Modelling and analyzing resources in timed systems

Patricia Bouyer-Decitre

LSV, CNRS & ENS Cachan, France

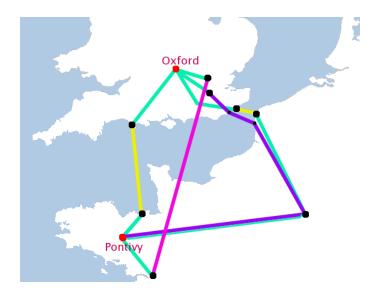
Outline

1. Introduction

- 2. Modelling and optimizing resources in timed systems
- 3. Managing resources

4. Conclusion

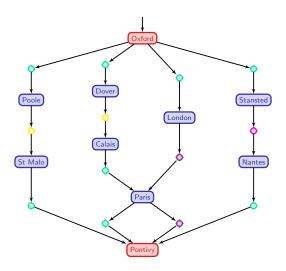
A starting example



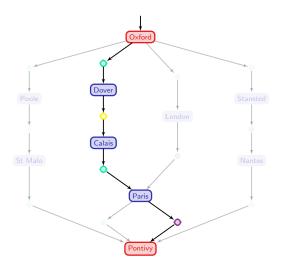
Natural questions

- Can I reach Pontivy from Oxford?
- What is the minimal time to reach Pontivy from Oxford?
- What is the minimal fuel consumption to reach Pontivy from Oxford?
- What if there is an unexpected event?
- Can I use my computer all the way?

A first model of the system

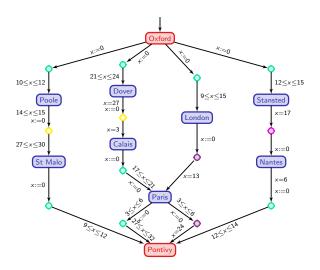


Can I reach Pontivy from Oxford?

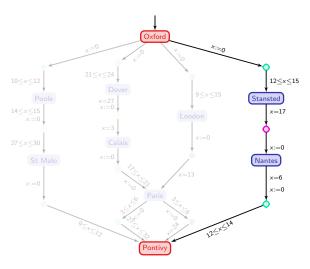


This is a reachability question in a finite graph: Yes, I can!

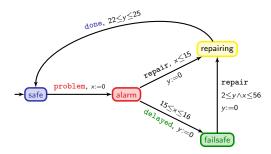
A second model of the system

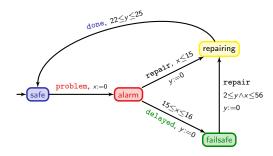


How long will that take?

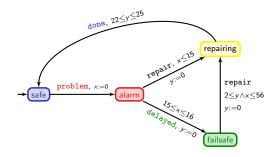


It is a reachability (and optimization) question in a timed automaton: at least 350mn = 5h50mn!

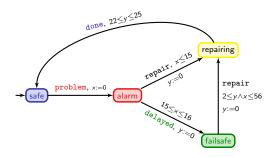


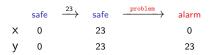


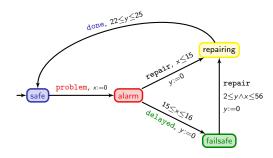
x 0 V 0



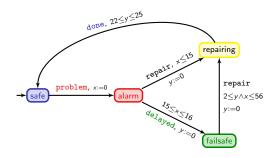
$$\begin{array}{ccc} \text{safe} & \xrightarrow{23} & \text{safe} \\ X & 0 & 23 \\ V & 0 & 23 \end{array}$$



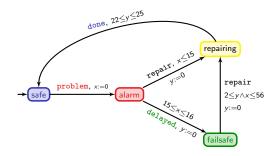




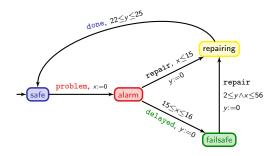
	safe	$\xrightarrow{23}$	safe	$\xrightarrow{\text{problem}}$	alarm	15.6 →	alarm
Χ	0		23		0		15.6
У	0		23		23		38.6



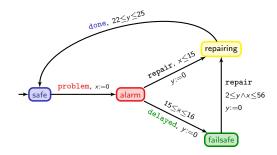
failsafe ... 15.6 0

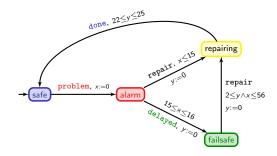


failsafe
$$\xrightarrow{2.3}$$
 failsafe \cdots 15.6 17.9 0 2.3



failsafe
$$\xrightarrow{2.3}$$
 failsafe $\xrightarrow{\text{repair}}$ repairing \cdots 15.6 17.9 17.9 0 2.3 0





Timed automata

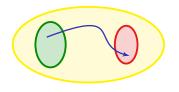
Theorem [AD90,CY92]

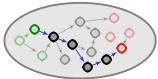
The (time-optimal) reachability problem is decidable (and PSPACE-complete) for timed automata.

Timed automata

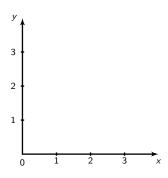
Theorem [AD90,CY92]

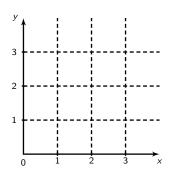
The (time-optimal) reachability problem is decidable (and PSPACE-complete) for timed automata.



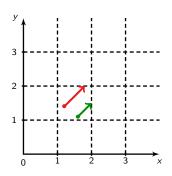


large (but finite) automaton (region automaton)

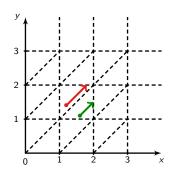




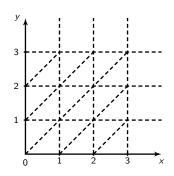
• "compatibility" between regions and constraints



- "compatibility" between regions and constraints
- "compatibility" between regions and time elapsing



- "compatibility" between regions and constraints
- "compatibility" between regions and time elapsing



- "compatibility" between regions and constraints
- "compatibility" between regions and time elapsing

→ an equivalence of finite index
a time-abstract bisimulation

Outline

1. Introduction

2. Modelling and optimizing resources in timed systems

3. Managing resources

Conclusion

• System resources might be relevant and even crucial information

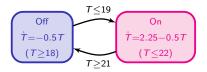
- System resources might be relevant and even crucial information
 - energy consumption,
 - memory usage,
 - price to pay,
 - bandwidth,
 - ...

- System resources might be relevant and even crucial information
 - energy consumption,
 - memory usage,
 - price to pay,
 - bandwidth,
 - .
- → timed automata are not powerful enough!

- System resources might be relevant and even crucial information
 - energy consumption,
 - memory usage,
 - price to pay,
 - bandwidth,
 - ...
- → timed automata are not powerful enough!
- A possible solution: use hybrid automata

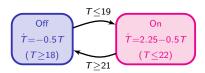
- System resources might be relevant and even crucial information
 - energy consumption,
 - memory usage,
 - price to pay,
 - bandwidth,
 - ...
- → timed automata are not powerful enough!
- A possible solution: use hybrid automata

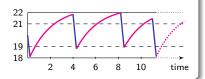
The thermostat example



- System resources might be relevant and even crucial information
 - energy consumption,
 - memory usage,
 - price to pay,
 - bandwidth,
 - ...
- → timed automata are not powerful enough!
- A possible solution: use hybrid automata

The thermostat example





- System resources might be relevant and even crucial information
 - energy consumption,
 - memory usage,
 - price to pay,
 - bandwidth,
 - ..
- \sim timed automata are not powerful enough!
- A possible solution: use hybrid automata

Theorem [HKPV95]

The reachability problem is undecidable in hybrid automata.

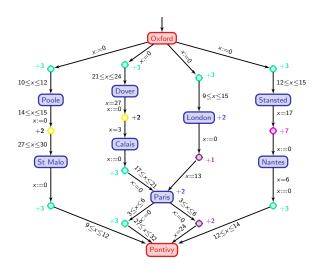
- System resources might be relevant and even crucial information
 - · energy consumption,
 - memory usage,
 - price to pay,
 - bandwidth,
 - ...
- \sim timed automata are not powerful enough!
- A possible solution: use hybrid automata

Theorem [HKPV95]

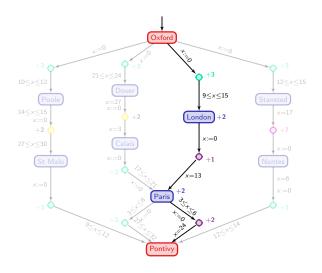
The reachability problem is undecidable in hybrid automata.

- An alternative: weighted/priced timed automata [ALP01,BFH+01]
 - hybrid variables do not constrain the system hybrid variables are observer variables

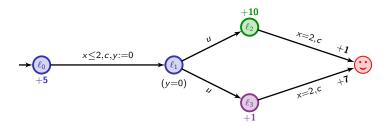
A third model of the system

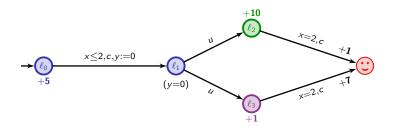


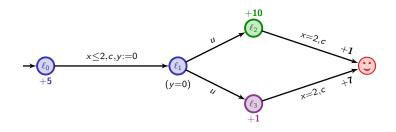
How much fuel will I use?



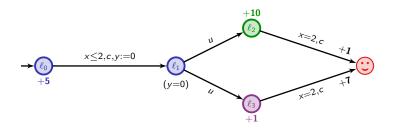
It is a <u>quantitative</u> (optimization) problem in a priced timed automaton: at least 68 anti-planet units!





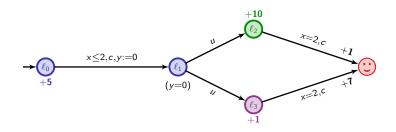


cost:

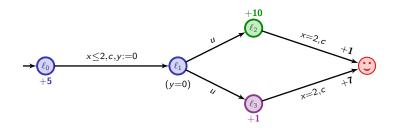


cost:

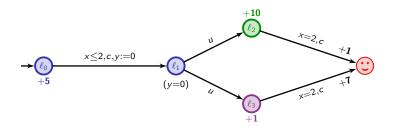
6.5



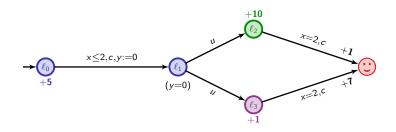
cost: 6.5 + 0



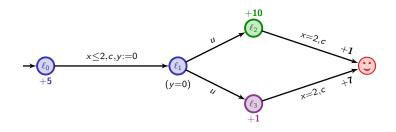
cost: 6.5 + 0 + 0



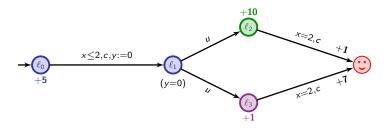
[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC'01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC'01).

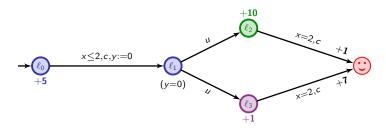


[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC'01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC'01).

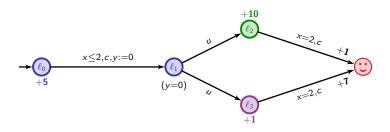


[ALP01] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC'01).
[BFH+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC'01).

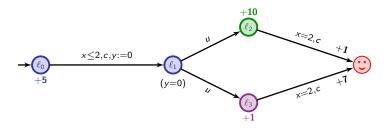




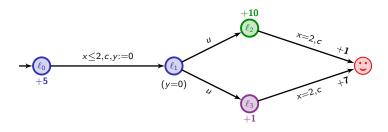
$$5t + 10(2-t) + 1$$



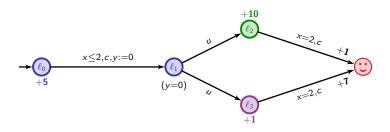
$$5t + 10(2-t) + 1$$
, $5t + (2-t) + 7$



min
$$(5t+10(2-t)+1, 5t+(2-t)+7)$$



$$\inf_{0 \le t \le 2} \min \left(5t + 10(2-t) + 1 , 5t + (2-t) + 7 \right) = 9$$



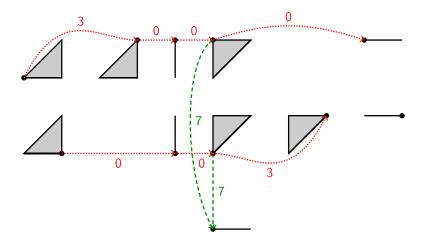
Question: what is the optimal cost for reaching \bigcirc ?

$$\inf_{0 \le t \le 2} \; \min \; (\; 5t + 10(2-t) + 1 \; , \; 5t + (2-t) + 7 \;) = 9$$

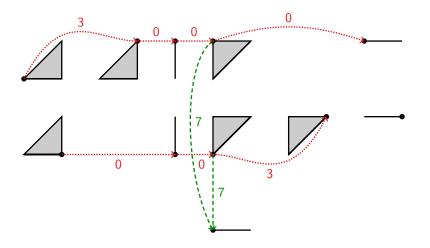
 \sim strategy: leave immediately ℓ_0 , go to ℓ_3 , and wait there 2 t.u.

The region abstraction is not fine enough

The corner-point abstraction



The corner-point abstraction



We can somehow discretize the behaviours...

$$\circ \xrightarrow{t_1} \circ \xrightarrow{t_2} \circ \xrightarrow{t_3} \circ \xrightarrow{t_4} \circ \xrightarrow{t_5} \circ \cdots$$

$$\circ \xrightarrow{t_1} \circ \xrightarrow{t_2} \circ \xrightarrow{t_3} \circ \xrightarrow{t_4} \circ \xrightarrow{t_5} \circ \cdots \qquad \left\{ \begin{array}{c} t_1 + t_2 \leq 2 \\ \end{array} \right.$$

$$\circ \xrightarrow{t_1} \circ \xrightarrow{t_2} \circ \xrightarrow{t_3} \circ \xrightarrow{t_4} \circ \xrightarrow{t_5} \circ \xrightarrow{t_5} \circ \cdots \qquad \left\{ \begin{array}{c} t_1 + t_2 \leq 2 \\ t_2 + t_3 + t_4 \geq 5 \end{array} \right.$$

Optimal reachability as a linear programming problem

$$\circ \xrightarrow{t_1} \circ \xrightarrow{t_2} \circ \xrightarrow{t_3} \circ \xrightarrow{t_4} \circ \xrightarrow{t_5} \circ \xrightarrow{t_5} \circ \cdots \qquad \left\{ \begin{array}{c} t_1 + t_2 \leq 2 \\ t_2 + t_3 + t_4 \geq 5 \end{array} \right.$$

Lemma

Let Z be a bounded zone and f be a function

$$f:(t_1,...,t_n)\mapsto \sum_{i=1}^n c_it_i+c_i$$

well-defined on \overline{Z} . Then $inf_Z f$ is obtained on the border of \overline{Z} with integer coordinates.

Optimal reachability as a linear programming problem

$$\circ \xrightarrow{t_1} \circ \xrightarrow{t_2} \circ \xrightarrow{t_3} \circ \xrightarrow{t_4} \circ \xrightarrow{t_5} \circ \xrightarrow{t_5} \circ \cdots \qquad \left\{ \begin{array}{c} t_1 + t_2 \leq 2 \\ t_2 + t_3 + t_4 \geq 5 \end{array} \right.$$

Lemma

Let Z be a bounded zone and f be a function

$$f:(t_1,...,t_n)\mapsto \sum_{i=1}^n c_it_i+c$$

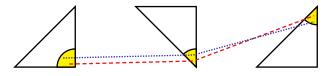
well-defined on \overline{Z} . Then $inf_Z f$ is obtained on the border of \overline{Z} with integer coordinates.

 \sim for every finite path π in \mathcal{A} , there exists a path Π in $\mathcal{A}_{\sf cp}$ such that

$$cost(\Pi) \leq cost(\pi)$$

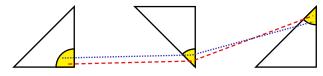
 $[\Pi \text{ is a "corner-point projection" of } \pi]$

Approximation of abstract paths:



For any path Π of \mathcal{A}_{cp} ,

Approximation of abstract paths:



For any path Π of $\mathcal{A}_{\mathsf{cp}}$, for any $\varepsilon>0$,

Approximation of abstract paths:

For any path Π of $\mathcal{A}_{\sf cp}$, for any $\varepsilon>0$, there exists a path π_{ε} of \mathcal{A} s.t.

$$\|\Pi - \pi_{\varepsilon}\|_{\infty} < \varepsilon$$

Approximation of abstract paths:

For any path Π of \mathcal{A}_{cp} , for any $\varepsilon > 0$, there exists a path π_{ε} of \mathcal{A} s.t.

$$\|\Pi - \pi_{\varepsilon}\|_{\infty} < \varepsilon$$

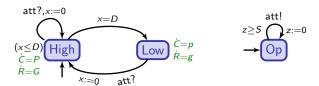
For every $\eta > 0$, there exists $\varepsilon > 0$ s.t.

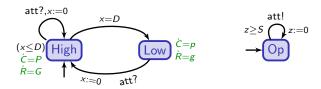
$$\|\Pi - \pi_{\varepsilon}\|_{\infty} < \varepsilon \Rightarrow |\mathsf{cost}(\Pi) - \mathsf{cost}(\pi_{\varepsilon})| < \eta$$

Optimal-cost reachability

Theorem [ALP01,BFH+01,BBBR07]

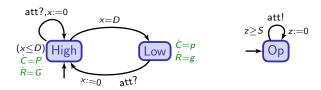
The optimal-cost reachability problem is decidable (and PSPACE-complete) in (priced) timed automata.





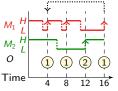
→ compute optimal infinite schedules that minimize

$$\mathsf{mean\text{-}cost}(\pi) = \limsup_{n \to +\infty} \frac{\mathsf{cost}(\pi_n)}{\mathsf{reward}(\pi_n)}$$

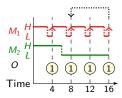


→ compute optimal infinite schedules that minimize

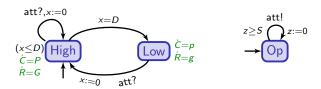
$$\mathsf{mean\text{-}cost}(\pi) = \limsup_{n \to +\infty} \frac{\mathsf{cost}(\pi_n)}{\mathsf{reward}(\pi_n)}$$



Schedule with ratio ≈1.455



Schedule with ratio ≈1.478



→ compute optimal infinite schedules that minimize

$$\mathsf{mean\text{-}cost}(\pi) = \limsup_{n \to +\infty} \frac{\mathsf{cost}(\pi_n)}{\mathsf{reward}(\pi_n)}$$

Theorem [BBL08]

The mean-cost optimization problem is decidable (and PSPACE-complete) for priced timed automata.

→ the corner-point abstraction can be used

• Finite behaviours: based on the following property

Lemma

Let Z be a bounded zone and f be a function

$$f:(t_1,...,t_n)\mapsto \frac{\sum_{i=1}^n c_i t_i+c}{\sum_{i=1}^n r_i t_i+r}$$

well-defined on \overline{Z} . Then $inf_Z f$ is obtained on the border of \overline{Z} with integer coordinates.

• Finite behaviours: based on the following property

Lemma

Let Z be a bounded zone and f be a function

$$f:(t_1,...,t_n)\mapsto \frac{\sum_{i=1}^n c_i t_i + c}{\sum_{i=1}^n r_i t_i + r}$$

well-defined on \overline{Z} . Then $inf_Z f$ is obtained on the border of \overline{Z} with integer coordinates.

 \sim for every finite path π in \mathcal{A} , there exists a path Π in $\mathcal{A}_{\sf cp}$ s.t. $\mathsf{mean\text{-}cost}(\Pi) \leq \mathsf{mean\text{-}cost}(\pi)$

From timed to discrete behaviours

• Finite behaviours: based on the following property

Lemma

Let Z be a bounded zone and f be a function

$$f:(t_1,...,t_n)\mapsto \frac{\sum_{i=1}^n c_i t_i + c}{\sum_{i=1}^n r_i t_i + r}$$

well-defined on \overline{Z} . Then $inf_Z f$ is obtained on the border of \overline{Z} with integer coordinates.

- \sim for every finite path π in \mathcal{A} , there exists a path Π in $\mathcal{A}_{\sf cp}$ s.t. $\mathsf{mean\text{-}cost}(\Pi) \leq \mathsf{mean\text{-}cost}(\pi)$
- Infinite behaviours: decompose each sufficiently long projection into cycles:

The (acyclic) linear part will be negligible!

From timed to discrete behaviours

• Finite behaviours: based on the following property

Lemma

Let Z be a bounded zone and f be a function

$$f:(t_1,...,t_n)\mapsto \frac{\sum_{i=1}^n c_i t_i + c}{\sum_{i=1}^n r_i t_i + r}$$

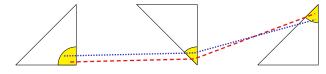
well-defined on \overline{Z} . Then $\inf_{\overline{Z}} f$ is obtained on the border of \overline{Z} with integer coordinates.

- \sim for every finite path π in \mathcal{A} , there exists a path Π in $\mathcal{A}_{\sf cp}$ s.t. ${\sf mean-cost}(\Pi) \leq {\sf mean-cost}(\pi)$
- Infinite behaviours: decompose each sufficiently long projection into cycles:

The (acyclic) linear part will be negligible!

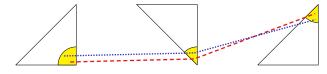
 \sim the optimal cycle of \mathcal{A}_{cp} is better than any infinite path of $\mathcal{A}!$

Approximation of abstract paths:



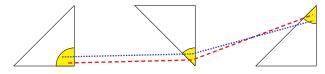
For any path Π of $\mathcal{A}_{\mathsf{cp}}$,

Approximation of abstract paths:



For any path Π of \mathcal{A}_{cp} , for any $\varepsilon>0$,

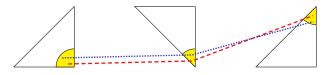
Approximation of abstract paths:



For any path Π of $\mathcal{A}_{\mathsf{cp}}$, for any $\varepsilon > 0$, there exists a path π_{ε} of \mathcal{A} s.t.

$$\|\Pi - \pi_{\varepsilon}\|_{\infty} < \varepsilon$$

Approximation of abstract paths:



For any path Π of $\mathcal{A}_{\mathsf{cp}}$, for any $\varepsilon > 0$, there exists a path π_{ε} of \mathcal{A} s.t.

$$\|\Pi - \pi_{\varepsilon}\|_{\infty} < \varepsilon$$

For every $\eta > 0$, there exists $\varepsilon > 0$ s.t.

$$\|\Pi - \pi_{\varepsilon}\|_{\infty} < \varepsilon \Rightarrow |\mathsf{mean\text{-}cost}(\Pi) - \mathsf{mean\text{-}cost}(\pi_{\varepsilon})| < \eta$$

Going further 2: concavely-priced cost functions

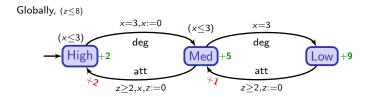
→ A general abstract framework for quantitative timed systems

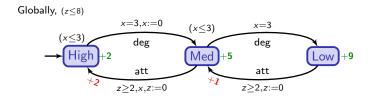
Theorem [JT08]

Optimal cost in concavely-priced timed automata is computable, if we restrict to quasi-concave price functions. For the following cost functions, the (decision) problem is even PSPACE-complete:

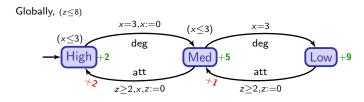
- optimal-time and optimal-cost reachability;
- optimal discrete discounted cost;
- optimal average-time and average-cost;
- optimal mean-cost.

ightharpoonup a slight extension of corner-point abstraction can be used





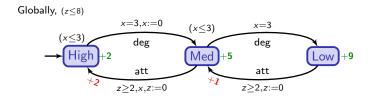
→ compute optimal infinite schedules that minimize discounted cost over time



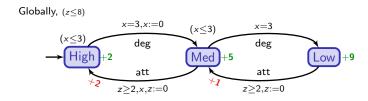
→ compute optimal infinite schedules that minimize

$$\mathsf{discounted\text{-}cost}_{\lambda}(\pi) = \sum_{n \geq 0} \lambda^{T_n} \int_{t=0}^{\tau_{n+1}} \lambda^t \mathsf{cost}(\ell_n) \, \mathrm{d}t + \lambda^{T_{n+1}} \mathsf{cost}(\ell_n \xrightarrow{a_{n+1}} \ell_{n+1})$$

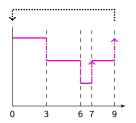
if
$$\pi = (\ell_0, \nu_0) \xrightarrow{\tau_1, a_1} (\ell_1, \nu_1) \xrightarrow{\tau_2, a_2} \cdots$$
 and $T_n = \sum_{i < n} \tau_i$



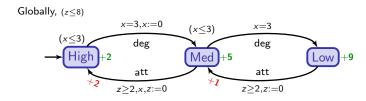
→ compute optimal infinite schedules that minimize discounted cost over time



→ compute optimal infinite schedules that minimize discounted cost over time



if $\lambda = e^{-1}$, the discounted cost of that infinite schedule is ≈ 2.16



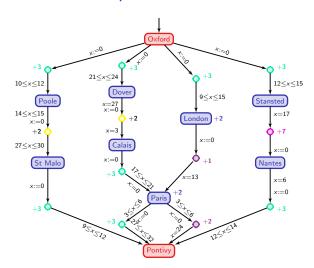
→ compute optimal infinite schedules that minimize discounted cost over time

Theorem [FL08]

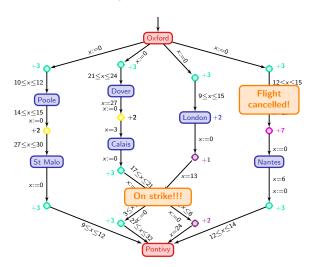
The optimal discounted cost is computable in EXPTIME in priced timed automata.

→ the corner-point abstraction can be used

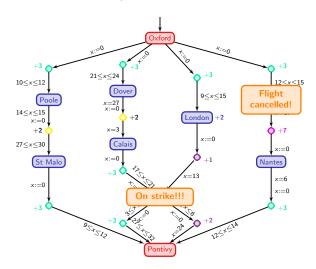
A fourth model of the system What if there is an unexpected event?



A fourth model of the system What if there is an unexpected event?



A fourth model of the system What if there is an unexpected event?

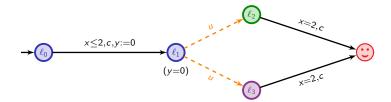


→ modelled as timed games

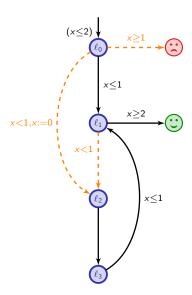
A simple example of timed game



A simple example of timed game



Another example



Theorem [AMPS98,HK99]

Safety and reachability control in timed automata are decidable and EXPTIME-complete.

Theorem [AMPS98,HK99]

Safety and reachability control in timed automata are decidable and EXPTIME-complete.

(the attractor is computable...)

Theorem [AMPS98,HK99]

Safety and reachability control in timed automata are decidable and EXPTIME-complete.

(the attractor is computable...)

→ classical regions are sufficient for solving such problems

Theorem [AMPS98,HK99]

Safety and reachability control in timed automata are decidable and EXPTIME-complete.

(the attractor is computable...)

→ classical regions are sufficient for solving such problems

Theorem [AM99,BHPR07,JT07]

Optimal-time reachability timed games are decidable and EXPTIME-complete.

Theorem [AMPS98,HK99]

Safety and reachability control in timed automata are decidable and EXPTIME-complete.

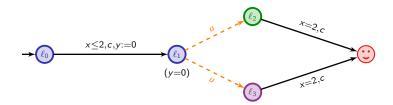
(the attractor is computable...)

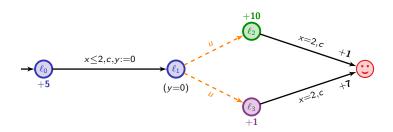
→ classical regions are sufficient for solving such problems

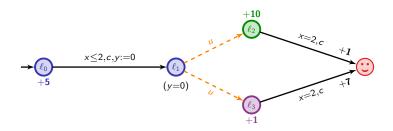
Theorem [AM99,BHPR07,JT07]

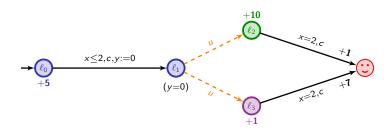
Optimal-time reachability timed games are decidable and EXPTIME-complete.

→ let's play with Uppaal Tiga! [BCD+07]

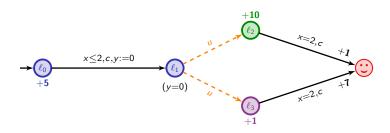




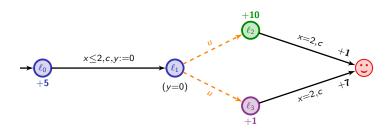




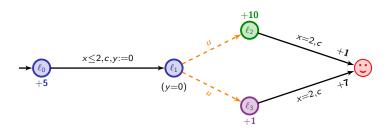
$$5t + 10(2-t) + 1$$



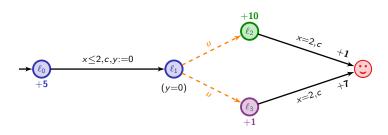
$$5t + 10(2-t) + 1$$
, $5t + (2-t) + 7$



$$\max (5t + 10(2-t) + 1, 5t + (2-t) + 7)$$



$$\inf_{0 \le t \le 2} \max \left(5t + 10(2-t) + 1, 5t + (2-t) + 7 \right) = 14 + \frac{1}{3}$$



Question: what is the optimal cost we can ensure while reaching ??

$$\inf_{0 \le t \le 2} \max \left(5t + 10(2-t) + 1, 5t + (2-t) + 7 \right) = 14 + \frac{1}{3}$$

 \sim strategy: wait in ℓ_0 , and when $t=\frac{4}{3}$, go to ℓ_1

Optimal reachability in priced timed games

This topic has been fairly hot these last couple of years...

e.g. [LMM02,ABM04,BCFL04]

Optimal reachability in priced timed games

This topic has been fairly hot these last couple of years...

e.g. [LMM02,ABM04,BCFL04]

Theorem [BBR05,BBM06]

Optimal timed games are undecidable, as soon as automata have three clocks or more.

Optimal reachability in priced timed games

This topic has been fairly hot these last couple of years...

e.g. [LMM02,ABM04,BCFL04]

Theorem [BBR05,BBM06]

Optimal timed games are undecidable, as soon as automata have three clocks or more.

Theorem [BLMR06]

Turn-based optimal timed games are decidable in 3EXPTIME when automata have a single clock. They are PTIME-hard.

The positive side

Theorem [BLMR06]

Turn-based optimal timed games are decidable in 3EXPTIME when automata have a single clock. They are PTIME-hard.

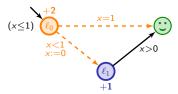
Key: resetting the clock somehow resets the history...

The positive side

Theorem [BLMR06]

Turn-based optimal timed games are decidable in 3EXPTIME when automata have a single clock. They are PTIME-hard.

- Key: resetting the clock somehow resets the history...
- Memoryless strategies can be non-optimal...

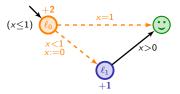


The positive side

Theorem [BLMR06]

Turn-based optimal timed games are decidable in 3EXPTIME when automata have a single clock. They are PTIME-hard.

- Key: resetting the clock somehow resets the history...
- Memoryless strategies can be non-optimal...



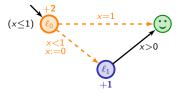
 However, by unfolding and removing one by one the locations,we can synthesize memoryless almost-optimal winning strategies.

The positive side

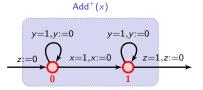
Theorem [BLMR06]

Turn-based optimal timed games are decidable in 3EXPTIME when automata have a single clock. They are PTIME-hard.

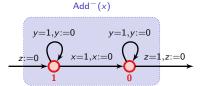
- Key: resetting the clock somehow resets the history...
- Memoryless strategies can be non-optimal...



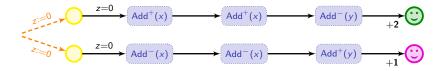
- However, by unfolding and removing one by one the locations,we can synthesize memoryless almost-optimal winning strategies.
- Rather involved proof of correctness for a simple algorithm.

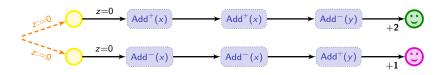


The cost is increased by x_0

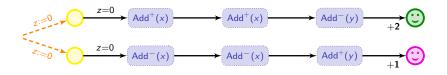


The cost is increased by $1-x_0$

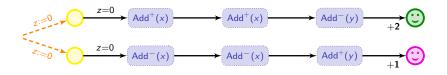




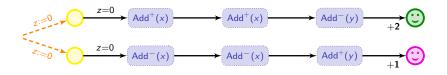
• In
$$\bigcirc$$
, cost = $2x_0 + (1 - y_0) + 2$



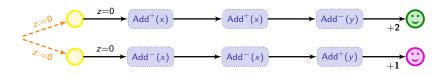
• In
$$\bigcirc$$
, cost = $2x_0 + (1 - y_0) + 2$
In \bigcirc , cost = $2(1 - x_0) + y_0 + 1$



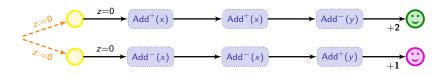
- In \bigcirc , cost = $2x_0 + (1 y_0) + 2$ In \bigcirc , cost = $2(1 - x_0) + y_0 + 1$
- if $y_0 < 2x_0$, player 2 chooses the first branch: cost > 3



- In \bigcirc , cost = $2x_0 + (1 y_0) + 2$ In \bigcirc , cost = $2(1 - x_0) + y_0 + 1$
- if $y_0 < 2x_0$, player 2 chooses the first branch: cost > 3 if $y_0 > 2x_0$, player 2 chooses the second branch: cost > 3



- In \bigcirc , cost = $2x_0 + (1 y_0) + 2$ In \bigcirc , cost = $2(1 - x_0) + y_0 + 1$
- if $y_0 < 2x_0$, player 2 chooses the first branch: cost > 3 if $y_0 > 2x_0$, player 2 chooses the second branch: cost > 3 if $y_0 = 2x_0$, in both branches, cost = 3



- In \bigcirc , cost = $2x_0 + (1 y_0) + 2$ In \bigcirc , cost = $2(1 - x_0) + y_0 + 1$
- if $y_0 < 2x_0$, player 2 chooses the first branch: cost > 3 if $y_0 > 2x_0$, player 2 chooses the second branch: cost > 3 if $y_0 = 2x_0$, in both branches, cost = 3
- Player 1 has a winning strategy with cost ≤ 3 iff $y_0 = 2x_0$

Player 1 will simulate a two-counter machine:

- each instruction is encoded as a module;
- the values c₁ and c₂ of the counters are encoded by the values of two clocks:

$$x = \frac{1}{2^{c_1}}$$
 and $y = \frac{1}{3^{c_2}}$

when entering the corresponding module.

Player 1 will simulate a two-counter machine:

- each instruction is encoded as a module;
- the values c₁ and c₂ of the counters are encoded by the values of two clocks:

$$x = \frac{1}{2^{c_1}}$$
 and $y = \frac{1}{3^{c_2}}$

when entering the corresponding module.

The two-counter machine has an halting computation iff player 1 has a winning strategy to ensure a cost no more than 3.

Player 1 will simulate a two-counter machine:

- each instruction is encoded as a module;
- the values c₁ and c₂ of the counters are encoded by the values of two clocks:

$$x = \frac{1}{2^{c_1}}$$
 and $y = \frac{1}{3^{c_2}}$

when entering the corresponding module.

The two-counter machine has an halting computation iff player 1 has a winning strategy to ensure a cost no more than 3.

Globally,
$$(x \le 1, y \le 1, u \le 1)$$
 $x = 1, x := 0$
 $y = 1, y := 0$
 $y =$

Outline

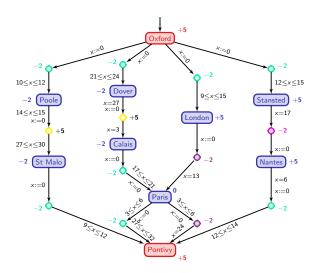
1. Introduction

2. Modelling and optimizing resources in timed systems

3. Managing resources

4. Conclusion

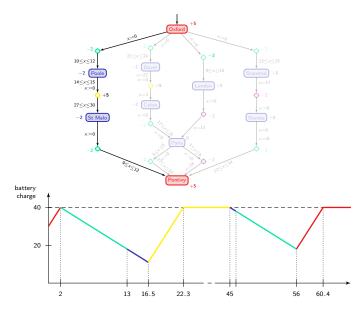
A fifth model of the system



Can I work with my computer all the way?



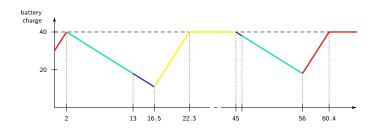
Can I work with my computer all the way?

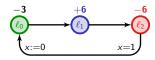


Can I work with my computer all the way?

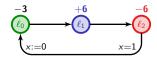
Energy is not only consumed, but can be regained.

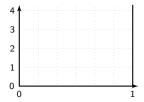
→ the aim is to continuously satisfy some energy constraints.



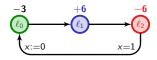


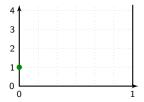
Globally $(x \le 1)$



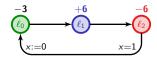


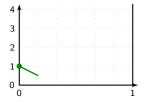
Globally $(x \le 1)$



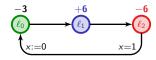


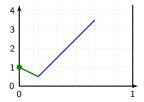
Globally $(x \le 1)$



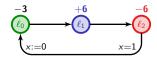


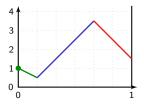
Globally $(x \le 1)$



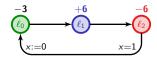


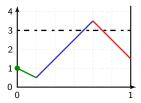
Globally $(x \le 1)$

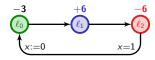


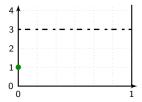


Globally $(x \le 1)$

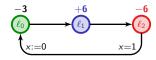


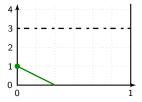




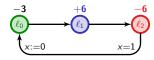


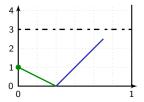
- Lower-bound problem
- Lower-upper-bound problem: can we stay within bounds?



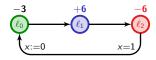


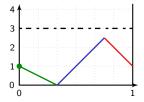
- Lower-bound problem
- Lower-upper-bound problem: can we stay within bounds?



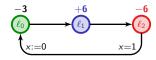


- Lower-bound problem
- Lower-upper-bound problem: can we stay within bounds?

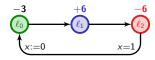


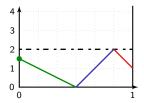


- Lower-bound problem
- Lower-upper-bound problem: can we stay within bounds?

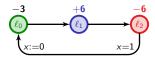


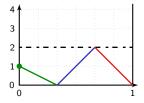
- Lower-bound problem
- Lower-upper-bound problem: can we stay within bounds?



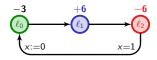


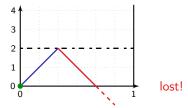
- Lower-bound problem
- Lower-upper-bound problem: can we stay within bounds?



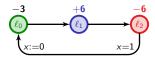


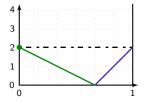
- Lower-bound problem
- Lower-upper-bound problem: can we stay within bounds?





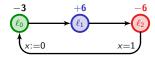
- Lower-bound problem
- Lower-upper-bound problem: can we stay within bounds?





- Lower-bound problem
- Lower-upper-bound problem: can we stay within bounds?

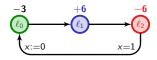
Globally $(x \le 1)$

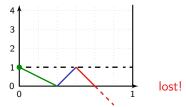




- Lower-bound problem
- Lower-upper-bound problem: can we stay within bounds?

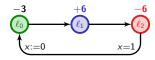
Globally $(x \le 1)$

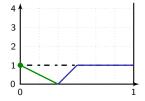




- Lower-bound problem
- Lower-upper-bound problem: can we stay within bounds?

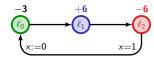
Globally $(x \le 1)$





- Lower-bound problem
- Lower-upper-bound problem
- Lower-weak-upper-bound problem: can we "weakly" stay within bounds?

Globally $(x \le 1)$





- Lower-bound problem → L
- ullet Lower-upper-bound problem \lowert L+U
- Lower-weak-upper-bound problem → L+W

Only partial results so far [BFLMS08]

0 clock!	exist. problem	univ. problem	games
L	∈ PTIME	€ PTIME	∈ UP ∩ co-UP PTIME-hard
L+W	€ PTIME	€ PTIME	∈ NP ∩ co-NP PTIME-hard
L+U	$\in PSPACE \\ NP-hard$	€ PTIME	EXPTIME-c.

Only partial results so far [BFLMS08]

1 clock	exist. problem	univ. problem	games
L	€ PTIME	€ PTIME	?
L+W	€ PTIME	€ PTIME	?
L+U	?	?	undecidable

Only partial results so far [BFLMS08]

n clocks	exist. problem	univ. problem	games
L	?	?	?
L+W	?	?	?
L+U	?	?	undecidable

Definition

Mean-payoff games: in a weighted game graph, does there exists a strategy s.t. the mean-cost of any play is nonnegative?

Definition

Mean-payoff games: in a weighted game graph, does there exists a strategy s.t. the mean-cost of any play is nonnegative?

Lemma

L-games and L+W-games are determined, and memoryless strategies are sufficient to win.

Definition

Mean-payoff games: in a weighted game graph, does there exists a strategy s.t. the mean-cost of any play is nonnegative?

Lemma

L-games and L+W-games are determined, and memoryless strategies are sufficient to win.

• from mean-payoff games to **L**-games or $\mathbf{L}+\mathbf{W}$ -games: play in the same game graph G with initial credit $-M \geq 0$ (where M is the sum of negative costs in G).

Definition

Mean-payoff games: in a weighted game graph, does there exists a strategy s.t. the mean-cost of any play is nonnegative?

Lemma

L-games and L+W-games are determined, and memoryless strategies are sufficient to win.

- from mean-payoff games to L-games or L+W-games: play in the same game graph G with initial credit $-M \ge 0$ (where M is the sum of negative costs in G).
- from L-games to mean-payoff games: transform the game as follows:

Theorem

The single-clock $\mathbf{L} + \mathbf{U}$ -games are undecidable.

Theorem

The single-clock L+U-games are undecidable.

We encode the behaviour of a two-counter machine:

- each instruction is encoded as a module;
- the values c_1 and c_2 of the counters are encoded by the energy level

$$e = 5 - \frac{1}{2^{c_1} \cdot 3^{c_2}}$$

when entering the corresponding module.

Theorem

The single-clock L+U-games are undecidable.

We encode the behaviour of a two-counter machine:

- each instruction is encoded as a module;
- the values c_1 and c_2 of the counters are encoded by the energy level

$$e = 5 - \frac{1}{2^{c_1} \cdot 3^{c_2}}$$

when entering the corresponding module.

There is an infinite execution in the two-counter machine iff there is a strategy in the single-clock timed game under which the energy level remains between 0 and 5.

Theorem

The single-clock L+U-games are undecidable.

We encode the behaviour of a two-counter machine:

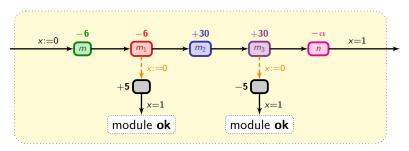
- each instruction is encoded as a module;
- the values c_1 and c_2 of the counters are encoded by the energy level

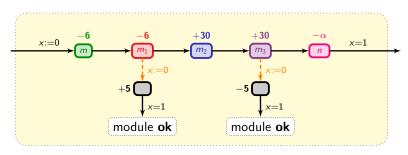
$$e = 5 - \frac{1}{2^{c_1} \cdot 3^{c_2}}$$

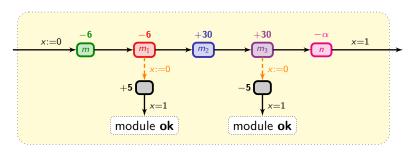
when entering the corresponding module.

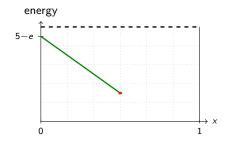
There is an infinite execution in the two-counter machine iff there is a strategy in the single-clock timed game under which the energy level remains between 0 and 5.

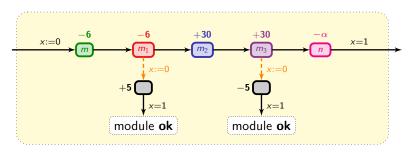
We present a generic construction for incrementing/decrementing the counters.

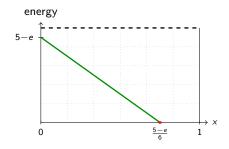


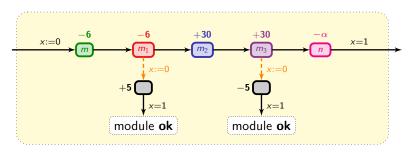


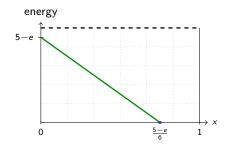


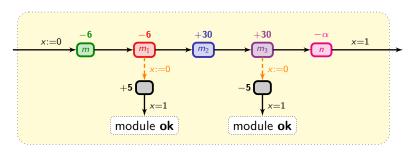


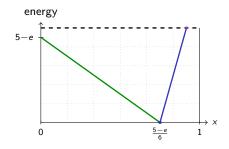


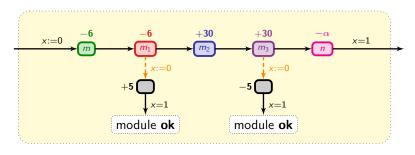


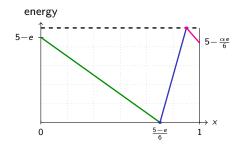


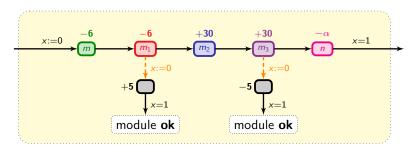


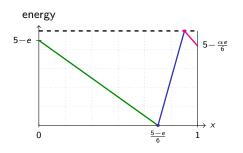












- α =3: increment c_1
- α =2: increment c_2
- α =12: decrement c_1
- α =18: decrement c_2

Outline

1. Introduction

- 2. Modelling and optimizing resources in timed systems
- 3. Managing resources
- 4. Conclusion

Some applications

Tools

- Uppaal (timed automata)
- Uppaal Cora (priced timed automata)
- Uppaal Tiga (timed games)

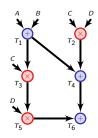
Case studies

- A lacquer production scheduling problem [BBHM05]
- Task graph scheduling problems [AKM03]
- An oil pump control problem [CJL+09]

Compute $D \times (C \times (A+B)) + (A+B) + (C \times D)$ using two processors:

energy	
idle	10 Watt
in use	90 Watts

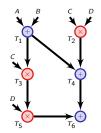
energy	
idle	20 Watts
in use	30 Watts

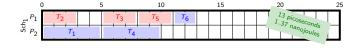


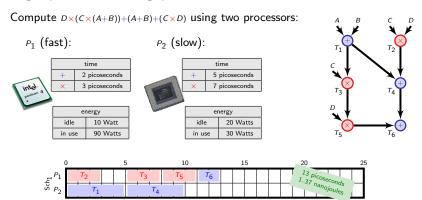
Compute $D \times (C \times (A+B)) + (A+B) + (C \times D)$ using two processors:

chergy	
idle	10 Watt
in use	90 Watts

energy	
20 Watts	
30 Watts	

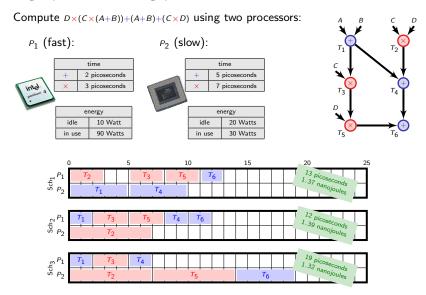




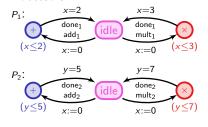


 T_6

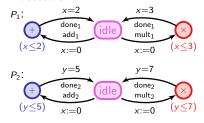
12 picoseconds 1.39 nanojoules



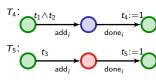
Processors



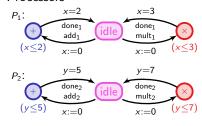
Processors



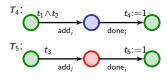
Tasks



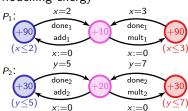
Processors



Tasks

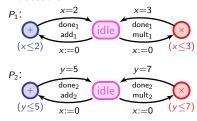


Modelling energy



44/45

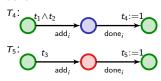
Processors



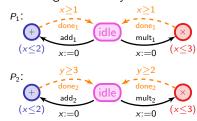
Modelling energy



Tasks



Modelling uncertainty



Conclusion

- Priced/weighted timed automata, a model for representing quantitative constraints on timed systems:
 - useful for modelling resources in timed systems
 - natural (optimization/management) questions have been posed...

... and not all of them have been answered!

Conclusion

- Priced/weighted timed automata, a model for representing quantitative constraints on timed systems:
 - useful for modelling resources in timed systems
 - natural (optimization/management) questions have been posed...

... and not all of them have been answered!

- Not mentioned here:
 - all works on model-checking issues (extensions of CTL, LTL)
 - models based on hybrid automata
 - · weighted o-minimal hybrid games
 - weighted strong reset hybrid games

[BBC07] [BBJLR07]

• various tools have been developed:

Uppaal, Uppaal Cora, Uppaal Tiga

Conclusion

- Priced/weighted timed automata, a model for representing quantitative constraints on timed systems:
 - useful for modelling resources in timed systems
 - natural (optimization/management) questions have been posed...

... and not all of them have been answered!

- Not mentioned here:
 - all works on model-checking issues (extensions of CTL, LTL)
 - models based on hybrid automata
 - weighted o-minimal hybrid games
 - weighted strong reset hybrid games

[BBC07] [BBJLR07]

various tools have been developed:

Uppaal, Uppaal Cora, Uppaal Tiga

- Current and further work:
 - further cost functions (e.g. exponential)
 - computation of approximate optimal values
 - further investigation of safe games + several cost variables?
 - discounted-time optimal games
 - link between discounted-time games and mean-cost games?
 - computation of equilibria
 - ...