Probabilistic Model Checking

Marta Kwiatkowska

Oxford University Computing Laboratory

Course overview

- 2 sessions (Tue/Wed am): 4×1.5 hour lectures
- Introduction
- 1 - Discrete time Markov chains (DTMCs)
- 2 - Markov decision processes (MDPs)
- 3 - LTL model checking for DTMCs/MDPs
- 4 - Probabilistic timed automata (PTAs)
- For extended versions of this material
- and an accompanying list of references
- see: http://www.prismmodelchecker.org/lectures/

Probabilistic models

	Fully probabilistic	Nondeterministic
Discrete time	Discrete-time Markov chains (DTMCs)	Markov decision processes (MDPs) (probabilistic automata)
Continuous time	Continuous-time Markov chains (CTMCs)	Probabilistic timed automata (PTAs)

Part 3

LTL Model Checking
for DTMCs and MDPs

Overview (Part 3)

- Linear temporal logic (LTL)
- Strongly connected components
- ω-automata (Büchi, Rabin)
- LTL model checking for DTMCs
- LTL model checking for MDPs

Limitations of PCTL

- PCTL, although useful in practice, has limited expressivity - essentially: probability of reaching states in X, passing only through states in Y (and within k time-steps)
- One useful approach: extend models with costs/rewards
- see last two lectures
- Another direction: Use more expressive logics. e.g.:
- LTL [Pnu77] - (non-probabilistic) linear-time temporal logic
- PCTL* [ASB+95,BdA95] - which subsumes both PCTL and LTL
- both allow path operators to be combined
- (in PCTL, $\mathrm{P}_{\sim p}[\ldots]$ always contains a single temporal operator)

LTL - Linear temporal logic

- LTL syntax (path formulae only)
$-\psi::=$ true $|\mathrm{a}| \Psi \wedge \psi|\neg \psi| \mathrm{X} \psi \mid \Psi U \psi$
- where a $\in A P$ is an atomic proposition
- usual equivalences hold: $\mathrm{F} \phi \equiv$ true $\mathrm{U} \phi, \mathrm{G} \phi \equiv \neg(\mathrm{F} \neg \phi)$
- LTL semantics (for a path ω)

$$
\begin{array}{ll}
-\omega \vDash \text { true } & \quad \text { always } \\
-\omega \vDash a & \Leftrightarrow a \in \mathrm{~L}(\omega(0)) \\
-\omega \vDash \Psi_{1} \wedge \Psi_{2} & \Leftrightarrow \omega \vDash \Psi_{1} \text { and } \omega \vDash \Psi_{2} \\
-\omega \vDash \neg \psi & \Leftrightarrow \omega \neq \psi \\
-\omega \vDash X \Psi & \Leftrightarrow \omega[1 \ldots] \vDash \psi \\
-\omega \vDash \psi_{1} \cup \Psi_{2} & \Leftrightarrow \exists \mathrm{k} \geq 0 \text { s.t. } \omega[k \ldots] \vDash \Psi_{2} \wedge \forall \mathrm{i}<\mathrm{k} \omega[\mathrm{i} \ldots] \vDash \Psi_{1}
\end{array}
$$

where $\omega(\mathrm{i})$ is $\mathrm{i}^{\text {th }}$ state of ω, and $\omega[\mathrm{i} .$.$] is suffix starting at \omega(\mathrm{i})$

LTL examples

- (F tmp_fail $\left.{ }_{1}\right) \wedge\left(\right.$ F tmp_fail $\left._{2}\right)$
- "both servers suffer temporary failures at some point"
- GF ready
- "the server always eventually returns to a ready-state"
- FG error
- "an irrecoverable error occurs"
- $G(r e q \rightarrow X$ ack $)$
- "requests are always immediately acknowledged"

LTL for DTMCs

- Same idea as PCTL: probabilities of sets of path formulae
- for a state s of a DTMC and an LTL formula ψ :
$-\operatorname{Prob}(\mathrm{s}, \psi)=\operatorname{Pr}_{\mathrm{s}}\{\omega \in \operatorname{Path}(\mathrm{s}) \mid \omega \vDash \psi\}$
- all such path sets are measurable [Var85]
- A (probabilistic) LTL specification often comprises an LTL (path) formula and a probability bound
- e.g. $P_{\geq 1}$ [GF ready] - "with probability 1 , the server always eventually returns to a ready-state"
- e.g. $\mathrm{P}_{\leq 0.01}$ [FG error] - "with probability at most 0.01, an irrecoverable error occurs"
- PCTL* subsumes both LTL and PCTL
- e.g. $\mathrm{P}_{>0.5}\left[\mathrm{GF} \mathrm{crit}_{1}\right] \wedge \mathrm{P}_{>0.5}\left[\mathrm{GF} \mathrm{crit}_{2}\right]$

Overview (Part 3)

- Linear temporal logic (LTL)
- Strongly connected components
- ω-automata (Büchi, Rabin)
- LTL model checking for DTMCs
- LTL model checking for MDPs

Strongly connected components

- Long-run properties of DTMCs rely on an analysis of their underlying graph structure (i.e. ignoring probabilities)
- Strongly connected set of states T
- for any pair of states s and s^{\prime} in T, there is a path from s to s^{\prime}, passing only through states in T
- Strongly connected component (SCC)
- a maximally strongly connected set of states (i.e. no superset of it is also strongly connected)
- Bottom strongly connected component (BSCC)
- an SCC T from which no state outside T is reachable from T

Example - (B)SCCs

BSCC
BSCC

Fundamental property of DTMCs

- Fundamental property of (finite) DTMCs...
- With probability 1, a BSCC will be reached and all of its states visited infinitely often

- Formally:

$$
\begin{aligned}
-\operatorname{Pr}_{s}\{\omega \in \operatorname{Path}(\mathrm{~s}) \mid & \exists \mathrm{i} \geq 0, \exists \mathrm{BSCC} T \text { such that } \\
& \forall j \geq i \omega(i) \in \mathrm{T} \text { and } \\
& \left.\forall \mathrm{s}^{\prime} \in \mathrm{T} \omega(\mathrm{k})=\mathrm{s}^{\prime} \text { for infinitely many } \mathrm{k}\right\}=1
\end{aligned}
$$

LTL model checking for DTMCs

- LTL model checking for DTMCs relies on:
- computing the probability Prob(s, ψ) for LTL formula ψ
- reduces to probability of reaching a set of "accepting" BSCCs
- 2 simple cases: GF a and FG a...
- $\operatorname{Prob}(\mathrm{s}, \mathrm{GF} \mathrm{a})=\operatorname{Prob}\left(\mathrm{s}, \mathrm{F} \mathrm{T}_{\mathrm{GFa}}\right)$
- where $T_{\text {GFa }}=$ union of all BSCCs containing some state satisfying a
- Prob(s, FG a) $=\operatorname{Prob}\left(\mathrm{s}, \mathrm{F} \mathrm{T}_{\mathrm{FGa}}\right)$
- where $T_{\text {FGa }}=$ union of all BSCCs containing only a-states
- To extend this idea to arbitrary LTL formula, we use ω-automata...

Example:
$\operatorname{Prob}\left(\mathrm{s}_{0}, \mathrm{GF}\right.$ a)
$=\operatorname{Prob}\left(\mathrm{s}_{0}, \mathrm{~F}_{\mathrm{GFa}}\right)$
$=\operatorname{Prob}\left(\mathrm{s}_{0}, \mathrm{~F}\left\{\mathrm{~s}_{3}, \mathrm{~s}_{2}, \mathrm{~s}_{5}\right\}\right)$
$=2 / 3+1 / 6=5 / 6$

Overview (Part 3)

- Linear temporal logic (LTL)
- Strongly connected components
- ω-automata (Büchi, Rabin)
- LTL model checking for DTMCs
- LTL model checking for MDPs

Reminder - Finite automata

- A regular language over alphabet Σ
- is a set of finite words $L \subseteq \Sigma^{*}$ such that either:
- $L=L(E)$ for some regular expression E
$-L=L(A)$ for some nondeterministic finite automaton (NFA) A
$-L=L(A)$ for some deterministic finite automaton (DFA) A
- Example:

Regexp: $(\alpha+\beta) * \beta(\alpha+\beta) \quad$ NFA A:

- NFAs and DFAs have the same expressive power
- we can always determinise an NFA to an equivalent DFA
- (with a possibly exponential blow-up in size)

Büchi automata

- ω-automata represent sets of infinite words $L \subseteq \Sigma^{\omega}$
- e.g. Büchi automata, Rabin automata, Streett, Muller, ...
- A nondeterministic Büchi automaton (NBA) is...
- a tuple $A=\left(Q, \Sigma, \delta, Q_{0}, F\right)$ where:
$-Q$ is a finite set of states
$-\Sigma$ is an alphabet
$-\delta: \mathrm{Q} \times \Sigma \rightarrow 2^{\mathrm{Q}}$ is a transition function
$-\mathrm{Q}_{0} \subseteq \mathrm{Q}$ is a set of initial states
$-F \subseteq Q$ is a set of "accept" states

Example:
words $w \in\{\alpha, \beta\}^{\omega}$ with infinitely many α

- NBA acceptance condition
- language $L(A)$ for A contains $w \in \Sigma^{\omega}$ if there is a corresponding run in A that passes through states in F infinitely often

ω-regular properties

- Consider a model, i.e. an LTS/DTMC/MDP/...
- for example: DTMC D $=\left(S, s_{\text {init }}, P, L a b\right)$
- where labelling Lab uses atomic propositions from set AP
- We can capture properties of these using ω-automata
- let $\omega \in$ Path(s) be some infinite path in D
- trace $(\omega) \in\left(2^{\text {AP }}\right)^{\omega}$ denotes the projection of state labels of ω
- i.e. $\operatorname{trace}\left(s_{0} s_{1} s_{2} s_{3} \ldots\right)=\operatorname{Lab}\left(s_{0}\right) \operatorname{Lab}\left(s_{1}\right) \operatorname{Lab}\left(s_{2}\right) \operatorname{Lab}\left(s_{3}\right) \ldots$
- can specify a set of paths of D with an ω-automata over 2AP
- Let $\operatorname{Prob}^{\mathrm{D}}(\mathrm{s}, \mathrm{A})$ denote the probability...
- from state s in a discrete-time Markov chain D
- of satisfying the property specified by automaton A
- i.e. $\operatorname{Prob}^{D}(s, A)=\operatorname{Pr}_{\mathrm{s}}\{\omega \in \operatorname{Path}(\mathrm{s}) \mid \operatorname{trace}(\omega) \in \mathrm{L}(\mathrm{A})\}$

Example

- Nondeterministic Büchi automaton
- for LTL formula GF a, i.e. "infinitely often a"
- for a DTMC with atomic propositions AP $=\{a, b\}$

- We abbreviate this to just:

Büchi automata + LTL

- Nondeterministic Büchi automata (NBAs)
- define the set of ω-regular languages
- ω-regular languages are more expressive than LTL
- can convert any LTL formula ψ over atomic propositions AP
- into an equivalent NBA A_{ψ} over $2^{\text {AP }}$
- i.e. $\omega \vDash \psi \Leftrightarrow \operatorname{trace}(\omega) \in L\left(\mathrm{~A}_{\psi}\right)$ for any path ω
- for LTL-to-NBA translation, see e.g. [VW94], [DGV99], [BK08]
- worst-case: exponential blow-up from $|\psi|$ to $\left|\mathrm{A}_{\psi}\right|$
- But deterministic Büchi automata (DBAs) are less expressive - e.g. there is no DBA for the LTL formula FG a
- for probabilistic model checking, need deterministic automata
- so we use deterministic Rabin automata (DRAs)

Deterministic Rabin automata

- A deterministic Rabin automaton is a tuple ($\mathrm{Q}, \Sigma, \delta, \mathrm{q}_{0}, \mathrm{Acc}$):
-Q is a finite set of states, $\mathrm{q}_{0} \in \mathrm{Q}$ is an initial state
$-\Sigma$ is an alphabet, $\delta: \mathrm{Q} \times \Sigma \rightarrow \mathrm{Q}$ is a transition function
$-\mathrm{Acc}=\left\{\left(\mathrm{L}_{\mathrm{i}}, \mathrm{K}_{\mathrm{i}}\right)\right\}_{\mathrm{i}=1 . . \mathrm{k}} \subseteq 2^{\mathrm{Q}} \times 2^{\mathrm{Q}}$ is an acceptance condition
- A run of a word on a DRA is accepting iff:
- for some pair (L_{i}, K_{i}), the states in L_{i} are visited finitely often and (some of) the states in K_{i} are visited infinitely often
- or in LTL: $\underset{1 \leq i \leq k}{V}\left(F G \neg L_{i} \wedge G F K_{i}\right)$
- Example: DRA for FG a
- acceptance condition is Acc $=\left\{\left(\left\{q_{0}\right\},\left\{q_{1}\right\}\right)\right\}$

Overview (Part 3)

- Linear temporal logic (LTL)
- Strongly connected components
- ω-automata (Büchi, Rabin)
- LTL model checking for DTMCs
- LTL model checking for MDPs

LTL model checking for DTMCs

- LTL model checking for DTMC D and LTL formula ψ
- 1. Construct DRA A_{ψ} for ψ
- 2. Construct product $D \otimes A$ of DTMC D and DRA A_{ψ}
- 3. Compute $\operatorname{Prob}^{\mathrm{D}}(\mathrm{s}, \psi)$ from $\mathrm{DTMC} \mathrm{D} \otimes \mathrm{A}$
- Running example:
- compute probability of satisfying LTL formula $\psi=G \neg b \wedge G F a$ on:

Example - DRA

- DRA A_{ψ} for $\psi=G \neg b \wedge G F a$
- acceptance condition is Acc $=\left\{\left(\{ \},\left\{\mathrm{q}_{1}\right\}\right)\right\}$
- (i.e. this is actually a deterministic Büchi automaton)

Need to visit here infinitely often to satisfy GF a

If $G \neg b$ violated (because we see a b), end up stuck here

Product DTMC for a DRA

- We construct the product DTMC
- for DTMC D and DRA A, denoted D $\otimes A$
- D $\otimes A$ can be seen as an unfolding of D with states (s, q), where q records state of automata A for path fragment so far
- since A is deterministic, $D \otimes A$ is a also a DTMC
- each path in D has a corresponding (unique) path in $D \otimes A$
- the probabilities of paths in D are preserved in $D \otimes A$
- Formally, for $\mathrm{D}=\left(\mathrm{S}, \mathrm{s}_{\text {init }}, \mathrm{P}, \mathrm{L}\right)$ and $\mathrm{A}=\left(\mathrm{Q}, \Sigma, \delta, \mathrm{q}_{0},\left\{\left(\mathrm{~L}_{\mathrm{i}}, \mathrm{K}_{\mathrm{i}}\right)\right\}_{\mathrm{i}=1 . . \mathrm{k}}\right)$
$-D \otimes A$ is the DTMC $\left(S \times Q\right.$, $\left.\left(s_{\text {init }}, q_{\text {init }}\right), P^{\prime}, L^{\prime}\right)$ where:
$-q_{\text {init }}=\delta\left(q_{0}, L\left(s_{\text {init }}\right)\right)$
$-P^{\prime}\left(\left(s_{1}, q_{1}\right),\left(s_{2}, q_{2}\right)\right)=\left\{\begin{array}{cc}P\left(s_{1}, s_{2}\right) & \text { if } q_{2}=\delta\left(q_{1}, L\left(s_{2}\right)\right) \\ 0 & \text { otherwise }\end{array}\right.$
$-I_{i} \in L^{\prime}(s, q)$ if $q \in L_{i}$ and $k_{i} \in L^{\prime}(s, q)$ if $q \in K_{i}$

Example - Product DTMC

DTMC D

DRA A_{ψ} for $\psi=G \neg b \wedge G F a$

Product DTMC $D \otimes A_{\psi}$

$$
\begin{aligned}
& s_{0} \text { satisfies neither a or } b \\
& s_{0} q_{0} \text { is initial } \\
& \text { state of DTMC D }
\end{aligned}
$$

Example - Product DTMC

DTMC D

$\operatorname{DRA~}_{\psi}$ for $\psi=G \neg \mathrm{~b} \wedge \mathrm{GF} \mathrm{a}$

Product DTMC $D \otimes A_{\psi}$

Example - Product DTMC

DTMC D

DRA A_{ψ} for $\psi=G \neg b \wedge G F a$

label states satisfying
acceptance pair satisfying
acceptance pair $\left(L_{1}, K_{1}\right)$

Product DTMC $D \otimes A_{\psi}$

Product DTMC for a DRA

- For DTMC D and DRA A

$$
\operatorname{Prob}^{\mathrm{D}}(\mathrm{~s}, \mathrm{~A})=\operatorname{Prob}^{\mathrm{D} \otimes \mathrm{~A}}\left(\left(\mathrm{~s}, \mathrm{q}_{\mathrm{s}}\right), \vee_{1 \leq i \leq k}\left(\mathrm{FG} \neg \mathrm{l}_{\mathrm{i}} \wedge G F \mathrm{k}_{\mathrm{i}}\right)\right.
$$

- where $q_{s}=\delta\left(q_{0}, L(s)\right)$
- Hence:

$$
\operatorname{Prob}^{D}(\mathrm{~s}, \mathrm{~A})=\operatorname{Prob}^{\mathrm{D} \otimes \mathrm{~A}}\left(\left(\mathrm{~s}, \mathrm{q}_{\mathrm{s}}\right), \mathrm{FT}_{\mathrm{Acc}}\right)
$$

- where $T_{\text {Acc }}$ is the union of all accepting BSCCs in $D \otimes A$
- an accepting BSCC T of $D \otimes A$ is such that, for some $1 \leq i \leq k$, no states in T satisfy l_{i} and some state in T satisfies k_{i}
- Reduces to computing BSCCs and reachability probabilities

Example: LTL for DTMCs

- Compute $\operatorname{Prob}\left(\mathrm{s}_{0}, G \neg \mathrm{~b} \wedge G F a\right)$ for $D T M C D:$

DTMC D

DRA A_{ψ} for $\psi=G \neg b \wedge G F a$

Example: LTL for DTMCs

DTMC D

DRA A_{ψ} for $\psi=G \neg b \wedge G F a$

Product DTMC $D \otimes A_{\psi}$

Example: LTL for DTMCs

DTMC D

Product DTMC D $\otimes \mathrm{A}_{\Psi}$

DRA A_{ψ} for $\psi=G \neg b \wedge G F a$

$\operatorname{Prob}^{D}\left(\mathrm{~s}_{0}, \psi\right)=\operatorname{Prob}^{\mathrm{D} \otimes A \psi}\left(\mathrm{~s}_{0} \mathrm{q}_{0}, \mathrm{FT}_{1}\right)=3 / 4$

T3

Complexity of LTL model checking

- Complexity of model checking LTL formula ψ on DTMC D
- is doubly exponential in $|\Psi|$ and polynomial in |D|
- (for the algorithm presented in these lectures)
- Double exponential blow-up comes from use of DRAs
- size of NBA can be exponential in $|\Psi|$
- and DRA can be exponentially bigger than NBA
- in practice, this does not occur and ψ is small anyway
- Polynomial-time operations required on product model
- BSCC computation - linear in (product) model size
- probabilistic reachability - cubic in (product) model size
- In total: O(poly(|D|,|A $\left.\mathrm{A}_{\psi} \mid\right)$)
- Complexity can be reduced to single exponential in $|\Psi|$
- see e.g. [CY88,CY95]

PCTL* model checking

- PCTL* syntax:

$$
\begin{aligned}
& -\phi::=\operatorname{true}|\mathrm{a}| \phi \wedge \phi|\neg \phi| \mathrm{P}_{\sim p}[\psi] \\
& -\psi:=\phi|\psi \wedge \psi| \neg \psi|\mathrm{X} \psi| \psi \cup \psi
\end{aligned}
$$

- Example:
$-P_{>p}\left[G F\left(\right.\right.$ send $\rightarrow P_{>0}[F$ ack $\left.\left.]\right)\right]$
- PCTL* model checking algorithm
- bottom-up traversal of parse tree for formula (like PCTL)
- to model check $\mathrm{P}_{\sim \mathrm{p}}[\psi]$:
- replace maximal state subformulae with atomic propositions
- (state subformulae already model checked recursively)
- modified formula Ψ is now an LTL formula
- which can be model checked as for LTL

Overview (Part 3)

- Linear temporal logic (LTL)
- Strongly connected components
- ω-automata (Büchi, Rabin)
- LTL model checking for DTMCs
- LTL model checking for MDPs

End components

- Consider an MDP M $=\left(\mathrm{S}, \mathrm{s}_{\text {init }}\right.$, Steps, L$)$
- A sub-MDP of M is a pair ($\left.S^{\prime}, S t e p s '\right)$ where:
- S' $\subseteq S$ is a (non-empty) subset of M's states
- Steps'(s) \subseteq Steps(s) for each $s \in$ S' $^{\prime}$
- is closed under probabilistic branching, i.e.:
$-\left\{s^{\prime} \mid \mu\left(s^{\prime}\right)>0\right.$ for some $\left.(a, \mu) \in S t e p s^{\prime}(s)\right\} \subseteq S^{\prime}$
- An end component of M is a strongly connected sub-MDP

$$
\begin{gathered}
\text { es } \\
\hline: \text { : }
\end{gathered}
$$

End components

- For finite MDPs...
- For every end component, there is an adversary which, with probability 1 , forces the MDP to remain in the end component and visit all its states infinitely often
- Under every adversary A, with probability 1 an end component will be reached and all of its states visited infinitely often

- (analogue of fundamental property of finite DTMCs)

Long-run properties of MDPs

- Maximum probabilities
$-p_{\max }(\mathrm{s}, \mathrm{GF} \mathrm{a})=\mathrm{p}_{\max }\left(\mathrm{s}, \mathrm{FT}_{\mathrm{GFa}}\right)$
- where $T_{\text {GFa }}$ is the union of sets T for all end components (T,Steps') with $\mathrm{T} \cap \operatorname{Sat}(\mathrm{a}) \neq \varnothing$
$-p_{\max }(\mathrm{s}, \mathrm{FG} \mathrm{a})=\mathrm{p}_{\max }\left(\mathrm{s}, \mathrm{FT}_{\mathrm{FGa}}\right)$
- where $T_{\text {FGa }}$ is the union of sets T for all end components (T,Steps') with $T \subseteq \operatorname{Sat}(\mathrm{a})$
- Minimum probabilities
- need to compute from maximum probabilities...
$-p_{\text {min }}(s, G F a)=1-p_{\max }(s, F G \neg a)$
$-p_{\text {min }}(s, F G a)=1-p_{\max }(s, G F \neg a)$

Example

- Model check: $\mathrm{P}_{<0.8}$ [GF b] for s_{0}
- Compute $\mathrm{p}_{\max }$ (GF b)
$-p_{\max }(G F b)=p_{\max }\left(s, \mathrm{FT}_{\text {GFb }}\right)$
- $T_{\text {GFb }}$ is the union of sets T for all end components with $\mathrm{T} \cap \operatorname{Sat}(\mathrm{b}) \neq \varnothing$
$-\operatorname{Sat}(b)=\left\{\mathrm{s}_{4}, \mathrm{~s}_{6}\right\}$
$-T_{\text {GFb }}=T_{1} \cup T_{2} \cup T_{3}=\left\{s_{1}, s_{3} s_{4}, s_{6}\right\}$
$-\mathrm{p}_{\max }\left(\mathrm{s}, \mathrm{FT}_{\mathrm{GFb}}\right)=0.75$
$-\mathrm{p}_{\max }(\mathrm{GF} \mathrm{b})=0.75$
- Result: $\mathrm{s}_{0} \vDash \mathrm{P}_{<0.8}$ [GF b]

Automata-based properties for MDPs

- For an MDP M and automaton A over alphabet $2^{\text {AP }}$
- consider probability of "satisfying" language $L(A) \subseteq\left(2^{A P}\right) \omega$
$-\operatorname{Prob}^{\mathrm{M}, a d v}(\mathrm{~s}, \mathrm{P})=\operatorname{Pr}_{\mathrm{s}}{ }^{\mathrm{M}, a d v}\left\{\omega \in \operatorname{Path}^{\mathrm{M}, a d v}(\mathrm{~s}) \mid \operatorname{trace}(\omega) \in \mathrm{L}(\mathrm{A})\right\}$
$-p_{\text {max }^{M}}(\mathrm{~s}, \mathrm{~A})=\sup _{\mathrm{adv} \in \mathrm{Adv}} \operatorname{Prob}^{\mathrm{M}, \mathrm{adv}}(\mathrm{s}, \mathrm{A})$
$-\mathrm{p}_{\text {min }}{ }^{\mathrm{M}}(\mathrm{s}, \mathrm{A})=\inf _{\mathrm{adv} \in \mathrm{Adv}} \operatorname{Prob}^{\mathrm{M}, \mathrm{adv}(\mathrm{s}, \mathrm{A})}$
- Might need minimum or maximum probabilities
- e.g. $s \vDash P_{\geq 0.99}\left[\Psi_{\text {good }}\right] \Leftrightarrow p_{\text {min }}{ }^{M}\left(s, \Psi_{\text {good }}\right) \geq 0.99$
- e.g. $s \vDash P_{\leq 0.05}\left[\psi_{\text {bad }}\right] \Leftrightarrow p_{\text {max }}{ }^{M}\left(s, \Psi_{\text {bad }}\right) \leq 0.05$
- But, Ψ-regular properties are closed under negation
- as are the automata that represent them
- so can always consider maximum probabilities...
- $\mathrm{p}_{\text {max }}{ }^{\mathrm{M}}\left(\mathrm{s}, \Psi_{\text {bad }}\right)$ or $1-\mathrm{p}_{\text {max }}{ }^{\mathrm{M}}\left(\mathrm{s}, \neg \Psi_{\text {good }}\right)$

LTL model checking for MDPs

- Model check LTL specification $P_{\sim p}[\Psi]$ against MDP M
- 1. Convert problem to one needing maximum probabilities
- e.g. convert $P_{>p}[\psi]$ to $P_{<1-p}[\neg \psi]$
- 2. Generate a DRA for $\psi($ or $\neg \Psi)$
- build nondeterministic Büchi automaton (NBA) for Ψ [VW94]
- convert the NBA to a DRA [Saf88]
- 3. Construct product MDP $\mathrm{M} \otimes \mathrm{A}$
- 4. Identify accepting end components (ECs) of $M \otimes A$
- 5. Compute max. probability of reaching accepting ECs
- from all states of the $D \otimes A$
- 6. Compare probability for $\left(s, q_{s}\right)$ against p for each s

Product MDP for a DRA

- For an MDP M $=\left(S, s_{\text {init }}\right.$, Steps, L)
- and a (total) DRA A $=\left(\mathrm{Q}, \Sigma, \delta, \mathrm{q}_{0}, \mathrm{Acc}\right)$
- where Acc $=\left\{\left(\mathrm{L}_{\mathrm{i}}, \mathrm{K}_{\mathrm{i}}\right) \mid 1 \leq \mathrm{i} \leq \mathrm{k}\right\}$
- The product MDP $M \otimes A$ is:
- the MDP ($\mathrm{S} \times \mathrm{Q},\left(\mathrm{s}_{\text {init }}, \mathrm{q}_{\text {init }}\right)$, Steps', $\left.\mathrm{L}^{\prime}\right)$ where:

$$
q_{\text {init }}=\delta\left(q_{0}, L\left(s_{\text {init }}\right)\right)
$$

Steps'(s,q) $=\left\{\mu^{q} \mid \mu \in \operatorname{Step}(s)\right\}$
$\mu^{q}\left(s^{\prime}, q^{\prime}\right)=\left\{\begin{array}{cc}\mu\left(s^{\prime}\right) & \text { if } q^{\prime}=\delta(q, L(s)) \\ 0 & \text { otherwise }\end{array}\right.$
$l_{i} \in L^{\prime}(s, q)$ if $q \in L_{i}$ and $k_{i} \in L^{\prime}(s, q)$ if $q \in K_{i}$
(i.e. state sets of acceptance condition used as labels)

Product MDP for a DRA

- For MDP M and DRA A

$$
p_{\max }{ }^{M}(s, A)=p_{\max }{ }^{M \otimes A}\left(\left(s, q_{s}\right), \vee_{l \leq i \leq k}\left(F G \neg l_{i} \wedge G F k_{i}\right)\right.
$$

- where $q_{s}=\delta\left(q_{0}, L(s)\right)$
- Hence:

$$
p_{\max }{ }^{M}(s, A)=p_{\max }{ }^{M \otimes A}\left(\left(s, q_{s}\right), F T_{A c c}\right)
$$

- where $T_{\text {Acc }}$ is the union of all sets T for accepting end components (T,Steps') in D $\otimes \mathrm{A}$
- an accepting end components is such that, for some $1 \leq i \leq k$:
$\cdot q \vDash \neg l_{i}$ for all $(\mathrm{s}, \mathrm{q}) \in \mathrm{T}$ and $\mathrm{q} \vDash \mathrm{k}_{\mathrm{i}}$ for some $(\mathrm{s}, \mathrm{q}) \in \mathrm{T}$
- i.e. $T \cap\left(S \times L_{i}\right)=\varnothing$ and $T \cap\left(S \times K_{i}\right) \neq \varnothing$

Example: LTL for MDPs

- Model check $\mathrm{P}_{<0.8}$ [G $\neg \mathrm{b} \wedge \mathrm{GF}$ a] for MDP M:
- need to compute $\underline{p}_{\max }\left(s_{0}, G \neg b \wedge G F a\right)$

MDP M

DRA A_{ψ} for $\psi=G \neg b \wedge G F a$

Example: LTL for MDPs

MDP M

Product MDP M $\otimes \mathrm{A}_{\Psi}$

LTL model checking for MDPs

- Complexity of model checking LTL formula ψ on MDP M
- is doubly exponential in $|\Psi|$ and polynomial in $|\mathrm{M}|$
- unlike DTMCs, this cannot be improved upon
- PCTL* model checking
- LTL model checking can be adapted to PCTL*, as for DTMCs
- Maximal end components
- can optimise LTL model checking using maximal end components (there may be exponentially many ECs)
- Optimal adversaries for LTL formulae
- e.g. memoryless adversary always exists for $p_{\text {max }}(s, G F a)$, but not for $\mathrm{p}_{\max }(\mathrm{s}, \mathrm{FG}$ a)

Summary

- Linear temporal logic (LTL)
- combines path operators; PCTL* subsumes LTL and PCTL
- ω-automata: represent ω-regular languages/properties
- can translate any LTL formula into a Büchi automaton
- for deterministic ω-automata, we use Rabin automata
- Long-run properties of DTMCs
- need bottom strongly connected components (BSCCs)
- LTL model checking for DTMCs
- construct product of DTMC and Rabin automaton
- identify accepting BSCCs, compute reachability probability
- LTL model checking for MDPs
- MDP-DRA product, reachability of accepting end components
- Next: Probabilistic timed automata (PTAs)

