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Why temporal logics?
Formalisms for high-level specification of systems

–
 

Example: all mutual exclusion protocols should satisfy
Mutual exclusion (at most one process in critical section)
Liveness (each process should eventually enter its critical section)

Temporal logics (TLs):
formalisms describing the ordering of states (or actions)

 during the execution of a concurrent program

TL specification = list of logical formulas, each one 
expressing a property of the program
Benefits of TL [Pnueli-77]:

–
 

Abstraction: properties expressed in TL are independent from the 
description/implementation of the system

–
 

Modularity: one can add/remove a property without impacting the 
other properties of the specification
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(Rough) classification of TLs

State-based Action-based
Linear-time

(properties 
about execution 
sequences)

LTL (SPIN tool)

linear mu-calculus

TLA (TLA+ tool)

action-based LTL
(LTSA tool)

Branching-time

(properties 
about execution 
trees)

CTL (nuSMV
 

tool)

CTL*

ACTL (JACK tool)
ACTL*
modal mu-calculus 
(CWB, Concurrency 
Factory, CADP tools)
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Example
 (coffee machine)

A linear-time TL cannot distinguish the two LTSs
 

M1
 and M2

 

, which have the same set of execution 
sequences, but are not behaviourally

 
equivalent 

(modulo strong bisimulation)
A branching-time TL can capture nondeterminism

 and thus can distinguish M1
 

and M2

moneymoney

coffee tea

money

coffee tea

M1 M2

L
 

(M1

 

) = L
 

(M2

 

) =
{ money.coffee, money.tea

 
}
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Interpretation of
 (branching-time) TLs

 
on LTSs

LTS model M
 

= 〈
 

S, A, T, s0
 

〉, where:
–

 
S: set of states

–
 

A: set of actions (events)
–

 
T

 
∈

 
S

 
×

 
A

 
×

 
S: transition relation

–
 

s0

 

∈
 

S: initial state

Interpretation of a formula ϕ
 

on M: 
[[ ϕ

 
]] = { s

 
∈

 
S

 
| s

 
|= ϕ

 
}

([[ ϕ
 

]] defined inductively on the structure of ϕ)
An LTS M

 
satisfies a TL formula ϕ

 
(M

 
|= ϕ)

iff
 

its initial state satisfies ϕ
 

:
M

 
|= ϕ ⇔ s0

 

|= ϕ ⇔ s0
 

∈
 

[[ ϕ
 

]]
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Running example:
 mutual exclusion with a semaphore

P0 P1S
REQ0

REL0

REL1

REQ1
NCS0
CS0

NCS1
CS1

NCS0

CS0
REQ0

REL0 REQ0
REL0

REQ1
REL1

NCS1

CS1
REQ1

REL1
NCS0

CS0

REQ0

REL0

REQ1

REL1

NCS1

CS1

Description using communicating automata
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LTS model

NCS0 NCS1

NCS1 NCS0
REQ1REQ0

NCS0

NCS0

NCS1

NCS1

CS0 CS1REQ1REQ0

CS0 CS1

REL1REL0

REL1
REL0
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Modal logics

They are the simplest logics allowing to reason 
about the sequencing and branching of transitions 
in an LTS
Basic modal operators:
–

 
Possibility
from a state, there exists (at least) an outgoing transition 
labeled by a certain action and leading to a certain state

–
 

Necessity
from a state, all the outgoing transitions labeled by a 
certain action lead to certain states

Hennessy-Milner Logic (HML) [Hennessy-Milner-85]
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Action predicates
 (syntax)

α
 

::=
 

a
 

atomic proposition (a∈A)

| tt
 

constant “true”

| ff constant “false”

|
 
α1

 

∨ α2
 

disjunction

|
 
α1

 

∧ α2
 

conjunction

|
 
¬α1

 

negation

|
 
α1

 

⇒ α2 implication (¬α1
 

∨ α2
 

)

|
 
α1

 

⇔ α2 equivalence (α1
 

⇒α2 ∧ α1
 

⇒α2
 

)
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Action predicates
 (semantics)

Let M
 

= (S, A, T, s0
 

). Interpretation [[ α
 

]] ⊆
 

A:
[[ a

 
]] = { a

 
}

[[ tt
 

]] = A
[[ ff ]] = ∅
[[ α1

 

∨ α2
 

]] = [[ α1
 

]] ∪
 

[[ α2
 

]]
[[ α1

 

∧ α2
 

]] = [[ α1
 

]] ∩
 

[[ α2
 

]]
[[ ¬α1 ]] = A

 
\ [[ α1

 

]]
[[ α1

 

⇒ α2 ]] = (A
 

\ [[ α1
 

]]) ∪
 

[[ α2
 

]]
[[ α1

 

⇔ α2 ]] = ((A
 

\
 

[[ α1
 

]]) ∪
 

[[ α2
 

]])                        
∩

 
((A

 
\

 
[[ α2

 

]]) ∪
 

[[ α1
 

]])
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Examples
A

 
= { NCS0

 

, NCS1

 

, CS0

 

, CS1

 

, REQ0

 

, REQ1

 

, REL0

 

, REL1

 

}

[[ tt
 

]] = { NCS0

 

, NCS1

 

, CS0

 

, CS1

 

, REQ0

 

, REQ1

 

, REL0

 

, REL1

 

}
[[ ff ]] = ∅
[[ NCS0

 

]] = { NCS0

 

}
[[ ¬NCS0

 

]] = { NCS1

 

, CS0

 

, CS1

 

, REQ0

 

, REQ1

 

, REL0

 

, REL1

 

}
[[ NCS0

 

∧ ¬NCS1

 

]] = { NCS0

 

} = [[ NCS0

 

]]
[[ NCS0

 

∨
 

NCS1

 

]] = { NCS0

 

, NCS1

 

}
[[ (NCS0

 

∨
 

NCS1

 

) ∧
 

(NCS0

 

∨
 

REQ0

 

) ]] = { NCS0

 

}
[[ NCS0

 

∧
 

NCS1

 

]] = ∅
 

= [[ ff ]]
[[ NCS0

 

∨ ¬NCS0

 

]] =
{ NCS0

 

, NCS1

 

, CS0

 

, CS1

 

, REQ0

 

, REQ1

 

, REL0

 

, REL1 } = [[ tt
 

]]
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HML logic
 (syntax)

ϕ
 

::= tt
 

constant “true”

| ff
 

constant “false”

|
 
ϕ1

 

∨ ϕ2 disjunction

|
 
ϕ1

 

∧ ϕ2 conjunction

|
 
¬ϕ1 negation

|
 
〈 α 〉 ϕ1

 

possibility

|
 
[ α ] ϕ1

 

necessity

Duality:
 

[ α ] ϕ = ¬〈
 

α
 

〉
 

¬ϕ
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HML logic
 (semantics)

Let M
 

= (S, A, T, s0
 

). Interpretation [[ ϕ
 

]] ⊆
 

S:
[[ tt

 
]] = S

[[ ff ]] = ∅
[[ ϕ1

 

∨ ϕ2
 

]] = [[ ϕ1
 

]] ∪
 

[[ ϕ2
 

]]
[[ ϕ1

 

∧ ϕ2
 

]] = [[ ϕ1
 

]] ∩
 

[[ ϕ2
 

]]
[[ ¬ϕ1 ]] = S

 
\ [[ ϕ1

 

]]
[[ 〈 α 〉 ϕ1

 

]] = { s
 

∈
 

S
 

| ∃
 

(s, a, s’) ∈
 

T
 

.           
a

 
∈

 
[[ α

 
]] ∧

 
s’

 
∈

 
[[ ϕ1

 

]] }
[[ [ α ] ϕ1

 

]] = { s
 

∈
 

S
 

| ∀
 

(s, a, s’) ∈
 

T
 

.           
a

 
∈

 
[[ α

 
]] ⇒

 
s’

 
∈

 
[[ ϕ1

 

]] }
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Example (1/4)
Deadlock freedom:

 
〈

 
tt

 
〉

 
tt

NCS0 NCS1

NCS1 NCS0
REQ1REQ0

NCS0

NCS0

NCS1

NCS1

CS0 CS1REQ1REQ0

CS0 CS1

REL1REL0

REL1
REL0
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Example (2/4)
Possible execution of a set of actions:

 
〈

 
CS0

 

∨
 

CS1

 

〉
 

tt

NCS0 NCS1

NCS1 NCS0
REQ1REQ0

NCS0

NCS0

NCS1

NCS1

CS0 CS1REQ1REQ0

CS0 CS1

REL1REL0

REL1
REL0
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Example (3/4)
Forbidden execution of a set of actions:

 
[ NCS0

 

∨
 

NCS1

 

] ff

NCS0 NCS1

NCS1 NCS0
REQ1REQ0

NCS0

NCS0

NCS1

NCS1

CS0 CS1REQ1REQ0

CS0 CS1

REL1REL0

REL1
REL0
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Example (4/4)
Execution of an action sequence:

 
〈

 
REQ0

 

〉 〈 CS0

 

〉 〈 REL0

 

〉
 

tt

NCS0 NCS1

NCS1 NCS0
REQ1REQ0

NCS0

NCS0

NCS1

NCS1

CS0 CS1REQ1REQ0

CS0 CS1

REL1REL0

REL1
REL0
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Some identities
Tautologies:
–

 
〈 α 〉 ff = 〈

 
ff 〉 ϕ = ff

–
 

[ α ] tt
 

= [
 

ff ] ϕ = tt

Distributivity
 

of modalities over ∨
 

and ∧:
–

 
〈 α 〉 ϕ1 ∨ 〈 α 〉 ϕ2 = 〈 α 〉 (ϕ1 ∨ ϕ2

 

)
–

 
〈 α1

 

〉 ϕ ∨ 〈 α2

 

〉 ϕ = 〈 α1 ∨ α2

 

〉 ϕ
–

 
[ α

 
] ϕ1 ∧

 
[ α

 
] ϕ2 = [ α

 
] (ϕ1 ∧ ϕ2

 

)
–

 
[ α1

 

] ϕ ∧ [ α2

 

] ϕ
 

= [ α1 ∨ α2

 

] ϕ

Monotonicity
 

of modalities over ϕ
 

and α:
–

 
(ϕ1

 

⇒ ϕ2

 

)
 

⇒
 

(〈 α 〉 ϕ1 ⇒ 〈 α 〉 ϕ2

 

)
 

∧
 

([ α ] ϕ1 ⇒ [ α ] ϕ2

 

)
–

 
(α1

 

⇒ α2

 

)
 

⇒
 

(〈 α1

 

〉 ϕ ⇒ 〈 α2

 

〉 ϕ) ∧
 

([ α2

 

] ϕ ⇒ [ α1

 

] ϕ)
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Characterization of branching

Modal formula distinguishing between M1
 

and M2
 

:

ϕ
 

= [
 

money
 

]
 

( 〈
 

coffee
 

〉
 

tt
 

∧ 〈 tea
 

〉
 

tt
 

)

M1
 

|= ϕ
 

and
 

M2
 

|= ϕ

moneymoney

coffee tea

money

coffee tea

M1 M2
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Modal logics
 (summary)

Are able to express simple branching-time 
properties involving states s

 
∈

 
S

 
and actions a

 
∈

 
A

 of an LTS
But:
–

 
Take into account only a finite number of steps around a 
state (nesting of modalities)

–
 

Cannot express properties about transition sequences or 
subtrees

 
of arbitrary length

Example: the property
“from a state s, there exists a sequence leading to a state  

s’
 

where the action a
 

is executable”

cannot be expressed in modal logic
(it would need a formula 〈

 
tt

 
〉 〈 tt

 
〉

 
…

 
〈

 
tt

 
〉 〈 a

 
〉

 
tt)
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Branching-time logics

They are logics allowing to reason about the 
(infinite) execution trees contained in an LTS
Basic temporal operators:
–

 
Potentiality
from a state, there exists an outgoing, finite transition 
sequence leading to a certain state

–
 

Inevitability
from a state, all outgoing transition sequences lead, after 
a finite number of steps, to certain states

Action-based Computation Tree Logic (ACTL)
 [DeNicola-Vaandrager-90]
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ACTL logic
 (syntax)

ϕ
 

::= tt
 

|
 

ff
 

boolean
 

constants

| ϕ1 ∨ ϕ2
 

|
 

¬ϕ1 connectors

| E [ ϕ1α1
 

U ϕ2 ]  
potentiality 1

| E [ ϕ1α1
 

Uα2
 

ϕ2 ]  
potentiality 2

| A [ ϕ1α1
 

U ϕ2 ]  
inevitability 1

| A [ ϕ1α1
 

Uα2
 

ϕ2 ]  
inevitability 2
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ACTL logic
 (derived operators)

EFα
 

ϕ
 

= E [ ttα
 

U ϕ
 

]
 

basic potentiality

AFα
 

ϕ
 

= A [ ttα
 

U ϕ
 

]
 

basic inevitability

AGα
 

ϕ =
 

¬
 

EFα
 

¬ϕ
 

invariance

EGα
 

ϕ
 

= ¬
 

AFα
 

¬ϕ
 

trajectory

〈 α 〉 ϕ = E [ ttff
 

Uα
 

ϕ
 

]
 

possibility

[ α
 

] ϕ
 

= ¬ 〈 α 〉 ¬ ϕ
 

necessity

dualities
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ACTL logic
 (semantics –

 
potentiality operators)

Let M
 

= (S, A, T, s0
 

). Interpretation [[ ϕ
 

]] ⊆
 

S:

[[ E [ ϕ1α
 

U ϕ2 ]
 

]] = { s
 

∈
 

S
 

| ∃s(=s0
 

)→a0s1
 

→a1s2
 

→… .
 

 
∃k

 
≥

 
0. ∀0 ≤

 
i <

 
k. (si

 

∈
 

[[ ϕ1
 

]] ∧
 

ai
 

∈
 

[[ α ∨ τ ]]) ∧
 sk

 

∈
 

[[ ϕ2
 

]] }

[[ E [ ϕ1α1
 

Uα2
 

ϕ2 ]
 

]] = { s
 

∈
 

S
 

|∀s(=s0
 

)→a0s1
 

→a1s2
 

→… . 
∃k

 
≥

 
0. ∀0≤

 
i <

 
k. (si

 

∈
 

[[ ϕ1
 

]] ∧
 

ai
 

∈
 

[[ α1
 

∨ τ ]] ∧
 sk

 

∈
 

[[ ϕ1
 

]] ∧
 

ak
 

∈
 

[[ α2 ]] ∧
 

sk+1
 

∈
 

[[ ϕ2
 

]] }

. . .
ϕ1 ϕ1 ϕ1 ϕ1 ϕ2

α ∨ τ α ∨ τ α ∨ τ α ∨ τ α ∨ τ

. . .
ϕ1 ϕ1 ϕ1 ϕ1 ϕ1

α1

 

∨ τ α1

 

∨ τ α1

 

∨ τ α1

 

∨ τ α1

 

∨ τ
ϕ2

α2
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ACTL logic
 (semantics –

 
inevitability operators)

[[ A [ ϕ1α
 

U ϕ2 ] ]]:

[[ A [ ϕ1α1
 

Uα2
 

ϕ2 ]
 

]]:

. . .

ϕ1

ϕ1 ϕ1 ϕ1 ϕ2
α ∨ τ

α ∨ τ α ∨ τ α ∨ τ α ∨ τ

. . .
ϕ1 ϕ1 ϕ1 ϕ2

α ∨ τ α ∨ τ α ∨ τ α ∨ τ

. . .

. . .

ϕ1

ϕ1 ϕ1 ϕ1 ϕ1
α1

 

∨ τ
α1

 

∨ τ α1

 

∨ τ α1

 

∨ τ α1

 

∨ τ
ϕ2

α2

. . .
ϕ1 ϕ1 ϕ1 ϕ1

α1

 

∨ τ α1

 

∨ τ α1

 

∨ τ α1

 

∨ τ
ϕ2

α2
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Example (1/4)
Potential reachability:     EF¬

 

REL1

 

〈
 

CS0

 

〉
 

tt

NCS0 NCS1

NCS1 NCS0
REQ1REQ0

NCS0

NCS0

NCS1

NCS1

CS0 CS1REQ1REQ0

CS0 CS1

REL1REL0

REL1
REL0
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Example (2/4)
Inevitable reachability:     AF¬

 

(REL0 ∨

 

REL1)

 

〈
 

CS0

 

∨
 

CS1

 

〉
 

tt

NCS0 NCS1

NCS1 NCS0
REQ1REQ0

NCS0

NCS0

NCS1

NCS1

CS0 CS1REQ1REQ0

CS0 CS1

REL1REL0

REL1
REL0
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Example (3/4)
Invariance:     AG¬

 

(NCS0 ∨

 

NCS1)

 

〈
 

NCS0

 

∨
 

NCS1

 

〉
 

tt

NCS0 NCS1

NCS1 NCS0
REQ1REQ0

NCS0

NCS0

NCS1

NCS1

CS0 CS1REQ1REQ0

CS0 CS1

REL1REL0

REL1
REL0
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Example (4/4)
Trajectory:      EG¬

 

CS0

 

[ CS0

 

] ff

NCS0 NCS1

NCS1 NCS0
REQ1REQ0

NCS0

NCS0

NCS1

NCS1

CS0 CS1REQ1REQ0

CS0 CS1

REL1REL0

REL1
REL0
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Remark about inevitability
Inevitable reachability:

 
all sequences going out of a state 

lead to states where an action a
 

is executable
AFtt

 

〈
 

a
 

〉
 

tt
Inevitable execution:

 
all sequences going out of a state 

contain the action a
Inevitable execution ⇒

 
inevitable reachability

 but the converse does not hold:

s
 

|= AFtt

 

〈
 

a
 

〉
 

tt

Inevitable execution must be expressed using the 
inevitability operators of ACTL:

s
 

|= A [ tttt

 

Ua

 

tt
 

]

a
b

b
s
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Safety properties

Informally, safety properties specify that
 “something bad never happens”

 during the execution of the system
One way of expressing safety properties:
forbid undesirable execution sequences
–

 
Mutual exclusion:
¬ 〈 CS0

 

〉
 

EF¬REL0

 

〈
 

CS1

 

〉
 

tt
= [ CS0

 

] AG¬REL0

 

[ CS1

 

] ff

In ACTL, forbidding a sequence is expressed by 
combining the [ α ] ϕ and AGα

 

ϕ
 

operators

CS0 CS1. . .

¬REL0
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Liveness
 

properties

Informally liveness
 

properties specify that
 “something good eventually happens”

 during the execution of the system
One way of expressing liveness

 
properties:

require desirable execution sequences / trees
–

 
Potential release of the critical section: 
〈

 
NCS0

 

〉
 

EFtt

 

〈
 

REQ0

 

〉
 

EFtt

 

〈
 

REL0

 

〉
 

tt
–

 
Inevitable access to the critical section:
A [ tttt

 

UCS0

 

tt
 

]

In ACTL, the existence of a sequence is expressed 
by combining the 〈 α 〉 ϕ and EFα

 

ϕ
 

operators
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Branching-time logics
 (summary)

The temporal operators of ACTL: strictly more 
powerful than the HML modalities 〈 α 〉 ϕ and [ α ] ϕ
They allow to express branching-time properties on 
an unbounded depth in an LTS
But:
–

 
They do not allow to express the unbounded repetition of 
a subsequence

Example: the property
“from a state s, there exists a sequence a.b.a.b

 
... a.b

 leading to a state s’
 

where an action c is executable”

cannot be expressed in ACTL
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Regular logics

They allow to reason about the regular execution 
sequences of an LTS
Basic operators:
–

 
Regular formulas
two states are linked by a sequence whose concatenated 
actions form a word of a regular language

–
 

Modalities on sequences
from a state, some (all) outgoing regular transition 
sequences lead to certain states

Propositional Dynamic Logic (PDL)
 [Fischer-Ladner-79]
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Regular formulas
 (syntax)

β
 

::= α
 

one-step sequence

| nil
 

empty sequence

|
 
β1

 

. β2 concatenation

|
 
β1

 

| β2 choice

|
 
β1

 

* iteration (≥
 

0 times)

|
 
β1

+
 

iteration (≥
 

1 times)

Some identities: 
nil = ff *

 
β+

 
= β

 
. β* 
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Regular formulas
 (semantics)

Let M
 

= (S, A, T, s0
 

). Interpretation [[ β
 

]] ⊆
 

S
 

×
 

S:

[[ α ]] = { (s, s’) | ∃a
 

∈
 

[[ α ]] . (s, a, s’) ∈
 

T
 

}
[[ nil ]] = { (s, s) | s

 
∈

 
S

 
}

 
(identity)

[[ β1
 

. β2 ]] = [[ β1
 

]] о
 

[[ β2
 

]]
 

(composition)

[[ β1
 

| β2 ]] = [[ β1
 

]] ∪
 

[[ β2
 

]]
 

(union)

[[ β1
 

* ]] = [[ β1
 

]] *
 

(transitive refl. closure)

[[ β1
+

 
]] = [[ β1

 

]] +
 

(transitive closure)
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Example (1/3)
One-step sequences: NCS0 ∨

 
CS0

NCS0 NCS1

NCS1 NCS0
REQ1REQ0

NCS0

NCS0

NCS1

NCS1

CS0 CS1REQ1REQ0

CS0 CS1

REL1REL0

REL1
REL0
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Example (2/3)
Alternative sequences: (REQ0

 

. CS0

 

) | (REQ1

 

. CS1

 

)

NCS0 NCS1

NCS1 NCS0
REQ1REQ0

NCS0

NCS0

NCS1

NCS1

CS0 CS1REQ1REQ0

CS0 CS1

REL1REL0

REL1
REL0
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Example (3/3)
Sequences with repetition: NCS0

 

. (¬NCS1

 

)* . CS0

NCS0 NCS1

NCS1 NCS0
REQ1REQ0

NCS0

NCS0

NCS1

NCS1

CS0 CS1REQ1REQ0

CS0 CS1

REL1REL0

REL1
REL0
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PDL logic
 (syntax)

ϕ
 

::= tt
 

| ff
 

boolean
 

constants

|
 
ϕ1

 

∨ ϕ2 disjunction

|
 
ϕ1

 

∧ ϕ2 conjunction

|
 
¬ϕ1 negation

|
 
〈

 
β

 
〉 ϕ1

 

possibility

|
 
[

 
β

 
] ϕ1

 

necessity

Duality:
 

[
 

β
 

] ϕ = ¬ 〈 β
 

〉 ¬ϕ
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PDL logic
 (semantics)

Let M
 

= (S, A, T, s0
 

). Interpretation [[ ϕ
 

]] ⊆
 

S:
[[ tt

 
]] = S

[[ ff ]] = ∅
[[ ϕ1

 

∨ ϕ2
 

]] = [[ ϕ1
 

]] ∪
 

[[ ϕ2
 

]]
[[ ϕ1

 

∧ ϕ2
 

]] = [[ ϕ1
 

]] ∩
 

[[ ϕ2
 

]]
[[ ¬ϕ1 ]] = S

 
\ [[ ϕ1

 

]]
[[ 〈 β 〉 ϕ1

 

]] = { s
 

∈
 

S
 

| ∃
 

s’
 

∈
 

S
 

.                                
(s, s’) ∈

 
[[ β

 
]] ∧

 
s’

 
∈

 
[[ ϕ1

 

]] }
[[ [ β ] ϕ1

 

]] = { s
 

∈
 

S
 

| ∀
 

s’
 

∈
 

S
 

.                               
(s, s’) ∈

 
[[ β

 
]] ⇒

 
s’

 
∈

 
[[ ϕ1

 

]] }
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Example (1/2)
Potential reachability

 
of critical section: 〈

 
NCS0

 

. tt
 

* . CS0

 

〉
 

tt

NCS0 NCS1

NCS1 NCS0
REQ1REQ0

NCS0

NCS0

NCS1

NCS1

CS0 CS1REQ1REQ0

CS0 CS1

REL1REL0

REL1
REL0
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Example (2/2)
Mutual exclusion: [ CS0

 

. (¬REL0

 

)* . CS1

 

] ff

NCS0 NCS1

NCS1 NCS0
REQ1REQ0

NCS0

NCS0

NCS1

NCS1

CS0 CS1REQ1REQ0

CS0 CS1

REL1REL0

REL1
REL0
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Some identities

Distributivity
 

of regular operators over 〈 〉 and [ ]:
–

 
〈 β1

 

. β2

 

〉 ϕ = 〈 β1

 

〉 〈 β2

 

〉 ϕ

–
 

〈 β1

 

| β2

 

〉 ϕ = 〈 β1

 

〉 ϕ ∨ 〈 β2

 

〉 ϕ

–
 

〈 β * 〉 ϕ = ϕ ∨ 〈 β 〉 〈 β * 〉 ϕ

–
 

[ β1

 

. β2

 

] ϕ
 

= [ β1

 

] [ β2

 

] ϕ

–
 

[ β1

 

| β2

 

] ϕ
 

= [ β1

 

] ϕ ∧ [ β2

 

] ϕ

–
 

[ β
 

* ] ϕ
 

= ϕ ∧ [ β
 

] [ β
 

* ] ϕ

Potentiality and invariance operators of ACTL:
–

 
EFα

 

ϕ
 

= 〈 α * 〉 ϕ

–
 

AGα

 

ϕ
 

= [ α
 

* ] ϕ
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Fairness properties

Problem: from the initial state of the LTS, there is 
no inevitable execution of action CS0

 

⇒ process P1
 can enter its critical section indefinitely often

s
 

|=  A [ tttt
 

Ua
 

tt
 

]

Fair execution
 

of an action a: from a state, all 
transition sequences that do not cycle indefinitely 
contain action a
Action-based counterpart of the fair reachability

 
of 

predicates
 

[Queille-Sifakis-82]

bb b
s

b

a
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Fair execution

Fair execution of an action a
 

expressed in PDL:

fair (a) = [ (¬a)* ] 〈
 

tt*. a
 

〉
 

tt

Equivalent formulation in ACTL:

fair (a) = AG¬a
 

EFtt
 

〈
 

a
 

〉
 

tt

bb b

b

a
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Example
Fair execution of critical section: [ (¬CS0

 

)* ] 〈
 

tt*. CS0

 

〉
 

tt

NCS0 NCS1

NCS1 NCS0
REQ1REQ0

NCS0

NCS0

NCS1

NCS1

CS0 CS1REQ1REQ0

CS0 CS1

REL1REL0

REL1
REL0
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Regular logics
 (summary)

They allow a direct and natural description of 
regular execution sequences in LTSs

More intuitive description of safety properties:
–

 
Mutual exclusion:
[ CS0

 

] AG¬REL0

 

[ CS1 ] ff    =
 

(in ACTL)
[ CS0

 

. (¬REL0

 

)* . CS1

 

] ff
 

(in PDL)

But:
–

 
Not sufficiently powerful to express inevitability 
operators (expressiveness uncomparable

 
with 

branching-time logics)
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Fixed point logics

Very expressive logics (“temporal logic assembly 
languages”) allowing to characterize finite or 
infinite tree-like patterns in LTSs
Basic temporal operators:
–

 
Minimal fixed point

 
(μ)

“recursive function”
 

defined over the LTS:                
finite

 
execution trees going out of a state

–
 

Maximal fixed point
 

(ν)
dual of the minimal fixed point operator:

 infinite
 

execution trees going out of a state

Modal mu-calculus [Kozen-83,Stirling-01]
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Modal mu-calculus
 (syntax)

ϕ
 

::=
 
tt

 
|  ff

 
boolean

 
constants

|
 
ϕ1

 

∨ ϕ2   |  ¬ϕ1 connectors

|
 
〈 α 〉 ϕ1

 

possibility

|
 
[ α ] ϕ1

 

necessity

|
 
X

 
propositional variable

|
 
μX

 
. ϕ1

 

minimal fixed point

|
 
νX

 
. ϕ1

 

maximal fixed point

Duality:
 
νX

 
. ϕ

 
= ¬ μX

 
. ¬ ϕ [¬

 
X

 
/ X ]
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Syntactic restrictions

Syntactic monotonicity
 

[Kozen-83]
–

 
Necessary to ensure the existence of fixed points

–
 

In every formula σX
 

. ϕ
 

(X), where σ ∈ { μ, ν
 

},
 

every free 
occurrence of X

 
in ϕ

 
falls in the scope of an even number 

of negations
μX

 
. 〈

 
a

 
〉

 
X

 
∨ ¬ 〈 b

 
〉

 
X

Alternation depth 1 [Emerson-Lei-86]
–

 
Necessary for efficient (linear-time) verification

–
 

In every formula μX
 

. ϕ
 

(X), every maximal subformula
 νY

 
. ϕ’ (Y) of ϕ

 
is closed

μX
 

. 〈
 

a
 

〉 νY
 

. ([ b
 

] Y
 

∧
 

[ c
 

] X)



VTSA'08 - Max Planck Institute, Saarbrücken 53

Modal mu-calculus
 (semantics)

Let M
 

= (S, A, T, s0
 

) and ρ
 

: X
 

→
 

2S
 

a context mapping 
propositional variables to state sets. Interpretation 
[[ ϕ

 
]] ⊆

 
S:

[[ X
 

]] ρ
 

= ρ
 

(X )

[[ μX
 

. ϕ
 

]] ρ
 

= ∪k≥0
 

Φρ
k

 
(∅)

[[ νX
 

. ϕ
 

]] ρ
 

= ∩k≥0
 

Φρ
k

 
(S)

where
 

Φρ
 

: 2S
 

→
 

2S
 

,

Φρ
 

(U) = [[ ϕ
 

]] ρ
 

[ U
 

/ X ]



VTSA'08 - Max Planck Institute, Saarbrücken 54

Minimal fixed point

Potential reachability
 

of an action a
 

(existence of a 
sequence leading to a transition labeled by a):

μX
 

. 〈
 

a
 

〉
 

tt
 

∨ 〈 tt
 

〉
 

X 
Associated functional:

Φ
 

(U) = [[ 〈
 

a
 

〉
 

tt
 

∨ 〈 tt
 

〉
 

X ]]  [ U
 

/ X ]
Evaluation on an LTS:

abb b

Φ
 

(∅)Φ2

 

(∅)Φ3

 

(∅)Φ4

 

(∅)

c
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Example
Potential reachability: µX

 
. 〈

 
CS0

 

〉
 

tt
 

∨ 〈 ¬(REL1 ∨
 

REL0

 

) 〉
 

X

NCS0 NCS1

NCS1 NCS0
REQ1REQ0

NCS0

NCS0

NCS1

NCS1

CS0 CS1REQ1REQ0

CS0 CS1

REL1REL0

REL1
REL0
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Maximal fixed point

Infinite repetition of an action a
 

(existence of a 
cycle containing only transitions labeled by a):

νX
 

. 〈
 

a
 

〉
 

X 
Associated functional:

Φ
 

(U) = [[ 〈
 

a
 

〉
 

X ]]  [ U
 

/ X ]
Evaluation on an LTS:

aab b

Φ
 

(S)

a

a Φ2

 

(S)
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Example
Infinite repetition: νX

 
. 〈

 
NCS1

 

∨
 

REQ1

 

∨
 

CS1

 

∨
 

REL1

 

〉
 

X

NCS0 NCS1

NCS1 NCS0
REQ1REQ0

NCS0

NCS0

NCS1

NCS1

CS0 CS1REQ1REQ0

CS0 CS1

REL1REL0

REL1
REL0
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Exercise
Evaluate the formula:  µX

 
. 〈

 
CS0

 

〉
 

tt
 

∨
 

([ NCS0 ] ff ∧ 〈 tt
 

〉
 

X )

NCS0 NCS1

NCS1 NCS0
REQ1REQ0

NCS0

NCS0

NCS1

NCS1

CS0 CS1REQ1REQ0

CS0 CS1

REL1REL0

REL1
REL0
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Some identities

Description of (some) ACTL operators:

–
 

E [ ϕ1α1

 

Uα2

 

ϕ2 ] = μX
 

. ϕ1

 

∧
 

(〈 α2

 

〉 ϕ2

 

∨ 〈 α1

 

〉
 

X)

–
 

A [ ϕ1α1

 

Uα2

 

ϕ2 ] = μX
 

. ϕ1

 

∧ 〈 tt
 

〉
 

tt
 

∧
 

[¬(α1

 

∨ α2

 

) ] ff

∧
 

[ ¬α1

 

∧ α2

 

] ϕ2

 

∧
 

[ ¬α2

 

] X
 

∧
 

[ α1

 

∧ α2

 

] (ϕ2

 

∨
 

X)

–
 

EFα

 

ϕ
 

= μX
 

. ϕ ∨ 〈 α 〉 X

–
 

AFα

 

ϕ
 

= μX
 

. ϕ ∨ (〈
 

tt
 

〉
 

tt
 

∧
 

[ ¬α
 

] ff ∧
 

[ α
 

] X)

Description of the PDL operators:
–

 
〈 β* 〉 ϕ = μX

 
. ϕ ∨ 〈 β 〉 X

–
 

[ β* ] ϕ
 

= νX
 

. ϕ ∧ [ β ] X
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Inevitable reachability

Inevitable reachability
 

of an action a:
access (a) = AFtt

 

〈
 

a
 

〉
 

tt
 

=
μX

 
. 〈

 
a

 
〉

 
tt

 
∨

 
(〈

 
tt

 
〉

 
tt

 
∧

 
[ tt

 
] X

 
)

Associated functional:
Φ

 
(U) = [[ 〈

 
a

 
〉

 
tt

 
∨

 
(〈

 
tt

 
〉

 
tt

 
∧

 
[ tt

 
] X

 
) ]]  [ U

 
/ X ]

Evaluation on an LTS:
b

ab b

a

c

Φ
 

(∅)Φ2

 

(∅)
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Inevitable execution

Inevitable execution of an action a:
inev

 
(a) = μX

 
. 〈

 
tt

 
〉

 
tt

 
∧

 
[ ¬a

 
] X

Associated functional:
Φ

 
(U) = [[ 〈

 
tt

 
〉

 
tt

 
∧

 
[ ¬a

 
] X ]]  [ U

 
/ X ]

Evaluation on an LTS:
b

ab b

a

c

Φ
 

(∅)
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Example
Inevitable execution: µX

 
. 〈

 
tt

 
〉

 
tt

 
∧

 
[ ¬CS0

 

] X

NCS0 NCS1

NCS1 NCS0
REQ1REQ0

NCS0

NCS0

NCS1

NCS1

CS0 CS1REQ1REQ0

CS0 CS1

REL1REL0

REL1
REL0
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Fair execution

Fair execution of an action a:
fair (a) = [ (¬a)* ] 〈

 
tt*. a

 
〉

 
tt

= νX
 

. 〈
 

tt*. a
 

〉
 

tt
 

∧
 

[ ¬a ] X
Associated functional:

Φ
 

(U) = [[ 〈
 

tt*. a
 

〉
 

tt
 

∧
 

[ ¬a ] X ]]  [ U
 

/ X ]
Evaluation on an LTS:

bb b

a

b

a
Φ

 
(S)
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Example
Fair execution: [ (¬CS0

 

)* ] 〈
 

tt*. CS0

 

〉
 

tt

NCS0 NCS1

NCS1 NCS0
REQ1REQ0

NCS0

NCS0

NCS1

NCS1

CS0 CS1REQ1REQ0

CS0 CS1

REL1REL0

REL1
REL0
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Fixed point logics
 (summary)

They allow to encode virtually all TL proposed in 
the literature
Expressive power obtained by nesting

 
the fixed 

point operators:
〈

 
(a

 
. b*)* . c

 
〉

 
tt

 
=

μX
 

. 〈
 

c
 

〉
 

tt
 

∨ 〈 a
 

〉 μY
 

. (X
 

∨ 〈 b
 

〉
 

Y )
Alternation depth

 
of a formula: degree of mutual 

recursion between μ
 

and ν
 

fixed points
Example of alternation depth 2 formula:

νX
 

. 〈
 

a*. b
 

〉
 

X
 

=  νX
 

. μY
 

. 〈
 

b
 

〉
 

X
 

∨ 〈 a
 

〉
 

Y
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Some verification tools
 (for action-based logics)

CWB
 

(Edinburgh)
and
Concurrency Factory

 
(State University of New York)

–
 

Modal μ-calculus (fixed point operators)

JACK
 

(University of Pisa, Italy)
–

 
μ-ACTL (modal μ-calculus combined with ACTL)

CADP / Evaluator 3.x
 

(INRIA Rhône-Alpes / VASY)
–

 
Regular alternation-free μ-calculus (PDL modalities and 
fixed point operators)
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Extensions of µ-calculus with data

Temporal logics (ACTL, PDL, ...) and µ-calculi
–

 
No data manipulation (basic LOTOS, pure CCS, ...)

–
 

Too low-level operators (complex formulas)

Extended temporal logics are needed in practice

Several μ-calculus extensions with data:
–

 
For polyadic

 
pi-calculus [Dam-94]

–
 

For symbolic transition systems [Rathke-Hennessy-96]
–

 
For μCRL [Groote-Mateescu-99]

–
 

For full LOTOS [Mateescu-Thivolle-08]

VASY   67
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Why to handle data?

Some properties are cumbersome to express 
without data (e.g., action counting):

〈
 

b
 

〉 〈 b 〉 〈 b
 

〉 〈 a
 

〉
 

tt
 

or
 

〈
 

b
 

{3} . a
 

〉
 

tt
 

? 

LTSs
 

produced from value-passing process algebraic 
languages (full CCS, LOTOS, ...) contain values on 
transition labels

b abb

RECV 1 RECV 2ACK 1 ACK 2

value extraction
and propagation
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Model Checking Language 

Based on EVALUATOR 3.5 input language
•

 
standard µ-calculus

•
 

regular operators

Data-handling mechanisms
•

 
data extraction from LTS labels

•
 

regular operators with counters
•

 
variable declaration

•
 

parameterized fixed point operators
•

 
expressions

Constructs inspired from programming languages
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Parameterized modalities

Possibility:

< {SEND ?msg:Nat} > < {RECV !msg} > true

Necessity:

[ {RECV ?msg:Nat} ] (msg
 

< 6)

SEND 1 RECV 1

RECV 5

value extraction
and propagation

value extraction
and propagation
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Parameterized fixed points

(basic) syntax:
mu

 
X (y:T

 
:=

 
E) .

 
P

–
 

P contains «
 

calls »
 

X (E’)
–

 
Allows to perform computations and store intermediate 
results while exploring the PLTS

parameter initial value formula body
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Example

Counting of actions (e.g., clock ticks):

[ {LEVEL ?l:Nat
 

where
 

l >
 

10} ]
nu

 
X (c:Nat

 
:=

 
15) .

[ not ALARM ] (c >
 

0 and
 

X (c -
 

1))

LEVEL 11 ALARM
. . .

. . .
ALARM

max. 15 transitions 
before the alarm
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Quantifiers
Existential quantifier:

exists
 

x:T
 

among {
 

E1
 

...
 

E2
 

} .
 

P

Universal quantifier:
forall

 
x:T

 
among {

 
E1

 

...
 

E2
 

} .
 

P

shorthands for large disjunctions and conjunctions

limits of the subdomain
 

of T
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Example

Broadcast of messages:

forall
 

msg:Nat
 

among { 1
 

... 10
 

} .
mu

 
X . (< {SEND !msg} > true or < true >

 
X)

SEND
 

1i

. . .

. . .

. . .
SEND

 
2

SEND
 

10
. . .
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Counting operators
 (regular formulas)

R {
 

E }
 

repetition
 

E times
R {

 
E1

 

... }
 

repetition
 

at
 

least
 

E1
 

times
R {

 
E1

 

...
 

E2
 

}
 
repetition

 
between

 E1
 

and
 

E2
 

times

Some
 

identities:
nil

 
= false

 
*

 
R +

 
= R .

 
R*

R *
 

= R {
 

0 ... }
 
R ?

 
= R {

 
0 ...

 
1 }

R +
 

= R {
 

1 ... }
 
R {

 
E }

 
= R {

 
E ...

 
E }
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Example
 (action counting revisited)

Formulation using counting operators:

[ {LEVEL ?l:Nat
 

where
 

l >
 

10} . (not
 

ALARM) {
 

16 } ] false

LEVEL 11 ALARM
. . .

. . .
ALARM

max. 15 transitions 
before the alarm
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Example
 (safety

 
of

 
a n-place

 
buffer)

Formulation using
 

extended
 

regular
 

operators:
[ true* . ((not

 
OUTPUT)* .

 
INPUT) {

 
n +

 
1 } ] false

Formulation using
 

parameterized
 

fixed
 

points:
nu

 
X . (nu

 
Y (c:Nat:=0) . (

 [not
 

OUTPUT]
 

Y (c) and
 if

 
c =

 
n+1 then

 
[INPUT] false

 else
 

[INPUT]
 

Y (c+1)
 end

 
if) 

and
 

[ true
 

]
 

X)

INPUT INPUTi
. . .

i INPUT

n+1 INPUTs
 

without
 

OUTPUTs

. . .
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Looping operator (from PDL-delta)

Δ R
 

operator added to PDL to specify infinite 
behaviours

 
[Streett-82]

MCL syntax: <
 

R > @

Examples:
–

 
process overtaking

[ REQ0 ] < (not
 

GET0

 

)* . REQ1 . (not
 

GET0

 

)* . GET1 > @
–

 
Büchi

 
acceptance condition

< true* . if
 

Paccepting

 

then true end if > @
allows to encode LTL model checking

. . .. . .
R*

R+

cycle containing one or
more repetitions of R
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Expressiveness
 (summary)

CTL* ⊆
 

PDL-Δ ⊆
 

MCL
[Wolper-82]

Lµ2
Lµ1

Δ

ACTL PDL

MCL

PDL-Δ

HML
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Adequacy with equivalence relations

A temporal logic L
 

is adequate with an equivalence 
relation ≈

 
iff

 
for all LTSs

 
M1

 

and M2

M1
 

≈
 

M2
 

iff
 

∀ϕ
 

∈
 

L
 

. (M1
 

|= ϕ ⇔ M2
 

|= ϕ)
HML:
–

 
Adequate with strong bisimulation

–
 

HMLU (HML with Until): weak bisimulation

ACTL-X (fragment presented here):
–

 
Adequate with branching bisimulation

PDL and modal mu-calculus:
–

 
Adequate with strong bisimulation

–
 

Weak mu-calculus: weak bisimulation

〈〈
 

〉〉
 

ϕ
 

= 〈 τ* 〉 ϕ

〈〈
 

a
 

〉〉
 

ϕ
 

= 〈 τ*. a
 

. τ* 〉 ϕ
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On-the-fly verification

Principles

Alternation-free boolean
 

equation systems

Local resolution algorithms

Applications:

–
 

Equivalence checking 

–
 

Model checking

–
 

Tau-confluence reduction

Implementation and use
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Principle of explicit-state verification

program desired
properties

compiler

model
(state space)

true / false
+

 diagnostic

verification
tool

Language
technology

Model
technology
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On-the-fly verification

Incremental construction of the state space
–

 
Way of fighting against state explosion

–
 

Detection of errors in complex systems

“Traditional”
 

methods:
–

 
Equivalence checking

–
 

Model checking

Solution adopted:
–

 
Translation of the verification problem into the 
resolution of a boolean

 
equation system

 
(BES)

–
 

Generation of diagnostics
 

(fragments of the state space) 
explaining the result of verification
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Boolean equation systems
 (syntax)

A BES is a tuple
 

B
 

= (x, M1
 

, …, Mn
 

), where
x

 
∈

 
X : main boolean

 
variable

Mi

 

= { xj

 

=σi

 

opj

 

Xj

 

}j ∈

 

[1, mi] : equation blocks
–

 
σi

 

∈
 

{ μ, ν
 

} : fixed point sign of block i 
–

 
opj

 

∈
 

{ ∨, ∧
 

} : operator of equation j
–

 
Xj

 

⊆
 

X
 

: variables in the right-hand side of equation j
–

 
F = ∨∅

 
(empty disjunction), T = ∧∅

 
(empty conjunction)

–
 

xj

 

depends upon xk

 

iff
 

xk

 

∈
 

Xj

–
 

Mi

 

depends upon Ml

 

iff
 

a xj

 

of Mi

 

depends upon a xk

 

of Ml

–
 

Closed
 

block: does not depend upon other blocks

Alternation-free
 

BES: Mi

 

depends upon Mi+1
 

…
 

Mn



VTSA'08 - Max Planck Institute, Saarbrücken 85

Example

x1
 

=μ
 

x2
 

∨
 

x3

x2
 

=μ
 

x3
 

∨
 

x4

x3
 

=μ
 

x2
 

∧
 

x7M1

x4
 

=μ
 

x5
 

∨
 

x6

x5
 

=μ
 

x8
 

∨
 

x9

x6
 

=μ
 

F
M2

x7
 

=ν
 

x8
 

∧
 

x9

x8
 

=ν
 

T

x9
 

=ν
 

F
M3
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Particular blocks

Acyclic
 

block:
–

 
No cyclic dependencies between variables of the block

Var. xi
 

disjunctive (conjunctive): opi
 

= ∨
 

(opi
 

= ∧)
Disjunctive

 
block:

–
 

contains disjunctive variables
–

 
and conjunctive variables

with a single non constant successor in the block (the 
last one in the right-hand side of the equation)
all other successors are constants or free variables 
(defined in other blocks)

Conjunctive
 

block: dual definition
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Boolean equation systems
 (semantics)

Context: partial function δ
 

: X Bool
Semantics of a boolean

 
formula:

–
 

[[ op
 

{ x1

 

, …, xp

 

} ]] δ
 

= op
 

(δ
 

(x1

 

), …, δ
 

(xp

 

))

Semantics of a block:
–

 
[[ { xj

 

=σ
 

opj

 

Xj

 

}j ∈

 

[1, m]

 

]] δ
 

= σΦδ

–
 

Φδ

 

: Boolm Boolm

–
 

Φδ

 

(b1

 

, …, bm

 

) = ([[ opj

 

Xj

 

]] (δ ⊕ [b1

 

/x1

 

, …, bm

 

/xm

 

]))j

 

∈

 

[1, m]

Semantics of a BES:
–

 
[[ (x, M1

 

, …, Mn

 

) ]] = δ1

 

(x)
–

 
δn

 

= [[ Mn

 

]] []
 

(Mn

 

closed)
–

 
δi

 

= ([[ Mi

 

]] δi+1

 

) ⊕ δi+1

 

(Mi

 

depends upon Mi+1

 

…
 

Mn

 

)



VTSA'08 - Max Planck Institute, Saarbrücken 88

Local resolution

Alternation-free BES B
 

= (x, M1
 

, …, Mn
 

)
Primitive: compute a variable of a block
–

 
A resolution routine Ri

 

associated to Mi

–
 

Ri

 

(xj

 

) computes the value of xj

 

in Mi

–
 

Evaluation of the rhs
 

of equations + substitution
–

 
Call stack R1

 

(x) … Rn (xk) bounded by the depth of 
the dependency graph between blocks

–
 

“Coroutine-like”
 

style: each Ri

 

must keep its context

Advantages:
–

 
Simple resolution routines (a single type of fixed point)

–
 

Easy to optimize for particular kinds of blocks
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Example

x1
 

=μ
 

x2
 

∨
 

x3

x2
 

=μ
 

x3
 

∨
 

x4

x3
 

=μ
 

x2
 

∧
 

x7M1

x4
 

=μ
 

x5
 

∨
 

x6

x5
 

=μ
 

x8
 

∨
 

x9

x6
 

=μ
 

F
M2

x7
 

=ν
 

x8
 

∧
 

x9

x8
 

=ν
 

T

x9
 

=ν
 

F
M3
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Local resolution algorithms

Representation of blocks as boolean
 

graphs
 [Andersen-94]

To a block M
 

= { xj

 

=μ
 

opj

 

Xj

 

}j in [1, m]

 

we associate the 
boolean

 
graph G

 
= (V, E, L, μ), where:

–
 

V
 

= { x1

 

, …, xm

 

}: set of vertices (variables)
–

 
E

 
= { (xi

 

, xj

 

) | xj

 

∈
 

Xi

 

}: set of edges (dependencies)
–

 
L

 
: V { ∨, ∧ }, L (xj) = opj: vertex labeling

Principle of the algorithms:
–

 
Forward

 
exploration of G

 
starting at x

 
∈

 
V

–
 

Backward
 

propagation of stable (computed) variables
–

 
Termination: x

 
is stable or G

 
is completely explored
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Example
BES (μ-block)

 
boolean

 
graph

x1
 

=μ
 

x2
 

∨
 

x3

x2
 

=μ
 

F
x3

 

=μ
 

x4
 

∨
 

x5

x4
 

=μ
 

T
x5

 

=μ
 

x1

: ∨-variables
: ∧-variables

1

4

2 3

5
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Three effectiveness criteria
 [Mateescu-06]

For each resolution routine R:

A.
 

The worst-case complexity of a call R
 

(x) must be 
O

 
(|V|+|E|)
linear-time complexity for the overall BES resolution

B.
 

While executing R
 

(x), every variable explored 
must be «

 
linked

 
»

 
to x

 
via unstable variables

graph exploration limited to “useful” variables

C.
 

After termination of R
 

(x), all variables explored 
must be stable

keep resolution results between subsequent calls of R
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Algorithm A0
 (general)

DFS of the boolean
 

graph
Satisfies A, B, C
Memory complexity

 O
 

(|V|+|E|)
Optimized version of 
[Andersen-94]
Developed for model 
checking regular 
alternation-free

 μ-calculus 
[Mateescu-Sighireanu-00,03]

1

5

3 4

2
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Algorithm A1 
(general)

BFS of the boolean
 

graph
Satisfies A, C

 (risk of computing 
useless variables)
Slightly slower than A0
Memory complexity

 O
 

(|V|+|E|)
Low-depth diagnostics

2

10

5

98

76

1

3

4
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Algorithm A2 
(acyclic)

DFS of the boolean
 

graph
Back-propagation of stable 
variables on the DFS stack 
only
Satisfies A, B, C
Avoids storing edges
Memory complexity

 O
 

(|V|)
Developed for trace-based 
verification [Mateescu-02]

53 6

4

1

2
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Algorithm A3 / A4 
(disjunctive / conjunctive)

DFS of the boolean
 

graph
Detection and 
stabilization of SCCs
Satisfies A, B, C
Avoids storing edges
Memory complexity

 O
 

(|V|)
Developed for model 
checking CTL, ACTL,

 and PDL

1

5

4

63

2

SCC of false 
variables

SCC of true
variables
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Resolution algorithms
 (summary)

A0 (DFS, general)
–

 
Satisfies A,

 
B,

 
C

–
 

Memory complexity O
 

(|V|+|E|)

A1 (BFS, general)
–

 
Satisfies A,

 
C

 
+ «

 
small

 
»

 
diagnostics

–
 

Memory complexity O
 

(|V|+|E|)   Time

A2 (DFS, acyclic)
 

complexity
–

 
Satisfies A,

 
B,

 
C O

 
(|V|+|E|)

–
 

Memory complexity O
 

(|V|)

A3/A4 (DFS, disjunctive/conjunctive)
–

 
Satisfies A,

 
B,

 
C

–
 

Memory complexity O
 

(|V|)
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Caesar_Solve
 

library of CADP
 [Mateescu-03,06]

15 000 lines of C
Integrated into 
CADP in Dec. 2004
Diagnostic generation 
features [Mateescu-00]
Used as verification back-end for 
Bisimulator, Evaluator 3.5 and 4.0, Reductor

 
5.0

OPEN/CAESAR
libraries

CAESAR_SOLVE
library

(A0 –

 
A4 &

 
diagnostic)

im
pl

ic
it

  
  

 g
ra

ph

(s
uc

ce
ss

or
  

 f
un

ct
io

n)

BES
(boolean
graph)

diagnostic
(boolean
subgraph)

variable value

im
pl

ic
it

  
  

 g
ra

ph

(s
uc

ce
ss

or
  

 f
un

ct
io

n)
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Equivalence checking
 (principle)

description
of system

compiler

LTS
1

equivalence checker

true / false 
+ 

diagnostic

description
of service

LTS
2

compiler
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Strong equivalence

M1
 

= (Q1
 

, A, T1
 

, q01
 

), M2
 

= (Q2
 

, A, T2
 

, q02
 

) 
≈ ⊆ Q1

 

×
 

Q2
 

is the maximal relation s.t. p
 

≈
 

q
 

iff

∀a∈A.∀p
 

→a
 

p’∈T1
 

. ∃q
 

→a
 

q’∈T2
 

. p’
 

≈
 

q’
and
∀a∈A.∀q

 
→a

 

q’∈T2
 

. ∃p
 

→a
 

p’∈T1
 

. p’
 

≈
 

q’

M1
 

≈
 

M2 iff
 

q01
 

≈
 

q02
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p
 

≤
 

q
(preorder)

Translation to a BES

Principle:
 

p
 

≈
 

q
 

iff
 

Xp,q
 

is true
General BES:

Xp,q
 

=ν
 

(∧p
 

→a
 

p’
 

∨q
 

→a
 

q’
 

Xp’,q’
 

) 
∧

 (∧q
 

→a
 

q’
 

∨p
 

→a
 

p’
 

Xp’,q’
 

) 

Simple BES:
Xp,q

 

=ν
 

(∧p
 

→a
 

p’
 

Ya,p’,q
 

) ∧
 

(∧q
 

→a
 

q’
 

Za,p,q’
 

)
Ya,p’,q

 

=ν
 

∨q
 

→a
 

q’
 

Xp’,q’

Za,p,q’
 

=ν
 

∨p
 

→a
 

p’
 

Xp’,q’
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Tau*.a and safety equivalences
M1

 

= (Q1
 

, Aτ
 

, T1
 

, q01
 

), M2
 

= (Q2
 

, Aτ
 

, T2
 

, q02
 

) 
Aτ

 

= A
 

∪
 

{ τ
 

}
Tau*.a equivalence:

Xp,q
 

=ν
 

(∧p
 

→τ*.a
 

p’
 

∨q
 

→τ*.a
 

q’
 

Xp’,q’
 

)
∧
(∧q

 
→τ*.a

 
q’

 

∨p
 

→τ*.a
 

p’
 

Xp’,q’
 

)

Safety equivalence:
Xp,q

 

=ν
 

Yp,q
 

∧
 

Yq,p

Yp,q
 

=ν ∧p
 

→τ*.a
 

p’
 

∨q
 

→τ*.a
 

q’
 

Yp’,q’
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Observational and branching 
equivalences

Observational equivalence:
Xp,q

 

=ν
 

(∧p
 

→τ
 

p’
 

∨q
 

→τ*
 

q’
 

Xp’,q’
 

) ∧
 

(∧p
 

→a
 

p’
 

∨q
 

→τ*.a.τ*
 

q’
 

Xp’,q’
 

)
 ∧

 (∧q
 

→τ
 

q’
 

∨p
 

→τ*
 

p’
 

Xp’,q’
 

) ∧
 

(∧q
 

→a
 

q’
 

∨p
 

→τ*.a.τ*
 

p’
 

Xp’,q’
 

)

Branching equivalence:
Xp,q

 

=ν ∧p
 

→b
 

p’
 

((b=τ ∧ Xp’,q
 

) ∨ ∨q
 

→τ*
 

q’
 

→b
 

q’’
 

(Xp,q’
 

∧
 

Xp’,q’’
 

)
∧

 ∧q
 

→b
 

q’
 

((b=τ ∧ Xp,q’
 

) ∨ ∨p
 

→τ*
 

p’
 

→b
 

p’’
 

(Xp’,q
 

∧
 

Xp’’,q’
 

)
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Example
 (coffee machine)

≈

0

31

42

tc

mmm
0

c t
1

2 3

X00

Zm03Ym10 Zm01

Yt31

X11

Yc21

X13

Zc12 Yc23

X22

Zt14Yt33

X34

∧

∨

∧

∧ ∧

∧

∨∨∨∨∨

∨ ∨ ∨

X00

Ym10

Yt31

X11 X13

Yc23

0

31

42
Absent in LTS2: c

Absent in LTS2: t

mm

Counterexample
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Equivalence
 

checking
 

(time)

19 LTSs

 
of

 
the

 
VLTS benchmark suite

www.inrialpes.fr/vasy/cadp/resources/benchmark_bcg.html
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Equivalence
 

checking
 

(memory)
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Equivalence checking
 (summary)

General
 

boolean
 

graph: 
–

 
All equivalences and their preorders

–
 

Algorithms A0
 

and A1
 

(counterexample depth ↓)
Acyclic

 
boolean

 
graph:

–
 

Strong equivalence: one LTS acyclic
–

 
τ*.a

 
and safety: one LTS acyclic (τ-circuits allowed)

–
 

Branching and observational: both LTS acyclic
–

 
Algorithm A2

 
(memory ↓)

Conjunctive
 

boolean
 

graph:
–

 
Strong equivalence: one LTS deterministic

–
 

Weak equivalences: one LTS deterministic and τ-free
–

 
Algorithm A4

 
(memory ↓)
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Model checking
 (principle)

description
of system

compiler

LTS

properties

model checker

true / false
+

diagnostic
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On-the-fly model checking in CADP
 (Evaluator 3.x)

formulaLTS

BES

translation

resolution

yes / no + diagnostic

On-the-fly
activities

Model
checker
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Translation to Boolean
 

Equation
 Systems

formulaLTS

translation to PDLR

translation to HMLR

translation to BESs

PDLR spec

HMLR spec

BES
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Translation to PDL with recursion

State formula (expanded):
nu

 
Y0

 

. [ true* . SEND ]
mu

 
Y1

 

. 〈
 

true
 

〉
 

true
 

and
 

[ not
 

RECV ] Y1

PDLR specification [Mateescu-Sighireanu-03]:

Y0
 

=nu
 

[ true* .
 

SEND ] Y1

Y1
 

=mu
 

〈
 

true
 

〉
 

true
 

and
 

[ not
 

RECV ] Y1
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Simplification

PDLR specification:

Simple
 

PDLR specification:

Y0
 

=nu
 

[ true* .
 

SEND ] Y1

Y1
 

=mu
 

〈
 

true
 

〉
 

true
 

and
 

[ not
 

RECV ] Y1

Y0
 

=nu
 

[ true* .
 

SEND ] Y1 Y1
 

=mu
 

Y2
 

and
 

Y3

Y2
 

=mu 〈
 

true
 

〉
 

true
Y3

 

=mu [ not
 

RECV ] Y1
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Translation to BESs

s3

s1

s0

s2

SEND
RECV TIMEOUT

ii

Boolean
 

variables: xi, j
 

≡
 

si ⊨
 

Yj

x0,0

 

=ν

 

x0,4

 

∧
 

x0,5
x0,4

 

=ν

 

x1,1
x0,5

 

=ν

 

x1,0
x1,0

 

=ν

 

x1,4

 

∧
 

x1,5
x1,4

 

=ν

 

true
x1,5

 

=ν

 

x2,0

 

∧
 

x3,0
x2,0

 

=ν

 

x2,4

 

∧
 

x2,5
x2,4

 

=ν

 

true
x2,5

 

=ν

 

x0,0
x3,0

 

=ν

 

x3,4

 

∧
 

x3,5
x3,4

 

=ν

 

true
x3,5

 

=ν

 

x0,0

x1,1

 

=μ

 

x1,2

 

∧
 

x1,3
x1,2

 

=μ

 

true
x1,3

 

=μ

 

x2,1

 

∧
 

x3,1
x2,1

 

=μ

 

x2,2

 

∧
 

x2,3
x2,2

 

=μ

 

true
x2,3

 

=μ

 

true
x3,1

 

=μ

 

x3,2

 

∧
 

x3,3
x3,2

 

=μ

 

true
x3,3

 

=μ

 

x0,1
x0,1

 

=μ

 

x0,2

 

∧
 

x0,3
x0,2

 

=μ

 

true
x0,3

 

=μ

 

x1,1

Y0

 

=nu

 

Y4

 

and
 

Y5

Y4

 

=nu [ SEND ] Y1

Y5

 

=nu [ true
 

] Y0

Y1

 

=mu

 

Y2

 

and
 

Y3

Y2

 

=mu 〈
 

true
 

〉
 

true
Y3

 

=mu [ not
 

RECV ] Y1
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Local BES resolution with diagnostic

x0,0

x0,5 x0,4

x1,0

x1,1

x1,4 x1,5

x2,0 x3,0

x2,5x2,4 x3,4 x3,5

x1,2 x1,3

x2,1 x3,1

x2,3x2,2 x3,2 x3,3

x0,1

x0,3x0,2

x0,0

x0,4

x1,1

x1,3

x3,1

x3,3

x0,1

x0,3

Counterexample

SEND

i

TIMEOUT
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Additional operators
Mechanisms for macro-definition (overloaded) and 
library inclusion
Libraries encoding the operators of

 
CTL

 
and ACTL

EU (ϕ1

 

,
 

ϕ2

 

)
 

= mu
 

Y
 

.
 

ϕ2

 

or (ϕ1

 

and 〈
 

true 〉
 

Y)
EU (ϕ1

 

,
 

α1

 

,
 

α2 ,
 

ϕ2

 

)
 

= mu
 

Y
 

. 〈
 

α2

 

〉
 

ϕ2

 

or (ϕ1

 

and 〈
 

α1

 

〉
 

Y)

Libraries of high-level property patterns [Dwyer-99]
–

 
Property classes:

Absence, existence, universality, precedence, response

–
 

Property scopes:
Globally, before a, after a, between a and b, after a until b

–
 

More info:
http://www.inrialpes.fr/vasy/cadp/resources

http://www.inrialpes.fr/vasy/cadp/resources
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Disjunctive BES

Disjunctive
 

boolean
 

graph:
–

 
Potentiality

 
operator of CTL

E [ϕ1

 

U ϕ2

 

] = μX
 

. ϕ2

 

∨
 

(ϕ1

 

∧ 〈 T 〉
 

X)
{ X

 
=μ

 

ϕ2

 

∨
 

Y  , Y
 

=μ

 

ϕ1

 

∧
 

Z  , Z
 

=μ

 

〈
 

T 〉
 

X
 

}
{ Xs

 

=μ

 

ϕ2s

 

∨
 

Ys

 

, Ys

 

=μ

 

ϕ1s

 

∧
 

Zs

 

, Zs

 

=μ

 

∨s s’ Xs’ }
–

 
Possibility

 
modality of PDL

〈
 

(a
 

| b)* . c
 

〉
 

T
{ X

 
=μ

 

〈
 

c
 

〉
 

T ∨ 〈 a
 

〉
 

X
 

∨ 〈 b
 

〉
 

X
 

}
{ Xs

 

=μ

 

(∨s c s’ T) ∨ (∨s a s’ Xs’) ∨ (∨s b s’ Xs’) }

Algorithm A3
 

(memory ↓)



VTSA'08 - Max Planck Institute, Saarbrücken 117

Linear-time model checking
 (looping operator of PDL-delta)

Translation in mu-calculus of alternation
 depth 2 [Emerson-Lei-86]:

<
 

R > @
 

= nu
 

X . <
 

R >
 

X

But still checkable in linear-time:
–

 
Mark LTS states potentially satisfying X

–
 

Leads to marked variables in the disjunctive BES
–

 
Computation of boolean

 
SCCs

 
containing marked variables

–
 

A3cyc

 

algorithm [Mateescu-Thivolle-08]
Can serve for LTL model checking
Allows linear-time handling of repeated invocations

if R contains *-operators,
the formula is of

alternation depth 2
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Model checking
 of data-based

 properties
 (Evaluator 4.0)

Every SEND is followed by a RECV after 2 steps:

[ true* .
 

SEND ] < true {
 

2 } .
 

RECV > true
 

=
nu

 
X . ( [

 
SEND ] mu

 
Y (c:Nat

 
:=

 
2) .

if
 

c =
 

0 then <
 

RECV > true 
else < true >

 
Y (c –

 
1) 

end if
and 
[ true ]

 
X )

SEND i i RECV

ACK

ERROR
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Translation into HMLR

nu
 

X . [
 

SEND ] mu Y (c:Nat
 

:=
 

2) .
if

 
c =

 
0 then <

 
RECV > true 

else < true >
 

Y (c –
 

1)
and [ true ]

 
X

 
end if

{
 

X =nu

 

{
 

Y (c:Nat)
 

=mu

[
 

SEND ]
 

Y (2) if c =
 

0 then <
 

RECV > true
and

 
else < true >

 
Y (c –

 
1)

[ true ] X end if
} }
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Translation into
 BES and resolution

{
 

X =nu

 

{
 

Y (c:Nat)
 

=mu

[
 

SEND ]
 

Y (2) if c =
 

0 then <
 

RECV > true
and

 
else < true >

 
Y (c –

 
1)

[ true ]
 

X end if
} }

Principle:

SEND i i RECV

ACK

ERROR

0 1 2 3 4

X0 Y1

 

(2)

X1

Y2

 

(1) Y0

 

(0)

Y3

 

(0). . .

Xs
 

=  «
 

s |= X »
Ys

 

(c)  = «
 

s |= Y (c) »
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Divergence

In presence of data parameters of infinite types, 
termination of model checking is not guaranteed 
anymore
(pathological) property:

 
LTS:

mu
 

X (n:Nat
 

:=
 

0) . <
 

a
 

>
 

X (n +
 

1)

BES :
 

{
 

Xs
 

(n:Nat)
 

=mu
 

OR s ->a s’
 

Xs’
 

(n +
 

1) }
 

=
{

 
Xs

 

(n:Nat)
 

=mu
 

Xs
 

(n +
 

1) }

a

s

. . . . . .
Xs

 

(0) Xs

 

(1) Xs

 

(2) Xs

 

(n)
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Conjunctive BES

Conjunctive
 

boolean
 

graph:
–

 
Inevitability

 
operator of CTL

A [ϕ1

 

U ϕ2

 

] = μX
 

. ϕ2

 

∨
 

(ϕ1

 

∧ 〈 T 〉
 

T ∧ [ T ]
 

X)
{ X

 
=μ

 

ϕ2

 

∨
 

Y  , Y
 

=μ

 

ϕ1

 

∧
 

Z ∧ [ T ]
 

X , Z
 

=μ

 

〈
 

T 〉
 

T }
{ Xs

 

=μ

 

ϕ2s

 

∨
 

Ys

 

, Ys

 

=μ

 

ϕ1s

 

∧
 

Zs

 

∧
 

(∧s s’ Xs’) , Zs =μ ∨s s’ T }
–

 
Necessity

 
modality of PDL

[ (a
 

| b)* . c
 

] F
{ X

 
=μ

 

[ c
 

] F ∧
 

[ a
 

] X
 

∧
 

[ b
 

] X
 

}
{ Xs

 

=μ

 

(∧s c s’ F) ∧ (∧s a s’ Xs’) ∧ (∧s b s’ Xs’) }

Algorithm A4
 

(memory ↓)
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Acyclic BES

Acyclic
 

boolean
 

graph:
–

 
Acyclic

 
LTS and guarded formulas [Mateescu-02]

Handling of CTL (and ACTL) operators:
–

 
E [ϕ1

 

U ϕ2

 

] = μX
 

. ϕ2

 

∨
 

(ϕ1

 

∧ 〈 T 〉
 

X)
–

 
A [ϕ1

 

U ϕ2

 

] = μX
 

. ϕ2

 

∨
 

(ϕ1

 

∧ 〈 T 〉
 

T ∧ [ T ]
 

X)

Handling of full mu-calculus
–

 
Translation to guarded form

–
 

Conversion from maximal to minimal fixed points 
[Mateescu-02]

Algorithm A2
 

(memory ↓)
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Algorithm A1 vs. A3/A4
 (execution time –

 
CADP demos)

number of boolean

 

operators in the BES

tim
e 

(s
ec

)
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Algorithm A1 vs. A3/A4
 (memory consumption –

 
CADP demos)

number of boolean

 

operators in the BES

m
em

or
y 

(K
by

te
s)
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Algorithm A1 vs. A3/A4
 (diagnostic size –

 
BRP protocol)

message length (number of packets)

di
ag

no
st

ic
 s

iz
e 

 (n
um

be
r o

f t
ra

ns
iti

on
s)
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Model checking
 (summary)

General
 

boolean
 

graph:
–

 
Any LTS and any alternation-free μ-calculus formula

–
 

Algorithms A0
 

and A1
 

(diagnostic depth ↓)
Acyclic

 
boolean

 
graph:

–
 

Acyclic LTS and guarded formula (CTL, ACTL)
–

 
Acyclic LTS and μ-calculus formula (via reduction)

–
 

Algorithm A2
 

(memory ↓)

Disjunctive/conjunctive
 

boolean
 

graph:
–

 
Any LTS and any formula of CTL, ACTL, PDL

–
 

Algorithm A3/A4
 

(memory ↓)
–

 
Matches the best local algorithms dedicated to CTL 
[Vergauwen-Lewi-93]
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Partial order reduction
τ-confluence

 
[Groote-vandePol-00]

–
 

Form of partial-order reduction defined on LTSs
–

 
Preserves branching bisimulation

Principle
–

 
Detection of τ-confluent transitions

–
 

Elimination of “neighbour”
 

transitions (τ-prioritisation)

On-the-fly LTS reduction
–

 
Direct approach [Blom-vandePol-02]

–
 

BES-based approach
 

[Pace-Lang-Mateescu-03]
Define τ-confluence in terms of a BES
Detect τ-confluent transitions by locally solving the BES
Apply τ-prioritisation and compression on sequences
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Translation to a BES

Xp1,p2
 

=ν
 

∧p1
 

→b
 

p3
 

(
p2

 
→b

 
p3

 
∨

∨p2
 

→b
 

p4, p3→τ p4 Xp3,p4
 

∨
((b

 
= τ)

 
∧ ∨p3

 
→τ p2

 

Xp3,p2
 

)
)
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Tau-prioritisation
 

and compression

Original LTS
 

Reduced LTS
(exploration from s0

 

and s7
 

)

In practice: reductions of a factor 102
 

– 103 

[Mateescu-05]
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Model checking using A3/A4
 (effect of τ-confluence reduction –

 
time –

 
Erathostene’s

 
sieve)

number of units in the sieve

tim
e 

(s
ec

)

without τ-confluence         
with τ-confluence
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Model checking using A3/A4
 (effect of τ-confluence reduction –

 
memory –

 
Erathostene’s

 
sieve)

without τ-confluence
with τ-confluence

number of units in the sieve

m
em

ot
y

(K
by

te
s)



VTSA'08 - Max Planck Institute, Saarbrücken 133

Checking branching bisimulation
 (effect of τ-confluence reduction –

 
time –

 
BRP protocol)
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Checking branching bisimulation
 (effect of τ-confluence reduction –

 
memory –

 
BRP protocol)
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On-the-fly verification
 (summary)

Already available:
Generic Caesar_Solve

 
library [Mateescu-03,06]

9 local BES resolution algorithms (A8 added in 2008)
Diagnostic generation features
Applications: Bisimulator, Evaluator 3.5, Reductor

 
5.0

Ongoing:
Distributed BES resolution algorithms on clusters of machines 
[Joubert-Mateescu-04,05,06]
New applications

–
 

Test generation
–

 
Software adaptation

–
 

Discrete controller synthesis
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Case study

SCSI-2 bus arbitration protocol

Description in LOTOS

Specification of properties in TL

Verification using Evaluator 3.5 and 4.0

Interpretation of diagnostics
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SCSI-2 bus arbitration protocol

Prioritized
 

arbitration mechanism, based on static IDs on 
bus (devices numbered from 0 to n –

 
1)

Fairness
 

problem (starvation of low-priority disks)

CMD
ARB
REC

CMD
ARB
REC

...Disk Disk Disk

Controller

...
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Architecture of the system
(

DISK [ARB, CMD, REC] (0, 0)
|[ARB]|
DISK [ARB, CMD, REC] (1, 0)
|[ARB]|
...
|[ARB]|
DISK [ARB, CMD, REC] (6, 0)

)
|[ARB, CMD, REC]|
CONTROLLER [ARB, CMD, REC] (NC, ZERO)

8-ary rendezvous
on gate ARB

binary rendezvous
on gates CMD, REC
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Synchronization constraints
 (bus arbitration policy)

Synchronizations on gate ARB:
ARB ?r0, …,r7:Bool [C (r0, …, r7, n)] ; ...

where:
–

 
r0, …, r7 = values of the electric signals on the bus

–
 

n = index of the current device

Two particular cases for guard condition C:
–

 
P (r0, …, r7, n): device n does not ask the bus

–
 

A (r0, …, r7, n): device n asks and obtains access to bus
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Guard conditions

Predicate P (r0, ..., r7, n) = ¬rn

P (r0, ..., r7, 0) = not (r0)
P (r0, ..., r7, 1) = not (r1)
...
P (r0, ..., r7, 7) = not (r7)

Predicate A (r0, ..., r7, n) =
 

rn
 

∧ ∀i ∈
 

[n+1, 7] . ¬ri

A (r0, ..., r7, 0) = r0 and not (r1 or ... or r7)
A (r0, ..., r7, 1) = r1 and not (r2 or ... or r7)
...
A (r0, ..., r7, 7) = r7
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Controller process
process

 
Controller [ARB, CMD, REC] (C:Contents) : noexit

 
:=

(* communicate with disk N *)
choice

 
N:Nat

 
[]

[(N >= 0) and (N <= 6)] ->
Controller2 [ARB, CMD, REC] (C, N)

[]
(* does not request the bus *)
ARB ?r0, ..., r7:Bool [P (r0, ..., r7, 7)];

Controller [ARB, CMD, REC] (C)
endproc



VTSA'08 - Max Planck Institute, Saarbrücken 142

Controller process
process

 
Controller2 [ARB, CMD, REC] (C:Contents, N:Nat) :

noexit
 

:=
[not_full

 
(C, N)] ->

(* request and obtain the bus *)
ARB ?r0, ..., r7:Bool [A (r0, ..., r7, 7)];

CMD !N; (* send a command *)
Controller [ARB, CMD, REC] (incr

 
(C, N))

[]
REC !N;    (* receive an acknowledgement *)

Controller [ARB, CMD, REC] (decr
 

(C, N))
endproc
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Disk process
process

 
DISK [ARB, CMD, REC] (N, L:Nat) : noexit

 
:=

CMD !N;  DISK [ARB,CMD,REC] (N, L+1)
[]
[L > 0] -> (

ARB ?r0, ..., r7:Bool [A (r0, ..., r7, N)];
REC !N;  DISK [ARB, CMD, REC] (N, L-1)

[]
ARB ?r0, ..., r7:Bool [not (A (r0, ..., r7, N)) and

not (P (r0, ..., r7, N))];
DISK [ARB, CMD, REC] (N, L)

)
[]
[L = 0] ->  ARB ?r0, ..., r7:Bool [P (r0, ..., r7, N)];

DISK [ARB, CMD, REC] (N, L)
endproc
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Absence of starvation property
 (PDL+ACTL formulation)

“Every time a disk i
 

receives a command from the controller, 
it will be able to gain access to the bus in order to send the 
corresponding acknowledgement”

[ true* .
 

cmdi

 

] A [ truetrue

 

Ureci

 

true ]

Property fails
 for i <

 
nc

Counterexample
 produced by Evaluator 3.5

 for i
 

= 0 and nc
 

= 1:
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Starvation property
 (MCL formulation)

“Every time a disk i
 

with priority lower than the controller 
nc

 
receives a command, its access to the bus can be 

continuously preempted by any other disk j
 

with higher 
priority”

[ true*. {cmd
 

?i:Nat
 

where
 

i < nc} ]
forall

 
j:Nat

 
among {

 
i + 1 ...

 
n −

 
1 } .

(j <> nc) implies
< (not {rec

 
!i})*. {cmd

 
!j} .

(not {rec
 

!i})*. {rec
 

!j} > @
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Safety property
 (MCL formulation)

“The difference between the number of commands received 
and reconnections sent by a disk i

 
varies between 0

 
and 8

 (the size of the buffers associated to disks)”

forall
 

i:Nat
 

among {
 

0 …
 

n –
 

1 } .
nu

 
Y (c:Nat:=0) . (

[ {cmd
 

!i} ] ((c < 8) and
 

Y (c + 1))
and
[ {rec

 
!i} ] ((c > 0) and

 
Y (c −

 
1))

and
[ not ({cmd

 
!i} or {rec

 
!i}) ]

 
Y (c)

)
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Safety property
 (standard mu-calculus formulation)

nu

 

CMD_REC_0 . (
[ CMD_i

 

] nu

 

CMD_REC_1 . (
[ CMD_i

 

] nu

 

CMD_REC_2 . (
[ CMD_i

 

] nu

 

CMD_REC_3 . (
[ CMD_i

 

] nu

 

CMD_REC_4 . (
[ CMD_i

 

] nu

 

CMD_REC_5 . (
[ CMD_i

 

] nu

 

CMD_REC_6 . (
[ CMD_i

 

] nu

 

CMD_REC_7 . (
[ CMD_i

 

] nu

 

CMD_REC_8 . (
[ CMD_i

 

] false
and
[ REC_i

 

] CMD_REC_7
and
[ not ((CMD_i) or (REC_i)) ] CMD_REC_8

)
and
[ REC_i

 

] CMD_REC_6
and
[ not ((CMD_i) or (REC_i)) ] CMD_REC_7

)
and
[ REC_i

 

] CMD_REC_5
and
[ not ((CMD_i) or (REC_i)) ] CMD_REC_6

)

and
[ REC_i

 

] CMD_REC_4
and
[ not ((CMD_i) or (REC_i)) ] CMD_REC_5

)
and
[ REC_i

 

] CMD_REC_3
and
[ not ((CMD_i) or (REC_i)) ] CMD_REC_4

)
and
[ REC_i

 

] CMD_REC_2
and
[ not ((CMD_i) or (REC_i)) ] CMD_REC_3

)
and
[ REC_i

 

] CMD_REC_1
and
[ not ((CMD_i) or (REC_i)) ] CMD_REC_2

)
and
[ REC_i

 

] CMD_REC_0
and
[ not ((CMD_i) or (REC_i)) ] CMD_REC_1

)
and
[ REC_i

 

] false
and
[ not ((CMD_i) or (REC_i)) ] CMD_REC_0

)
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Discussion and perspectives
Model-based verification techniques:
–

 
Bug hunting, useful in early stages of the design process

–
 

Confronted with (very) large models
–

 
Temporal logics extended with data (XTL, Evaluator 4.0)

–
 

Machinery for on-the-fly verification (Open/Caesar)

Perspectives:
–

 
Parallel and distributed algorithms

State space construction
BES resolution

–
 

New applications
Analysis of genetic regulatory networks


	Model Checking of Action-Based Concurrent Systems 
	Action-based temporal logics
	Why temporal logics?
	(Rough) classification of TLs
	Example�(coffee machine)
	Interpretation of�(branching-time) TLs on LTSs
	Running example:�mutual exclusion with a semaphore
	LTS model
	Modal logics
	Action predicates�(syntax)
	Action predicates�(semantics)
	Examples
	HML logic�(syntax)
	HML logic�(semantics)
	Example (1/4)
	Example (2/4)
	Example (3/4)
	Example (4/4)
	Some identities
	Characterization of branching
	Modal logics�(summary)
	Branching-time logics
	ACTL logic�(syntax)
	ACTL logic�(derived operators)
	ACTL logic�(semantics – potentiality operators)
	ACTL logic�(semantics – inevitability operators)
	Example (1/4)
	Example (2/4)
	Example (3/4)
	Example (4/4)
	Remark about inevitability
	Safety properties
	Liveness properties
	Branching-time logics�(summary)
	Regular logics
	Regular formulas�(syntax)
	Regular formulas�(semantics)
	Example (1/3)
	Example (2/3)
	Example (3/3)
	PDL logic�(syntax)
	PDL logic�(semantics)
	Example (1/2)
	Example (2/2)
	Some identities
	Fairness properties
	Fair execution
	Example
	Regular logics�(summary)
	Fixed point logics
	Modal mu-calculus�(syntax)
	Syntactic restrictions
	Modal mu-calculus�(semantics)
	Minimal fixed point
	Example
	Maximal fixed point
	Example
	Exercise
	Some identities
	Inevitable reachability
	Inevitable execution
	Example
	Fair execution
	Example
	Fixed point logics�(summary)
	Some verification tools�(for action-based logics)
	Extensions of µ-calculus with data
	Why to handle data?
	Model Checking Language 
	Parameterized modalities
	Parameterized fixed points
	Example
	Quantifiers
	Example
	Counting operators�(regular formulas)
	Example�(action counting revisited)
	Example�(safety of a n-place buffer)
	Looping operator (from PDL-delta)
	Expressiveness�(summary)
	Adequacy with equivalence relations
	On-the-fly verification
	Principle of explicit-state verification
	On-the-fly verification
	Boolean equation systems�(syntax)
	Example
	Particular blocks
	Boolean equation systems�(semantics)
	Local resolution
	Example
	Local resolution algorithms
	Example
	Three effectiveness criteria�[Mateescu-06]
	Algorithm A0�(general)
	Algorithm A1 �(general)
	Algorithm A2 �(acyclic)
	Algorithm A3 / A4 �(disjunctive / conjunctive)
	Resolution algorithms�(summary)
	Caesar_Solve library of CADP�[Mateescu-03,06]
	Equivalence checking�(principle)
	Strong equivalence
	Translation to a BES
	Tau*.a and safety equivalences
	Observational and branching equivalences
		Example�	(coffee machine)
	Equivalence checking (time)�
	Equivalence checking (memory)�
	Equivalence checking�(summary)
	Model checking�(principle)
	On-the-fly model checking in CADP�(Evaluator 3.x)
	Translation to Boolean Equation Systems
	Translation to PDL with recursion
	Simplification
					Translation to BESs
	Local BES resolution with diagnostic�
	Additional operators
	Disjunctive BES
	Linear-time model checking�(looping operator of PDL-delta)
	Model checking�of data-based�properties�(Evaluator 4.0)				
	Translation into HMLR
	Translation into�BES and resolution
	Divergence
	Conjunctive BES
	Acyclic BES
	Algorithm A1 vs. A3/A4�(execution time – CADP demos)
	Algorithm A1 vs. A3/A4�(memory consumption – CADP demos)
	Algorithm A1 vs. A3/A4�(diagnostic size – BRP protocol)
	Model checking�(summary)
	Partial order reduction
	Translation to a BES
	Tau-prioritisation and compression
	Model checking using A3/A4�(effect of τ-confluence reduction – time – Erathostene’s sieve)
	Model checking using A3/A4�(effect of τ-confluence reduction – memory – Erathostene’s sieve)
	Checking branching bisimulation�(effect of τ-confluence reduction – time – BRP protocol)
	Checking branching bisimulation�(effect of τ-confluence reduction – memory – BRP protocol)
	On-the-fly verification�(summary)
	Case study
	SCSI-2 bus arbitration protocol
	Architecture of the system
	Synchronization constraints�(bus arbitration policy)
	Guard conditions
	Controller process
	Controller process
	Disk process�
	Absence of starvation property�(PDL+ACTL formulation)
	Starvation property�(MCL formulation)
	Safety property�(MCL formulation)
	Safety property�(standard mu-calculus formulation)
	Discussion and perspectives

