Model Checking of Action-Based Concurrent Systems

Radu Mateescu *INRIA Rhône-Alpes / VASY* http://www.inrialpes.fr/vasy

Action-based temporal logics

- **•** Introduction
- Modal logics
- Branching-time logics
- **Regular logics**
- Fixed point logics

Why temporal logics?

• Formalisms for high-level specification of systems

- –- Example: all mutual exclusion protocols should satisfy
	- *Mutual exclusion* (at most one process in critical section)
	- *Liveness* (each process should eventually enter its critical section)
- Temporal logics (TLs):

formalisms describing the ordering of states (or actions) during the execution of a concurrent program

- TL specification = list of logical formulas, each one expressing a property of the program
- Benefits of TL [Pnueli-77]:
	- – *Abstraction*: properties expressed in TL are independent from the description/implementation of the system
	- – *Modularity*: one can add/remove a property without impacting the other properties of the specification

(Rough) classification of TLs

Example (coffee machine)

L (*M*₂) = *L* (*M*₂) = { *money*.*coffee*, *money*.*tea* }

- A linear-time TL cannot distinguish the two LTSs *M* 1and M₂, which have the same set of execution sequences, but are not behaviourally equivalent (modulo strong bisimulation)
- A branching-time TL can capture nondeterminism and thus can distinguish M₁ and M₂

Interpretation of (branching-time) TLs on LTSs

- **LTS** model $M = \langle S, A, T, s_0 \rangle$, where:
- Siset of states
	- –*S*: set of states
	- *A*: set of actions (events)
	- –*T*∈*S*×*A*×*S*: transition relation
	- *s* 0∈ *S*: initial state
- Interpretation of a formula ϕ on *M*: $\left[\left[\begin{array}{cc} \varphi \end{array} \right] \right] = \left\{ S \in S \mid S \mid S \mid \varphi \right\}$
	- ([[ϕ]] defined inductively on the structure of ϕ)
- An LTS *M* satisfies a TL formula ϕ (*M* |= ϕ) iff its initial state satisfies ϕ :

$$
M \mid = \varphi \qquad \Leftrightarrow \qquad s_0 \mid = \varphi \quad \Leftrightarrow \qquad s_0 \in [[\varphi]]
$$

Running example: mutual exclusion with a semaphore

Description using communicating automata

VTSA'08 - Max Planck Institute, Saarbrücken

LTS model

Modal logics

- They are the simplest logics allowing to reason about the sequencing and branching of transitions in an LTS
- Basic modal operators:
	- *Possibility*

from a state, there exists (at least) an outgoing transition labeled by a certain action and leading to a certain state

Necessity

from a state, all the outgoing transitions labeled by a certain action lead to certain states

• Hennessy-Milner Logic (HML) [Hennessy-Milner-85]

Action predicates (syntax) α ::= *aa* atomic proposition (*a*∈A) | t t constant "true"ff constant "false" | $\alpha_1 \vee \alpha_2$ disjunction $\alpha_1 \wedge \alpha_2$ conjunction | $\neg \alpha_1$ negation α_1 $\alpha_1 \Rightarrow \alpha_2$ implication $(\neg \alpha_1 \vee \alpha_2)$ α_1 $\alpha_1 \Leftrightarrow \alpha_2$ equivalence $(\alpha_1 \Rightarrow \alpha_2 \land \alpha_1 \Rightarrow \alpha_2)$

Action predicates (semantics)

- Let M = (S, A, T , s₀). Interpretation [[α]] \subseteq A:
- [[*a*]] = { *a* }
- [[tt]] = *A*
- [[ff]] = ∅
- $\left[\left[\begin{array}{c}\alpha_1\vee\alpha_2\end{array}\right]\right]=\left[\left[\begin{array}{c}\alpha_1\end{array}\right]\right]\cup\left[\left[\begin{array}{c}\alpha_2\end{array}\right]\right]$
- $\left[\left[\begin{array}{c}\alpha_1\wedge\alpha_2\end{array}\right]\right]=\left[\left[\begin{array}{c}\alpha_1\end{array}\right]\right]\cap\left[\left[\begin{array}{c}\alpha_2\end{array}\right]\right]$
- $\left[\left[\begin{array}{c}\,\, -\alpha_1 \end{array}\right]\right]=A\setminus\left[\left[\begin{array}{c}\,\alpha_1\end{array}\right]\right]$
- $\left[\left[\begin{array}{c}\alpha_1\Rightarrow\alpha_2\end{array}\right]\right]=\left(A\setminus\left[\left[\begin{array}{c}\alpha_1\end{array}\right]\right]\right)\cup\left[\left[\begin{array}{c}\alpha_2\end{array}\right]\right]$
- $\left[\left[\begin{array}{cc} \alpha_1 \Leftrightarrow \alpha_2 \end{array}\right]\right] = \left(\left(A \setminus \left[\left[\begin{array}{cc} \alpha_1 \end{array}\right]\right]\right) \cup \left[\left[\begin{array}{cc} \alpha_2 \end{array}\right]\right]\right).$ \frown ((A \ [[α_2]]) \cup [[α_1]])

Examples

- \mathcal{A} = { NCS₀, NCS₁, CS₀, CS₁, REQ₀, REQ₁, REL₀, REL₁ }
- [[tt]] = { NCS_0 , NCS_1 , CS_0 , CS_1 , REQ_0 , REQ_1 , REL_0 , REL_1 }
-
-
-
- - [[ff]] = ∅
- [[NCS_0]] = { NCS_0 } [[$\neg {\sf NCS}_0$]] = { ${\sf NCS}_1,$ ${\sf CS}_0,$ ${\sf CS}_1,$ ${\sf REQ}_0,$ ${\sf REQ}_1,$ ${\sf REL}_0,$ ${\sf REL}_1$ }
- [[$\mathsf{NCS}_0 \wedge \neg \mathsf{NCS}_1$]] = { NCS_0 } = [[NCS_0]]
- [[$\mathsf{NCS}_0 \vee \mathsf{NCS}_1$]] = { NCS_0 , NCS_1 }
- [[(NCS $_0$ \vee NCS $_1)$ \wedge (NCS $_0$ \vee REQ $_0)$]] = { NCS $_0$ }
- [[NCS $_{\textrm{0}}\wedge$ NCS $_{\textrm{1}}$]] = \varnothing = [[ff]]
- [[${\sf NCS}_0 \vee \neg {\sf NCS}_0$]] =
	- { NCS₀, NCS₁, CS₀, CS₁, REQ₀, REQ₁, REL₀, REL₁} = [[tt]]

HML logic (syntax)

tt constant "true" | f f constant "false" $\begin{bmatrix} 1 & \varphi_1 \end{bmatrix}$ disjunction $\begin{bmatrix} 1 & \varphi_1 \end{bmatrix}$ conjunction $\neg \phi_1$ negation $\vert \quad \langle \alpha \rangle$ φ₁ possibility $\left[\alpha \right] \varphi_1$ necessity

• Duality:
$$
[\alpha] \varphi = \neg \langle \alpha \rangle \neg \varphi
$$

- Let M = (S, A, $\mathcal{T},$ s_0). Interpretation [[ϕ]] \subseteq S:
- [[tt]] = *S*
- [[ff]] = ∅
- $\left[\left[\begin{array}{cc} \phi_1 \vee \phi_2 \end{array}\right]\right] = \left[\left[\begin{array}{cc} \phi_1 \end{array}\right]\right] \cup \left[\left[\begin{array}{cc} \phi_2 \end{array}\right]\right]$
- $\left[\left[\begin{array}{cc} \phi_1 \wedge \phi_2 \end{array}\right]\right] = \left[\left[\begin{array}{cc} \phi_1 \end{array}\right]\right] \cap \left[\left[\begin{array}{cc} \phi_2 \end{array}\right]\right]$
- $\left[\left[\begin{array}{c}\,\, -\circledcirc_1\end{array}\right]\right]$ = S \ $\left[\left[\begin{array}{c}\,\, \circ_1\end{array}\right]\right]$
- $\left[\left[\begin{array}{\langle}\alpha\end{array}\right]\phi_1\right]$ = { $s\in$ S | \exists (s, a, s') \in T . $\boldsymbol{a} \in \llbracket [\; \alpha \;] \rrbracket \wedge \boldsymbol{s^{\,\prime}} \in \llbracket [\; \phi_{1} \;] \rrbracket \; \}$
- $\left[\left[\begin{array}{c} \alpha \end{array}\right]\varphi_1\ \right]\right] = \left\{\ \mathsf{s}\in\mathsf{S}\,\mid\,\forall\,\,(\mathsf{s},\,\mathsf{a},\,\mathsf{s'})\in\mathsf{T}\right..$ $\boldsymbol{a} \in \llbracket [\; \alpha \;] \rrbracket \Rightarrow \boldsymbol{\mathsf{s'}} \in \llbracket [\; \phi_1 \;] \rrbracket \; \}$

Example (1/4)

Deadlock freedom: 〈 tt 〉 tt

Example (2/4)

Possible execution of a set of actions: $\;\; \langle\; \mathsf{CS}_0 \vee \mathsf{CS}_1 \;\rangle$ tt

Example (3/4)

Forbidden execution of a set of actions: $\;$ [NCS $_{\text{0}}\vee$ NCS $_{\text{1}}$] ff

Example (4/4)

Execution of an action sequence: \langle REQ $_0$ \rangle \langle CS $_0$ \rangle \langle REL $_0$ \rangle tt

Some identities

• Tautologies:

$$
-\langle \alpha \rangle \text{ ff} = \langle \text{ ff } \rangle \varphi = \text{ ff}
$$

$$
-[\alpha] \; \text{tt} = [\; \text{ff} \;] \; \phi = \text{tt}
$$

Distributivity of modalities over \lor and \land :

$$
- \langle \alpha \rangle \varphi_1 \vee \langle \alpha \rangle \varphi_2 = \langle \alpha \rangle (\varphi_1 \vee \varphi_2)
$$

$$
- \langle \alpha_1 \rangle \varphi \vee \langle \alpha_2 \rangle \varphi = \langle \alpha_1 \vee \alpha_2 \rangle \varphi
$$

$$
-[\alpha]\varphi_1\wedge[\alpha]\varphi_2=[\alpha](\varphi_1\wedge\varphi_2)
$$

$$
-[\alpha_1] \varphi \wedge [\alpha_2] \varphi = [\alpha_1 \vee \alpha_2] \varphi
$$

Monotonicity of modalities over ϕ and α :

$$
- (\varphi_1 \Rightarrow \varphi_2) \Rightarrow (\langle \alpha \rangle \varphi_1 \Rightarrow \langle \alpha \rangle \varphi_2) \wedge ([\alpha] \varphi_1 \Rightarrow [\alpha] \varphi_2)
$$

$$
- (\alpha_1 \Rightarrow \alpha_2) \Rightarrow (\langle \alpha_1 \rangle \varphi \Rightarrow \langle \alpha_2 \rangle \varphi) \wedge ([\alpha_2] \varphi \Rightarrow [\alpha_1] \varphi)
$$

Characterization of branching

Modal formula distinguishing between *M* 1 and *M* 2:

ϕ ⁼ [*money*] (〈 *coffee* 〉 tt [∧] 〈 *tea* 〉 tt)

$$
M_1 \mid = \varphi
$$
 and $M_2 \mid \neq \varphi$

Modal logics (summary)

- Are able to express simple branching-time properties involving states *s* ∈ *S* and actions *a* ∈ *A*
of an LTS
- But:
	- Take into account only a finite number of steps around a state (nesting of modalities)
	- Cannot express properties about transition sequences or subtrees of arbitrary length
- Example: the property

"from a state *^s*, there exists a sequence leading to a state *s'* where the action *a* is executable"

cannot be expressed in modal logic

(it would need a formula \langle tt \rangle \langle tt \rangle \ldots \langle tt \rangle \langle $\,$ \rangle \langle $\,$ \rangle tt)

Branching-time logics

- They are logics allowing to reason about the (infinite) execution trees contained in an LTS
- Basic temporal operators:
	- *Potentiality*

from a state, there exists an outgoing, finite transition sequence leading to a certain state

Inevitability

from a state, all outgoing transition sequences lead, after a finite number of steps, to certain states

Action-based Computation Tree Logic (ACTL) [DeNicola-Vaandrager-90]

ACTL logic (syntax)

tt | ff boolean constants | $\phi_1 \vee \phi_2$ | $\neg \phi_1$ connectors \Box E [$\phi_{1\alpha1}$ U ϕ_2] potentiality 1 \blacksquare E [$\phi_{1\alpha1}$ U_{α2} ϕ_2] potentiality 2 \Box A [$\phi_{1\alpha1}$ U ϕ_2 inevitability 1 \Box A [$\phi_{1\alpha1}$ U_{α2} ϕ_2 inevitability 2

ACTL logic (derived operators)

 EF_{α} φ = $\mathsf{E}\,$ [tt_{α} U φ AF_α ϕ = A [tt_α U ϕ

basic potentiality

basic inevitability

•
$$
AG_{\alpha} \varphi = \neg EF_{\alpha} \neg \varphi
$$

• $EG_{\alpha} \varphi = \neg AF_{\alpha} \neg \varphi$

invariance

trajectory

$$
\bullet \langle \alpha \rangle \varphi = E [t t_{ff} U_{\alpha} \varphi]
$$

$$
\bullet [\alpha] \varphi = \neg \langle \alpha \rangle \neg \varphi
$$

possibility

necessity

dualities

ACTL logic (semantics – potentiality operators)

Let M = (S, A, $\mathcal{T},$ s_0). Interpretation [[ϕ]] \subseteq S:

- $[[E [φ_{1α} U φ₂]]]= { s ∈ S | ∃s(=s₀) →}$ $^{a0}S_1 \rightarrow$ ^{a1}S₂→… . ∃k ≥ 0. ∀0 ≤ i < k. (s, ∈ [[φ₁]] ∧ $a_{\scriptscriptstyle i}$ ∈ [[α ∨ τ]]) ∧ $\bm{\mathsf{s}}_k \in \llbracket [\; \mathsf{\phi}_2 \;] \rrbracket \; \}$ $\begin{array}{ccc} \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ \uparrow & \phi_1 & \phi_1 & \phi_2 & \downarrow \\ \end{array}$ Φ_1 α ∨ τ α ∨ τ α ∨ τ α ∨ τ α ∨ τ
- $\left[\left[\begin{array}{c|c} \mathsf{E} & \mathsf{p}_{1\alpha 1} & \mathsf{U}_{\alpha 2} & \mathsf{p}_{2}\end{array}\right]\ \right]\ \right] = \ \left\{\ \mathsf{s} \in \mathsf{S} \,\mid\! \forall \mathsf{s} (\mathsf{=s}_0) \!\!\rightarrow\!\right\}$ $^{a0}S_1 \rightarrow$ ^{a1}S₂→… . ∃k ≥ 0. ∀0≤ i < k. (s, ∈ [[φ₁]] ∧ a_{i} ∈ [[α₁ ∨ τ]] ∧ $\mathsf{s}_k \in \llbracket [\,\, \mathsf{\phi}_1 \,\,] \rrbracket \wedge \mathsf{a}_k \in \llbracket [\,\, \alpha_2 \,\,] \rrbracket \wedge \mathsf{s}_{k+1} \in \llbracket [\,\, \mathsf{\phi}_2 \,\,] \rrbracket \,\, \}$

. . .

 φ_1 φ_1 φ_1 φ_1 φ_1 φ_1

 $\alpha_1 \vee \tau \wedge \alpha_1 \vee \tau \wedge \alpha_1 \vee \tau \qquad \qquad \alpha_1 \vee \tau \wedge \alpha_1 \vee \tau$

 φ_2

 α_{2}

ACTL logic (semantics – inevitability operators)

Example (1/4)

Potential reachability: \quad EF $_{\neg \; {\sf REL1}} \langle \; {\sf CS_0} \; \rangle$ tt

Example (2/4)

Inevitable reachability: \quad AF $_{\neg \text{ (RELO }\vee \text{ REL1})}$ \langle $\text{CS}_0 \vee \text{CS}_1$ \rangle tt

Example (3/4)

Invariance: $\|\mathsf{AG}_{\neg\;\mathsf{(NCSO\;\vee\;NCS1)}}\setminus\mathsf{NCS}_0\vee\mathsf{NCS}_1\;\rangle$ tt

Example (4/4)

 $\sf Trajectories: \quad \, \, EG_{_{-} \, CS0} \; [\; CS_{0} \;] \; ff$

Remark about inevitability

Inevitable reachability: all sequences going out of a state lead to states where an action *a* is executable

AF_{tt} 〈 *a* 〉 tt

- *Inevitable execution*: all sequences going out of a state contain the action *a*
- Inevitable execution \Rightarrow inevitable reachability but the converse does not hold:

$$
s \xrightarrow{b} a
$$
\n
$$
s \xrightarrow{b} s \xrightarrow{a} s
$$
\n
$$
s \xrightarrow{b} s
$$

• Inevitable execution must be expressed using the inevitability operators of ACTL:

$$
s \mid f \land [\, \mathsf{tt}_{\mathsf{tt}} \, \mathsf{U}_{a} \, \mathsf{tt} \,]
$$

Safety properties

• Informally, safety properties specify that "something bad never happens" during the execution of the system

• One way of expressing safety properties: *forbid undesirable execution sequences*

– Mutual exclusion:

$$
\neg \langle \; CS_0 \; \rangle \; EF_{\neg \text{RELO}} \langle \; CS_1 \; \rangle \; tt
$$
\n
$$
= [\; CS_0 \;] \; AG_{\neg \text{RELO}} \; [\; CS_1 \;] \; ff
$$

• In ACTL, forbidding a sequence is expressed by combining the [α] ϕ and AG $_{\alpha}$ ϕ operators

Liveness properties

- Informally liveness properties specify that "something good eventually happens" during the execution of the system
- One way of expressing liveness properties: *require desirable execution sequences / trees*
	- Potential release of the critical section: 〈 NCS 0〉 EFtt〈 REQ0〉 EFtt〈 REL 0〉 tt
	- Inevitable access to the critical section:
		- A [tt_{tt} U_{CS0} tt]
- In ACTL, the existence of a sequence is expressed by combining the $\langle \ \alpha \ \rangle$ ϕ and EF $_{\alpha}$ ϕ operators

Branching-time logics (summary)

- The temporal operators of ACTL: strictly more powerful than the HML modalities $\langle \alpha \rangle$ φ and $\lceil \alpha \rceil$ φ
- They allow to express branching-time properties on an unbounded depth in an LTS

But:

 They do not allow to express the unbounded repetition of a subsequence

• Example: the property

"from a state *^s*, there exists a sequence *a*.*b*.*a*.*b* ... *a*.*b* leading to a state *s*' where an action *c* is executable" cannot be expressed in ACTL

Regular logics

- They allow to reason about the regular execution sequences of an LTS
- Basic operators:
	- *Regular formulas*

two states are linked by a sequence whose concatenated actions form a word of a regular language

Modalities on sequences

from a state, some (all) outgoing regular transition sequences lead to certain states

Propositional Dynamic Logic (PDL) [Fischer-Ladner-79]

Regular formulas (syntax)

β ::= α one-step sequence | ni l empty sequence β_1 . concatenation β_1 | choice β_1 * \uparrow iteration (≥ 0 times) β_1 **+**iteration (≥ 1 times)

• Some identities:

 $nil = ff *$
Regular formulas (semantics)

Let M = (S, A, T , s₀). Interpretation [[β]] \subseteq S \times S:

\n- \n
$$
\bullet
$$
 [[α]] = { (s, s') | } $\exists a \in [[\alpha]]$. (s, a, s') \in 7 }\n
\n- \n \bullet [[nil]] = { (s, s) | s \in S } (identity)\n
\n- \n \bullet [[β_1 . β_2]] = [[β_1]] 0 [[β_2]] (composition)\n
\n- \n \bullet [[β_1 | β_2]] = [[β_1]] \cup [[β_2]] (union)\n
\n- \n \bullet [[β_1^*]] = [[β_1]] * (transitive refl. closure)\n
\n- \n \bullet [[β_1^*]] = [[β_1]] * (transitive closure)\n
\n

Example (1/3)

One-step sequences: $\mathsf{NCS}_0^\circ{\times}\mathsf{CS}_0$

Example (2/3)

Alternative sequences: (REQ $_0$. CS $_0$) | (REQ $_1$. CS $_1$)

Example (3/3)

Sequences with repetition: NCS $_0$. (\lnot NCS $_1)^*$. CS $_0$

PDL logic (syntax) tt | ff boolean constants $\begin{bmatrix} 1 & \varphi_1 \end{bmatrix}$ disjunction $\begin{bmatrix} 1 & \varphi_1 \end{bmatrix}$ conjunction $\neg \phi_1$ negation $\vert \langle \beta \rangle \varphi_1$ possibility $\left[\begin{array}{cc} \beta \end{array}\right] \varphi_1$ necessity

Duality: $\left[\begin{array}{cc} \beta \end{array}\right]\varphi = \neg\setminus\beta$ $\rangle \neg\phi$

- Let M = (S, A, $\mathcal{T},$ s_0). Interpretation [[ϕ]] \subseteq S:
- [[tt]] = *S*
- [[ff]] = ∅
- $\left[\left[\begin{array}{cc} \phi_1 \vee \phi_2 \end{array}\right]\right] = \left[\left[\begin{array}{cc} \phi_1 \end{array}\right]\right] \cup \left[\left[\begin{array}{cc} \phi_2 \end{array}\right]\right]$
- $\left[\left[\begin{array}{cc} \phi_1 \wedge \phi_2 \end{array}\right]\right] = \left[\left[\begin{array}{cc} \phi_1 \end{array}\right]\right] \cap \left[\left[\begin{array}{cc} \phi_2 \end{array}\right]\right]$
- $\left[\left[\begin{array}{c}\,\, -\circledcirc_1\end{array}\right]\right]$ = S \ $\left[\left[\begin{array}{c}\,\, \circ_1\end{array}\right]\right]$
- [[〈β〉ϕ 1]] = { *s* ∈ *S* | ∃ *s* ' $^{\prime}$ \in $\mathsf{S}% _{\mathsf{C}}$. $(S, S') \in [[\beta]] \wedge S' \in [[\phi_1]]$
- $\left[\left[\begin{array}{c} 1 & \beta \end{array}\right] \varphi_1 \right]$] = { $s \in S$ | $\forall s$ ' $^{\prime}$ \in S . $(\mathsf{s}, \mathsf{s}') \in [[\beta]] \Rightarrow \mathsf{s}' \in [[\varphi_1]]$

Example (1/2)

Potential reachability of critical section: \langle NCS $_0$. tt * . CS $_0$ \rangle tt

Example (2/2)

Mutual exclusion: [CS_0 . $(\mathsf{\neg REL}_0)^*$. CS_1] ff

Some identities

• Distributivity of regular operators over $\langle \ \rangle$ and $\lceil \ \rceil$:

$$
- \langle \beta_1 . \beta_2 \rangle \varphi = \langle \beta_1 \rangle \langle \beta_2 \rangle \varphi
$$

$$
- \langle \ \beta_1 \ | \ \beta_2 \ \rangle \ \phi = \langle \ \beta_1 \ \rangle \ \phi \ \vee \ \langle \ \beta_2 \ \rangle \ \phi
$$

$$
-\langle\ \beta^{\; \star}\ \rangle\ \phi=\phi\ \vee\ \langle\ \beta\ \rangle\ \langle\ \beta^{\; \star}\ \rangle\ \phi
$$

$$
-[\beta_1 \cdot \beta_2] \varphi = [\beta_1] [\beta_2] \varphi
$$

$$
-[\beta_1 \mid \beta_2] \varphi = [\beta_1] \varphi \wedge [\beta_2] \varphi
$$

$$
-[\beta^*]\varphi=\varphi\wedge[\beta][\beta^*]\varphi
$$

Potentiality and invariance operators of ACTL:

-
$$
\mathsf{EF}_{\alpha} \varphi = \langle \alpha^* \rangle \varphi
$$

-
$$
AG_{\alpha} \varphi = [\alpha^*] \varphi
$$

Fairness properties

• Problem: from the initial state of the LTS, there is no inevitable execution of action CS $_{\text{0}}\Rightarrow$ process P $_{\text{1}}$ can enter its critical section indefinitely often

- *Fair execution* of an action *^a*: from a state, all transition sequences that do not cycle indefinitely contain action *a*
- Action-based counterpart of the *fair reachability of predicates* [Queille-Sifakis-82]

Fair execution

Fair execution of an action *a* expressed in PDL:

fair (*^a*) = [(¬ *^a*)*] 〈 tt*. *a* 〉 tt

Equivalent formulation in ACTL:

fair (a) =
$$
AG_{-a}
$$
 EF_{tt} $\langle a \rangle$ tt

VTSA'08 - Max Planck Institute, Saarbrücken 47

Example

Fair execution of critical section: [$(\neg\mathsf{CS}_0)^*$] \langle tt*. CS_0 \rangle tt

Regular logics (summary)

• They allow a direct and natural description of regular execution sequences in LTSs

• More intuitive description of safety properties:

– Mutual exclusion:

$$
\begin{bmatrix} CS_0 \end{bmatrix} AG_{-RELO} \begin{bmatrix} CS_1 \end{bmatrix} ff = \begin{bmatrix} (in ACTL) \\ (S_0 \cdot (-REL_0)^* \cdot CS_1 \end{bmatrix} ff \qquad \qquad (in PDL)
$$

But:

- Not sufficiently powerful to express inevitability operators (expressiveness uncomparable with branching-time logics)

VTSA'08 - Max Planck Institute, Saarbrücken 49

Fixed point logics

- Very expressive logics ("temporal logic assembly languages") allowing to characterize finite or infinite tree-like patterns in LTSs
- Basic temporal operators:
	- *Minimal fixed point* (μ)

"recursive function" defined over the LTS: *finite* execution trees going out of a state

Maximal fixed point (ν)

dual of the minimal fixed point operator: *infinite* execution trees going out of a state

• Modal mu-calculus [Kozen-83, Stirling-01]

Modal mu-calculus(syntax)

• Duality: $\forall X \ . \ \varphi = \lnot \ \mu X \ . \ \lnot \ \varphi \ [\lnot X \ \prime \ X \]$

Syntactic restrictions

Syntactic monotonicity [Kozen-83]

- Necessary to ensure the existence of fixed points
- In every formula σX . φ (X), where $\sigma \in \{ \ \mu, \ \nu \ \}$, every free occurrence of X in φ falls in the scope of an even number of negations

μ X . \langle *a* \rangle X \vee \neg \langle *b* \rangle X

- Alternation depth 1 [Emerson-Lei-86]
	- Necessary for efficient (linear-time) verification
	- In every formula μX . φ (X), every maximal subformula ν *Y* . ϕ' (*Y*) of ϕ is closed

μ*X* . 〈 *a* 〉 ^ν *Y* . ([*b*] *Y* ∧ [*c*] *X*)

Modal mu-calculus(semantics)

- Let M = (S, A, T, s_0) and $\rho: X \rightarrow 2$ *S* a context mapping propositional variables to state sets. Interpretation [[ϕ]] ⊆ *S*:
- [[*X*]] ρ ⁼ ρ (*X*)

$$
\bullet [[\mu X \cdot \varphi]] \rho = \bigcup_{k \geq 0} \Phi_{\rho}^k (\emptyset)
$$

• [[vX.
$$
\varphi
$$
]] $\rho = \bigcap_{k \geq 0} \Phi_{\rho}^k$ (S)
where $\Phi_{\rho} : 2^s \to 2^s$,

$$
\Phi_{\rho}(\mathsf{U}) = [[\varphi]] \rho [\mathsf{U} / X]
$$

Minimal fixed point

Potential reachability of an action *a* (existence of a sequence leading to a transition labeled by *^a*):

μ*X* . 〈 *a* 〉 tt [∨] 〈 tt 〉 *X*

Associated functional:

Φ (*U*) = [[〈 *a* 〉 tt [∨] 〈 tt 〉 *X*]] [*U* / *X*]

Evaluation on an LTS:

Example

Potential reachability: μX . \langle CS₀ \rangle tt \lor \langle $\neg(\textsf{REL}_1 \lor \textsf{REL}_0)$ \rangle X

Maximal fixed point

Infinite repetition of an action *a* (existence of a cycle containing only transitions labeled by *^a*):

 \vee *X* . \langle *a* \rangle *X* .

Associated functional:

 Φ (U) = [[$\langle a \rangle$ *X*]] [*U / X*]

Evaluation on an LTS:

Example

Infinite repetition: $\mathsf{v} \mathsf{X}$. $\mathsf{\langle} \ \mathsf{NCS}_1 \vee \mathsf{REQ}_1 \vee \mathsf{CS}_1 \vee \mathsf{REL}_1 \ \mathsf{\rangle} \ \mathsf{X}$

Exercise

Evaluate the formula: $\,\,\mathsf{\mu} X$. \langle CS $_0$ \rangle tt \vee ([NCS $_0$] ff \wedge \langle tt \rangle X)

Some identities

Description of (some) ACTL operators:

$$
- E [\varphi_{1\alpha 1} U_{\alpha 2} \varphi_2] = \mu X \cdot \varphi_1 \wedge (\langle \alpha_2 \rangle \varphi_2 \vee \langle \alpha_1 \rangle X)
$$

$$
- A [\varphi_{1\alpha1} U_{\alpha2} \varphi_2] = \mu X \cdot \varphi_1 \wedge \langle \text{ } tt \rangle \text{ } tt \wedge [\neg(\alpha_1 \vee \alpha_2)] \text{ } ff
$$

$$
\wedge [\neg \alpha_1 \wedge \alpha_2] \varphi_2 \wedge [\neg \alpha_2] X \wedge [\alpha_1 \wedge \alpha_2] (\varphi_2 \vee X)
$$

$$
- EF_{\alpha} \varphi = \mu X \cdot \varphi \vee \langle \alpha \rangle X
$$

- ΑF $_{\alpha}$ φ = μX . φ \lor (\langle tt \rangle tt \land [$\lnot\alpha$] ff \land [α] X)

Description of the PDL operators:

$$
- \langle \beta^* \rangle \varphi = \mu X \cdot \varphi \vee \langle \beta \rangle X
$$

$$
-[\beta^*] \varphi = vX \cdot \varphi \wedge [\beta] X
$$

Inevitable reachability

Inevitable reachability of an action *a*:

access (a) = AF_{tt}
$$
\langle a \rangle
$$
tt =

 μX . \langle $\, a \, \rangle$ tt \lor $\langle \langle$ tt \rangle tt \land [tt] X)

Associated functional:

 Φ (*U*) = [[⟨ *α* ⟩ tt ∨ (⟨ tt ⟩ tt ∧ [tt] *X*)]] [*U / X*] Evaluation on an LTS:

Inevitable execution

Inevitable execution of an action *a*:

$$
inev (a) = \mu X . \langle tt \rangle tt \wedge [\neg a] X
$$

Associated functional:

Φ (*U*) = [[〈 tt 〉 tt ∧ [¬ *a*] *X*]] [*U* / *X*]

Evaluation on an LTS:

Example

Inevitable execution: $\mathsf{\mu} X$. \langle tt \rangle tt \wedge [$\neg \mathsf{CS}_0$] X

Fair execution

Fair execution of an action *a*:fair (*^a*) = [(¬ *^a*)*] 〈 tt*. *a* 〉 tt = ν*X* . 〈 tt*. *a* 〉 tt ∧ [[¬]*^a*] *X* Associated functional:Φ (*U*) = [[〈 tt*. *a* 〉 tt ∧ [[¬]*^a*] *X*]] [*U* / *X*] Evaluation on an LTS:

Example

Fair execution: [$(-\mathsf{CS}_0)^*$] \langle tt*. CS_0 \rangle tt

Fixed point logics (summary)

- They allow to encode virtually all TL proposed in the literature
- Expressive power obtained by *nesting* the fixed point operators:

〈 (*a* . *b**)* . *c* 〉 tt =

μ*X* . 〈 *c* 〉 tt [∨] 〈 *a* 〉 μ *Y* . (*X* [∨] 〈 *b* 〉 *Y*)

Alternation depth of a formula: degree of mutual recursion between μ and ν fixed points

Example of alternation depth 2 formula:

 \vee *X* . \Diamond *z* \vee *z* \vee *z* \vee \vee

Some verification tools(for action-based logics)

CWB (Edinburgh) and

- Concurrency Factory (State University of New York)
	- Modal μ-calculus (fixed point operators)
- JACK (University of Pisa, Italy)
	- μ-ACTL (modal μ-calculus combined with ACTL)

CADP / Evaluator 3.x (INRIA Rhône-Alpes / VASY)

 Regular alternation-free μ-calculus (PDL modalities and fixed point operators)

Extensions of µ-calculus with data

- Temporal logics (ACTL, PDL, ...) and µ-calculi
	- No data manipulation (basic LOTOS, pure CCS, ...)
	- Too low-level operators (complex formulas)
	- → Extended temporal logics are needed in practice
- Several μ-calculus extensions with data:
	- For polyadic pi-calculus [Dam-94]
	- For symbolic transition systems [Rathke-Hennessy-96]
	- For μCRL [Groote-Mateescu-99]
	- For full LOTOS [Mateescu-Thivolle-08]

Why to handle data?

• Some properties are cumbersome to express without data (e.g., action counting):

$$
\circlearrowleft \xrightarrow{b} \circlearrowright \xrightarrow{b} \circlearrowright \xrightarrow{a} \circlearrowright
$$

 $\langle\, {\,b\,}\,\rangle\, \langle\, {\,b\,}\,\rangle\, \langle\, {\,b\,}\,\rangle\, \langle\, a\, \rangle$ tt or 〈 *b* {3} . *a* 〉 tt ?

LTSs produced from value-passing process algebraic languages (full CCS, LOTOS, ...) contain values on transition labels

M**odel** C**hecking** L**anguage**

• Based on EVALUATOR 3.5 input language

- standard µ-calculus
- regular operators

Data-handling mechanisms

- data extraction from LTS labels
- regular operators with counters
- variable declaration
- parameterized fixed point operators
- expressions

Constructs inspired from programming languages

Parameterized modalities

Parameterized fixed points

- P contains « calls » X (E')
- Allows to perform computations and store intermediate results while exploring the PLTS

Example

Counting of actions (e.g., clock ticks):

Quantifiers

Universal quantifier: forall x:T among { ${\sf E}_1 \, ...\, {\sf E}_2$ } . P

Î *shorthands for large disjunctions and conjunctions*

Example

Broadcast of messages:

forall msg:Nat among { 1 ... 10 } . mu X . (< {SEND !msg} > true or < true > X)

Counting operators (regular formulas) } *repetition E times* ... } *repetition at least E 1 times* } *repetition between E 1 and E2 times*

Some identities:

 $\mathsf{R}\; \{\; \mathsf{E}_1\; ...\; \mathsf{E}_2\;$

R { E

 $\mathsf{R}\; \{\; \mathsf{E}_1$

$$
nil = false * \qquad R + = R \cdot R^*
$$

\n
$$
R^* = R \{ 0 ... \} \qquad R ? = R \{ 0 ... 1 \}
$$

\n
$$
R + = R \{ 1 ... \} \qquad R \{ E \} = R \{ E ... E \}
$$

Example (action counting revisited)

• Formulation using counting operators:

[{LEVEL ? l:Nat where l > 10} . (not ALARM) { 16 }] false

Example (safety of a n-place buffer)

• Formulation using extended regular operators: [true* . ((not OUTPUT)* . INPUT) { ⁿ + 1 }] false

Formulation using parameterized fixed points:

```
nu X . (nu Y 
(
c:Nat:=
0) . (
               [not OUTPUT
] Y 
(
c) and
               if c 
= n+1 then
[INPUT] false
                     else
[INPUT
] Y 
(c+1
)
               end if) 
   and [ true
]
X
)
```


Looping operator (from PDL-delta)

 \varDelta R operator added to PDL to specify infinite behaviours [Streett-82] R+

MCL syntax: < R > @

cycle containing one or more repetitions of R

. . .

Examples:

- process overtaking
	- $[~\mathsf{REQ}_{0}~]$ < (not $\mathsf{GET}_{0})^{*}$. REQ_{1} . (not $\mathsf{GET}_{0})^{*}$. GET_{1} > @

. . .

R*

Büchi acceptance condition

< true* . if Paccepting then true end if > @

 \rightarrow allows to encode LTL model checking

Adequacy with equivalence relations

A temporal logic *L* is adequate with an equivalence relation \approx iff for all LTSs \mathcal{M}_1 and \mathcal{M}_2

 M ₁ ≈ M ₂ iff ∀φ ∈ L . (M ₁ |= φ ⇔ M ₂ |= φ) HML:

- Adequate with strong bisimulation
- HMLU (HML with Until): weak bisimulation
- ACTL-X (fragment presented here):
	- Adequate with branching bisimulation
- PDL and modal mu-calculus:
	- Adequate with strong bisimulation
	- Weak mu-calculus: weak bisimulation

 $\left<\left<\ \ \right>\right>\left<\ \varphi \ =\ \left<\ \tau^\star\ \right>\,\phi$

 $\left<\right<\right.\left<\right.\left.\right.\left.\left.\alpha\right.\left.\right>\right>\left.\left.\circ\right.\left.\left.\left.\circ\right.\left.\left.\left.\circ\right.\right.\left.\left.\left.\circ\right.\right.\left.\left.\left.\circ\right.\right.\right.\left.\left.\left.\circ\right.\left.\left.\right.\right.\right.\right>\right>\left.\circ$

On-the-fly verification

- **•** Principles
- Alternation-free boolean equation systems
- Local resolution algorithms
- Applications:
	- Equivalence checking
	- Model checking
	- Tau-confluence reduction
- Implementation and use

Principle of explicit-state verification

On-the-fly verification

• Incremental construction of the state space

- Way of fighting against state explosion
- Detection of errors in complex systems
- "Traditional" methods:
	- Equivalence checking
	- Model checking
- Solution adopted:
	- Translation of the verification problem into the resolution of a *boolean equation system* (BES)
	- Generation of *diagnostics* (fragments of the state space) explaining the result of verification

Boolean equation systems (syntax)

- A BES is a tuple $B = (x, M_1, ..., M_n)$, where
- *x*∈ *X* : main boolean variable
- \mathcal{M}_i = { $\pmb{\chi}_\text{j}$ = σ_i *op*_j $\pmb{\mathcal{X}}_\text{j}$ $\pmb{\}}_\text{j}$ \in [1, mi] : equation blocks
	- $\sigma_i \in \{ \mu, \nu \}$: fixed point sign of block i
	- *op*^j [∈] { ∨, ∧ } : operator of equation j
	- *^X*^j [⊆] *X* : variables in the right-hand side of equation j
	- F = ∨∅ (empty disjunction), T = ∧∅ (empty conjunction)
	- $\ x_j$ depends upon \pmb{x}_k iff $\pmb{x}_\mathsf{k} \in \pmb{X}_\mathrm{j}$
	- $\,$ M_i depends upon M_l iff a $\boldsymbol{x}_{\text{j}}$ of M_i depends upon a $\boldsymbol{x}_{\text{k}}$ of M_l
	- *Closed* block: does not depend upon other blocks

Al*ternation-free* BES: M, depends upon M_{i+1} ... M_n

Particular blocks

Acyclic block:

- No cyclic dependencies between variables of the block
- Var. x_i disjunctive (conjunctive): *op*_i = ∨ (*op*_i = ∧)

Disjunctive block:

- contains disjunctive variables
- and conjunctive variables
	- with a single non constant successor in the block (the last one in the right-hand side of the equation)
	- **Exall other successors are constants or free variables** (defined in other blocks)
- *Conjunctive* block: dual definition

Boolean equation systems (semantics)

- Context: partial function $\delta: \mathsf{X} \to \operatorname{\mathsf{Bool}}$
- Semantics of a boolean formula:
	- [[*op* { x_1 , ..., x_p }]] δ = *op* (δ (x_1), ..., δ (x_p))
- Semantics of a block:
	- $\left[\right] \left[\right. \left\{ \right. {\vphantom{\big[}\smash{\! \begin{array}{c}\!\!\! x_j \!\!\!\!\! &\!\!\!\! -} \mathbf{\sigma}\; op_j\; {\vphantom{\big[}\smash{\! \begin{array}{c}\!\!\!\! x_j \!\!\!\!\! &\!\!\!\! -} \end{array} } \mathbf{\sigma}\! \left(\! \begin{array}{c}\!\!\!\!\! x_j \!\!\!\!\! &\!\!\!\! x_j \!\!\!\!\! &\!\!\!\! -} \end{array} \right]_{j\, \in \, [1,\, m]} \left[\begin{array}{c}\!\!\!\!\! x_j \!\!\!\!\! &\!\!\!\! -}$
	- $~\cdot~$ $\Phi_{\delta}:\mathsf{Bool}^{\mathsf{m}} \to \mathsf{Bool}^{\mathsf{m}}$
	- $-\Phi_{\delta}$ $(b_1, ..., b_m)$ = ([[$op_j X_j$]] ($\delta \oplus [b_1/x_1, ..., b_m/x_m])$)_{j ∈ [1, m]}
- Semantics of a BES:
	- $-$ [[(*x*, *M*₁, ..., *M*_n)]] = δ_1 (*x*)
	- $\delta_{\sf n}$ = [[$M_{\sf n}$]] []
	- δ_i = ([[M_i]] δ_{i+1}) \oplus δ_{i+1}

(*M* n closed) $(M_i$ depends upon M_{i+1} ... M_n)

Local resolution

- Alternation-free BES $B = (x, M_1, ..., M_n)$
- Primitive: compute a variable of a block
	- A resolution routine *R*i associated to *M*i
	- *R*i (*^x*j) computes the value of *^x*^j in *M*i
	- Evaluation of the rhs of equations + substitution
	- Call stack R_1 $(x) \rightarrow ... \rightarrow R_n$ (x_k) bounded by the depth of the dependency graph between blocks
	- "Coroutine-like" style: each R_i must keep its context
- Advantages:
	- Simple resolution routines (a single type of fixed point)
	- Easy to optimize for particular kinds of blocks

Example

Local resolution algorithms

- Representation of blocks as *boolean graphs* [Andersen-94]
- To a block M = { $x_{j} =_{\mu} op_{j} X_{j}$ } $_{j}$ in [1, m] we associate the boolean graph *G* = (*V*, *E*, *L,* μ), where:
	- $-V = \{x_1, ..., x_m\}$: set of vertices (variables)
	- E = { (x_i, x_j) | $x_j \in X_i$ }: set of edges (dependencies)
	- *L* : *V* Æ { ∨, ∧ }, *L* (*^x*j) = *op*j: vertex labeling

Principle of the algorithms:

- *Forward* exploration of *G* starting at *x* ∈ *V*
- *Backward* propagation of stable (computed) variables
- Termination: *x* is stable or *G* is completely explored

Three effectiveness criteria[Mateescu-06]

For each resolution routine *R*:

- A. The worst-case complexity of a call *R* (*^x*) must be *O* (| *V*|+| *E*|) \rightarrow linear-time complexity for the overall BES resolution
- B. While executing *R* (*^x*), every variable explored must be « linked» to *x* via unstable variables Î *graph exploration limited to "useful" variables*
- C. After termination of *R* (*^x*), all variables explored must be stable
	- → keep resolution results between subsequent calls of R

Algorithm A0 (general)

- DFS of the boolean graph
- Satisfies A, B, C
- Memory complexity *O* (| *V*|+| *E*|)
- Optimized version of [Andersen-94]
- Developed for model checking regular alternation-freeμ-calculus [Mateescu-Sighireanu-00,03]

Algorithm A1 (general)

- BFS of the boolean graph
- Satisfies A, C (risk of computing useless variables)
- Slightly slower than AO
- Memory complexity *O* (| *V*|+| *E*|)
- Low-depth diagnostics

Algorithm A2 (acyclic)

- DFS of the boolean graph
- Back-propagation of stable variables on the DFS stack only
- Satisfies A, B, C
- Avoids storing edges
- Memory complexity *O* (| *V*|)
- Developed for trace-based verification [Mateescu-02]

Algorithm A3 / A4 (disjunctive / conjunctive)

- DFS of the boolean graph
- **•** Detection and stabilization of SCCs
- Satisfies A, B, C
- Avoids storing edges
- Memory complexity *O* (| *V*|)
- Developed for model checking CTL, ACTL, and PDL

Caesar_Solve library of CADP [Mateescu-03,06]

- **•** Diagnostic generation features [Mateescu-00]
- Used as verification back-end for Bisimulator, Evaluator 3.5 and 4.0, Reductor 5.0

Strong equivalence

- $M_1 = (Q_1, A, T_1, q_{01}), M_2 = (Q_2, A, T_2, q_{02})$ \approx \subseteq $\mathsf{Q}_{\mathsf{1}} \times \mathsf{Q}_{\mathsf{2}}$ is the maximal relation s.t. $p \approx q$ iff
	- ∀ *a* ∈ *A*.∀ *p* → *ap* ' $f \in T_1$. $\exists q \rightarrow_q q'$ f^{\prime} \in $T^{}_{2}$. p^{\prime} $'$ \approx q' and
	- ∀ *a* ∈ *A*.∀ *q* → *aq* ' $f \in \mathcal{T}_2$. $\exists p \rightarrow_a p'$ $f \in T_1$. p' $'$ \approx q'

 $M_1 \approx M_2$ iff *q*01≈ *q*02

Translation to a BES

Principle: *p* ≈ *q* iff *Xp*,*^q* is true General BES:

$$
\begin{pmatrix}\nX_{p,q} & =_v (\wedge_{p \to a p'} \vee_{q \to a q'} X_{p',q'}) \\
\wedge & \wedge \\
(\wedge_{q \to a q'} \vee_{p \to a p'} X_{p',q'})\n\end{pmatrix}
$$

Simple BES:

$$
\begin{cases}\nX_{p,q} =_{\mathbf{v}} (\wedge_{p \to a p}, Y_{a,p',q}) \wedge (\wedge_{q \to a q}, Z_{a,p,q'}) \\
Y_{a,p',q} =_{\mathbf{v}} \vee_{q \to a q}, X_{p',q'} & p \leq q \\
Z_{a,p,q'} =_{\mathbf{v}} \vee_{p \to a p}, X_{p',q'} & p \leq q \\
\end{cases}
$$
 (preorder)

Tau*.a and safety equivalences

 $M_1 = (Q_1, A_{\tau}, T_1, q_{01}), M_2 = (Q_2, A_{\tau}, T_2, q_{02})$ ${\cal A}_{\tau} = {\cal A} \, \cup \, \{ \, \tau \, \}$

Tau*.a equivalence:

$$
\begin{cases} X_{p,q} =_{\mathbf{v}} (\wedge_{p \to \tau^* \cdot a \ p'} \vee_{q \to \tau^* \cdot a \ q'} X_{p',q'}) \\ \wedge \\ (\wedge_{q \to \tau^* \cdot a \ q'} \vee_{p \to \tau^* \cdot a \ p'} X_{p',q'}) \end{cases}
$$

• Safety equivalence:

$$
\begin{cases}\nX_{p,q} =_{\mathbf{v}} Y_{p,q} \wedge Y_{q,p} \\
Y_{p,q} =_{\mathbf{v}} \wedge_{p \to \tau^* \cdot a} p' \vee_{q \to \tau^* \cdot a} q' \ Y_{p',q'}\n\end{cases}
$$

Observational and branching equivalences

Observational equivalence:

$$
\begin{cases} X_{p,q} =_{\mathbf{v}} (\wedge_{p \to \tau} p \vee_{q \to \tau^* q} X_{p',q}) \wedge (\wedge_{p \to a} p \vee_{q \to \tau^* a, \tau^* q} X_{p',q}) \\ \wedge \\ (\wedge_{q \to \tau} q \vee_{p \to \tau^* p} X_{p',q}) \wedge (\wedge_{q \to a} q \vee_{p \to \tau^* a, \tau^* p} X_{p',q}) \end{cases}
$$

• Branching equivalence:

$$
\begin{cases} X_{p,q} =_{\mathbf{v}} \wedge_{p \to b} p \cdot ((b = \tau \wedge X_{p',q}) \vee \vee_{q \to \tau^* q' \to b} q \cdot (X_{p,q'} \wedge X_{p',q'})) \\ \wedge \\ \wedge_{q \to b} q \cdot ((b = \tau \wedge X_{p,q'}) \vee \vee_{p \to \tau^* p' \to b} p \cdot (X_{p',q} \wedge X_{p'',q'}) \end{cases}
$$

Equivalence checking (summary)

- *General* boolean graph:
	- All equivalences and their preorders
	- Algorithms A0 and A1 (counterexample depth \downarrow)
- *Acyclic* boolean graph:
	- Strong equivalence: one LTS acyclic
	- τ*. *a* and safety: one LTS acyclic (^τ-circuits allowed)
	- Branching and observational: both LTS acyclic
	- Algorithm A2 (memory \downarrow)
- *Conjunctive* boolean graph:
	- Strong equivalence: one LTS deterministic
	- Weak equivalences: one LTS deterministic and τ -free
	- Algorithm A4 (memory \downarrow)

Model checking (principle)

On-the-fly model checking in CADP (Evaluator 3.x)

Translation to PDL with recursion

- State formula (expanded): nu *Y*0 . [true* . SEND] mu Y₁. \langle true \rangle true and [not RECV] Y₁
- PDLR specification [Mateescu-Sighireanu-03]:

$$
\begin{array}{|c|c|}\n\hline\nY_0 =_{nu} [true^* . SEND] Y_1\n\end{array}
$$
\n
$$
\begin{array}{|c|c|}\n\hline\nY_1 =_{mu} \langle true \rangle true and [not REV] Y_1\n\end{array}
$$

Simplification

PDLR specification:

$$
Y_0 =_{nu} [true^* . SEND] Y_1
$$

$$
Y_1 =_{mu} \langle true \rangle true and [not RECV] Y_1
$$

Simple PDLR specification:

$$
\begin{bmatrix}\nY_0 =_{nu} \left[\text{ true}^* \ . \ \text{SEND} \ \right] Y_1\n\end{bmatrix}\n\begin{bmatrix}\nY_1 =_{mu} Y_2 \ \text{and} \ Y_3\n\end{bmatrix}
$$
\n
$$
\begin{bmatrix}\nY_2 =_{mu} \ \text{true} \ \text{true} \ \text{true}\n\end{bmatrix}
$$
\n
$$
\begin{bmatrix}\nY_3 =_{mu} \left[\text{ not RECV} \ \right] Y_1\n\end{bmatrix}
$$

$$
\begin{bmatrix}\nY_0 =_{nu} Y_4 \text{ and } Y_5 \\
Y_4 =_{nu} \text{ [SEND] } Y_1 \\
Y_5 =_{nu} \text{ [true] } Y_0\n\end{bmatrix}
$$
\n
$$
\begin{bmatrix}\nY_1 =_{mu} Y_2 \text{ and } Y_3 \\
Y_2 =_{mu} \langle \text{ true } \rangle \text{ true} \\
Y_3 =_{mu} \text{ [not RECV] } Y_1\n\end{bmatrix}
$$
\n
$$
RECV
$$
\n
$$
\begin{bmatrix}\nS_0 \\
SEND \\
S_D\n\end{bmatrix}
$$
\n
$$
TIMEOUT
$$
\n
$$
S_2
$$

Translation to BESs

Boolean variables: *x_{i, j}* ≡ *s_i* ⊨ *Yj*

*x*_{0,0} = *, x*_{0,4} ∧ *x*_{0,5} *^x*0,4 = ν *^x*1,1 *^x*0,5 = ν *^x*1,0 *x*_{1,0} =_{*ν*} *x*_{1,4} ∧ *x*_{1,5} $x_{1,4} =_{\text{v}}$ true *x*_{1,5} =_√ *x*_{2,0} ∧ *x*_{3,0} *x*_{2,0} =_{*ν*} *x*_{2,4} ∧ *x*_{2,5} $\bm{x}_{2,4} =$ true *^x*2,5 = ν *^x*0,0 $X_{3,0} = V_{0} X_{3,4} \wedge X_{3,5}$ $x_{3,4} =$ _v true *^x*3,5 = ν *^x*0,0

$$
\begin{array}{|c|}\n\hline\nX_{1,1} = \mu X_{1,2} \wedge X_{1,3} \\
X_{1,2} = \mu \text{ true} \\
X_{1,3} = \mu X_{2,1} \wedge X_{3,1} \\
X_{2,1} = \mu X_{2,2} \wedge X_{2,3} \\
X_{2,2} = \mu \text{ true} \\
X_{2,3} = \mu \text{ true} \\
X_{3,1} = \mu X_{3,2} \wedge X_{3,3} \\
X_{3,2} = \mu \text{ true} \\
X_{3,3} = \mu X_{0,1} \\
X_{0,1} = \mu X_{0,2} \wedge X_{0,3} \\
X_{0,2} = \mu \text{ true} \\
X_{0,3} = \mu X_{1,1}\n\end{array}
$$

Local BES resolution with diagnostic

Additional operators

- Mechanisms for macro-definition (overloaded) and library inclusion
- Libraries encoding the operators of CTL and ACTL EU (φ_1, φ_2) = mu Y . φ_2 or $(\varphi_1$ and \langle true \rangle Y) EU $(\phi_1, \ \alpha_1, \ \alpha_2$, $\phi_2)$ = mu \textsf{Y} . $\langle \ \alpha_2 \ \rangle$ ϕ_2 or $(\phi_1$ and $\langle \ \alpha_1 \ \rangle$ $\textsf{Y})$
- Libraries of high-level property patterns [Dwyer-99]
	- Property classes:
		- Absence, existence, universality, precedence, response
	- Property scopes:
		- Globally, before *^a*, after *^a*, between *a* and *b*, after *a* until *b*
	- More info:
		- <http://www.inrialpes.fr/vasy/cadp/resources>

Disjunctive BES

Disjunctive boolean graph:

Potentiality operator of CTL

E
$$
[\varphi_1 \cup \varphi_2] = \mu X \cdot \varphi_2 \vee (\varphi_1 \wedge \langle T \rangle X)
$$

\n{ $X = \mu \varphi_2 \vee Y$, $Y = \mu \varphi_1 \wedge Z$, $Z = \mu \langle T \rangle X$ }
\n{ $X_s = \mu \varphi_{2s} \vee Y_s$, $Y_s = \mu \varphi_{1s} \wedge Z_s$, $Z_s = \mu \vee_{s \to s'} X_s$ }
\n- *Possibility* modality of PDL

$$
\langle (a \mid b)^{*} \cdot c \rangle T
$$

\n
$$
\{ X = \langle c \rangle T \vee \langle a \rangle X \vee \langle b \rangle X \}
$$

\n
$$
\{ X_{s} = \langle \vee_{s \to c s'} T \rangle \vee \langle \vee_{s \to a s'} X_{s'} \rangle \vee \langle \vee_{s \to b s'} X_{s'} \rangle \}
$$

\nAlgorithm A3 (memory \downarrow)

Linear-time model checking (looping operator of PDL-delta)

- **Translation in mu-calculus of alternation** depth 2 [Emerson-Lei-86]:
	- $<$ R $>$ @ = nu X $.$ $<$ R $>$ X

if R contains *-operators, the formula is ofalternation depth 2

• But still checkable in linear-time:

- Mark LTS states potentially satisfying X
- Leads to marked variables in the disjunctive BES
- Computation of boolean SCCs containing marked variables
- A3*cyc* algorithm [Mateescu-Thivolle-08]
	- Can serve for LTL model checking
	- Allows linear-time handling of repeated invocations

Model checking of data-basedproperties (Evaluator 4.0)

Every SEND is followed by a RECV after 2 steps:

```
[ true* . SEND ] < true { 2 } . RECV > true
=
nu X . ( [ SEND ] mu Y 
(
c:Nat :=
2) .
                            if c 
= 0 then < RECV > true 
                                   else < true > Y 
(c 
                                                       –
1) 
                            end if
```
and [true] X)

VTSA'08 - Max Planck Institute, Saarbrücken 118

Translation into HMLR

Translation intoBES and resolution

Divergence

• In presence of data parameters of infinite types, termination of model checking is not guaranteed anymore

Conjunctive BES

Conjunctive boolean graph:

Inevitability operator of CTL

A [φ₁ U φ₂] = μX . φ₂ ∨ (φ₁ ∧ ⟨ T ⟩ T ∧ [T] *X*) $\{ \ X =_{_{\mu }} \ \varphi_2 \ \lor \ Y \ \ , \ \ Y =_{_{\mu }} \ \varphi_1 \ \land \ Z \ \land \ [\ \ \mathsf{T} \ \] \ X \ , \ \ Z =_{_{\mu }} \ \langle \ \mathsf{T} \ \rangle \ \mathsf{T} \ \}$ { *X*s $=$ _µ $\varphi_{2s} \vee Y_s$, Y_s =_μ φ_{1s} ∧ **Z**_s ∧ (∧_{s→s}, **X**_s,), **Z**_s $=$ μ ∨ *s* Æ*s'* T } *Necessity* modality of PDL

$$
[(a \mid b)^{*} \cdot c]F
$$

$$
\{X = [c] F \wedge [a] X \wedge [b] X \}
$$

$$
\{X_{s} = [(\wedge_{s \to c s}, F) \wedge (\wedge_{s \to a s}, X_{s'}) \wedge (\wedge_{s \to b s}, X_{s'}) \}
$$

Algorithm A4 (memory \downarrow)

Acyclic BES

Acyclic boolean graph:

Acyclic LTS and *guarded* formulas [Mateescu-02]

• Handling of CTL (and ACTL) operators:

- **Ε [**φ₁ **U** φ₂] = μ**X** . φ₂ ∨ (φ₁ ∧ ⟨ Τ ⟩ **Χ**)
- Α [φ₁ U φ₂] = μΧ . φ₂ ∨ (φ₁ ∧ ⟨ Τ ⟩ Τ ∧ [Τ] *Χ*)

• Handling of full mu-calculus

- Translation to guarded form
- Conversion from maximal to minimal fixed points [Mateescu-02]
- Algorithm A2 (memory \downarrow)

Algorithm A1 vs. A3/A4 (execution time – CADP demos)

Algorithm A1 vs. A3/A4 (memory consumption – CADP demos)

Algorithm A1 vs. A3/A4 (diagnostic size – BRP protocol)

Model checking (summary)

General boolean graph:

- Any LTS and any alternation-free μ -calculus formula
- Algorithms A0 and A1 (diagnostic depth \downarrow)
- *Acyclic* boolean graph:
	- Acyclic LTS and guarded formula (CTL, ACTL)
	- Acyclic LTS and μ-calculus formula (via reduction)
	- Algorithm A2 (memory \downarrow)
- *Disjunctive/conjunctive* boolean graph:
	- Any LTS and any formula of CTL, ACTL, PDL
	- Algorithm A3/A4 (memory \downarrow)
	- Matches the best local algorithms dedicated to CTL [Vergauwen-Lewi-93]

Partial order reduction

^τ-confluence [Groote-vandePol-00]

- Form of partial-order reduction defined on LTSs
- Preserves branching bisimulation
- **•** Principle
	- Detection of τ-confluent transitions
	- Elimination of "neighbour" transitions (*^τ-prioritisation*)
- On-the-fly LTS reduction
	- Direct approach [Blom-vandePol-02]
	- BES-based approach [Pace-Lang-Mateescu-03]
		- Define τ-confluence in terms of a BES
		- Detect ^τ-confluent transitions by locally solving the BES
		- Apply ^τ-prioritisation and compression on sequences

Translation to a BES

Tau-prioritisation and compression

In practice: reductions of a factor 10² - 10³ [Mateescu-05]

VTSA'08 - Max Planck Institute, Saarbrücken 130

Model checking using A3/A4

(effect of τ-confluence reduction – time – Erathostene's sieve)

Model checking using A3/A4

(effect of τ-confluence reduction – memory – Erathostene's sieve)

Checking branching bisimulation (effect of τ-confluence reduction – time – BRP protocol)

VTSA'08 - Max Planck Institute, Saarbrücken 133

Checking branching bisimulation (effect of τ-confluence reduction – memory – BRP protocol)

VTSA'08 - Max Planck Institute, Saarbrücken 134

On-the-fly verification (summary)

Already available:

- Generic Caesar_Solve library [Mateescu-03,06]
- 9 local BES resolution algorithms (A8 added in 2008)
- Diagnostic generation features
- Applications: Bisimulator, Evaluator 3.5, Reductor 5.0

Ongoing:

- Distributed BES resolution algorithms on clusters of machines [Joubert-Mateescu-04,05,06]
- New applications
	- Test generation
	- –- Software adaptation
	- Discrete controller synthesis

Case study

- SCSI-2 bus arbitration protocol
- Description in LOTOS
- Specification of properties in TL
- Verification using Evaluator 3.5 and 4.0
- Interpretation of diagnostics

VTSA'08 - Max Planck Institute, Saarbrücken 136

SCSI-2 bus arbitration protocol

- Prioritized arbitration mechanism, based on static IDs on bus (devices numbered from 0 to n - 1)
- Fairness problem (starvation of low-priority disks)

Architecture of the system

```
DISK [ARB, CMD, REC] (0, 0)
    |[ARB]|
    DISK [ARB, CMD, REC] (1, 0)
    |[ARB]|
    ...|[ARB]|
    DISK [ARB, CMD, REC] (6, 0)
|[ARB, CMD, REC]|
CONTROLLER [ARB, CMD, REC] (NC, ZERO)
                                      8-ary rendezvous
                                        on gate ARB
                                      binary rendezvous
                                      on gates CMD, REC
```
(

)

Synchronization constraints (bus arbitration policy)

• Synchronizations on gate ARB: ARB ?r0, ..., r7: Bool [C (r0, ..., r7, n)]; ... where:

- r0, ..., r7 = values of the electric signals on the bus
- n = index of the current device
- Two particular cases for guard condition C:
	- P (r0, …, r7, n): device n does not ask the bus
	- A (r0, …, r7, n): device n asks and obtains access to bus

Guard conditions

\n- Predicter P (r0, ..., r7, n) =
$$
\neg r_n
$$
\n- P (r0, ..., r7, 0) = not (r0)
\n- P (r0, ..., r7, 1) = not (r1)
\n- ...
\n- P (r0, ..., r7, 7) = not (r7)
\n- Predicter A (r0, ..., r7, n) = $r_n \wedge \forall i \in [n+1, 7]$. $\neg r_i$
\n- A (r0, ..., r7, 0) = r0 and not (r1 or ... or r7)
\n- A (r0, ..., r7, 1) = r1 and not (r2 or ... or r7)
\n- ...
\n- A (r0, ..., r7, 7) = r7
\n

Controller process

```
process Controller [ARB, CMD, REC] (C:Contents) : noexit :=
  (* communicate with disk N *)
  choice N:Nat []
      N = 0) and (N \le 6)] ->
             Controller2 [ARB, CMD, REC] (C, N)
  \prod(* does not request the bus *)
  ARB ?r0, ..., r7:Bool [P (r0, ..., r7, 7)];
      Controller [ARB, CMD, REC] (C)
endproc
```


Controller process

process Controller2 [ARB, CMD, REC] (C:Contents, N:Nat) : **noexit** :=

```
[not_full (C, N)] ->
      (* request and obtain the bus *)
      ARB ?r0, ..., r7:Bool [A (r0, ..., r7, 7)];
             CMD !N; (* send a command *)
                    Controller [ARB, CMD, REC] (incr (C, N))
  \prodREC !N; (* receive an acknowledgement *)
      Controller [ARB, CMD, REC] (decr (C, N))
endproc
```
Disk process

```
process DISK [ARB, CMD, REC] (N, L:Nat) : noexit :=
  CMD !N; DISK [ARB,CMD,REC] (N, L+1)
   []
  [L > 0] \rightarrow (ARB ?r0, ..., r7:Bool [A (r0, ..., r7, N)];
               REC !N; DISK [ARB, CMD, REC] (N, L-1)
        []
       ARB ?r0, ..., r7:Bool [not (A (r0, ..., r7, N)) and
                                not (P (r0, ..., r7, N))];
               DISK [ARB, CMD, REC] (N, L)
   )
   []
  [L = 0] \rightarrow \text{ARB ?r0}, ..., r7: \text{Bool} [P (r0, ..., r7, N)];DISK [ARB, CMD, REC] (N, L)
```
endproc

VTSA'08 - Max Planck Institute, Saarbrücken 143

Absence of starvation property (PDL+ACTL formulation)

"Every time a disk i receives a command from the controller, it will be able to gain access to the bus in order to send the corresponding acknowledgement"

Starvation property (MCL formulation)

"Every time a disk i with priority lower than the controller nc receives a command, its access to the bus can be continuously preempted by any other disk j with higher priority"

[true*. {cmd ?i:Nat where i < nc}] forall j:Nat among { i + 1 ... ⁿ $-$ 1 $\}$. $(i \leq n c)$ implies \le (not {rec !i})*. {cmd !j}. (not {rec !i})*. {rec !j} > @

Safety property (MCL formulation)

"The difference between the number of commands received and reconnections sent by a disk i varies between 0 and 8 (the size of the buffers associated to disks)"

```
forall i:Nat among { 0 
… n – 1 } .
      nu Y 
(
c:Nat:=
0) . (
             [ {cmd} !i} ] ((c < 8) and Y (c + 1))
            and[ {rec !i} ] ((c > 0) and Y 
(c 
                                            −
1))
            and[ not ({cmd !i} or {rec !i}) ] Y (c)
      )
```


Safety property (standard mu-calculus formulation)

```
nu CMD_REC_0 . (
    [ CMD_i ] nu CMD_REC_1 . (
      [ CMD_i ] nu CMD_REC_2 . (
         [ CMD_i ] nu CMD_REC_3 . (
           [ CMD_i ] nu CMD_REC_4 . (
              [ CMD_i ] nu CMD_REC_5 . (
                [ CMD_i ] nu CMD_REC_6 . (
                  [ CMD_i ] nu CMD_REC_7 . (
                     [ CMD_i ] nu CMD_REC_8 . (
                       [ CMD_i ] false
                       and[ REC_i ] CMD_REC_7
                       and[ not ((CMD_i) or (REC_i)) ] CMD_REC_8
                     )
                     and[ REC_i ] CMD_REC_6
                     and[ not ((CMD_i) or (REC_i)) ] CMD_REC_7
                   )
                   and[ REC_i ] CMD_REC_5
                   and[ not ((CMD_i) or (REC_i)) ] CMD_REC_6
                )
```

```
and[ REC_i ] CMD_REC_4
            and[ not ((CMD_i) or (REC_i)) ] CMD_REC_5
          )
          and[ REC_i ] CMD_REC_3
          and[ not ((CMD_i) or (REC_i)) ] CMD_REC_4
       )
       and
       [ REC_i ] CMD_REC_2
       and[ not ((CMD_i) or (REC_i)) ] CMD_REC_3
     )
     and[ REC_i ] CMD_REC_1
     and[ not ((CMD_i) or (REC_i)) ] CMD_REC_2
  and[ REC_i ] CMD_REC_0
  and[ not ((CMD_i) or (REC_i)) ] CMD_REC_1
[ REC_i ] false
[ not ((CMD_i) or (REC_i)) ] CMD_REC_0
```


)

) and

and

)

Discussion and perspectives

Model-based verification techniques:

- Bug hunting, useful in early stages of the design process
- Confronted with (very) large models
- Temporal logics extended with data (XTL, Evaluator 4.0)
- Machinery for on-the-fly verification (Open/Caesar)

Perspectives:

- Parallel and distributed algorithms
	- **State space construction**
	- BES resolution
- New applications
	- Analysis of genetic regulatory networks

