
Protocol Validation with µCRL

Wan Fokkink
Modelling Distributed Systems

Springer, 2007

Goals

I Formal modeling of real-life protocols

I Automated analysis of protocols by means of state space
exploration (i.e. simulation or model checking)

I To get an impression of the difficulties in analysis
(state space explosion)

I Symbolic verification of protocols using equational logic and
theorem provers

Algebraic Specification

An algebraic specification of data types consists of

I a signature, i.e. function symbols from which one can build terms

I axioms, i.e. equations between terms, inducing
an equality relation on terms (closed under:
(1) equivalence, (2) substitution, and (3) context)

Natural Numbers - Example

The signature of the natural numbers consists of constant 0,
unary successor S , and binary addition plus and multiplication mul.

The axioms are:

plus(n, 0) = n

plus(n,S(m)) = S(plus(n,m))

mul(n, 0) = 0

mul(n,S(m)) = plus(mul(n,m), n)

The axioms are directed from left to right, and must constitute
a terminating rewrite system.

Question: Derive plus(S(0),S(0)) = S(S(0)).

Constructors

µCRL uses algebraic specification of data, with explicit recognition
of constructor symbols, which cannot be eliminated from data terms.

Example: For the natural numbers, 0 and S are constructors,
while plus and mul are not.

sort Nat
func 0 :→ Nat

S : Nat → Nat
map plus,mul : Nat × Nat → Nat
var n,m : Nat
rew plus(n, 0) = n

plus(n,S(m)) = S(plus(n,m))
mul(n, 0) = 0
mul(n,S(m)) = plus(mul(n,m), n)

Question: Specify power(n,m), denoting nm.

Booleans

‘true’ and ‘false’, together with conjunction, disjunction and negation
must be declared in each µCRL specification.

sort Bool

func T,F :→ Bool

map ∧,∨ : Bool × Bool → Bool

¬ : Bool → Bool

var b : Bool

rew b ∧ T = b

b ∧ F = F

b ∨ T = T

b ∨ F = b

¬T = F

¬F = T

Innermost Rewriting

Rewriting of data terms is performed according to
the innermost strategy, meaning that a term f (d1, . . . , dn)
can only be rewritten if d1, . . . , dn are normal forms.

A normal form only consists of constructor symbols.

Equality Function

One needs to define an equality function eq : D × D → Bool for
data types D, where eq(d , e) = T if and only if d = e.

Example: map eq : Bool × Bool → Bool

rew eq(T,T) = T

eq(F,F) = T

eq(T,F) = F

eq(F,T) = F

map eq : Nat × Nat → Bool

var n,m : Nat

rew eq(0, 0) = T

eq(S(n),S(m)) = eq(n,m)

eq(0,S(n)) = F

eq(S(n), 0) = F

Equality Function

A shorter specification of the equality function on booleans is:

eq(b, b) = T

eq(T,F) = F

eq(F,T) = F

The following specification of an equality function does not work
in µCRL:

eq(x , x) = T

eq(x , y) = F

That is, rewrite rules are not always ‘executed’ from top to bottom.

Induction

One can prove properties of data terms by induction on constructors.

Example: We prove by induction that ¬¬b = b for all booleans b.

[b is T] ¬¬T = ¬F = T

[b is F] ¬¬F = ¬T = F

Example: We prove by induction that plus(0, n) = n
for all natural numbers n.

[Base case, n is 0] plus(0, 0) = 0

[Inductive case, n is S(m)] plus(0,S(m)) = S(plus(0,m)) = S(m)

Basic Process Terms

Basic process terms are built from parametrized actions in a set Act,
alternative composition and sequential composition.

I An action name a ∈ Act represents indivisible behavior.
It can carry data parameters: a(d1, . . . , dn).

I The process term p + q executes the behavior of either p or q.

I The process term p·q first executes p, and upon termination
proceeds to execute q.

Basic Process Terms - Example

((a + b)·c)·d represents the state space

a b

c ·d

((a + b)·c)·d

c

d

√

d

Basic Process Algebra - Axioms

x + y = y + x

(x + y) + z = x + (y + z)

x + x = x

(x + y)·z = (x ·z) + (y ·z)

(x ·y)·z = x ·(y ·z)

No Left Distributivity

x ·(y + z) 6= (x ·y) + (x ·z) does not hold.

Example:

write2(d)

read(d)

write1(d)write1(d) write2(d)

read(d) read(d)

√ √ √ √

Process one reads d , and then decides whether it writes d on disc 1
or 2. Process two makes a choice for disc 1 or 2 before it reads d .
If disc 1 crashes, then process one saves datum d on disc 2, while
process two may get stuck.

Bisimulation Equivalence

↓ is a special predicate on states, expressing successful termination.
That is,

√
is the only state where ↓ holds.

Assume a state space. A bisimulation is a binary relation B
on states such that:

1. if s1 B s2 and s1
a→ s ′1, then s2

a→ s ′2 with s ′1 B s ′2

2. if s1 B s2 and s2
a→ s ′2, then s1

a→ s ′1 with s ′1 B s ′2

3. if s1 B s2 and s1 ↓, then s2 ↓

4. if s1 B s2 and s2 ↓, then s1 ↓

Two states s1 and s2 are bisimilar, denoted s1 ↔ s2,
if there is a bisimulation relation B such that s1 B s2.

Example: a·(b + c) 6↔ (a·b) + (a·c)

Soundness and Completeness of the Axioms

Theorem: For basic process algebra terms p and q:

p = q ⇔ p ↔ q

Communication

To specify that two action names can communicate (or synchronize):

comm a |b = c

Communication is supposed to be commutative and associative.

a |b = b |a
(a |b) |c = a |(b |c)

Actions a(d1, . . . , dn) and b(e1, . . . , em) can only communicate
if they carry exactly the same data parameters.

In µCRL, the equality function only needs to be defined for data
types that are used in parameters of actions that can communicate.

Parallelism

The merge ‖ executes the two process terms in its arguments
in parallel.

For example, if action names a and b do not communicate,

a ‖ b = a·b + b·a

The merge can also execute a communication between actions of
its arguments.

For example, if a |b = c ,

a ‖ b = (a·b + b·a) + c

Parallelism - Example

If all communications between action names result to c , then

(a·b)‖(b·a)

b‖a

a b

a bc

c ab

a b

b‖(b·a)

ab‖a b·a

a

bb c

ba

a

a

ba

b c

ba

b b‖aa·b

b

a ac

a

b

b b

a b

ba

c

(a·b)‖a

a

√ √ √ √ √

√ √ √ √ √√

√

√

Question

Does (x + y) ‖ z = (x ‖ z) + (y ‖ z) hold?

Left Merge and Communication Merge

The left merge executes an action of its first argument and then
behaves as the merge.

The communication merge | executes a communication of actions
of its two arguments and then behaves as the merge.

Example: If a |b = c , then

a b = a·b

a |b = c

These operators are needed to axiomatize the merge. In particular,

p ‖ q = (p q + q p) + p |q

Left Merge and Communication Merge

(x + y) z = (x z) + (y z) holds.

x (y + z) = (x y) + (x z) does not hold.

(x + y) |z = (x |z) + (y |z) holds.

x |(y + z) = (x |y) + (x |z) holds.

Parallelism - Axioms

x ‖ y = (x y + y x) + x |y

a(~d) x = a(~d)·x (~d denotes d1, . . . , dn)

(a(~d)·x) y = a(~d)·(x ‖ y)
(x + y) z = x z + y z

a(~d) |b(~d) = c(~d) if a |b = c

a(~d) |b(~e) = δ if ~d 6= ~e

a(~d) |b(~e) = δ if a |b is undefined

(a(~d)·x) |b(~e) = (a(~d) |b(~e))·x
a(~d) |(b(~e)·x) = (a(~d) |b(~e))·x

(a(~d)·x) |(b(~e)·y) = (a(~d) |b(~e))·(x ‖ y)

(x + y) |z = x |z + y |z
x |(y + z) = x |y + x |z

Deadlock and Encapsulation

∗ The deadlock δ does not display any behavior.

∗ The encapsulation operators ∂H , for sets of actions H,
rename all actions of H in their argument into δ.

Encapsulation operators enable to enforce actions into communication.

Example: Let s | r = c .

s ‖ r = (s·r + r ·s) + c

∂{s,r}(s ‖ r) = c

Deadlock and Encapsulation - Axioms

x + δ = x

δ·x = δ

∂H(δ) = δ

∂H(a(~d)) = a(~d) if a /∈ H

∂H(a(~d)) = δ if a ∈ H

∂H(x + y) = ∂H(x) + ∂H(y)

∂H(x ·y) = ∂H(x)·∂H(y)

δ x = δ

δ |x = δ

x |δ = δ

Example - Bits Through a Channel

A bit 0 or 1 is sent into a channel: s(0) + s(1)

The bit is received at the other side of the channel: r(0) + r(1)

The communication of s and r is c .

The behavior of the channel is described by

∂{s,r}((s(0) + s(1)) ‖ (r(0) + r(1)))

The encapsulation operator enforces that s(d) and r(d)
can only occur in communication.

The axioms can be used to equate the process term above to

c(0) + c(1)

Process Declaration

ba

This process can be captured by means of: X = a·Y
Y = b·X

X and Y represent the two states of the process.

A process declaration proc consists of recursive equations

X (x1:D1, . . . , xn:Dn) = p

where the term p may contain expressions Y (e1, . . . , em).

The initial declaration init consists of a single expression
X (d1, . . . , dn), representing the initial state of the specification.

Question

How can one specify

a2a1 b

a(0) a(S(0)) a(S(S(0)))
· · ·

Process Declaration - Example

The process Clock repeatedly performs action tick or
displays the current time.

act tick
display : Nat

proc Clock(n:Nat) = tick ·Clock(S(n)) + display(n)·Clock(n)

init Clock(0)

‘Unguarded’ process declarations such as X = X and Y = Y ·a
are illegal.

Conditional

The process term p / b . q, where p and q are process terms and b
is a data term of sort Bool, behaves as p if b = T and as q if b = F.

x / T . y = x

x / F . y = y

Example: The process Counter counts the number of a-actions that
occur, resetting the internal counter after three a’s:

act a, reset

proc Counter(n:Nat) =
a·Counter(S(n)) / n < S(S(S(0))) . reset·Counter(0)

init Counter(0)

Summation over a Data Type

The sum operator
∑

d :D P(d) behaves as

P(d1) + P(d2) + · · ·

i.e. as the (possibly infinite) choice between process terms P(d)
for data terms d that can be built from the constructors of D.

In µCRL, the distinction between func and map is used to build
the set of constructor terms for summation over a data type.

Question

Let send | recv = comm.

What is the state space of

∂{send ,recv}(send(S(0))‖
∑
n:Nat

recv(n)) ?

Summation - Axioms

∑
d :D x = x∑

d :D P(d) =
∑

d :D P(d) + P(d0) (d0 ∈ D)∑
d :D(P(d) + Q(d)) =

∑
d :D P(d) +

∑
d :D Q(d)

(
∑

d :D P(d))·x =
∑

d :D(P(d)·x)

(∀d :D P(d) = Q(d)) ⇒
∑

d :D P(d) =
∑

d :D Q(d)

(
∑

d :D P(d)) x =
∑

d :D(P(d) x)

(
∑

d :D P(d)) |x =
∑

d :D(P(d) |x)

x |(
∑

d :D P(d)) =
∑

d :D(x |P(d))

∂H(
∑

d :D P(d)) =
∑

d :D ∂H(P(d))

Example - Bag

We can put elements of sort D into a bag, and collect these
elements from the bag in arbitrary order. For example, if D is {0, 1}:

· · ·

· · ·

· · ·

· · ·

...
...

...
...

in(0)

out(0)

out(1) out(1) out(1)

in(0)

in(0)

in(0) in(0)

in(0)

in(0)

in(0) in(0)

in(0)

in(0)

in(0) in(0)

in(0)

in(0)

in(0)

out(0) out(0) out(0)

out(0)

out(0)

out(0)out(0)out(0)out(0)

out(0) out(0) out(0)

out(0)out(0)out(0)

out(1) out(1)

out(1) out(1)

out(1)out(1)

in(1) in(1) in(1) in(1)

in(1)
out(1)

in(1) in(1) in(1)

in(1)in(1)
out(1)

in(1)in(1)

in(1)
out(1)

in(1) in(1)

out(1)

out(1)

out(1)

out(1)
in(1)

Question

How could one specify the bag over D = {d1, d2} in µCRL?

Example - Bag

If D is {d1, d2}, then a µCRL specification of the bag is:

act in, out : D
proc Y (n:Nat,m:Nat) = in(d1)·Y (S(n),m)

+ in(d2)·Y (n,S(m))
+ (out(d1)·Y (P(n),m) / n > 0 . δ)
+ (out(d2)·Y (n,P(m)) / m > 0 . δ)

init Y (0, 0)

where P(S(n)) = n.

An alternative µCRL specification that works for general D is:

act in, out : D
proc X =

∑
d :D in(d)·(X ‖ out(d))

init X

Hidden Action and Hiding

∗ The hidden action τ represents an internal computation step.

∗ The hiding operators τI , for I ⊂ Act, rename all actions of I
in their argument into τ .

τ does not communicate with any action names.

Hiding operators can make actions inert.

Example: τ{c}(a·c ·b) = a·τ ·b = a·b

Not All Hidden Actions Are Inert

Example: A malfunctioning channel.

2

3

4

1

5

τ{c2,c3}(∂{s5}(r1·(c2·s4 + c3·s5))) = r1·(τ ·s4 + τ ·δ) 6= r1·s4

Which Hidden Actions Are Inert? - Part I

a·(b + τ ·δ) 6= a·b

∂{c}(a·(b + τ ·c)) 6= ∂{c}(a·(b + c))

a·(b + τ ·c) 6= a·(b + c)

Solution: A hidden action is only inert if it does not lose possible
behaviors.

Example: a·(b + τ ·(b + c)) = a·(b + c)

Branching Bisimulation Equivalence

s1 and s2 are branching bisimilar states, denoted by s1 ↔b s2, if:

∗ if s1
τ→ s ′1 is inert, then s ′1 ↔b s2

∗ a non-inert transition s1
a→ s ′1 (or s1 ↓) is simulated by s2 after

zero or more inert τ -transitions: s2
τ→ · · · τ→ ŝ2, where

s1 ↔b ŝ2 and ŝ2
a→ s ′2 with s ′1 ↔b s ′2 (or ŝ2 ↓)

and vice versa.

Branching Bisimulation - Examples

b + τ ·(b + c)

b

τ ·(b + c) + c

b
b + c

b τ τ c

b + c

a·(b + τ ·(b + c)) a·(τ ·(b + c) + c)

c c

√ √

a a

b + c τ ·b + c

b

τ c

a·(b + c) a·(τ ·b + c)

b

b c

√ √

a a

Which Hidden Actions Are Inert? - Part II

Initial τ ’s are not inert.

a·(b + τ ·c) 6= a·(b + c)

τ ·c 6= c

Solution: A hidden action is inert if it does not lose possible
behaviors and is not initial.

Rooted Branching Bisimulation Equivalence

s1 and s2 are rooted branching bisimilar, denoted s1 ↔rb s2, if:

1. if s1
a→ s ′1, then s2

a→ s ′2 with s ′1 ↔b s ′2

2. if s1 ↓, then s2 ↓

and vice versa.

Hidden Action and Hiding - Axioms

x ·τ = x

x ·(τ ·(y + z) + y) = x ·(y + z)

τI (δ) = δ

τI (τ) = τ

τI (a(~d)) = a(~d) if a /∈ I

τI (a(~d)) = τ if a ∈ I

τI (x + y) = τI (x) + τI (y)

τI (x ·y) = τI (x)·τI (y)

τI (
∑

d :D P(d)) =
∑

d :D τI (P(d))

Soundness and Completeness of the Axioms

Theorem: For process algebra terms p and q:

p = q ⇔ p ↔rb q

Fair Abstraction

τ -loops can be eliminated.

Example: The process X with

X = a·Y
Y = τ ·Y + b

is rooted branching bisimilar to a·b.

bb
τ

a a

√ √

In the black state there is a fixed chance α > 0 that the b-transition
is taken. So the chance that b is eventually executed is 100%.

Overview

∗ data types: (sort func map var rew)

∗ action declaration: (act a : D1 × · · · × Dn, comm a |b = c)

∗ basic operators: (+ ·)
∗ data-dependent operators: (/ b .

∑
d :D)

∗ process declaration: (proc X (d1, . . . , dn))

∗ parallel operators: (‖ |)
∗ deadlock and encapsulation: (δ ∂H)

∗ hidden action and hiding: (τ τI)

In general, the init declaration of a µCRL specification is of the form

τI (∂H(X1(d1, . . . , dn) ‖ · · · ‖ Xk(e1, . . . , em)))

where the recursive equations for X1, . . . ,Xk use only data,
actions, basic operators and data-dependent operators.

Example - One-bit Buffers in Sequence

act r1, s2, r3, s3, c3 : D
comm r3 |s3 = c3

proc B1 =
∑

d :D r1(d)·s3(d)·B1

B2 =
∑

d :D r3(d)·s2(d)·B2

init τ{c3}(∂{s3,r3}(B1 ‖ B2))

1 23
B1 B2

Buffers B1 and B2 of capacity one in sequence behave as a buffer
of capacity two:

proc X =
∑

d :D r1(d)·Y (d)
Y (d :D) =

∑
d ′:D r1(d

′)·Z (d , d ′) + s2(d)·X
Z (d :D, d ′:D) = s2(d)·Y (d ′)

init X

Symbolic Proof Example: One-bit Buffers in Sequence

B1 ‖ B2 (Summations Σd :D and data parameters d are omitted)

= B1 B2 + B2 B1 + B1 |B2

= (r1·s3·B1) B2 + (r3·s2·B2) B1 + (r1·s3·B1) |(r3·s2·B2)

= r1·((s3·B1) ‖ B2) + r3·((s2·B2) ‖ B1) + δ·((s3·B1) ‖ (s2·B2))

= r1·((s3·B1) ‖ B2) + r3·((s2·B2) ‖ B1)

∂{s3,r3}(B1 ‖ B2)

= ∂{s3,r3}(r1·((s3·B1) ‖ B2) + r3·((s2·B2) ‖ B1))

= ∂{s3,r3}(r1·((s3·B1) ‖ B2)) + ∂{s3,r3}(r3·((s2·B2) ‖ B1))

= ∂{s3,r3}(r1)·∂{s3,r3}((s3·B1) ‖ B2) + ∂{s3,r3}(r3)·∂{s3,r3}((s2·B2) ‖ B1)

= r1·∂{s3,r3}((s3·B1) ‖ B2) + δ·∂{s3,r3}((s2·B2) ‖ B1)

= r1·∂{s3,r3}((s3·B1) ‖ B2)

One-bit Buffers in Sequence

Likewise we can derive:

∂{s3,r3}((s3·B1) ‖ B2) = c3·∂{s3,r3}(B1 ‖ (s2·B2))

∂{s3,r3}(B1 ‖ (s2·B2)) = s2·∂{s3,r3}(B1 ‖ B2) + r1·∂{s3,r3}((s3·B1) ‖ (s2·B2))

∂{s3,r3}((s3·B1) ‖ (s2·B2)) = s2·∂{s3,r3}((s3·B1) ‖ B2)

∂{s3,r3}(B1‖(s2·B2))

∂{s3,r3}((s3·B1)‖(s2·B2))

∂{s3,r3}(B1‖B2)

r1

c3

r1

∂{s3,r3}((s3·B1)‖B2)s2

s2

One-bit Buffers in Sequence

τ{c3}(∂{s3,r3}(B1 ‖ B2)) = τ{c3}(r1·∂{s3,r3}((s3·B1) ‖ B2))

= r1·τ{c3}(∂{s3,r3}((s3·B1) ‖ B2))

= r1·τ{c3}(c3·∂{s3,r3}(B1 ‖ (s2·B2)))

= r1·τ ·τ{c3}(∂{s3,r3}(B1 ‖ (s2·B2)))

= r1·τ{c3}(∂{s3,r3}(B1 ‖ (s2·B2)))

Likewise we can derive:

τ{c3}(∂{s3,r3}(B1 ‖ (s2·B2))) = s2·τ{c3}(∂{s3,r3}(B1 ‖ B2))

+ r1·τ{c3}(∂{s3,r3}((s3·B1) ‖ (s2·B2)))

τ{c3}(∂{s3,r3}((s3·B1) ‖ (s2·B2))) = s2·τ{c3}(∂{s3,r3}((s3·B1) ‖ B2))

= s2·τ{c3}(∂{s3,r3}(B1 ‖ (s2·B2)))

Alternating Bit Protocol

Sender Receiver

B C

F EL

K

A D

Data elements are sent from Sender to Receiver via a corrupted
channel. Sender alternatingly attaches bit 0 or 1 to data elements.

If Receiver receives a datum, it sends the attached bit to Sender via
a corrupted channel, to acknowledge reception. If Receiver receives
an error message, then it resends the preceding acknowledgement.

Sender keeps sending a datum with attached bit b until it receives
acknowledgement b. Then it starts sending the next datum with
attached bit 1−b until it receives acknowledgement 1−b, etc.

Alternating Bit Protocol - Sender and Receiver

Sb sends a datum with bit b attached:

Sb =
∑
d :∆

rA(d)·sB(d , b)·Tdb

Tdb = rF(b)·S1−b

+ (rF(1−b) + rF(⊥))·sB(d , b)·Tdb

Rb expects to receive a datum with b attached:

Rb =
∑
d :∆

rC(d , b)·sD(d)·sE(b)·R1−b

+
∑
d :∆

rC(d , 1−b)·sE(1−b)·Rb

+ rC(⊥)·sE(1−b)·Rb

Alternating Bit Protocol - Channels

K and L represent the corrupted channels, to model asynchronous
communication. (The action j represents an internal choice.)

K =
∑
d :∆

∑
b:{0,1}

rB(d , b)·(j ·sC(d , b) + j ·sC(⊥))·K

L =
∑

b:{0,1}

rE(b)·(j ·sF(b) + j ·sF(⊥))·L

A send and a read action of the same message over
the same internal channel communicate:

sB | rB = cB sC | rC = cC sE | rE = cE sF | rF = cF

Alternating Bit Protocol - Initial State

The initial state of the alternating bit protocol is specified by

τI (∂H(R0 ‖ S0 ‖ K ‖ L))

with H the set of read and send actions over channels B, C, E and F,
and I the set of communication actions together with j .

τI (∂H(R0 ‖ S0 ‖ K ‖ L)) exhibits the desired external behavior

X =
∑
d :∆

rA(d)·sD(d)·X

Question: What is the behavior of τI (∂H(R1 ‖ S0 ‖ K ‖ L))?

Alternating Bit Protocol - State Space

State space of ∂H(R0 ‖ S0 ‖ K ‖ L) (without j)

initial state

cE(1)cF(1)

sD(d)

cF(⊥)

cF(0)cE(0)

cF(⊥)cC(d, 0)

cF(0)

cF(⊥)

sD(d)

cC(⊥)

cC(d, 1)

cC(⊥)

cF(⊥)

cB(d, 1)

cB(d, 0)

cF(1)

cB(d, 0)

cB(d, 1)

cC(⊥) cC(d, 0)

cC(⊥)cC(d, 1)

rA(d) for each d ∈ ∆

cE(1)

cE(0)

rA(d) for each d ∈ ∆

Question

What is the state space of

τI (∂H(R0 ‖ S0 ‖ K ‖ L))

for ∆ = {d1, d2}, after minimization modulo ↔b?

Alternating Bit Protocol - Symbolic Proof

A symbolic correctness proof of the alternating bit protocol,
for any data set ∆, was checked with the theorem prover Coq.

(Bezem & Groote, 1993)

Question

Which assumptions underlying the alternating bit protocol are
unrealistic or impractical?

Alternating Bit Protocol - Unrealistic Assumptions

The alternating bit protocol makes three unrealistic assumptions:

I Unbounded number of retries

I Messages are never lost (and error messages can be recognized)

I Poor use of available bandwidth

Sliding Window Protocol

5

6

7

4

2

0

1

3

5

6

7

4

2

0

1

3

S

K

R

L

A

B C

D

EF

The sliding window protocol has better use of available bandwidth.

A. Tanenbaum, Computer Networks (Chapter 4.2), Prentice Hall, 1981

B. Badban, W. Fokkink, J.F. Groote, J. Pang and J. van de Pol
Verification of a sliding window protocol in µCRL and PVS
Formal Aspects of Computing, 17(3):342-388, 2005

Model Checking Versus Symbolic Correctness Proofs

In model checking, the state space is generated,
and logical properties are checked automatically.

I automated, so convenient to use

I expressive logic for specifying properties

I entire state space is searched

I suffers from state explosion

I works only for fixed data sets and topologies

Symbolic correctness proofs can be supported by a theorem prover.

I laborious

I no generation of the state space

I provides general correctness proof

Model Checking Example: A Distributed Lift System

J. Pang, B. Karstens and W. Fokkink
Analyzing the redesign of a distributed lift system in UPPAAL
Proc. ICFEM’03, Singapore, Lecture Notes in Computer Science
2885, Springer, 2003

Linear Process Equation

A linear process equation (LPE) is a symbolic representation of a
state space.

X (d :D) =
∑
i :I

∑
e:E

ai (fi (d , e))·X (gi (d , e)) / hi (d , e) . δ

with

I ai ∈ Act ∪ {τ}
I fi : D × E → Di

I gi : D × E → D

I hi : D × E → Bool

Linearization - Type I and II Equations

Two types of recursive equations X (d1:D1, . . . , dn:Dn) = p
are distinguished:

I p contains only ·, +, / b .,
∑

d :D

II p also contains ‖, ∂H , τI

The µCRL lineariser requires that all recursion variables
with a recursive equation of type II can be substituted away
from right-hand sides of recursive equations and
from the initial declaration.

Linearization

First the type I recursive equations are linearized, in two steps:

I Turn them into Greibach Normal Form, by replacing
“non-initial” actions in right-hand sides of recursive equations
into fresh recursion variables.

I Linearize the resulting recursive equations using a stack.

(An alternative method uses pattern matching.)

Then all (type I and II) recursive equations are transformed into
a single LPE, by eliminating parallel, encapsulation, hiding and
renaming operators from right-hand sides of recursive equations
and from the initial declaration.

Linearization of Type I Equations - Example

First we explain, by an example, the standard linearization method
for type I equations (mcrl).

Example: Y = a·Y ·b + c

Y performs k a’s, then a c , and then k b’s, for any k ≥ 0.

Step 1: Make a Greibach Normal Form.

Y = a·Y ·Z + c
Z = b

Linearization of Type I Equations - Example

Step 2: Linearization using a stack.

Lists can contain recursion variables and their data parameters
(i.e., function symbols, brackets, comma’s).

Empty list [] and in : D × List → List are the constructors of List.

empty : List → Bool and head : List → D and tail : List → List
are standard operations on lists.

Linearization of Type I Equations - Example

Y = a·Y ·Z + c
Z = b

is transformed into

X (λ:List) = a·X (in(Y , in(Z , tail(λ)))) / eq(head(λ),Y) . δ

+ (c / empty(tail(λ)) . c ·X (tail(λ))) / eq(head(λ),Y) . δ

+ (b / empty(tail(λ)) . b·X (tail(λ))) / eq(head(λ),Z) . δ

If recursion variables carry data parameters, then function symbols,
brackets and comma’s are also pushed on the stack.
Here Y ,Z do not carry data parameters, so D contains only Y ,Z .

Disadvantage: The stack gives a lot of overhead.

Linearization with Pattern Matching - Example

mcrl -regular invokes another linearization algorithm for
type I equations, which is based on pattern matching.

When the state space is finite, mcrl -regular usually works better
than mcrl. But mcrl -regular does not always terminate.

Example: Y = a·Z ·Y
Z = b·Z + b

Y repeatedly performs an a followed by one or more b’s.

Linearization with Pattern Matching - Example

Step 1: Replace Z ·Y by a fresh recursion variable X .

Y = a·X
Z = b·Z + b
X = Z ·Y

Step 2: Expand Z in the right-hand side of X . (Store that X = Z ·Y .)

Y = a·X
Z = b·Z + b
X = b·Z ·Y + b·Y

Step 3: Replace Z ·Y by X in the right-hand side of X .

Y = a·X
Z = b·Z + b
X = b·X + b·Y

Linearization with Pattern Matching - Example

X (n:Nat) = a(n) · b(S(n)) · c(S(S(n))) ·X (S(S(S(n))))

X (n:Nat) = a(n) ·Y (n)

Y (n:Nat) = b(S(n)) · c(S(S(n))) ·X (S(S(S(n))))

X (n:Nat) = a(n) ·Y (n)

Y (n:Nat) = b(S(n)) ·Z (n)

Z (n:Nat) = c(S(S(n))) ·X (S(S(S(n))))

Linearization with Pattern Matching - Non-termination

mcrl -regular does not always terminate.

Example: Y = a·Y ·b + c

Y = a·X1 + c
X1 = Y ·b
Y = a·X1 + c
X1 = a·X1·b + c ·b
Y = a·X1 + c
X1 = a·X2 + c ·Z1

X2 = X1·b
Z1 = b

Y = a·X1 + c
X1 = a·X2 + c ·Z1

X2 = a·X2·b + c ·Z1·b
Z1 = b

...

Linearization of Type II Equations - Example

We show, by an example, how to reduce the parallel composition
of LPEs to an LPE.

Example: Let a |b = c , and

X (n:Nat) = a(n)·X (S(n)) / n < 10 . δ + b(n)·X (S(S(n))) / n > 5 . δ

Y (m:Nat, n:Nat) = X (m) ‖ X (n) can be linearized to:

Y (m:Nat, n:Nat) = a(m)·Y (S(m), n) / m < 10 . δ

+ b(m)·Y (S(S(m)), n) / m > 5 . δ

+ a(n)·Y (m,S(n)) / n < 10 . δ

+ b(n)·Y (m,S(S(n))) / n > 5 . δ

+ c(m)·Y (S(m),S(S(n))) / m < 10 ∧ n > 5 ∧ eq(m, n) . δ

+ c(n)·Y (S(S(m)),S(n)) / m > 5 ∧ n < 10 ∧ eq(m, n) . δ

Question

How can an application of τI to an LPE be reduced to an LPE?

How can an application of ∂H to an LPE be reduced to an LPE?

State Space Generation

From an LPE X (d :D) and initial state d0, the state space is
generated (instantiator). The algorithm below focuses on
finding reachable states (i.e., transitions are ignored).

M contains all “explored” states, and L the generated states
that still need to be explored.

Initially, L = {d0} and M = ∅.

while L 6= ∅ do

select d ∈ L; L := L\{d}; M := M ∪ {d}
from LPE X , compute each transition d

a→ d ′

if d ′ 6∈ L ∪M then L := L ∪ {d ′}

Challenges: Store large state spaces in memory.

Check efficiently whether d ′ 6∈ L ∪M.

Hash Tables

A (random) hash function h maps a large domain to a small one,
to allow fast lookups:

h : D → Hash values

Problem: Different states may map to the same hash value.

Solution: A chained hash table.

1

2

3

4

5

.

..

d d ′

d ′′

When the hash table gets full, blocks of states from the hash table
are swapped to disk (e.g. based on “age”).

Bloom Filter

If a generated state d ′ is not in the hash table, the check
d ′ 6∈ L ∪M requires an expensive disk lookup.

A Bloom filter allows an inexpensive check whether d ′ 6∈ L ∪M,
allowing for false positives.

For some (smartly chosen) k,m, fix different hash functions
h1, . . . , hk : D → {1, . . . ,m}.

A Bloom filter is a bit array of length m.

Initially, all bits are set to 0.

For each generated state d , set the bits in the Bloom filter
at positions h1(d), . . . , hk(d) to 1.

Bloom Filter

If a state d ′ is generated, and does not occur at entry h(d ′)
in the hash table, then check if positions hi (d

′) for i = 1, . . . , k
in the Bloom filter all contain 1.

If not, then d ′ 6∈ L ∪M.

Else, still an expensive disk lookup is required.

Bloom Filter - Analysis

When n elements have been inserted in L ∪M, the possibility that
a certain position in the Bloom filter contains 0 is

(
m − 1

m
)kn

So the probability that k positions in the Bloom filter all contain 1 is

(1− (
m − 1

m
)kn)k

For given m, n, the number of false positives are minimal for k ≈ 0.7·mn .
(Typically, k = 4 and 256 MB is given to the Bloom filter.)

Bitstate Hashing

In bitstate hashing, a non-chained hash table is maintained.

No extra disk space is used.

If two generated states happen to have the same hash value,
the old entry is overwritten by the new entry.

Bitstate hashing approximates an exhaustive search for small systems,
and slowly changes into a partial search for large systems.

Distributed Verification

Store the state space on a cluster of computers (e.g. DAS-3).

Let there be a globally known hash function.
States are divided over processors on the basis of their hash values.

When a state is generated at a processor, its hash value is
calculated, and the state is forwarded to the appropriate processor.
There it is determined whether the state was generated before.

Distributed versions exist of:

I state space generation

I minimization modulo ↔b

I model checking

Challenge: Perform these tasks efficiently, with as little
communication overhead as possible.

Distributed Verification - Example

We model checked a cache coherence protocol for
a distributed shared memory implementation of Java.

For 2 processors, each with 1 thread, the protocol is correct.

For 2 processors, one with 1 and one with 2 threads, with
distributed model checking, we detected a deadlock.

Namely, while a thread is waiting for the write lock of a region,
the home node of the region may migrate to the thread’s processor,
so that the thread actually accesses the region at home.

J. Pang, W. Fokkink, R. Hofman and R. Veldema
Model checking a cache coherence protocol for a Java DSM
implementation
Journal of Logic and Algebraic Programming, 71(1):1-43, 2007

Sorted Lists to Fight State Explosion

Storing the message buffers of processes, and messages in channels,
in a sorted list, reduces the number of states considerably.

Impose a total order < on the data type D.

Model Checking

We define some basic modal logic operators to express properties
of states.

φ ::= T | F | φ ∧ φ′ | φ ∨ φ′ | 〈a〉φ | [a] φ

where a ranges over Act ∪ {τ}.

I T holds in all states, and F in no state

I ∧ denotes conjunction, and ∨ disjunction

I 〈a〉φ holds in state s if there is a transition s
a→ s ′ such that

φ holds in state s ′

[a]φ holds in state s if for each transition s
a→ s ′,

φ holds in state s ′

Question

Does 〈a〉φ imply [a] φ ?

Does [a] φ imply 〈a〉φ ?

Model Checking

The states s that satisfy a formula φ, denoted s |= φ,
are defined inductively by:

s |= T

s 6|= F

s |= φ ∧ φ′ if s |= φ and s |= φ′

s |= φ ∨ φ′ if s |= φ or s |= φ′

s |= 〈a〉φ if for some state s ′, s
a→ s ′ with s ′ |= φ

s |= [a] φ if for all states s ′, s
a→ s ′ implies s ′ |= φ

Example: If s
a9, then s |= [a] F and s 6|= 〈a〉T.

Fixpoints

Let D be a finite set with partial ordering ≤, with a least
and a greatest element.

S : D → D is monotonic if d ≤ e implies S(d) ≤ S(e).

d ∈ D is a fixpoint of S : D → D if S(d) = d .

If S is monotonic, then it has a minimal fixpoint µX .S(X)
and a maximal fixpoint νX .S(X).

Question: How can µX .S(X) and νX .S(X) be computed?

Question

Give an example to show that if D is infinite, monotonic mappings
S : D → D need not have a fixpoint.

µ-calculus

The µ-calculus is a temporal logic.

φ ::= T | F | φ∧φ′ | φ∨φ′ | 〈a〉φ | [a]φ | X | µX .φ | νX .φ

where the X are recursion variables.

We restrict to closed formulas, meaning that each occurrence
of a recursion variable X is within the scope of a µX or νX .

We need to explain how φ (with X as only free variable) is interpreted
as a (monotonic) mapping from sets of states to sets of states.

µ-calculus

Consider a finite state space.
(For simplicity we ignore successful termination.)

Let X be the only free variable in µ-calculus formula φ.
We define the meaning of µX .φ and νX .φ.

φ maps each set P of states to the set of states that satisfy φ,
under the assumption that P is the set of states in which X holds.

Example: Consider the state space s0
a→ s1.

〈a〉X maps sets containing s1 to {s0}, and all other sets to ∅.

[a] X maps sets containing s1 to {s0, s1}, and all other sets to {s1}.

µ-calculus

As partial order we take set inclusion.

Theorem: For each φ with one free variable X ,
the corresponding mapping is monotonic.

So the closed formulas µX .φ and νX .φ are well-defined.

They are satisfied only by the states in
the minimal and maximal fixpoint of φ, respectively.

µ-calculus - Examples

µX .(〈a〉X ∨ 〈b〉T) represents those states that can execute
ak b for some k ≥ 0.

νX .(〈a〉X ∨ 〈b〉T) represents those states that can execute
a∞ or ak b for some k ≥ 0.

νX .(〈a〉X ∨ 〈b〉X) represents those states that can execute
an infinite trace of a’s and b’s.

Question: How about µX .(〈a〉X ∨ 〈b〉X)?

µ-calculus - Negation Violates Monotonicity

Absence of negation in the µ-calculus is needed for monotonicity.

Example: a

a
s0 s1

µX .¬〈a〉X has no fixpoint.

µ-calculus - Complexity

Worst-case time complexity: O(|φ|·m·nN(φ))

where N(φ) is the longest chain of nested fixpoints in φ.

Example: a

a
s0 s1

Consider νX .〈b〉 (µY .(〈a〉X ∨ 〈a〉Y)).

Y X

∅ {s0, s1}
{s0, s1} ∅

∅ ∅

In the second iteration, recomputation of Y must start at ∅
(instead of {s0, s1}).

Conclusion: If a minimal fixpoint µY is within the scope of
a maximal fixpoint νX , the successive values of Y must be
recomputed starting at ∅ every time.

Alternation-free µ-calculus

For two nested minimal (or maximal) fixpoints, recomputing
a fixpoint is not so expensive.

Example: s0
a→ s1

b→ · · · a→ s2n−3
b→ s2n−2

a→ s2n−1
b→ s2n

Consider νX .νY .(〈a〉X ∨ 〈b〉Y).

Y X

{s0, . . . , s2n} {s0, . . . , s2n}
{s0, . . . , s2n−1} {s0, . . . , s2n−2}
{s0, . . . , s2n−3} {s0, . . . , s2n−4}

...
...

∅ ∅

Note that the successive values of X and Y decrease.

This is always true for two nested maximal fixpoints. Likewise, for
two nested minimal fixpoints, the successive values always increase.

Alternation-free µ-calculus

Worst-case time complexity: O(|φ|·m·nN(φ))

for model checking the µ-calculus, where N(φ) is the longest chain
of nested alternating fixpoints in φ (i.e., minimal within maximal,
or maximal within minimal fixpoint).

Worst-case time complexity: O(|φ|·m·n)

for model checking the alternation-free µ-calculus.

Model checking the full µ-calculus is in NP ∩ co-NP.

It is an open question whether it is in P.

Regular µ-calculus

α ::= T | a | ¬α | α ∧ α′ (a ∈ Act ∪ {τ})

β ::= α | β·β′ | β|β′ | β∗

φ ::= T | F | φ ∧ φ′ | φ ∨ φ′ | 〈β〉φ | [β]φ | X | µX .φ | νX .φ

α represents a set of actions: T denotes all actions, a the set {a},
¬ complement, and ∧ intersection.

β represents a set of traces: · is concatenation, | union, and ∗ iteration.

Regular µ-calculus - Examples

Deadlock freeness: [T∗] 〈T〉T

Absence of error: [T∗·error] F

After an occurrence of send, fair reachability of read is guaranteed:

[T∗·send ·(¬read)∗] 〈T∗·read〉T

Question: Specify the properties:

- there is an execution sequence to a deadlock state

- read cannot be executed before an occurrence of send

Regular µ-calculus - Examples

There is an infinite execution sequence:

νX .(〈T〉X)

No reachable state exhibits an infinite τ -sequence:

[T∗] µX .[τ] X

Each send is eventually followed by a read:

[T∗·send]µX .(〈T〉T ∧ [¬read] X)

CADP Model Checker

CADP supports model checking of alternation-free, regular
µ-calculus formulas.

Classes of actions can be expressed with the use of
UNIX regular expressions, e.g. ′send(.∗)′.

If a property is violated, an error trace is produced.

To analyse the error trace, omit the hiding operator from
the initial state before state space generation.

CADP Syntax for Formulas

Examples: [(not "send(d)")*."recv(d)"] false

[(not ’send(.*)’)*.’recv(.*)’)*] false

[(true)*."send(d)"] mu X.(〈true〉 true and [not "read(d)"] X)

Beware that text between quotes ("...") is interpreted literally
(even "a(d,e)" and "a(d, e)" are taken to be syntactically
different!).

A small typo in an action name may therefore mean you verify
a property for a non-existent action.

Self-loops to Verify State Properties

To take values of variables into account in a model checking analysis,
one can include artificial self-loops that carry these variables as
action variables.

Example: To the process declaration of a recursion variable
X (d1:D1, d2:D2, d3:D3) one can add a summand

+ test(d1, d3) · X (d1, d2, d3)

where test is a “fresh” action name.

Such a self-loop does not increase the number of reachable states.

Types of Requirements

I Safety: something bad will never happen.

(E.g., when motor M1 is on, brake B1 is never applied.)

I Liveness: something good will eventually happen.

(E.g., if the system is in uncalibrated mode, the bed is not in
the uppermost position, and the Up button is pressed,
then the bed must go up.)

Pitfalls for Requirements

Beware not to formulate requirements that are too general.

Example: “the bed can move up, down, left or right”

(In which states of the system, under which inputs?)

Requirements must be formulated in terms of external events
(input/output).

Example: “the controllers must communicate asynchronously”

(Implementation detail, cannot be verified using model checking.)

Minimization Algorithm

Assume a finite state space.

Let the set S of states be partitioned into P1 ∪ · · · ∪ Pk , such that
(∗) branching bisimilar states reside in the same set of the partition.

For a ∈ Act ∪ {τ}, s0 ∈ splita(Pi ,Pj) if

s0
τ→ · · · τ→ sn−1

a→ sn with s0, . . . , sn−1 ∈ Pi and sn ∈ Pj .

If s ∈ splita(Pi ,Pj) and s ′ ∈ Pi\splita(Pi ,Pj) with a 6= τ or i 6= j ,
then s 6↔b s ′.

So after performing a split, (∗) remains satisfied.

Minimization Algorithm

Initially, S is partitioned in S . (So (∗) is trivially satisfied.)

Suppose that at some point S is partitioned in P1 ∪ · · · ∪ Pk .

If a 6= τ or i 6= j , and

∅ ⊂ splita(Pi ,Pj) ⊂ Pi

then in the partition, Pi can be replaced by splita(Pi ,Pj) and
Pi\splita(Pi ,Pj).

Splitting continues until no further split is possible.

(∗) is satisfied by the final partition.

Minimization Algorithm - Correctness and Complexity

Let s B s ′ if s and s ′ are in the same set of the final partition.

B is a branching bisimulation relation.

Theorem: Let P1 ∪ · · · ∪ Pk denote the final partition of S .
Two states s and s ′ are in the same set Pi if and only if s ↔b s ′

in the original state space.

Worst-case time complexity: O(mn), where m is the number of
transitions and n the number of states in the original state space.

Namely, calculating a split takes O(m), and there are no more
than n splits.

Minimization Algorithm - Example

Consider (a·τ + τ ·b)·δ. P contains all four states in the state space.

s0

τ b

a τ

P

s1 s2

s3

τ b

a τ

P2

P1
s0

s1 s2

s3

τ b

a τ
P1

P22P21

s0

s1 s2

s3

splita(P,P) separates s0 from {s1, s2, s3}.
splitb(P2,P2) separates s2 from {s1, s3}.

P1, P21 and P22 cannot be split any further, so the minimized
state space is

a τ

b

{s0}

{s2}{s1, s3}

Questions

How can we, in the previous example, split on b
followed by a split on a?

How is (a·τ + τ ·a)·δ minimized?

How is a·a·δ minimized?

Bounded Retransmission Protocol

K

L

C

D

E

B

F

G

H

TVRC
A

T2

T1
Data packets are sent from RC to TV.

The last datum of a packet is labeled.

A datum may get lost.

T1 and T2 send time-out messages.

An alternating bit is attached to each datum.

Only one kind of acknowledgement.

If RC does not receive an acknowledgement within a certain time,
it resends the datum.

A datum is resent a limited number of times.

If TV does not receive a next datum within a certain time,
RC has given up transmission.

Bounded Retransmission Protocol - External Behavior

sD(d1, first)

sA(IDK)

sD(dN−1)sD(dN , last)

sA(INOK)

rA(d1, . . . , dN)
sA(INOK)

sA(INOK)

sA(IOK)

sA(IDK) sA(INOK)

(i = 2, . . . , N − 2)

sD(di)

Messages into channel A:

sA(IOK): transmission was successful

sA(INOK): transmission was unsuccessful

sA(IDK): transmission may have been (un)successful

Bounded Retransmission Protocol - Remote Control

Let Λ consist of lists over ∆. (Only lists of length ≥ 2 can be transmitted.)

X =
∑

λ:Λ rA(λ)·Y (λ, 0,S(0)) / length(λ) > S(0) . δ

Y (λ:Λ, b:Bit, n:Nat) =

(sB(head(λ), b) / length(λ) > S(0) . sB(head(λ), b, last))·Z (λ, b, n)

Z (λ:Λ, b:Bit, n:Nat) =

rF(ack)·(Y (tail(λ), 1−b,S(0)) / length(λ) > S(0) . sA(IOK)·X)

+ rG(to)·(Y (λ, b,S(n)) / n < max .

(sA(INOK) / length(λ) > S(0) . sA(IDK))·sH(to)·X)

Bounded Retransmission Protocol - Television

V =
∑

d :∆ rC(d , 0)·sD(d , first)·sE(ack)·W (1)

+
∑

d :∆(rC(d , 0, last) + rC(d , 1, last))·sE(ack)·V

+ rH(to)·V

W (b:Bit) =
∑

d :∆ rC(d , b)·sD(d)·sE(ack)·W (1−b)

+
∑

d :∆ rC(d , b, last)·sD(d , last)·sE(ack)·V

+
∑

d :∆ rC(d , 1−b)·sE(ack)·W (b)

+ rH(to)·V

Bounded Retransmission Protocol - Medium

K =
∑

d :∆

∑
b:{0,1}(rB(d , b)·(j ·sC(d , b) + j ·sG(to))·K

+ rB(d , b, last)·(j ·sC(d , b, last) + j ·sG(to))·K)

L = rE(ack)·(j ·sF(ack) + j ·sG(to))·L

Bounded Retransmission Protocol - Initial State

The initial state is specified by

τI (∂H(V ‖ X ‖ K ‖ L))

with H the internal read and send actions,
and I the communication actions and j .

Bounded Retransmission Protocol - External Behavior

∆ = {d1, d2}

Λ consists of lists of length 3

17

0

18

1

20

19

2

21

3

22

4

23

5

24

6

25

7

26

8

27

9

10

28

1130 29 12

31

13

32

14

33

15

34

16

i
s4(d1,last)

s1(ok)
s1(dk)

s4(d2,first)

i
i i

i

i

i

s4(d2)

i

i

i

i

s4(d1)

s4(d1,first)s4(d1,first)

i

i

s4(d2,first)

s4(d2,first) s4(d1,first)

i

i
i

i
i

i
i

r1(in(d2,in(d2,in(d1))))

i

r1(in(d2,in(d1,in(d1))))

i

r1(in(d2,in(d2,in(d2))))

i

i
r1(in(d2,in(d1,in(d2))))

i

r1(in(d1,in(d2,in(d1))))

i

r1(in(d1,in(d1,in(d1))))

i

r1(in(d1,in(d2,in(d2))))

s4(d1,first)

r1(in(d1,in(d1,in(d2))))

i

i

i

i

s4(d2,first)

s1(nok)

s4(d1)

i

i

s4(d2)

s4(d2,last) i

Bounded Retransmission Protocol - Exercises

I An incomplete specification of the BRP is available at

http://www.cs.vu.nl/~tcs/pv/brp-scheme

You need to supply rewrite rules for the functions smaller,
head, tail and length, and specify the TV.

I Generate the minimized state space for ∆ = {d1, d2}.

I Formulate the next properties in regular µ-calculus:

- Each action rA(`) from the remote control is eventually followed by
an action sA(IOK) or sA(INOK) or sA(IDK) from the remote control.

- Each action sA(IOK) from the remote control is preceded by
an action sD(d , last) from the television.

Verify these two properties using the CADP model checker.

http://www.cs.vu.nl/~tcs/pv/brp-scheme

Bounded Retransmission Protocol - Exercises

I Suppose that the timer T1 is absent.

Verify using the CADP toolset that this version of the BRP
contains a deadlock.

I What would go wrong if the timer T2 were absent from the BRP?

Would the resulting system contain a deadlock?

Analyse the state space of this system using the CADP toolset.

Overview of the µCRL Toolset

constelm
sumelm
parelm

rewr

instantiator with confluence reduction

lineariser pretty printer

minimisation
confluence reduction

instantiator

text

binary

BCG

simulation

µCRL

LPE

state space

model checking theorem provingsymbolic model checking

Automated Theorem Prover

A theorem prover within the µCRL toolset provides
(semi-)automated support for proving (large) formulas.

This theorem prover is not complete!
(Equalities over an abstract data type are in general undecidable.)

If the theorem prover cannot prove validity of a formula, diagnostics
are provided. The user can add equations to the data specification.

In some cases, the formula is not valid in all states of the system,
but does hold in all reachable states.
The user may supply invariants, and formulas can be proved under
the assumption of invariants.
Such invariants must be proved separately, which can again be done
using the theorem prover.

Download µCRL, CADP and mCRL2

µCRL can be downloaded at

http://homepages.cwi.nl/~mcrl

CADP can be downloaded at

http://www.inrialpes.fr/vasy/cadp/

mCRL2, a successor of µCRL with functional data types
that is being developed at Eindhoven University of Technology,
can be downloaded at

http://www.mcrl2.org

http://homepages.cwi.nl/~mcrl
http://www.inrialpes.fr/vasy/cadp/
http://www.mcrl2.org

Other Useful Links

At the web site of my course Protocol Validation

http://www.cs.vu.nl/~tcs/pv/

you can find exercises, lab assignments and solutions.

My book Modelling Distributed Systems can be downloaded at

http://www.springer.com

http://www.cs.vu.nl/~tcs/pv/
http://www.springer.com

Summary

Basic framework

I abstract data types

I process algebra

I branching bisimilarity

State space

I linearisation / state space generation

I minimisation of the state space

I regular µ-calculus / model checking

What’s More

Fighting state space explosion

I store state space on a cluster of computers

I partial order reduction

I abstraction

I symbolic model checking

I theorem prover

Symbolic proof techniques

I axioms

I linear process equations

I invariants

I cones and foci

