
Model Checking of Action-Based
Concurrent Systems

Radu

Mateescu
INRIA Rhône-Alpes / VASY

http://www.inrialpes.fr/vasy

VTSA'08 - Max Planck Institute, Saarbrücken 2

Action-based temporal logics

Introduction

Modal logics

Branching-time logics

Regular logics

Fixed point logics

VTSA'08 - Max Planck Institute, Saarbrücken 3

Why temporal logics?
Formalisms for high-level specification of systems

–

Example: all mutual exclusion protocols should satisfy
Mutual exclusion (at most one process in critical section)
Liveness (each process should eventually enter its critical section)

Temporal logics (TLs):
formalisms describing the ordering of states (or actions)

 during the execution of a concurrent program

TL specification = list of logical formulas, each one
expressing a property of the program
Benefits of TL [Pnueli-77]:

–

Abstraction: properties expressed in TL are independent from the
description/implementation of the system

–

Modularity: one can add/remove a property without impacting the
other properties of the specification

VTSA'08 - Max Planck Institute, Saarbrücken 4

(Rough) classification of TLs

State-based Action-based
Linear-time

(properties
about execution
sequences)

LTL (SPIN tool)

linear mu-calculus

TLA (TLA+ tool)

action-based LTL
(LTSA tool)

Branching-time

(properties
about execution
trees)

CTL (nuSMV

tool)

CTL*

ACTL (JACK tool)
ACTL*
modal mu-calculus
(CWB, Concurrency
Factory, CADP tools)

VTSA'08 - Max Planck Institute, Saarbrücken 5

Example
 (coffee machine)

A linear-time TL cannot distinguish the two LTSs

M1
 and M2

, which have the same set of execution
sequences, but are not behaviourally

equivalent

(modulo strong bisimulation)
A branching-time TL can capture nondeterminism

 and thus can distinguish M1

and M2

moneymoney

coffee tea

money

coffee tea

M1 M2

L

(M1

) = L

(M2

) =
{ money.coffee, money.tea

}

VTSA'08 - Max Planck Institute, Saarbrücken 6

Interpretation of
 (branching-time) TLs

on LTSs

LTS model M

= 〈

S, A, T, s0

〉, where:
–

S: set of states

–

A: set of actions (events)
–

T

∈

S

×

A

×

S: transition relation

–

s0

∈

S: initial state

Interpretation of a formula ϕ

on M:
[[ϕ

]] = { s

∈

S

| s

|= ϕ

}

([[ϕ

]] defined inductively on the structure of ϕ)
An LTS M

satisfies a TL formula ϕ

(M

|= ϕ)

iff

its initial state satisfies ϕ

:
M

|= ϕ ⇔ s0

|= ϕ ⇔ s0

∈

[[ϕ

]]

VTSA'08 - Max Planck Institute, Saarbrücken 7

Running example:
 mutual exclusion with a semaphore

P0 P1S
REQ0

REL0

REL1

REQ1
NCS0
CS0

NCS1
CS1

NCS0

CS0
REQ0

REL0 REQ0
REL0

REQ1
REL1

NCS1

CS1
REQ1

REL1
NCS0

CS0

REQ0

REL0

REQ1

REL1

NCS1

CS1

Description using communicating automata

VTSA'08 - Max Planck Institute, Saarbrücken 8

LTS model

NCS0 NCS1

NCS1 NCS0
REQ1REQ0

NCS0

NCS0

NCS1

NCS1

CS0 CS1REQ1REQ0

CS0 CS1

REL1REL0

REL1
REL0

VTSA'08 - Max Planck Institute, Saarbrücken 9

Modal logics

They are the simplest logics allowing to reason
about the sequencing and branching of transitions
in an LTS
Basic modal operators:
–

Possibility
from a state, there exists (at least) an outgoing transition
labeled by a certain action and leading to a certain state

–

Necessity
from a state, all the outgoing transitions labeled by a
certain action lead to certain states

Hennessy-Milner Logic (HML) [Hennessy-Milner-85]

VTSA'08 - Max Planck Institute, Saarbrücken 10

Action predicates
 (syntax)

α

::=

a

atomic proposition (a∈A)

| tt

constant “true”

| ff constant “false”

|

α1

∨ α2

disjunction

|

α1

∧ α2

conjunction

|

¬α1

negation

|

α1

⇒ α2 implication (¬α1

∨ α2

)

|

α1

⇔ α2 equivalence (α1

⇒α2 ∧ α1

⇒α2

)

VTSA'08 - Max Planck Institute, Saarbrücken 11

Action predicates
 (semantics)

Let M

= (S, A, T, s0

). Interpretation [[α

]] ⊆

A:
[[a

]] = { a

}

[[tt

]] = A
[[ff]] = ∅
[[α1

∨ α2

]] = [[α1

]] ∪

[[α2

]]
[[α1

∧ α2

]] = [[α1

]] ∩

[[α2

]]
[[¬α1]] = A

\ [[α1

]]
[[α1

⇒ α2]] = (A

\ [[α1

]]) ∪

[[α2

]]
[[α1

⇔ α2]] = ((A

\

[[α1

]]) ∪

[[α2

]])
∩

((A

\

[[α2

]]) ∪

[[α1

]])

VTSA'08 - Max Planck Institute, Saarbrücken 12

Examples
A

= { NCS0

, NCS1

, CS0

, CS1

, REQ0

, REQ1

, REL0

, REL1

}

[[tt

]] = { NCS0

, NCS1

, CS0

, CS1

, REQ0

, REQ1

, REL0

, REL1

}
[[ff]] = ∅
[[NCS0

]] = { NCS0

}
[[¬NCS0

]] = { NCS1

, CS0

, CS1

, REQ0

, REQ1

, REL0

, REL1

}
[[NCS0

∧ ¬NCS1

]] = { NCS0

} = [[NCS0

]]
[[NCS0

∨

NCS1

]] = { NCS0

, NCS1

}
[[(NCS0

∨

NCS1

) ∧

(NCS0

∨

REQ0

)]] = { NCS0

}
[[NCS0

∧

NCS1

]] = ∅

= [[ff]]
[[NCS0

∨ ¬NCS0

]] =
{ NCS0

, NCS1

, CS0

, CS1

, REQ0

, REQ1

, REL0

, REL1 } = [[tt

]]

VTSA'08 - Max Planck Institute, Saarbrücken 13

HML logic
 (syntax)

ϕ

::= tt

constant “true”

| ff

constant “false”

|

ϕ1

∨ ϕ2 disjunction

|

ϕ1

∧ ϕ2 conjunction

|

¬ϕ1 negation

|

〈 α 〉 ϕ1

possibility

|

[α] ϕ1

necessity

Duality:

[α] ϕ = ¬〈

α

〉

¬ϕ

VTSA'08 - Max Planck Institute, Saarbrücken 14

HML logic
 (semantics)

Let M

= (S, A, T, s0

). Interpretation [[ϕ

]] ⊆

S:
[[tt

]] = S

[[ff]] = ∅
[[ϕ1

∨ ϕ2

]] = [[ϕ1

]] ∪

[[ϕ2

]]
[[ϕ1

∧ ϕ2

]] = [[ϕ1

]] ∩

[[ϕ2

]]
[[¬ϕ1]] = S

\ [[ϕ1

]]
[[〈 α 〉 ϕ1

]] = { s

∈

S

| ∃

(s, a, s’) ∈

T

.
a

∈

[[α

]] ∧

s’

∈

[[ϕ1

]] }
[[[α] ϕ1

]] = { s

∈

S

| ∀

(s, a, s’) ∈

T

.
a

∈

[[α

]] ⇒

s’

∈

[[ϕ1

]] }

VTSA'08 - Max Planck Institute, Saarbrücken 15

Example (1/4)
Deadlock freedom:

〈

tt

〉

tt

NCS0 NCS1

NCS1 NCS0
REQ1REQ0

NCS0

NCS0

NCS1

NCS1

CS0 CS1REQ1REQ0

CS0 CS1

REL1REL0

REL1
REL0

VTSA'08 - Max Planck Institute, Saarbrücken 16

Example (2/4)
Possible execution of a set of actions:

〈

CS0

∨

CS1

〉

tt

NCS0 NCS1

NCS1 NCS0
REQ1REQ0

NCS0

NCS0

NCS1

NCS1

CS0 CS1REQ1REQ0

CS0 CS1

REL1REL0

REL1
REL0

VTSA'08 - Max Planck Institute, Saarbrücken 17

Example (3/4)
Forbidden execution of a set of actions:

[NCS0

∨

NCS1

] ff

NCS0 NCS1

NCS1 NCS0
REQ1REQ0

NCS0

NCS0

NCS1

NCS1

CS0 CS1REQ1REQ0

CS0 CS1

REL1REL0

REL1
REL0

VTSA'08 - Max Planck Institute, Saarbrücken 18

Example (4/4)
Execution of an action sequence:

〈

REQ0

〉 〈 CS0

〉 〈 REL0

〉

tt

NCS0 NCS1

NCS1 NCS0
REQ1REQ0

NCS0

NCS0

NCS1

NCS1

CS0 CS1REQ1REQ0

CS0 CS1

REL1REL0

REL1
REL0

VTSA'08 - Max Planck Institute, Saarbrücken 19

Some identities
Tautologies:
–

〈 α 〉 ff = 〈

ff 〉 ϕ = ff

–

[α] tt

= [

ff] ϕ = tt

Distributivity

of modalities over ∨

and ∧:
–

〈 α 〉 ϕ1 ∨ 〈 α 〉 ϕ2 = 〈 α 〉 (ϕ1 ∨ ϕ2

)
–

〈 α1

〉 ϕ ∨ 〈 α2

〉 ϕ = 〈 α1 ∨ α2

〉 ϕ
–

[α

] ϕ1 ∧

[α

] ϕ2 = [α

] (ϕ1 ∧ ϕ2

)
–

[α1

] ϕ ∧ [α2

] ϕ

= [α1 ∨ α2

] ϕ

Monotonicity

of modalities over ϕ

and α:
–

(ϕ1

⇒ ϕ2

)

⇒

(〈 α 〉 ϕ1 ⇒ 〈 α 〉 ϕ2

)

∧

([α] ϕ1 ⇒ [α] ϕ2

)
–

(α1

⇒ α2

)

⇒

(〈 α1

〉 ϕ ⇒ 〈 α2

〉 ϕ) ∧

([α2

] ϕ ⇒ [α1

] ϕ)

VTSA'08 - Max Planck Institute, Saarbrücken 20

Characterization of branching

Modal formula distinguishing between M1

and M2

:

ϕ

= [

money

]

(〈

coffee

〉

tt

∧ 〈 tea

〉

tt

)

M1

|= ϕ

and

M2

|= ϕ

moneymoney

coffee tea

money

coffee tea

M1 M2

VTSA'08 - Max Planck Institute, Saarbrücken 21

Modal logics
 (summary)

Are able to express simple branching-time
properties involving states s

∈

S

and actions a

∈

A

 of an LTS
But:
–

Take into account only a finite number of steps around a
state (nesting of modalities)

–

Cannot express properties about transition sequences or
subtrees

of arbitrary length

Example: the property
“from a state s, there exists a sequence leading to a state

s’

where the action a

is executable”

cannot be expressed in modal logic
(it would need a formula 〈

tt

〉 〈 tt

〉

…

〈

tt

〉 〈 a

〉

tt)

VTSA'08 - Max Planck Institute, Saarbrücken 22

Branching-time logics

They are logics allowing to reason about the
(infinite) execution trees contained in an LTS
Basic temporal operators:
–

Potentiality
from a state, there exists an outgoing, finite transition
sequence leading to a certain state

–

Inevitability
from a state, all outgoing transition sequences lead, after
a finite number of steps, to certain states

Action-based Computation Tree Logic (ACTL)
 [DeNicola-Vaandrager-90]

VTSA'08 - Max Planck Institute, Saarbrücken 23

ACTL logic
 (syntax)

ϕ

::= tt

|

ff

boolean

constants

| ϕ1 ∨ ϕ2

|

¬ϕ1 connectors

| E [ϕ1α1

U ϕ2]
potentiality 1

| E [ϕ1α1

Uα2

ϕ2]
potentiality 2

| A [ϕ1α1

U ϕ2]
inevitability 1

| A [ϕ1α1

Uα2

ϕ2]
inevitability 2

VTSA'08 - Max Planck Institute, Saarbrücken 24

ACTL logic
 (derived operators)

EFα

ϕ

= E [ttα

U ϕ

]

basic potentiality

AFα

ϕ

= A [ttα

U ϕ

]

basic inevitability

AGα

ϕ =

¬

EFα

¬ϕ

invariance

EGα

ϕ

= ¬

AFα

¬ϕ

trajectory

〈 α 〉 ϕ = E [ttff

Uα

ϕ

]

possibility

[α

] ϕ

= ¬ 〈 α 〉 ¬ ϕ

necessity

dualities

VTSA'08 - Max Planck Institute, Saarbrücken 25

ACTL logic
 (semantics –

potentiality operators)

Let M

= (S, A, T, s0

). Interpretation [[ϕ

]] ⊆

S:

[[E [ϕ1α

U ϕ2]

]] = { s

∈

S

| ∃s(=s0

)→a0s1

→a1s2

→… .

∃k

≥

0. ∀0 ≤

i <

k. (si

∈

[[ϕ1

]] ∧

ai

∈

[[α ∨ τ]]) ∧
 sk

∈

[[ϕ2

]] }

[[E [ϕ1α1

Uα2

ϕ2]

]] = { s

∈

S

|∀s(=s0

)→a0s1

→a1s2

→… .
∃k

≥

0. ∀0≤

i <

k. (si

∈

[[ϕ1

]] ∧

ai

∈

[[α1

∨ τ]] ∧
 sk

∈

[[ϕ1

]] ∧

ak

∈

[[α2]] ∧

sk+1

∈

[[ϕ2

]] }

. . .
ϕ1 ϕ1 ϕ1 ϕ1 ϕ2

α ∨ τ α ∨ τ α ∨ τ α ∨ τ α ∨ τ

. . .
ϕ1 ϕ1 ϕ1 ϕ1 ϕ1

α1

∨ τ α1

∨ τ α1

∨ τ α1

∨ τ α1

∨ τ
ϕ2

α2

VTSA'08 - Max Planck Institute, Saarbrücken 26

ACTL logic
 (semantics –

inevitability operators)

[[A [ϕ1α

U ϕ2]]]:

[[A [ϕ1α1

Uα2

ϕ2]

]]:

. . .

ϕ1

ϕ1 ϕ1 ϕ1 ϕ2
α ∨ τ

α ∨ τ α ∨ τ α ∨ τ α ∨ τ

. . .
ϕ1 ϕ1 ϕ1 ϕ2

α ∨ τ α ∨ τ α ∨ τ α ∨ τ

. . .

. . .

ϕ1

ϕ1 ϕ1 ϕ1 ϕ1
α1

∨ τ
α1

∨ τ α1

∨ τ α1

∨ τ α1

∨ τ
ϕ2

α2

. . .
ϕ1 ϕ1 ϕ1 ϕ1

α1

∨ τ α1

∨ τ α1

∨ τ α1

∨ τ
ϕ2

α2

VTSA'08 - Max Planck Institute, Saarbrücken 27

Example (1/4)
Potential reachability: EF¬

REL1

〈

CS0

〉

tt

NCS0 NCS1

NCS1 NCS0
REQ1REQ0

NCS0

NCS0

NCS1

NCS1

CS0 CS1REQ1REQ0

CS0 CS1

REL1REL0

REL1
REL0

VTSA'08 - Max Planck Institute, Saarbrücken 28

Example (2/4)
Inevitable reachability: AF¬

(REL0 ∨

REL1)

〈

CS0

∨

CS1

〉

tt

NCS0 NCS1

NCS1 NCS0
REQ1REQ0

NCS0

NCS0

NCS1

NCS1

CS0 CS1REQ1REQ0

CS0 CS1

REL1REL0

REL1
REL0

VTSA'08 - Max Planck Institute, Saarbrücken 29

Example (3/4)
Invariance: AG¬

(NCS0 ∨

NCS1)

〈

NCS0

∨

NCS1

〉

tt

NCS0 NCS1

NCS1 NCS0
REQ1REQ0

NCS0

NCS0

NCS1

NCS1

CS0 CS1REQ1REQ0

CS0 CS1

REL1REL0

REL1
REL0

VTSA'08 - Max Planck Institute, Saarbrücken 30

Example (4/4)
Trajectory: EG¬

CS0

[CS0

] ff

NCS0 NCS1

NCS1 NCS0
REQ1REQ0

NCS0

NCS0

NCS1

NCS1

CS0 CS1REQ1REQ0

CS0 CS1

REL1REL0

REL1
REL0

VTSA'08 - Max Planck Institute, Saarbrücken 31

Remark about inevitability
Inevitable reachability:

all sequences going out of a state

lead to states where an action a

is executable
AFtt

〈

a

〉

tt
Inevitable execution:

all sequences going out of a state

contain the action a
Inevitable execution ⇒

inevitable reachability

 but the converse does not hold:

s

|= AFtt

〈

a

〉

tt

Inevitable execution must be expressed using the
inevitability operators of ACTL:

s

|= A [tttt

Ua

tt

]

a
b

b
s

VTSA'08 - Max Planck Institute, Saarbrücken 32

Safety properties

Informally, safety properties specify that
 “something bad never happens”

 during the execution of the system
One way of expressing safety properties:
forbid undesirable execution sequences
–

Mutual exclusion:
¬ 〈 CS0

〉

EF¬REL0

〈

CS1

〉

tt
= [CS0

] AG¬REL0

[CS1

] ff

In ACTL, forbidding a sequence is expressed by
combining the [α] ϕ and AGα

ϕ

operators

CS0 CS1. . .

¬REL0

VTSA'08 - Max Planck Institute, Saarbrücken 33

Liveness

properties

Informally liveness

properties specify that
 “something good eventually happens”

 during the execution of the system
One way of expressing liveness

properties:

require desirable execution sequences / trees
–

Potential release of the critical section:
〈

NCS0

〉

EFtt

〈

REQ0

〉

EFtt

〈

REL0

〉

tt
–

Inevitable access to the critical section:
A [tttt

UCS0

tt

]

In ACTL, the existence of a sequence is expressed
by combining the 〈 α 〉 ϕ and EFα

ϕ

operators

VTSA'08 - Max Planck Institute, Saarbrücken 34

Branching-time logics
 (summary)

The temporal operators of ACTL: strictly more
powerful than the HML modalities 〈 α 〉 ϕ and [α] ϕ
They allow to express branching-time properties on
an unbounded depth in an LTS
But:
–

They do not allow to express the unbounded repetition of
a subsequence

Example: the property
“from a state s, there exists a sequence a.b.a.b

... a.b

 leading to a state s’

where an action c is executable”

cannot be expressed in ACTL

VTSA'08 - Max Planck Institute, Saarbrücken 35

Regular logics

They allow to reason about the regular execution
sequences of an LTS
Basic operators:
–

Regular formulas
two states are linked by a sequence whose concatenated
actions form a word of a regular language

–

Modalities on sequences
from a state, some (all) outgoing regular transition
sequences lead to certain states

Propositional Dynamic Logic (PDL)
 [Fischer-Ladner-79]

VTSA'08 - Max Planck Institute, Saarbrücken 36

Regular formulas
 (syntax)

β

::= α

one-step sequence

| nil

empty sequence

|

β1

. β2 concatenation

|

β1

| β2 choice

|

β1

* iteration (≥

0 times)

|

β1

+

iteration (≥

1 times)

Some identities:
nil = ff *

β+

= β

. β*

VTSA'08 - Max Planck Institute, Saarbrücken 37

Regular formulas
 (semantics)

Let M

= (S, A, T, s0

). Interpretation [[β

]] ⊆

S

×

S:

[[α]] = { (s, s’) | ∃a

∈

[[α]] . (s, a, s’) ∈

T

}
[[nil]] = { (s, s) | s

∈

S

}

(identity)

[[β1

. β2]] = [[β1

]] о

[[β2

]]

(composition)

[[β1

| β2]] = [[β1

]] ∪

[[β2

]]

(union)

[[β1

*]] = [[β1

]] *

(transitive refl. closure)

[[β1
+

]] = [[β1

]] +

(transitive closure)

VTSA'08 - Max Planck Institute, Saarbrücken 38

Example (1/3)
One-step sequences: NCS0 ∨

CS0

NCS0 NCS1

NCS1 NCS0
REQ1REQ0

NCS0

NCS0

NCS1

NCS1

CS0 CS1REQ1REQ0

CS0 CS1

REL1REL0

REL1
REL0

VTSA'08 - Max Planck Institute, Saarbrücken 39

Example (2/3)
Alternative sequences: (REQ0

. CS0

) | (REQ1

. CS1

)

NCS0 NCS1

NCS1 NCS0
REQ1REQ0

NCS0

NCS0

NCS1

NCS1

CS0 CS1REQ1REQ0

CS0 CS1

REL1REL0

REL1
REL0

VTSA'08 - Max Planck Institute, Saarbrücken 40

Example (3/3)
Sequences with repetition: NCS0

. (¬NCS1

)* . CS0

NCS0 NCS1

NCS1 NCS0
REQ1REQ0

NCS0

NCS0

NCS1

NCS1

CS0 CS1REQ1REQ0

CS0 CS1

REL1REL0

REL1
REL0

VTSA'08 - Max Planck Institute, Saarbrücken 41

PDL logic
 (syntax)

ϕ

::= tt

| ff

boolean

constants

|

ϕ1

∨ ϕ2 disjunction

|

ϕ1

∧ ϕ2 conjunction

|

¬ϕ1 negation

|

〈

β

〉 ϕ1

possibility

|

[

β

] ϕ1

necessity

Duality:

[

β

] ϕ = ¬ 〈 β

〉 ¬ϕ

VTSA'08 - Max Planck Institute, Saarbrücken 42

PDL logic
 (semantics)

Let M

= (S, A, T, s0

). Interpretation [[ϕ

]] ⊆

S:
[[tt

]] = S

[[ff]] = ∅
[[ϕ1

∨ ϕ2

]] = [[ϕ1

]] ∪

[[ϕ2

]]
[[ϕ1

∧ ϕ2

]] = [[ϕ1

]] ∩

[[ϕ2

]]
[[¬ϕ1]] = S

\ [[ϕ1

]]
[[〈 β 〉 ϕ1

]] = { s

∈

S

| ∃

s’

∈

S

.
(s, s’) ∈

[[β

]] ∧

s’

∈

[[ϕ1

]] }
[[[β] ϕ1

]] = { s

∈

S

| ∀

s’

∈

S

.
(s, s’) ∈

[[β

]] ⇒

s’

∈

[[ϕ1

]] }

VTSA'08 - Max Planck Institute, Saarbrücken 43

Example (1/2)
Potential reachability

of critical section: 〈

NCS0

. tt

* . CS0

〉

tt

NCS0 NCS1

NCS1 NCS0
REQ1REQ0

NCS0

NCS0

NCS1

NCS1

CS0 CS1REQ1REQ0

CS0 CS1

REL1REL0

REL1
REL0

VTSA'08 - Max Planck Institute, Saarbrücken 44

Example (2/2)
Mutual exclusion: [CS0

. (¬REL0

)* . CS1

] ff

NCS0 NCS1

NCS1 NCS0
REQ1REQ0

NCS0

NCS0

NCS1

NCS1

CS0 CS1REQ1REQ0

CS0 CS1

REL1REL0

REL1
REL0

VTSA'08 - Max Planck Institute, Saarbrücken 45

Some identities

Distributivity

of regular operators over 〈 〉 and []:
–

〈 β1

. β2

〉 ϕ = 〈 β1

〉 〈 β2

〉 ϕ

–

〈 β1

| β2

〉 ϕ = 〈 β1

〉 ϕ ∨ 〈 β2

〉 ϕ

–

〈 β * 〉 ϕ = ϕ ∨ 〈 β 〉 〈 β * 〉 ϕ

–

[β1

. β2

] ϕ

= [β1

] [β2

] ϕ

–

[β1

| β2

] ϕ

= [β1

] ϕ ∧ [β2

] ϕ

–

[β

*] ϕ

= ϕ ∧ [β

] [β

*] ϕ

Potentiality and invariance operators of ACTL:
–

EFα

ϕ

= 〈 α * 〉 ϕ

–

AGα

ϕ

= [α

*] ϕ

VTSA'08 - Max Planck Institute, Saarbrücken 46

Fairness properties

Problem: from the initial state of the LTS, there is
no inevitable execution of action CS0

⇒ process P1
 can enter its critical section indefinitely often

s

|= A [tttt

Ua

tt

]

Fair execution

of an action a: from a state, all
transition sequences that do not cycle indefinitely
contain action a
Action-based counterpart of the fair reachability

of

predicates

[Queille-Sifakis-82]

bb b
s

b

a

VTSA'08 - Max Planck Institute, Saarbrücken 47

Fair execution

Fair execution of an action a

expressed in PDL:

fair (a) = [(¬a)*] 〈

tt*. a

〉

tt

Equivalent formulation in ACTL:

fair (a) = AG¬a

EFtt

〈

a

〉

tt

bb b

b

a

VTSA'08 - Max Planck Institute, Saarbrücken 48

Example
Fair execution of critical section: [(¬CS0

)*] 〈

tt*. CS0

〉

tt

NCS0 NCS1

NCS1 NCS0
REQ1REQ0

NCS0

NCS0

NCS1

NCS1

CS0 CS1REQ1REQ0

CS0 CS1

REL1REL0

REL1
REL0

VTSA'08 - Max Planck Institute, Saarbrücken 49

Regular logics
 (summary)

They allow a direct and natural description of
regular execution sequences in LTSs

More intuitive description of safety properties:
–

Mutual exclusion:
[CS0

] AG¬REL0

[CS1] ff =

(in ACTL)
[CS0

. (¬REL0

)* . CS1

] ff

(in PDL)

But:
–

Not sufficiently powerful to express inevitability
operators (expressiveness uncomparable

with

branching-time logics)

VTSA'08 - Max Planck Institute, Saarbrücken 50

Fixed point logics

Very expressive logics (“temporal logic assembly
languages”) allowing to characterize finite or
infinite tree-like patterns in LTSs
Basic temporal operators:
–

Minimal fixed point

(μ)

“recursive function”

defined over the LTS:
finite

execution trees going out of a state

–

Maximal fixed point

(ν)
dual of the minimal fixed point operator:

 infinite

execution trees going out of a state

Modal mu-calculus [Kozen-83,Stirling-01]

VTSA'08 - Max Planck Institute, Saarbrücken 51

Modal mu-calculus
 (syntax)

ϕ

::=

tt

| ff

boolean

constants

|

ϕ1

∨ ϕ2 | ¬ϕ1 connectors

|

〈 α 〉 ϕ1

possibility

|

[α] ϕ1

necessity

|

X

propositional variable

|

μX

. ϕ1

minimal fixed point

|

νX

. ϕ1

maximal fixed point

Duality:

νX

. ϕ

= ¬ μX

. ¬ ϕ [¬

X

/ X]

VTSA'08 - Max Planck Institute, Saarbrücken 52VASY 52

Syntactic restrictions

Syntactic monotonicity

[Kozen-83]
–

Necessary to ensure the existence of fixed points

–

In every formula σX

. ϕ

(X), where σ ∈ { μ, ν

},

every free
occurrence of X

in ϕ

falls in the scope of an even number

of negations
μX

. 〈

a

〉

X

∨ ¬ 〈 b

〉

X

Alternation depth 1 [Emerson-Lei-86]
–

Necessary for efficient (linear-time) verification

–

In every formula μX

. ϕ

(X), every maximal subformula
 νY

. ϕ’ (Y) of ϕ

is closed

μX

. 〈

a

〉 νY

. ([b

] Y

∧

[c

] X)

VTSA'08 - Max Planck Institute, Saarbrücken 53

Modal mu-calculus
 (semantics)

Let M

= (S, A, T, s0

) and ρ

: X

→

2S

a context mapping
propositional variables to state sets. Interpretation
[[ϕ

]] ⊆

S:

[[X

]] ρ

= ρ

(X)

[[μX

. ϕ

]] ρ

= ∪k≥0

Φρ
k

(∅)

[[νX

. ϕ

]] ρ

= ∩k≥0

Φρ
k

(S)

where

Φρ

: 2S

→

2S

,

Φρ

(U) = [[ϕ

]] ρ

[U

/ X]

VTSA'08 - Max Planck Institute, Saarbrücken 54

Minimal fixed point

Potential reachability

of an action a

(existence of a
sequence leading to a transition labeled by a):

μX

. 〈

a

〉

tt

∨ 〈 tt

〉

X
Associated functional:

Φ

(U) = [[〈

a

〉

tt

∨ 〈 tt

〉

X]] [U

/ X]
Evaluation on an LTS:

abb b

Φ

(∅)Φ2

(∅)Φ3

(∅)Φ4

(∅)

c

VTSA'08 - Max Planck Institute, Saarbrücken 55

Example
Potential reachability: µX

. 〈

CS0

〉

tt

∨ 〈 ¬(REL1 ∨

REL0

) 〉

X

NCS0 NCS1

NCS1 NCS0
REQ1REQ0

NCS0

NCS0

NCS1

NCS1

CS0 CS1REQ1REQ0

CS0 CS1

REL1REL0

REL1
REL0

VTSA'08 - Max Planck Institute, Saarbrücken 56

Maximal fixed point

Infinite repetition of an action a

(existence of a
cycle containing only transitions labeled by a):

νX

. 〈

a

〉

X
Associated functional:

Φ

(U) = [[〈

a

〉

X]] [U

/ X]
Evaluation on an LTS:

aab b

Φ

(S)

a

a Φ2

(S)

VTSA'08 - Max Planck Institute, Saarbrücken 57

Example
Infinite repetition: νX

. 〈

NCS1

∨

REQ1

∨

CS1

∨

REL1

〉

X

NCS0 NCS1

NCS1 NCS0
REQ1REQ0

NCS0

NCS0

NCS1

NCS1

CS0 CS1REQ1REQ0

CS0 CS1

REL1REL0

REL1
REL0

VTSA'08 - Max Planck Institute, Saarbrücken 58

Exercise
Evaluate the formula: µX

. 〈

CS0

〉

tt

∨

([NCS0] ff ∧ 〈 tt

〉

X)

NCS0 NCS1

NCS1 NCS0
REQ1REQ0

NCS0

NCS0

NCS1

NCS1

CS0 CS1REQ1REQ0

CS0 CS1

REL1REL0

REL1
REL0

VTSA'08 - Max Planck Institute, Saarbrücken 59

Some identities

Description of (some) ACTL operators:

–

E [ϕ1α1

Uα2

ϕ2] = μX

. ϕ1

∧

(〈 α2

〉 ϕ2

∨ 〈 α1

〉

X)

–

A [ϕ1α1

Uα2

ϕ2] = μX

. ϕ1

∧ 〈 tt

〉

tt

∧

[¬(α1

∨ α2

)] ff

∧

[¬α1

∧ α2

] ϕ2

∧

[¬α2

] X

∧

[α1

∧ α2

] (ϕ2

∨

X)

–

EFα

ϕ

= μX

. ϕ ∨ 〈 α 〉 X

–

AFα

ϕ

= μX

. ϕ ∨ (〈

tt

〉

tt

∧

[¬α

] ff ∧

[α

] X)

Description of the PDL operators:
–

〈 β* 〉 ϕ = μX

. ϕ ∨ 〈 β 〉 X

–

[β*] ϕ

= νX

. ϕ ∧ [β] X

VTSA'08 - Max Planck Institute, Saarbrücken 60

Inevitable reachability

Inevitable reachability

of an action a:
access (a) = AFtt

〈

a

〉

tt

=
μX

. 〈

a

〉

tt

∨

(〈

tt

〉

tt

∧

[tt

] X

)

Associated functional:
Φ

(U) = [[〈

a

〉

tt

∨

(〈

tt

〉

tt

∧

[tt

] X

)]] [U

/ X]

Evaluation on an LTS:
b

ab b

a

c

Φ

(∅)Φ2

(∅)

VTSA'08 - Max Planck Institute, Saarbrücken 61

Inevitable execution

Inevitable execution of an action a:
inev

(a) = μX

. 〈

tt

〉

tt

∧

[¬a

] X

Associated functional:
Φ

(U) = [[〈

tt

〉

tt

∧

[¬a

] X]] [U

/ X]

Evaluation on an LTS:
b

ab b

a

c

Φ

(∅)

VTSA'08 - Max Planck Institute, Saarbrücken 62

Example
Inevitable execution: µX

. 〈

tt

〉

tt

∧

[¬CS0

] X

NCS0 NCS1

NCS1 NCS0
REQ1REQ0

NCS0

NCS0

NCS1

NCS1

CS0 CS1REQ1REQ0

CS0 CS1

REL1REL0

REL1
REL0

VTSA'08 - Max Planck Institute, Saarbrücken 63

Fair execution

Fair execution of an action a:
fair (a) = [(¬a)*] 〈

tt*. a

〉

tt

= νX

. 〈

tt*. a

〉

tt

∧

[¬a] X
Associated functional:

Φ

(U) = [[〈

tt*. a

〉

tt

∧

[¬a] X]] [U

/ X]
Evaluation on an LTS:

bb b

a

b

a
Φ

(S)

VTSA'08 - Max Planck Institute, Saarbrücken 64

Example
Fair execution: [(¬CS0

)*] 〈

tt*. CS0

〉

tt

NCS0 NCS1

NCS1 NCS0
REQ1REQ0

NCS0

NCS0

NCS1

NCS1

CS0 CS1REQ1REQ0

CS0 CS1

REL1REL0

REL1
REL0

VTSA'08 - Max Planck Institute, Saarbrücken 65

Fixed point logics
 (summary)

They allow to encode virtually all TL proposed in
the literature
Expressive power obtained by nesting

the fixed

point operators:
〈

(a

. b*)* . c

〉

tt

=

μX

. 〈

c

〉

tt

∨ 〈 a

〉 μY

. (X

∨ 〈 b

〉

Y)
Alternation depth

of a formula: degree of mutual

recursion between μ

and ν

fixed points
Example of alternation depth 2 formula:

νX

. 〈

a*. b

〉

X

= νX

. μY

. 〈

b

〉

X

∨ 〈 a

〉

Y

VTSA'08 - Max Planck Institute, Saarbrücken 66

Some verification tools
 (for action-based logics)

CWB

(Edinburgh)
and
Concurrency Factory

(State University of New York)

–

Modal μ-calculus (fixed point operators)

JACK

(University of Pisa, Italy)
–

μ-ACTL (modal μ-calculus combined with ACTL)

CADP / Evaluator 3.x

(INRIA Rhône-Alpes / VASY)
–

Regular alternation-free μ-calculus (PDL modalities and
fixed point operators)

VTSA'08 - Max Planck Institute, Saarbrücken 67

Extensions of µ-calculus with data

Temporal logics (ACTL, PDL, ...) and µ-calculi
–

No data manipulation (basic LOTOS, pure CCS, ...)

–

Too low-level operators (complex formulas)

Extended temporal logics are needed in practice

Several μ-calculus extensions with data:
–

For polyadic

pi-calculus [Dam-94]

–

For symbolic transition systems [Rathke-Hennessy-96]
–

For μCRL [Groote-Mateescu-99]

–

For full LOTOS [Mateescu-Thivolle-08]

VASY 67

VTSA'08 - Max Planck Institute, Saarbrücken 68

Why to handle data?

Some properties are cumbersome to express
without data (e.g., action counting):

〈

b

〉 〈 b 〉 〈 b

〉 〈 a

〉

tt

or

〈

b

{3} . a

〉

tt

?

LTSs

produced from value-passing process algebraic
languages (full CCS, LOTOS, ...) contain values on
transition labels

b abb

RECV 1 RECV 2ACK 1 ACK 2

value extraction
and propagation

VTSA'08 - Max Planck Institute, Saarbrücken 69

Model Checking Language

Based on EVALUATOR 3.5 input language
•

standard µ-calculus

•

regular operators

Data-handling mechanisms
•

data extraction from LTS labels

•

regular operators with counters
•

variable declaration

•

parameterized fixed point operators
•

expressions

Constructs inspired from programming languages

VTSA'08 - Max Planck Institute, Saarbrücken 70

Parameterized modalities

Possibility:

< {SEND ?msg:Nat} > < {RECV !msg} > true

Necessity:

[{RECV ?msg:Nat}] (msg

< 6)

SEND 1 RECV 1

RECV 5

value extraction
and propagation

value extraction
and propagation

VTSA'08 - Max Planck Institute, Saarbrücken 71

Parameterized fixed points

(basic) syntax:
mu

X (y:T

:=

E) .

P

–

P contains «

calls »

X (E’)
–

Allows to perform computations and store intermediate
results while exploring the PLTS

parameter initial value formula body

VTSA'08 - Max Planck Institute, Saarbrücken 72

Example

Counting of actions (e.g., clock ticks):

[{LEVEL ?l:Nat

where

l >

10}]
nu

X (c:Nat

:=

15) .

[not ALARM] (c >

0 and

X (c -

1))

LEVEL 11 ALARM
. . .

. . .
ALARM

max. 15 transitions
before the alarm

VTSA'08 - Max Planck Institute, Saarbrücken 73

Quantifiers
Existential quantifier:

exists

x:T

among {

E1

...

E2

} .

P

Universal quantifier:
forall

x:T

among {

E1

...

E2

} .

P

shorthands for large disjunctions and conjunctions

limits of the subdomain

of T

VTSA'08 - Max Planck Institute, Saarbrücken 74

Example

Broadcast of messages:

forall

msg:Nat

among { 1

... 10

} .
mu

X . (< {SEND !msg} > true or < true >

X)

SEND

1i

. . .

. . .

. . .
SEND

2

SEND

10
. . .

VTSA'08 - Max Planck Institute, Saarbrücken 75

Counting operators
 (regular formulas)

R {

E }

repetition

E times
R {

E1

... }

repetition

at

least

E1

times
R {

E1

...

E2

}

repetition

between

 E1

and

E2

times

Some

identities:
nil

= false

*

R +

= R .

R*

R *

= R {

0 ... }

R ?

= R {

0 ...

1 }

R +

= R {

1 ... }

R {

E }

= R {

E ...

E }

VTSA'08 - Max Planck Institute, Saarbrücken 76

Example
 (action counting revisited)

Formulation using counting operators:

[{LEVEL ?l:Nat

where

l >

10} . (not

ALARM) {

16 }] false

LEVEL 11 ALARM
. . .

. . .
ALARM

max. 15 transitions
before the alarm

VTSA'08 - Max Planck Institute, Saarbrücken 77

Example
 (safety

of

a n-place

buffer)

Formulation using

extended

regular

operators:
[true* . ((not

OUTPUT)* .

INPUT) {

n +

1 }] false

Formulation using

parameterized

fixed

points:
nu

X . (nu

Y (c:Nat:=0) . (

 [not

OUTPUT]

Y (c) and
 if

c =

n+1 then

[INPUT] false

 else

[INPUT]

Y (c+1)
 end

if)

and

[true

]

X)

INPUT INPUTi
. . .

i INPUT

n+1 INPUTs

without

OUTPUTs

. . .

VTSA'08 - Max Planck Institute, Saarbrücken 78

Looping operator (from PDL-delta)

Δ R

operator added to PDL to specify infinite
behaviours

[Streett-82]

MCL syntax: <

R > @

Examples:
–

process overtaking

[REQ0] < (not

GET0

)* . REQ1 . (not

GET0

)* . GET1 > @
–

Büchi

acceptance condition

< true* . if

Paccepting

then true end if > @
allows to encode LTL model checking

.
R*

R+

cycle containing one or
more repetitions of R

VTSA'08 - Max Planck Institute, Saarbrücken 79

Expressiveness
 (summary)

CTL* ⊆

PDL-Δ ⊆

MCL
[Wolper-82]

Lµ2
Lµ1

Δ

ACTL PDL

MCL

PDL-Δ

HML

VTSA'08 - Max Planck Institute, Saarbrücken 80

Adequacy with equivalence relations

A temporal logic L

is adequate with an equivalence
relation ≈

iff

for all LTSs

M1

and M2

M1

≈

M2

iff

∀ϕ

∈

L

. (M1

|= ϕ ⇔ M2

|= ϕ)
HML:
–

Adequate with strong bisimulation

–

HMLU (HML with Until): weak bisimulation

ACTL-X (fragment presented here):
–

Adequate with branching bisimulation

PDL and modal mu-calculus:
–

Adequate with strong bisimulation

–

Weak mu-calculus: weak bisimulation

〈〈

〉〉

ϕ

= 〈 τ* 〉 ϕ

〈〈

a

〉〉

ϕ

= 〈 τ*. a

. τ* 〉 ϕ

VTSA'08 - Max Planck Institute, Saarbrücken 81

On-the-fly verification

Principles

Alternation-free boolean

equation systems

Local resolution algorithms

Applications:

–

Equivalence checking

–

Model checking

–

Tau-confluence reduction

Implementation and use

VTSA'08 - Max Planck Institute, Saarbrücken 82

Principle of explicit-state verification

program desired
properties

compiler

model
(state space)

true / false
+

 diagnostic

verification
tool

Language
technology

Model
technology

VTSA'08 - Max Planck Institute, Saarbrücken 83

On-the-fly verification

Incremental construction of the state space
–

Way of fighting against state explosion

–

Detection of errors in complex systems

“Traditional”

methods:
–

Equivalence checking

–

Model checking

Solution adopted:
–

Translation of the verification problem into the
resolution of a boolean

equation system

(BES)

–

Generation of diagnostics

(fragments of the state space)
explaining the result of verification

VTSA'08 - Max Planck Institute, Saarbrücken 84

Boolean equation systems
 (syntax)

A BES is a tuple

B

= (x, M1

, …, Mn

), where
x

∈

X : main boolean

variable

Mi

= { xj

=σi

opj

Xj

}j ∈

[1, mi] : equation blocks
–

σi

∈

{ μ, ν

} : fixed point sign of block i
–

opj

∈

{ ∨, ∧

} : operator of equation j
–

Xj

⊆

X

: variables in the right-hand side of equation j
–

F = ∨∅

(empty disjunction), T = ∧∅

(empty conjunction)

–

xj

depends upon xk

iff

xk

∈

Xj

–

Mi

depends upon Ml

iff

a xj

of Mi

depends upon a xk

of Ml

–

Closed

block: does not depend upon other blocks

Alternation-free

BES: Mi

depends upon Mi+1

…

Mn

VTSA'08 - Max Planck Institute, Saarbrücken 85

Example

x1

=μ

x2

∨

x3

x2

=μ

x3

∨

x4

x3

=μ

x2

∧

x7M1

x4

=μ

x5

∨

x6

x5

=μ

x8

∨

x9

x6

=μ

F
M2

x7

=ν

x8

∧

x9

x8

=ν

T

x9

=ν

F
M3

VTSA'08 - Max Planck Institute, Saarbrücken 86

Particular blocks

Acyclic

block:
–

No cyclic dependencies between variables of the block

Var. xi

disjunctive (conjunctive): opi

= ∨

(opi

= ∧)
Disjunctive

block:

–

contains disjunctive variables
–

and conjunctive variables

with a single non constant successor in the block (the
last one in the right-hand side of the equation)
all other successors are constants or free variables
(defined in other blocks)

Conjunctive

block: dual definition

VTSA'08 - Max Planck Institute, Saarbrücken 87

Boolean equation systems
 (semantics)

Context: partial function δ

: X Bool
Semantics of a boolean

formula:

–

[[op

{ x1

, …, xp

}]] δ

= op

(δ

(x1

), …, δ

(xp

))

Semantics of a block:
–

[[{ xj

=σ

opj

Xj

}j ∈

[1, m]

]] δ

= σΦδ

–

Φδ

: Boolm Boolm

–

Φδ

(b1

, …, bm

) = ([[opj

Xj

]] (δ ⊕ [b1

/x1

, …, bm

/xm

]))j

∈

[1, m]

Semantics of a BES:
–

[[(x, M1

, …, Mn

)]] = δ1

(x)
–

δn

= [[Mn

]] []

(Mn

closed)
–

δi

= ([[Mi

]] δi+1

) ⊕ δi+1

(Mi

depends upon Mi+1

…

Mn

)

VTSA'08 - Max Planck Institute, Saarbrücken 88

Local resolution

Alternation-free BES B

= (x, M1

, …, Mn

)
Primitive: compute a variable of a block
–

A resolution routine Ri

associated to Mi

–

Ri

(xj

) computes the value of xj

in Mi

–

Evaluation of the rhs

of equations + substitution
–

Call stack R1

(x) … Rn (xk) bounded by the depth of
the dependency graph between blocks

–

“Coroutine-like”

style: each Ri

must keep its context

Advantages:
–

Simple resolution routines (a single type of fixed point)

–

Easy to optimize for particular kinds of blocks

VTSA'08 - Max Planck Institute, Saarbrücken 89

Example

x1

=μ

x2

∨

x3

x2

=μ

x3

∨

x4

x3

=μ

x2

∧

x7M1

x4

=μ

x5

∨

x6

x5

=μ

x8

∨

x9

x6

=μ

F
M2

x7

=ν

x8

∧

x9

x8

=ν

T

x9

=ν

F
M3

VTSA'08 - Max Planck Institute, Saarbrücken 90

Local resolution algorithms

Representation of blocks as boolean

graphs
 [Andersen-94]

To a block M

= { xj

=μ

opj

Xj

}j in [1, m]

we associate the
boolean

graph G

= (V, E, L, μ), where:

–

V

= { x1

, …, xm

}: set of vertices (variables)
–

E

= { (xi

, xj

) | xj

∈

Xi

}: set of edges (dependencies)
–

L

: V { ∨, ∧ }, L (xj) = opj: vertex labeling

Principle of the algorithms:
–

Forward

exploration of G

starting at x

∈

V

–

Backward

propagation of stable (computed) variables
–

Termination: x

is stable or G

is completely explored

VTSA'08 - Max Planck Institute, Saarbrücken 91

Example
BES (μ-block)

boolean

graph

x1

=μ

x2

∨

x3

x2

=μ

F
x3

=μ

x4

∨

x5

x4

=μ

T
x5

=μ

x1

: ∨-variables
: ∧-variables

1

4

2 3

5

VTSA'08 - Max Planck Institute, Saarbrücken 92

Three effectiveness criteria
 [Mateescu-06]

For each resolution routine R:

A.

The worst-case complexity of a call R

(x) must be
O

(|V|+|E|)
linear-time complexity for the overall BES resolution

B.

While executing R

(x), every variable explored
must be «

linked

»

to x

via unstable variables

graph exploration limited to “useful” variables

C.

After termination of R

(x), all variables explored
must be stable

keep resolution results between subsequent calls of R

VTSA'08 - Max Planck Institute, Saarbrücken 93

Algorithm A0
 (general)

DFS of the boolean

graph
Satisfies A, B, C
Memory complexity

 O

(|V|+|E|)
Optimized version of
[Andersen-94]
Developed for model
checking regular
alternation-free

 μ-calculus
[Mateescu-Sighireanu-00,03]

1

5

3 4

2

VTSA'08 - Max Planck Institute, Saarbrücken 94

Algorithm A1
(general)

BFS of the boolean

graph
Satisfies A, C

 (risk of computing
useless variables)
Slightly slower than A0
Memory complexity

 O

(|V|+|E|)
Low-depth diagnostics

2

10

5

98

76

1

3

4

VTSA'08 - Max Planck Institute, Saarbrücken 95

Algorithm A2
(acyclic)

DFS of the boolean

graph
Back-propagation of stable
variables on the DFS stack
only
Satisfies A, B, C
Avoids storing edges
Memory complexity

 O

(|V|)
Developed for trace-based
verification [Mateescu-02]

53 6

4

1

2

VTSA'08 - Max Planck Institute, Saarbrücken 96

Algorithm A3 / A4
(disjunctive / conjunctive)

DFS of the boolean

graph
Detection and
stabilization of SCCs
Satisfies A, B, C
Avoids storing edges
Memory complexity

 O

(|V|)
Developed for model
checking CTL, ACTL,

 and PDL

1

5

4

63

2

SCC of false
variables

SCC of true
variables

VTSA'08 - Max Planck Institute, Saarbrücken 97

Resolution algorithms
 (summary)

A0 (DFS, general)
–

Satisfies A,

B,

C

–

Memory complexity O

(|V|+|E|)

A1 (BFS, general)
–

Satisfies A,

C

+ «

small

»

diagnostics

–

Memory complexity O

(|V|+|E|) Time

A2 (DFS, acyclic)

complexity
–

Satisfies A,

B,

C O

(|V|+|E|)

–

Memory complexity O

(|V|)

A3/A4 (DFS, disjunctive/conjunctive)
–

Satisfies A,

B,

C

–

Memory complexity O

(|V|)

VTSA'08 - Max Planck Institute, Saarbrücken 98

Caesar_Solve

library of CADP
 [Mateescu-03,06]

15 000 lines of C
Integrated into
CADP in Dec. 2004
Diagnostic generation
features [Mateescu-00]
Used as verification back-end for
Bisimulator, Evaluator 3.5 and 4.0, Reductor

5.0

OPEN/CAESAR
libraries

CAESAR_SOLVE
library

(A0 –

A4 &

diagnostic)

im
pl

ic
it

 g
ra

ph

(s
uc

ce
ss

or

 f
un

ct
io

n)

BES
(boolean
graph)

diagnostic
(boolean
subgraph)

variable value

im
pl

ic
it

 g
ra

ph

(s
uc

ce
ss

or

 f
un

ct
io

n)

VTSA'08 - Max Planck Institute, Saarbrücken 99

Equivalence checking
 (principle)

description
of system

compiler

LTS
1

equivalence checker

true / false
+

diagnostic

description
of service

LTS
2

compiler

VTSA'08 - Max Planck Institute, Saarbrücken 100

Strong equivalence

M1

= (Q1

, A, T1

, q01

), M2

= (Q2

, A, T2

, q02

)
≈ ⊆ Q1

×

Q2

is the maximal relation s.t. p

≈

q

iff

∀a∈A.∀p

→a

p’∈T1

. ∃q

→a

q’∈T2

. p’

≈

q’
and
∀a∈A.∀q

→a

q’∈T2

. ∃p

→a

p’∈T1

. p’

≈

q’

M1

≈

M2 iff

q01

≈

q02

VTSA'08 - Max Planck Institute, Saarbrücken 101

p

≤

q
(preorder)

Translation to a BES

Principle:

p

≈

q

iff

Xp,q

is true
General BES:

Xp,q

=ν

(∧p

→a

p’

∨q

→a

q’

Xp’,q’

)
∧

 (∧q

→a

q’

∨p

→a

p’

Xp’,q’

)

Simple BES:
Xp,q

=ν

(∧p

→a

p’

Ya,p’,q

) ∧

(∧q

→a

q’

Za,p,q’

)
Ya,p’,q

=ν

∨q

→a

q’

Xp’,q’

Za,p,q’

=ν

∨p

→a

p’

Xp’,q’

VTSA'08 - Max Planck Institute, Saarbrücken 102

Tau*.a and safety equivalences
M1

= (Q1

, Aτ

, T1

, q01

), M2

= (Q2

, Aτ

, T2

, q02

)
Aτ

= A

∪

{ τ

}
Tau*.a equivalence:

Xp,q

=ν

(∧p

→τ*.a

p’

∨q

→τ*.a

q’

Xp’,q’

)
∧
(∧q

→τ*.a

q’

∨p

→τ*.a

p’

Xp’,q’

)

Safety equivalence:
Xp,q

=ν

Yp,q

∧

Yq,p

Yp,q

=ν ∧p

→τ*.a

p’

∨q

→τ*.a

q’

Yp’,q’

VTSA'08 - Max Planck Institute, Saarbrücken 103

Observational and branching
equivalences

Observational equivalence:
Xp,q

=ν

(∧p

→τ

p’

∨q

→τ*

q’

Xp’,q’

) ∧

(∧p

→a

p’

∨q

→τ*.a.τ*

q’

Xp’,q’

)
 ∧

 (∧q

→τ

q’

∨p

→τ*

p’

Xp’,q’

) ∧

(∧q

→a

q’

∨p

→τ*.a.τ*

p’

Xp’,q’

)

Branching equivalence:
Xp,q

=ν ∧p

→b

p’

((b=τ ∧ Xp’,q

) ∨ ∨q

→τ*

q’

→b

q’’

(Xp,q’

∧

Xp’,q’’

)
∧

 ∧q

→b

q’

((b=τ ∧ Xp,q’

) ∨ ∨p

→τ*

p’

→b

p’’

(Xp’,q

∧

Xp’’,q’

)

VTSA'08 - Max Planck Institute, Saarbrücken 104

Example
 (coffee machine)

≈

0

31

42

tc

mmm
0

c t
1

2 3

X00

Zm03Ym10 Zm01

Yt31

X11

Yc21

X13

Zc12 Yc23

X22

Zt14Yt33

X34

∧

∨

∧

∧ ∧

∧

∨∨∨∨∨

∨ ∨ ∨

X00

Ym10

Yt31

X11 X13

Yc23

0

31

42
Absent in LTS2: c

Absent in LTS2: t

mm

Counterexample

VTSA'08 - Max Planck Institute, Saarbrücken 105

Equivalence

checking

(time)

19 LTSs

of

the

VLTS benchmark suite

www.inrialpes.fr/vasy/cadp/resources/benchmark_bcg.html

VTSA'08 - Max Planck Institute, Saarbrücken 106

Equivalence

checking

(memory)

VTSA'08 - Max Planck Institute, Saarbrücken 107

Equivalence checking
 (summary)

General

boolean

graph:
–

All equivalences and their preorders

–

Algorithms A0

and A1

(counterexample depth ↓)
Acyclic

boolean

graph:

–

Strong equivalence: one LTS acyclic
–

τ*.a

and safety: one LTS acyclic (τ-circuits allowed)

–

Branching and observational: both LTS acyclic
–

Algorithm A2

(memory ↓)

Conjunctive

boolean

graph:
–

Strong equivalence: one LTS deterministic

–

Weak equivalences: one LTS deterministic and τ-free
–

Algorithm A4

(memory ↓)

VTSA'08 - Max Planck Institute, Saarbrücken 108

Model checking
 (principle)

description
of system

compiler

LTS

properties

model checker

true / false
+

diagnostic

VTSA'08 - Max Planck Institute, Saarbrücken 109

On-the-fly model checking in CADP
 (Evaluator 3.x)

formulaLTS

BES

translation

resolution

yes / no + diagnostic

On-the-fly
activities

Model
checker

VTSA'08 - Max Planck Institute, Saarbrücken 110

Translation to Boolean

Equation
 Systems

formulaLTS

translation to PDLR

translation to HMLR

translation to BESs

PDLR spec

HMLR spec

BES

VTSA'08 - Max Planck Institute, Saarbrücken 111

Translation to PDL with recursion

State formula (expanded):
nu

Y0

. [true* . SEND]
mu

Y1

. 〈

true

〉

true

and

[not

RECV] Y1

PDLR specification [Mateescu-Sighireanu-03]:

Y0

=nu

[true* .

SEND] Y1

Y1

=mu

〈

true

〉

true

and

[not

RECV] Y1

VTSA'08 - Max Planck Institute, Saarbrücken 112

Simplification

PDLR specification:

Simple

PDLR specification:

Y0

=nu

[true* .

SEND] Y1

Y1

=mu

〈

true

〉

true

and

[not

RECV] Y1

Y0

=nu

[true* .

SEND] Y1 Y1

=mu

Y2

and

Y3

Y2

=mu 〈

true

〉

true
Y3

=mu [not

RECV] Y1

VTSA'08 - Max Planck Institute, Saarbrücken 113

Translation to BESs

s3

s1

s0

s2

SEND
RECV TIMEOUT

ii

Boolean

variables: xi, j

≡

si ⊨

Yj

x0,0

=ν

x0,4

∧

x0,5
x0,4

=ν

x1,1
x0,5

=ν

x1,0
x1,0

=ν

x1,4

∧

x1,5
x1,4

=ν

true
x1,5

=ν

x2,0

∧

x3,0
x2,0

=ν

x2,4

∧

x2,5
x2,4

=ν

true
x2,5

=ν

x0,0
x3,0

=ν

x3,4

∧

x3,5
x3,4

=ν

true
x3,5

=ν

x0,0

x1,1

=μ

x1,2

∧

x1,3
x1,2

=μ

true
x1,3

=μ

x2,1

∧

x3,1
x2,1

=μ

x2,2

∧

x2,3
x2,2

=μ

true
x2,3

=μ

true
x3,1

=μ

x3,2

∧

x3,3
x3,2

=μ

true
x3,3

=μ

x0,1
x0,1

=μ

x0,2

∧

x0,3
x0,2

=μ

true
x0,3

=μ

x1,1

Y0

=nu

Y4

and

Y5

Y4

=nu [SEND] Y1

Y5

=nu [true

] Y0

Y1

=mu

Y2

and

Y3

Y2

=mu 〈

true

〉

true
Y3

=mu [not

RECV] Y1

VTSA'08 - Max Planck Institute, Saarbrücken 114

Local BES resolution with diagnostic

x0,0

x0,5 x0,4

x1,0

x1,1

x1,4 x1,5

x2,0 x3,0

x2,5x2,4 x3,4 x3,5

x1,2 x1,3

x2,1 x3,1

x2,3x2,2 x3,2 x3,3

x0,1

x0,3x0,2

x0,0

x0,4

x1,1

x1,3

x3,1

x3,3

x0,1

x0,3

Counterexample

SEND

i

TIMEOUT

VTSA'08 - Max Planck Institute, Saarbrücken 115

Additional operators
Mechanisms for macro-definition (overloaded) and
library inclusion
Libraries encoding the operators of

CTL

and ACTL

EU (ϕ1

,

ϕ2

)

= mu

Y

.

ϕ2

or (ϕ1

and 〈

true 〉

Y)
EU (ϕ1

,

α1

,

α2 ,

ϕ2

)

= mu

Y

. 〈

α2

〉

ϕ2

or (ϕ1

and 〈

α1

〉

Y)

Libraries of high-level property patterns [Dwyer-99]
–

Property classes:

Absence, existence, universality, precedence, response

–

Property scopes:
Globally, before a, after a, between a and b, after a until b

–

More info:
http://www.inrialpes.fr/vasy/cadp/resources

http://www.inrialpes.fr/vasy/cadp/resources

VTSA'08 - Max Planck Institute, Saarbrücken 116

Disjunctive BES

Disjunctive

boolean

graph:
–

Potentiality

operator of CTL

E [ϕ1

U ϕ2

] = μX

. ϕ2

∨

(ϕ1

∧ 〈 T 〉

X)
{ X

=μ

ϕ2

∨

Y , Y

=μ

ϕ1

∧

Z , Z

=μ

〈

T 〉

X

}
{ Xs

=μ

ϕ2s

∨

Ys

, Ys

=μ

ϕ1s

∧

Zs

, Zs

=μ

∨s s’ Xs’ }
–

Possibility

modality of PDL

〈

(a

| b)* . c

〉

T
{ X

=μ

〈

c

〉

T ∨ 〈 a

〉

X

∨ 〈 b

〉

X

}
{ Xs

=μ

(∨s c s’ T) ∨ (∨s a s’ Xs’) ∨ (∨s b s’ Xs’) }

Algorithm A3

(memory ↓)

VTSA'08 - Max Planck Institute, Saarbrücken 117

Linear-time model checking
 (looping operator of PDL-delta)

Translation in mu-calculus of alternation
 depth 2 [Emerson-Lei-86]:

<

R > @

= nu

X . <

R >

X

But still checkable in linear-time:
–

Mark LTS states potentially satisfying X

–

Leads to marked variables in the disjunctive BES
–

Computation of boolean

SCCs

containing marked variables

–

A3cyc

algorithm [Mateescu-Thivolle-08]
Can serve for LTL model checking
Allows linear-time handling of repeated invocations

if R contains *-operators,
the formula is of

alternation depth 2

VTSA'08 - Max Planck Institute, Saarbrücken 118

Model checking
 of data-based

 properties
 (Evaluator 4.0)

Every SEND is followed by a RECV after 2 steps:

[true* .

SEND] < true {

2 } .

RECV > true

=
nu

X . ([

SEND] mu

Y (c:Nat

:=

2) .

if

c =

0 then <

RECV > true
else < true >

Y (c –

1)

end if
and
[true]

X)

SEND i i RECV

ACK

ERROR

VTSA'08 - Max Planck Institute, Saarbrücken 119

Translation into HMLR

nu

X . [

SEND] mu Y (c:Nat

:=

2) .
if

c =

0 then <

RECV > true

else < true >

Y (c –

1)
and [true]

X

end if

{

X =nu

{

Y (c:Nat)

=mu

[

SEND]

Y (2) if c =

0 then <

RECV > true
and

else < true >

Y (c –

1)

[true] X end if
} }

VTSA'08 - Max Planck Institute, Saarbrücken 120

Translation into
 BES and resolution

{

X =nu

{

Y (c:Nat)

=mu

[

SEND]

Y (2) if c =

0 then <

RECV > true
and

else < true >

Y (c –

1)

[true]

X end if
} }

Principle:

SEND i i RECV

ACK

ERROR

0 1 2 3 4

X0 Y1

(2)

X1

Y2

(1) Y0

(0)

Y3

(0). . .

Xs

= «

s |= X »
Ys

(c) = «

s |= Y (c) »

VTSA'08 - Max Planck Institute, Saarbrücken 121

Divergence

In presence of data parameters of infinite types,
termination of model checking is not guaranteed
anymore
(pathological) property:

LTS:

mu

X (n:Nat

:=

0) . <

a

>

X (n +

1)

BES :

{

Xs

(n:Nat)

=mu

OR s ->a s’

Xs’

(n +

1) }

=
{

Xs

(n:Nat)

=mu

Xs

(n +

1) }

a

s

.
Xs

(0) Xs

(1) Xs

(2) Xs

(n)

VTSA'08 - Max Planck Institute, Saarbrücken 122

Conjunctive BES

Conjunctive

boolean

graph:
–

Inevitability

operator of CTL

A [ϕ1

U ϕ2

] = μX

. ϕ2

∨

(ϕ1

∧ 〈 T 〉

T ∧ [T]

X)
{ X

=μ

ϕ2

∨

Y , Y

=μ

ϕ1

∧

Z ∧ [T]

X , Z

=μ

〈

T 〉

T }
{ Xs

=μ

ϕ2s

∨

Ys

, Ys

=μ

ϕ1s

∧

Zs

∧

(∧s s’ Xs’) , Zs =μ ∨s s’ T }
–

Necessity

modality of PDL

[(a

| b)* . c

] F
{ X

=μ

[c

] F ∧

[a

] X

∧

[b

] X

}
{ Xs

=μ

(∧s c s’ F) ∧ (∧s a s’ Xs’) ∧ (∧s b s’ Xs’) }

Algorithm A4

(memory ↓)

VTSA'08 - Max Planck Institute, Saarbrücken 123

Acyclic BES

Acyclic

boolean

graph:
–

Acyclic

LTS and guarded formulas [Mateescu-02]

Handling of CTL (and ACTL) operators:
–

E [ϕ1

U ϕ2

] = μX

. ϕ2

∨

(ϕ1

∧ 〈 T 〉

X)
–

A [ϕ1

U ϕ2

] = μX

. ϕ2

∨

(ϕ1

∧ 〈 T 〉

T ∧ [T]

X)

Handling of full mu-calculus
–

Translation to guarded form

–

Conversion from maximal to minimal fixed points
[Mateescu-02]

Algorithm A2

(memory ↓)

VTSA'08 - Max Planck Institute, Saarbrücken 124

Algorithm A1 vs. A3/A4
 (execution time –

CADP demos)

number of boolean

operators in the BES

tim
e

(s
ec

)

VTSA'08 - Max Planck Institute, Saarbrücken 125

Algorithm A1 vs. A3/A4
 (memory consumption –

CADP demos)

number of boolean

operators in the BES

m
em

or
y

(K
by

te
s)

VTSA'08 - Max Planck Institute, Saarbrücken 126

Algorithm A1 vs. A3/A4
 (diagnostic size –

BRP protocol)

message length (number of packets)

di
ag

no
st

ic
 s

iz
e

 (n
um

be
r o

f t
ra

ns
iti

on
s)

VTSA'08 - Max Planck Institute, Saarbrücken 127

Model checking
 (summary)

General

boolean

graph:
–

Any LTS and any alternation-free μ-calculus formula

–

Algorithms A0

and A1

(diagnostic depth ↓)
Acyclic

boolean

graph:

–

Acyclic LTS and guarded formula (CTL, ACTL)
–

Acyclic LTS and μ-calculus formula (via reduction)

–

Algorithm A2

(memory ↓)

Disjunctive/conjunctive

boolean

graph:
–

Any LTS and any formula of CTL, ACTL, PDL

–

Algorithm A3/A4

(memory ↓)
–

Matches the best local algorithms dedicated to CTL
[Vergauwen-Lewi-93]

VTSA'08 - Max Planck Institute, Saarbrücken 128

Partial order reduction
τ-confluence

[Groote-vandePol-00]

–

Form of partial-order reduction defined on LTSs
–

Preserves branching bisimulation

Principle
–

Detection of τ-confluent transitions

–

Elimination of “neighbour”

transitions (τ-prioritisation)

On-the-fly LTS reduction
–

Direct approach [Blom-vandePol-02]

–

BES-based approach

[Pace-Lang-Mateescu-03]
Define τ-confluence in terms of a BES
Detect τ-confluent transitions by locally solving the BES
Apply τ-prioritisation and compression on sequences

VTSA'08 - Max Planck Institute, Saarbrücken 129

Translation to a BES

Xp1,p2

=ν

∧p1

→b

p3

(
p2

→b

p3

∨

∨p2

→b

p4, p3→τ p4 Xp3,p4

∨
((b

= τ)

∧ ∨p3

→τ p2

Xp3,p2

)
)

VTSA'08 - Max Planck Institute, Saarbrücken 130

Tau-prioritisation

and compression

Original LTS

Reduced LTS
(exploration from s0

and s7

)

In practice: reductions of a factor 102

– 103

[Mateescu-05]

VTSA'08 - Max Planck Institute, Saarbrücken 131

Model checking using A3/A4
 (effect of τ-confluence reduction –

time –

Erathostene’s

sieve)

number of units in the sieve

tim
e

(s
ec

)

without τ-confluence
with τ-confluence

VTSA'08 - Max Planck Institute, Saarbrücken 132

Model checking using A3/A4
 (effect of τ-confluence reduction –

memory –

Erathostene’s

sieve)

without τ-confluence
with τ-confluence

number of units in the sieve

m
em

ot
y

(K
by

te
s)

VTSA'08 - Max Planck Institute, Saarbrücken 133

Checking branching bisimulation
 (effect of τ-confluence reduction –

time –

BRP protocol)

VTSA'08 - Max Planck Institute, Saarbrücken 134

Checking branching bisimulation
 (effect of τ-confluence reduction –

memory –

BRP protocol)

VTSA'08 - Max Planck Institute, Saarbrücken 135

On-the-fly verification
 (summary)

Already available:
Generic Caesar_Solve

library [Mateescu-03,06]

9 local BES resolution algorithms (A8 added in 2008)
Diagnostic generation features
Applications: Bisimulator, Evaluator 3.5, Reductor

5.0

Ongoing:
Distributed BES resolution algorithms on clusters of machines
[Joubert-Mateescu-04,05,06]
New applications

–

Test generation
–

Software adaptation

–

Discrete controller synthesis

VTSA'08 - Max Planck Institute, Saarbrücken 136

Case study

SCSI-2 bus arbitration protocol

Description in LOTOS

Specification of properties in TL

Verification using Evaluator 3.5 and 4.0

Interpretation of diagnostics

VTSA'08 - Max Planck Institute, Saarbrücken 137

SCSI-2 bus arbitration protocol

Prioritized

arbitration mechanism, based on static IDs on
bus (devices numbered from 0 to n –

1)

Fairness

problem (starvation of low-priority disks)

CMD
ARB
REC

CMD
ARB
REC

...Disk Disk Disk

Controller

...

VTSA'08 - Max Planck Institute, Saarbrücken 138

Architecture of the system
(

DISK [ARB, CMD, REC] (0, 0)
|[ARB]|
DISK [ARB, CMD, REC] (1, 0)
|[ARB]|
...
|[ARB]|
DISK [ARB, CMD, REC] (6, 0)

)
|[ARB, CMD, REC]|
CONTROLLER [ARB, CMD, REC] (NC, ZERO)

8-ary rendezvous
on gate ARB

binary rendezvous
on gates CMD, REC

VTSA'08 - Max Planck Institute, Saarbrücken 139

Synchronization constraints
 (bus arbitration policy)

Synchronizations on gate ARB:
ARB ?r0, …,r7:Bool [C (r0, …, r7, n)] ; ...

where:
–

r0, …, r7 = values of the electric signals on the bus

–

n = index of the current device

Two particular cases for guard condition C:
–

P (r0, …, r7, n): device n does not ask the bus

–

A (r0, …, r7, n): device n asks and obtains access to bus

VTSA'08 - Max Planck Institute, Saarbrücken 140

Guard conditions

Predicate P (r0, ..., r7, n) = ¬rn

P (r0, ..., r7, 0) = not (r0)
P (r0, ..., r7, 1) = not (r1)
...
P (r0, ..., r7, 7) = not (r7)

Predicate A (r0, ..., r7, n) =

rn

∧ ∀i ∈

[n+1, 7] . ¬ri

A (r0, ..., r7, 0) = r0 and not (r1 or ... or r7)
A (r0, ..., r7, 1) = r1 and not (r2 or ... or r7)
...
A (r0, ..., r7, 7) = r7

VTSA'08 - Max Planck Institute, Saarbrücken 141

Controller process
process

Controller [ARB, CMD, REC] (C:Contents) : noexit

:=

(* communicate with disk N *)
choice

N:Nat

[]

[(N >= 0) and (N <= 6)] ->
Controller2 [ARB, CMD, REC] (C, N)

[]
(* does not request the bus *)
ARB ?r0, ..., r7:Bool [P (r0, ..., r7, 7)];

Controller [ARB, CMD, REC] (C)
endproc

VTSA'08 - Max Planck Institute, Saarbrücken 142

Controller process
process

Controller2 [ARB, CMD, REC] (C:Contents, N:Nat) :

noexit

:=
[not_full

(C, N)] ->

(* request and obtain the bus *)
ARB ?r0, ..., r7:Bool [A (r0, ..., r7, 7)];

CMD !N; (* send a command *)
Controller [ARB, CMD, REC] (incr

(C, N))

[]
REC !N; (* receive an acknowledgement *)

Controller [ARB, CMD, REC] (decr

(C, N))
endproc

VTSA'08 - Max Planck Institute, Saarbrücken 143

Disk process
process

DISK [ARB, CMD, REC] (N, L:Nat) : noexit

:=

CMD !N; DISK [ARB,CMD,REC] (N, L+1)
[]
[L > 0] -> (

ARB ?r0, ..., r7:Bool [A (r0, ..., r7, N)];
REC !N; DISK [ARB, CMD, REC] (N, L-1)

[]
ARB ?r0, ..., r7:Bool [not (A (r0, ..., r7, N)) and

not (P (r0, ..., r7, N))];
DISK [ARB, CMD, REC] (N, L)

)
[]
[L = 0] -> ARB ?r0, ..., r7:Bool [P (r0, ..., r7, N)];

DISK [ARB, CMD, REC] (N, L)
endproc

VTSA'08 - Max Planck Institute, Saarbrücken 144

Absence of starvation property
 (PDL+ACTL formulation)

“Every time a disk i

receives a command from the controller,
it will be able to gain access to the bus in order to send the
corresponding acknowledgement”

[true* .

cmdi

] A [truetrue

Ureci

true]

Property fails
 for i <

nc

Counterexample
 produced by Evaluator 3.5

 for i

= 0 and nc

= 1:

VTSA'08 - Max Planck Institute, Saarbrücken 145

Starvation property
 (MCL formulation)

“Every time a disk i

with priority lower than the controller
nc

receives a command, its access to the bus can be

continuously preempted by any other disk j

with higher
priority”

[true*. {cmd

?i:Nat

where

i < nc}]
forall

j:Nat

among {

i + 1 ...

n −

1 } .

(j <> nc) implies
< (not {rec

!i})*. {cmd

!j} .

(not {rec

!i})*. {rec

!j} > @

VTSA'08 - Max Planck Institute, Saarbrücken 146

Safety property
 (MCL formulation)

“The difference between the number of commands received
and reconnections sent by a disk i

varies between 0

and 8

 (the size of the buffers associated to disks)”

forall

i:Nat

among {

0 …

n –

1 } .
nu

Y (c:Nat:=0) . (

[{cmd

!i}] ((c < 8) and

Y (c + 1))
and
[{rec

!i}] ((c > 0) and

Y (c −

1))

and
[not ({cmd

!i} or {rec

!i})]

Y (c)

)

VTSA'08 - Max Planck Institute, Saarbrücken 147

Safety property
 (standard mu-calculus formulation)

nu

CMD_REC_0 . (
[CMD_i

] nu

CMD_REC_1 . (
[CMD_i

] nu

CMD_REC_2 . (
[CMD_i

] nu

CMD_REC_3 . (
[CMD_i

] nu

CMD_REC_4 . (
[CMD_i

] nu

CMD_REC_5 . (
[CMD_i

] nu

CMD_REC_6 . (
[CMD_i

] nu

CMD_REC_7 . (
[CMD_i

] nu

CMD_REC_8 . (
[CMD_i

] false
and
[REC_i

] CMD_REC_7
and
[not ((CMD_i) or (REC_i))] CMD_REC_8

)
and
[REC_i

] CMD_REC_6
and
[not ((CMD_i) or (REC_i))] CMD_REC_7

)
and
[REC_i

] CMD_REC_5
and
[not ((CMD_i) or (REC_i))] CMD_REC_6

)

and
[REC_i

] CMD_REC_4
and
[not ((CMD_i) or (REC_i))] CMD_REC_5

)
and
[REC_i

] CMD_REC_3
and
[not ((CMD_i) or (REC_i))] CMD_REC_4

)
and
[REC_i

] CMD_REC_2
and
[not ((CMD_i) or (REC_i))] CMD_REC_3

)
and
[REC_i

] CMD_REC_1
and
[not ((CMD_i) or (REC_i))] CMD_REC_2

)
and
[REC_i

] CMD_REC_0
and
[not ((CMD_i) or (REC_i))] CMD_REC_1

)
and
[REC_i

] false
and
[not ((CMD_i) or (REC_i))] CMD_REC_0

)

VTSA'08 - Max Planck Institute, Saarbrücken 148

Discussion and perspectives
Model-based verification techniques:
–

Bug hunting, useful in early stages of the design process

–

Confronted with (very) large models
–

Temporal logics extended with data (XTL, Evaluator 4.0)

–

Machinery for on-the-fly verification (Open/Caesar)

Perspectives:
–

Parallel and distributed algorithms

State space construction
BES resolution

–

New applications
Analysis of genetic regulatory networks

	Model Checking of Action-Based Concurrent Systems
	Action-based temporal logics
	Why temporal logics?
	(Rough) classification of TLs
	Example�(coffee machine)
	Interpretation of�(branching-time) TLs on LTSs
	Running example:�mutual exclusion with a semaphore
	LTS model
	Modal logics
	Action predicates�(syntax)
	Action predicates�(semantics)
	Examples
	HML logic�(syntax)
	HML logic�(semantics)
	Example (1/4)
	Example (2/4)
	Example (3/4)
	Example (4/4)
	Some identities
	Characterization of branching
	Modal logics�(summary)
	Branching-time logics
	ACTL logic�(syntax)
	ACTL logic�(derived operators)
	ACTL logic�(semantics – potentiality operators)
	ACTL logic�(semantics – inevitability operators)
	Example (1/4)
	Example (2/4)
	Example (3/4)
	Example (4/4)
	Remark about inevitability
	Safety properties
	Liveness properties
	Branching-time logics�(summary)
	Regular logics
	Regular formulas�(syntax)
	Regular formulas�(semantics)
	Example (1/3)
	Example (2/3)
	Example (3/3)
	PDL logic�(syntax)
	PDL logic�(semantics)
	Example (1/2)
	Example (2/2)
	Some identities
	Fairness properties
	Fair execution
	Example
	Regular logics�(summary)
	Fixed point logics
	Modal mu-calculus�(syntax)
	Syntactic restrictions
	Modal mu-calculus�(semantics)
	Minimal fixed point
	Example
	Maximal fixed point
	Example
	Exercise
	Some identities
	Inevitable reachability
	Inevitable execution
	Example
	Fair execution
	Example
	Fixed point logics�(summary)
	Some verification tools�(for action-based logics)
	Extensions of µ-calculus with data
	Why to handle data?
	Model Checking Language
	Parameterized modalities
	Parameterized fixed points
	Example
	Quantifiers
	Example
	Counting operators�(regular formulas)
	Example�(action counting revisited)
	Example�(safety of a n-place buffer)
	Looping operator (from PDL-delta)
	Expressiveness�(summary)
	Adequacy with equivalence relations
	On-the-fly verification
	Principle of explicit-state verification
	On-the-fly verification
	Boolean equation systems�(syntax)
	Example
	Particular blocks
	Boolean equation systems�(semantics)
	Local resolution
	Example
	Local resolution algorithms
	Example
	Three effectiveness criteria�[Mateescu-06]
	Algorithm A0�(general)
	Algorithm A1 �(general)
	Algorithm A2 �(acyclic)
	Algorithm A3 / A4 �(disjunctive / conjunctive)
	Resolution algorithms�(summary)
	Caesar_Solve library of CADP�[Mateescu-03,06]
	Equivalence checking�(principle)
	Strong equivalence
	Translation to a BES
	Tau*.a and safety equivalences
	Observational and branching equivalences
		Example�	(coffee machine)
	Equivalence checking (time)�
	Equivalence checking (memory)�
	Equivalence checking�(summary)
	Model checking�(principle)
	On-the-fly model checking in CADP�(Evaluator 3.x)
	Translation to Boolean Equation Systems
	Translation to PDL with recursion
	Simplification
					Translation to BESs
	Local BES resolution with diagnostic�
	Additional operators
	Disjunctive BES
	Linear-time model checking�(looping operator of PDL-delta)
	Model checking�of data-based�properties�(Evaluator 4.0)				
	Translation into HMLR
	Translation into�BES and resolution
	Divergence
	Conjunctive BES
	Acyclic BES
	Algorithm A1 vs. A3/A4�(execution time – CADP demos)
	Algorithm A1 vs. A3/A4�(memory consumption – CADP demos)
	Algorithm A1 vs. A3/A4�(diagnostic size – BRP protocol)
	Model checking�(summary)
	Partial order reduction
	Translation to a BES
	Tau-prioritisation and compression
	Model checking using A3/A4�(effect of τ-confluence reduction – time – Erathostene’s sieve)
	Model checking using A3/A4�(effect of τ-confluence reduction – memory – Erathostene’s sieve)
	Checking branching bisimulation�(effect of τ-confluence reduction – time – BRP protocol)
	Checking branching bisimulation�(effect of τ-confluence reduction – memory – BRP protocol)
	On-the-fly verification�(summary)
	Case study
	SCSI-2 bus arbitration protocol
	Architecture of the system
	Synchronization constraints�(bus arbitration policy)
	Guard conditions
	Controller process
	Controller process
	Disk process�
	Absence of starvation property�(PDL+ACTL formulation)
	Starvation property�(MCL formulation)
	Safety property�(MCL formulation)
	Safety property�(standard mu-calculus formulation)
	Discussion and perspectives

