\ B_1 \mid [\underline{G}] \mid B_2 \rightarrow_L B_1' \mid [\underline{G}] \mid B_2' \end{array} \qquad \begin{array}{ll} B_1 \ \text{and} \ B_2 \\ evolve \end{array}$

Gates have no direction of communication

VTSA'08 - Max Planck Institute, Saarbrücken

Semantics of "hide"

 $B \rightarrow_{L} B' \wedge gate (L) \notin \underline{G}$ normal gate hide \underline{G} in $B \rightarrow_{L}$ hide \underline{G} in B'

 $\frac{B \rightarrow_L B' \land gate \ (L) \in \underline{G}}{\text{hide } \underline{G} \text{ in } B \rightarrow_i \text{hide } \underline{G} \text{ in } B'} \qquad \text{hidden gate}$

• In LOTOS, i is a keyword: use with care

Sequential behaviours

 LOTOS allows to encode sequential automata by means of the choice ("[]") and sequence operators (";" and "stop"), and recursive processes

Remarks

- The description of automata in LOTOS is not far from regular expressions (operators ".", "|", "*"), except that:
 - The ";" operator of LOTOS is *asymmetric* (\neq from ".") $G O_1 \dots O_n$; B but not B_1 ; B_2
 - There is no iteration operator "*", one must use a recursive process call instead
- LOTOS allows to describe automata with data values (≈ functions in sequential languages) by using processes with value parameters

Semantics of "stop"

- The "stop" operator (inaction) has no associated semantic rule, because no transition can be derived from it
- A call of a "pathological" recursive process like process P [A] : noexit := P [A]
 endproc

has a behaviour equivalent to **stop** (unguarded recursion)

Prefix operator (";")

• Allows to describe:

- Sequential composition of actions
- Communication (emission / reception) of data values
- Simplest variant: actions on gates, without valuepassing (basic LOTOS)

Semantics of ";"

<u>Case 1</u>: action without reception offers (?X:S)

$$(\forall 1 \le i \le n . O_i \equiv ! V_i) \land V = \text{true}$$

$$\overline{G O_1 \dots O_n [V]; B \rightarrow_{G V1 \dots Vn} B}$$

- The boolean guard and the offers are optional
- If the guard V is false, the rendezvous does not happen (deadlock):

$$G O_1 \dots O_n [V]; B \approx \text{stop}$$

Example (1/2)

A !true; B !4; stop

Example (2/2)

• Synchronization by *value matching*: two processes send to each other the same values on a gate

$$G !1; B_1 | [G] | G !1; B_2$$
 RdV OK G1

 $G !1; B_1 | [G] | G !2; B_2$ deadlock

(different values)

$G !1; B_1 | [G] | G !true; B_2$

deadlock (different types)

Semantics of ";"

<u>Case 2</u>: action containing reception offer(s) (?X:S)

$$(v \in S) \land (V [v / X] = true)$$

G?X:S[V]; $B \rightarrow_{Gv} B [v / X]$

- The variables defined in the offers ?X:S are visible in the boolean guard V and inside B
- An action can freely mix emission and reception offers

 The semantics handles the reception by branching on all possible values that can be received

Example (2/3)

• Emission of a value = guarded reception:

$$G !V \equiv G ?X:S [X = V]$$

where S = type (V)

 Synchronization by value generation: two processes receive values of the same type on a gate

Example (3/3)

• Synchronization by *value-passing*:

G?X:Bool; stop |[G]| G!true; stop

G true |[G]

G ?*X*:Bool ; stop |[*G*]| *G* !3 ; stop

deadlock: the semantics of the "|[...]|" operator requires that the two labels be identical (same type for the emitted value and the reception offer)

G 3

G false

G true

Rendezvous (summary)

• General form:

 $G O_1 \dots O_m [V_1]; B_1 \quad |[\underline{G}]| \quad G' O_1' \dots O_n'[V_2]; B_2$

• Conditions for the rendezvous:

- G = G' and $G \in \underline{G}$
- *m* = *n*
- V_1 and V_2 are true in the context of O_1, \ldots, O_n '
- $\forall 1 \leq i \leq n$. type $(O_i) = type (O_i')$
- $\forall 1 \leq i \leq n. prop (O_i) \cap prop (O_i') \neq \emptyset$

where prop(O) = set of values accepted by offer O

- prop (!V) = { V }
- prop (?X:S) = S

Choice operator ("[]")

- "[]": notation inherited from the programs with guarded commands [Dijkstra]
- Allows to specify the choice between several alternatives:

(*B*₁ [] *B*₂ [] *B*₃)

can execute either B_1 , or B_2 , or B_3

• Example:

Semantics of "[]"

 After the choice, one of the two behaviours disappears (the execution was engaged on a branch of the choice and the other one is abandoned)

Internal / external choice

 $(G_1; B_1 [] G_2; B_2)$

- External choice: the environment can decide which branch will be executed
- Internal choice: the program decides
- Example (coffee machine):

Internal action ("i")

In LOTOS, the special gate i denotes an internal event on which the environment cannot act:

Guard operator ("[...] ->")

LOTOS does not possess an "if-then-else" construct *Guards* (boolean conditions) can be used instead
Informal semantics:

 $[V] \rightarrow B \approx \text{ if } V \text{ then } B \text{ else stop}$

 Frequent usage in conjunction with "[]": READ ?m,n:Nat ; ([m >= n] -> PRINT !m; stop [] [m < n] -> PRINT !n; stop)

Semantics of "[...] ->"

$$(V = \text{true}) \land B \rightarrow_L B'$$
$$[V] \rightarrow B \rightarrow_L B'$$

- If the boolean expression V evaluates to false, no semantic rule applies (deadlock):
 - [false] -> $B \approx \text{stop}$

VTSA'08 - Max Planck Institute, Saarbrücken

Examples

"if-then-else": "case": [V] -> B₁ [X < 0] -> B₁ [] [] [] [X = 0] -> B₂ [] [X > 0] -> B₃

• Beware of overlapping guards: $\begin{bmatrix} X \le 0 \end{bmatrix} \rightarrow B_1$ $\begin{bmatrix} I \\ I \end{bmatrix}$ $\begin{bmatrix} X \ge 0 \end{bmatrix} \rightarrow B_2$

if X = 0 then this is equivalent to an unguarded choice B1 [] B2

Operator "let"

- LOTOS allows to define variables for storing the results of expressions
- Variable definition:

let *X*:*S* = *V* **in** *B*

declares variable X and initializes it with the value of V. X is visible in B.

• Write-once variables (no multiple assignments):

let X:Bool = true in G !X; (* first X *)
let X:Bool = false in G !X; (* second X *)
stop

Semantics of "let"

$$B [V / X] \rightarrow_{L} B'$$

let X:S = V in $B \rightarrow_{L} B'$

• Example:
 let X:NatList = cons (0, nil) in
 G !X;
 H !cons (1, X);
 stop

Remarks

LOTOS is a *functional* language:

- No uninitialized variable (forbidden by the syntax)
- No assignment operator (":="), the value of a variable does not change after its initialization
- No "global" or "shared" variables between functions or processes
- Each process has its own local variables
- Communication by rendezvous only

No side-effects

Operator "choice"

- Operator "choice": similar to "let", except that variable X takes a nondeterministic value in the domain of its sort S
- Semantics:

$$(v \in S) \land B [v / X] \rightarrow_{L} B'$$

choice X:S [] $B \rightarrow_{L} B'$

Example:
 choice X:Bool []
 G !X; stop

Examples

• Reception of a value = particular case of "choice":
G ?X:S; B = choice X:S [] B

 Iteration over the values of an enumerated type: choice A:Addr []
 SEND !m !A ; stop

Generation of a random value:
 choice rand:Nat []
 [rand <= 10] -> PRINT !rand ; stop

Operator "exit"

 LOTOS allows to express *normal termination* of a behaviour, possibly with the return of one or several values:

exit (*V*₁, ..., *V*_n)

denotes a behaviour that terminates and produces the values $V_1, ..., V_n$

• Example:

Semantics of "exit"

true

exit (V_1 , ..., V_n) $\rightarrow_{exit V1 \dots Vn}$ stop

- exit = special gate, synchronized by the "|[...]|"
 operator (see later)
- The values V₁, ..., V_n are optional ("exit" means normal termination without producing any value)

Operator ">>"

• LOTOS allows to express the sequential composition between a behaviour B_1 that terminates and a behaviour B_2 that begins:

 $B_1 >> \text{ accept } X_1:S_1,..., X_n:S_n \text{ in } B_2$

means that when B_1 terminates by producing values $V_1, ..., V_n$, the execution continues with B_2 in which $X_1, ..., X_n$ are replaced by the values $V_1, ..., V_n$

• Example:

exit (1) >> accept n:Nat in PRINT !n ; stop

PRIN

Semantics of ">>"

 $\frac{(B_1 \rightarrow_L B_1') \land (gate (L) \neq exit)}{(B_1 \Rightarrow accept \underline{X}:\underline{S} in B_2) \rightarrow_L (B_1' \Rightarrow accept \underline{X}:\underline{S} in B_2)}$

$$\begin{array}{l} B_1 \rightarrow_{exit} \underline{V} B_1' \\
 (B_1 >> \text{ accept } \underline{X}: \underline{S} \text{ in } B_2) \rightarrow_i B_2 \left[\underline{V} / \underline{X} \right]
 \end{array}$$

- The \underline{V} values must belong pairwise to the \underline{S} sorts
- The *exit* gate is hidden (renamed into i) when sequential composition takes place
- The ">>" operator is also called *enabling* (B₂'s execution is made possible by B₁'s termination)

VTSA'08 - Max Planck Institute, Saarbrücken

Example (1/4)

Sequential composition without value-passing:

(ln1; ln2; exit [] ln2; ln1; exit)

>>

(Access; exit)

>>

(Out1; Out2; stop [] Out2; Out1; stop)

Example (2/4)

Sequential composition with value-passing:

```
READ ?m,n:Nat ;
                             READ01
                                          READ 0 2
( [ m >= n ] -> exit (m)
 [m < n] -> exit(n))
                             PRINT 1
                                          PRINT 2
>>
accept max:Nat in
PRINT !max ; stop
```


Example (3/4)

- Example of call: Login [Req,Conf,Abort] >> Transfer ; Logout ; stop

Example (4/4)

 Combination of "exit" and parallel composition: the two behaviours are synchronized on the exit gate (they terminate simultaneously)

(*a*; *b*; exit) | | | (*c*; exit)

Sequential composition (summary)

 B_1

 B_2

Process call

- Let a process *P* defined by:
 process *P* [*G*₁, ..., *G*_n] (*X*₁:*S*₁, ..., *X*_n:*S*_n) :=
 B endproc
- Semantics of a call to P:

$$\frac{B[g_1 / G_1, ..., g_n / G_n][v_1 / X_1, ..., v_n / X_n] \to_L B'}{D[g_1 / G_n][v_1 / X_1, ..., v_n / X_n] \to_L B'}$$

$$P[g_1, ..., g_n](v_1, ..., v_n) \to_L B$$

 This semantics explains why a call to process P[G] : noexit := P[G] endproc is equivalent to stop.

Example


```
process VAR [READ, WRITE] (b:Bool) : noexit :=
    READ !b;
    VAR [READ, WRITE] (b)
 []
    WRITE ?b2:Bool;
    VAR [READ, WRITE] (b2)
endproc
```

VTSA'08 - Max Planck Institute, Saarbrücken

Static semantics (summary)

• Scope of variables inside behaviours:

$$B ::= G ! V_0 ? X : S ... [V]; B_0$$

- hide G in B_0
- let X:S = V in B_0
 - choice X:S [] B_0
 - $B_1 >>$ accept X:S in B_0
- Scope of process parameters: process P [G] (X:S) :=

- $p(X) = \{ V, B_0 \}$ $p(G) = \{ B_0 \}$ $p(X) = \{ B_0 \}$ $p(X) = \{ B_0 \}$ $p(X) = \{ B_0 \}$
- $p(G) = \{ B_0 \}$ $p(X) = \{ B_0 \}$

 B_{\cap}

endproc

LOTOS specification

 A LOTOS specification is similar to a process definition:

specification Protocol [SEND, RECEIVE] : noexit :=

(* ... type definitions *)

behaviour

(* ... behaviour = body of the specification *)

where

(* ... process definitions *)

endspec

Example: Peterson's mutual exclusion algorithm

var d0 : bool := false var d1 : bool := false var t \in {0, 1} := 0 { read by P1, written by P0 }
{ read by P0, written by P1 }
{ read/written by P0 and P1}

loop forever { P0 } 1 : { ncs0 } 2 : d0 := true 3 : t := 0 4 : wait (d1 = false or t = 1) 5 : { cs0 } 6 : d0 := false endloop

```
loop forever { P1 }
1 : { ncs1 }
2 : d1 := true
3 : t := 1
4 : wait (d0 = false or t = 0)
5 : { cs1 }
6 : d1 := false
endloop
```


Description of variables d0, d1

- Each variable: instance of the same process D
- Current value of the variable: parameter of D
- Reading and writing: RdV on gates R et W

```
process D [R, W] (b:Bool) : noexit :=
    R !b ; D [R, W] (b)
    []
    W ?b2:Bool ; D [R, W] (b2)
endproc
```

• $d0 \equiv D$ [R0, W0] (false), $d1 \equiv D$ [R1, W1] (false)

Description of variable t

- Variable t: instance of process T
- Current value of the variable: parameter of T
- Reading and writing: RdV on gates R et W

```
process T [R, W] (n:Nat) : noexit :=
    R !n ; T [R, W] (n)
    []
    W ?n2:Bool ; T [R, W] (n2)
endproc
```


Description of processes P0 and P1

Process P_m: instance of the same process P
 Index m of the process: parameter of P

process P [Rm, Wm, Rn, Wn, RT, WT, NCS, CS]
 (m:Nat) : noexit :=
 NCS !m ; Wm !true ; WT !m ;
 P2 [Rm, Wm, Rn, Wn, RT, WT, NCS, CS] (m)
endproc

• $P0 \equiv P$ [R0, W0, R1, W1, RT, WT, NCS, CS] (0) • $P1 \equiv P$ [R1, W1, R0, W0, RT, WT, NCS, CS] (1)

Processes P0 et P1 (continued)

```
• Auxiliairy process to describe busy waiting:
 process P2 [Rm, Wm, Rn, Wn, RT, WT, NCS, CS]
             (m:Nat) : noexit :=
    Rn ?dn:Bool ; RT ?t:Nat ;
    ( [ dn and (t eq m) ] \rightarrow
        P2 [Rm, Wm, Rn, Wn, RT, WT, NCS, CS] (m)
     н
     [ not (dn) or (t eq ((m + 1) mod 2)) ] ->
        CS !m ; Wn !false ;
        P [Rm, Wm, Rn, Wn, RT, WT, NCS, CS] (m) )
 endproc
```


Architecture of the system (graphical)


```
Architecture of the system
                         (textual)
hide R0, W0, R1, W1, RT, WT in
    P [R0, W0, R1, W1, RT, WT, NCS, CS] (0)
     P [R1, W1, R0, W0, RT, WT, NCS, CS] (1)
  |[ R0, W0, R1, W1, RT, WT ]|
     T [RT, WT] (0)
     D [R0, W0] (false)
     D [R1, W1] (false)
```


LTS model

55 states110 transitions

Process algebraic languages (summary)

- More concise than communicating automata: process parameterization, value-passing communication (Exercise: model variables d0, d1, t using a single gate allowing both reading / writing)
- In general, there are several ways of describing the parallel composition of processes (Exercise: write a different expression for the architecture of Peterson's algorithm)
- Modeling of nested loops: mutually recursive LOTOS processes (Exercise: model processes P0, P1 using a single LOTOS process)
- But: E-LOTOS process part is much more convenient

