

Probabilistic Model Checking

Marta Kwiatkowska

Oxford University Computing Laboratory

VTSA'10 Summer School, Luxembourg, September 2010

Course overview

- 2 sessions (Tue/Wed am): 4×1.5 hour lectures
 - Introduction
 - 1 Discrete time Markov chains (DTMCs)
 - 2 Markov decision processes (MDPs)
 - 3 LTL model checking for DTMCs/MDPs
 - 4 Probabilistic timed automata (PTAs)
- For extended versions of this material
 - and an accompanying list of references
 - see: http://www.prismmodelchecker.org/lectures/

Probabilistic models

	Fully probabilistic	Nondeterministic
Discrete time	Discrete-time Markov chains (DTMCs)	Markov decision processes (MDPs) (probabilistic automata)
Continuous time	Continuous-time Markov chains (CTMCs)	Probabilistic timed automata (PTAs)
		CTMDPs/IMCs

Part 3

LTL Model Checking for DTMCs and MDPs

Overview (Part 3)

- Linear temporal logic (LTL)
- Strongly connected components
- ω-automata (Büchi, Rabin)
- LTL model checking for DTMCs
- LTL model checking for MDPs

Limitations of PCTL

- PCTL, although useful in practice, has limited expressivity
 - essentially: probability of reaching states in X, passing only through states in Y (and within k time-steps)
- One useful approach: extend models with costs/rewards
 - see last two lectures
- Another direction: Use more expressive logics. e.g.:
 - LTL [Pnu77] (non-probabilistic) linear-time temporal logic
 - PCTL* [ASB+95,BdA95] which subsumes both PCTL and LTL
 - both allow path operators to be combined
 - (in PCTL, $P_{\sim p}$ [...] always contains a single temporal operator)

LTL – Linear temporal logic

- LTL syntax (path formulae only)
 - $\psi ::= \text{true} | a | \psi \wedge \psi | \neg \psi | X \psi | \psi U \psi$
 - where $a \in AP$ is an atomic proposition
 - usual equivalences hold: $F \varphi \equiv \text{true } U \varphi$, $G \varphi \equiv \neg (F \neg \varphi)$
- LTL semantics (for a path ω)

```
-\omega \models true always
```

$$-\omega \models a \Leftrightarrow a \in L(\omega(0))$$

$$-\ \omega \vDash \psi_1 \wedge \psi_2 \qquad \Leftrightarrow \ \omega \vDash \psi_1 \ \text{and} \ \omega \vDash \psi_2$$

$$-\omega \vDash \neg \psi \Leftrightarrow \omega \not\vDash \psi$$

$$-\omega \models X \psi \Leftrightarrow \omega[1...] \models \psi$$

$$- \ \omega \vDash \psi_1 \ U \ \psi_2 \qquad \Leftrightarrow \ \exists k \geq 0 \ \text{s.t.} \ \omega[k...] \vDash \psi_2 \ \land \forall i < k \ \omega[i...] \vDash \psi_1$$

where $\omega(i)$ is i^{th} state of ω , and $\omega[i...]$ is suffix starting at $\omega(i)$

LTL examples

- (F tmp_fail₁) ∧ (F tmp_fail₂)
 - "both servers suffer temporary failures at some point"
- GF ready
 - "the server always eventually returns to a ready-state"
- FG error
 - "an irrecoverable error occurs"
- G (req \rightarrow X ack)
 - "requests are always immediately acknowledged"

LTL for DTMCs

- Same idea as PCTL: probabilities of sets of path formulae
 - for a state s of a DTMC and an LTL formula ψ :
 - $-\operatorname{Prob}(s, \psi) = \operatorname{Pr}_s \{ \omega \in \operatorname{Path}(s) \mid \omega \vDash \psi \}$
 - all such path sets are measurable [Var85]
- A (probabilistic) LTL specification often comprises an LTL (path) formula and a probability bound
 - e.g. $P_{\geq 1}$ [GF ready] "with probability 1, the server always eventually returns to a ready-state"
 - e.g. $P_{\leq 0.01}$ [FG error] "with probability at most 0.01, an irrecoverable error occurs"
- PCTL* subsumes both LTL and PCTL
 - e.g. $P_{>0.5}$ [GF crit₁] \wedge $P_{>0.5}$ [GF crit₂]

Overview (Part 3)

- Linear temporal logic (LTL)
- Strongly connected components
- ω–automata (Büchi, Rabin)
- LTL model checking for DTMCs
- LTL model checking for MDPs

Strongly connected components

- Long-run properties of DTMCs rely on an analysis of their underlying graph structure (i.e. ignoring probabilities)
- Strongly connected set of states T
 - for any pair of states s and s' in T, there is a path from s to s', passing only through states in T
- Strongly connected component (SCC)
 - a maximally strongly connected set of states
 (i.e. no superset of it is also strongly connected)
- Bottom strongly connected component (BSCC)
 - an SCC T from which no state outside T is reachable from T

Example – (B)SCCs

Fundamental property of DTMCs

Fundamental property of (finite) DTMCs...

 With probability 1, a BSCC will be reached and all of its states visited infinitely often

- Formally:
 - $\begin{array}{l} -\Pr_s\{\; \omega \in Path(s) \mid \exists \; i \geq 0, \; \exists \; BSCC \; T \; such \; that \\ \forall \; j \geq i \; \omega(i) \in T \; and \\ \forall \; s' \in T \; \omega(k) = s' \; for \; infinitely \; many \; k \; \} \; = \; 1 \end{array}$

LTL model checking for DTMCs

- LTL model checking for DTMCs relies on:
 - computing the probability Prob(s, ψ) for LTL formula ψ
 - reduces to probability of reaching a set of "accepting" BSCCs
 - 2 simple cases: GF a and FG a...
- Prob(s, GF a) = Prob(s, $F T_{GFa}$)
 - where T_{GFa} = union of all BSCCs containing some state satisfying a
- Prob(s, FG a) = Prob(s, F T_{FGa})
 - where T_{FGa} = union of all BSCCs containing only a-states
- To extend this idea to arbitrary LTL formula, we use ω-automata...

Example:

Prob(s₀, GF a)

= $Prob(s_0, F T_{GFa})$

= $Prob(s_0, F\{s_3, s_2, s_5\})$

= 2/3 + 1/6 = 5/6

Overview (Part 3)

- Linear temporal logic (LTL)
- Strongly connected components
- ω-automata (Büchi, Rabin)
- LTL model checking for DTMCs
- LTL model checking for MDPs

Reminder - Finite automata

- A regular language over alphabet Σ
 - is a set of finite words $L \subseteq \Sigma^*$ such that either:
 - -L = L(E) for some regular expression E
 - -L = L(A) for some nondeterministic finite automaton (NFA) A
 - -L = L(A) for some deterministic finite automaton (DFA) A
- Example:

Regexp:
$$(\alpha + \beta)*\beta(\alpha + \beta)$$

NFA A:

- NFAs and DFAs have the same expressive power
 - we can always determinise an NFA to an equivalent DFA
 - (with a possibly exponential blow-up in size)

Büchi automata

- ω -automata represent sets of infinite words $L \subseteq \Sigma^{\omega}$
 - e.g. Büchi automata, Rabin automata, Streett, Muller, ...
- A nondeterministic Büchi automaton (NBA) is...
 - a tuple $A = (Q, \Sigma, \delta, Q_0, F)$ where:
 - Q is a finite set of states
 - $-\Sigma$ is an alphabet
 - $-\delta: Q \times \Sigma \rightarrow 2^Q$ is a transition function
 - $Q_0 \subseteq Q$ is a set of initial states
 - $F \subseteq Q$ is a set of "accept" states

Example: $words w \in \{\alpha, \beta\}^{\omega}$

words $w \in \{\alpha, \beta\}^{\omega}$ with infinitely many α

- NBA acceptance condition
 - language L(A) for A contains $w \in \Sigma^{\omega}$ if there is a corresponding run in A that passes through states in F infinitely often

ω-regular properties

- Consider a model, i.e. an LTS/DTMC/MDP/...
 - for example: DTMC $D = (S, s_{init}, P, Lab)$
 - where labelling Lab uses atomic propositions from set AP
- We can capture properties of these using ω -automata
 - let $\omega \in Path(s)$ be some infinite path in D
 - trace(ω) \in (2^{AP}) ω denotes the projection of state labels of ω
 - i.e. $trace(s_0s_1s_2s_3...) = Lab(s_0)Lab(s_1)Lab(s_2)Lab(s_3)...$
 - can specify a set of paths of D with an ω -automata over 2^{AP}
- Let Prob^D(s, A) denote the probability...
 - from state s in a discrete-time Markov chain D
 - of satisfying the property specified by automaton A
 - − i.e. $Prob^{D}(s, A) = Pr^{D}_{s} \{ \omega \in Path(s) \mid trace(\omega) \in L(A) \}$

Example

- Nondeterministic Büchi automaton
 - for LTL formula GF a, i.e. "infinitely often a"
 - for a DTMC with atomic propositions $AP = \{a,b\}$

• We abbreviate this to just:

Büchi automata + LTL

- Nondeterministic Büchi automata (NBAs)
 - define the set of ω -regular languages
- ω-regular languages are more expressive than LTL
 - can convert any LTL formula ψ over atomic propositions AP
 - into an equivalent NBA A_{ψ} over 2^{AP}
 - − i.e. $ω ⊨ ψ \Leftrightarrow trace(ω) ∈ L(A_ω)$ for any path ω
 - for LTL-to-NBA translation, see e.g. [VW94], [DGV99], [BK08]
 - worst-case: exponential blow-up from $|\psi|$ to $|A_{\psi}|$
- But deterministic Büchi automata (DBAs) are less expressive
 - e.g. there is no DBA for the LTL formula FG a
 - for probabilistic model checking, need deterministic automata
 - so we use deterministic Rabin automata (DRAs)

Deterministic Rabin automata

- A deterministic Rabin automaton is a tuple (Q, Σ , δ , q₀, Acc):
 - Q is a finite set of states, $q_0 \in Q$ is an initial state
 - Σ is an alphabet, $\delta: \mathbb{Q} \times \Sigma \to \mathbb{Q}$ is a transition function
 - $-Acc = \{ (L_i, K_i) \}_{i=1..k} \subseteq 2^Q \times 2^Q \text{ is an acceptance condition }$
- A run of a word on a DRA is accepting iff:
 - for some pair (L_i, K_i) , the states in L_i are visited finitely often and (some of) the states in K_i are visited infinitely often
 - or in LTL: $V_{1 \le i \le k}$ (FG $\neg L_i \land GFK_i$)
- Example: DRA for FG a
 - acceptance condition is $Acc = \{ (\{q_0\}, \{q_1\}) \}$

Overview (Part 3)

- Linear temporal logic (LTL)
- Strongly connected components
- ω–automata (Büchi, Rabin)
- LTL model checking for DTMCs
- LTL model checking for MDPs

LTL model checking for DTMCs

- LTL model checking for DTMC D and LTL formula ψ
- 1. Construct DRA A_{ψ} for ψ
- 2. Construct product $D \otimes A$ of DTMC D and DRA A_{ψ}
- 3. Compute Prob^D(s, ψ) from DTMC D \otimes A
- Running example:
 - compute probability of satisfying LTL formula
 ψ = G¬b ∧ GF a on:

Example – DRA

- DRA A_{ψ} for $\psi = G \neg b \wedge GF$ a
 - acceptance condition is $Acc = \{ (\{\},\{q_1\}) \}$
 - (i.e. this is actually a deterministic B\u00fcchi automaton)

Product DTMC for a DRA

- We construct the product DTMC
 - for DTMC D and DRA A, denoted D ⊗ A
 - D \otimes A can be seen as an unfolding of D with states (s,q), where q records state of automata A for path fragment so far
 - since A is deterministic, D ⊗ A is a also a DTMC
 - each path in D has a corresponding (unique) path in D

 A
 - the probabilities of paths in D are preserved in D

 A
- Formally, for D = (S, s_{init}, P, L) and A = $(Q, \Sigma, \delta, q_0, \{(L_i, K_i)\}_{i=1..k})$
 - D ⊗ A is the DTMC (S×Q, (s_{init} , q_{init}), P', L') where:

 - $$\begin{split} & \ q_{init} = \delta(q_0, L(s_{init})) \\ & \ P'((s_1, q_1), (s_2, q_2)) = \left\{ \begin{array}{ll} P(s_1, s_2) & if \ q_2 = \delta(q_1, L(s_2)) \\ 0 & otherwise \end{array} \right. \end{split}$$
 - $-I_i \in L'(s,q)$ if $q \in L_i$ and $k_i \in L'(s,q)$ if $q \in K_i$

Example - Product DTMC

DTMC D

DRA A_{ψ} for $\psi = G \neg b \wedge GF$ a

Product DTMC $D \otimes A_{\psi}$

Example - Product DTMC

DTMC D

DRA A_{ψ} for $\psi = G \neg b \wedge GF$ a

Product DTMC D ⊗ A_w

Example - Product DTMC

Product DTMC for a DRA

For DTMC D and DRA A

$$Prob^{D}(s, A) = Prob^{D \otimes A}((s,q_s), \bigvee_{1 \leq i \leq k} (FG \neg I_i \land GF k_i)$$

- where $q_s = \delta(q_0, L(s))$
- Hence:

$$Prob^{D}(s, A) = Prob^{D\otimes A}((s,q_s), F T_{Acc})$$

- where T_{Acc} is the union of all accepting BSCCs in D \otimes A
- an accepting BSCC T of D \otimes A is such that, for some $1 \le i \le k$, no states in T satisfy l_i and some state in T satisfies k_i
- Reduces to computing BSCCs and reachability probabilities

Example: LTL for DTMCs

• Compute Prob(s_0 , $G \neg b \wedge GF$ a) for DTMC D:

DTMC D

DRA A_{ψ} for $\psi = G \neg b \wedge GF$ a

Example: LTL for DTMCs

DTMC D

DRA A_{ω} for $\psi = G \neg b \wedge GF$ a

Product DTMC D ⊗ A_w

Example: LTL for DTMCs

DTMC D

DRA A_{ψ} for $\psi = G \neg b \wedge GF$ a

Product DTMC D ⊗ A_ψ

$$Prob^{D}(s_0, \psi) = Prob^{D \otimes A \psi}(s_0q_0, FT_1) = 3/4$$

Complexity of LTL model checking

- Complexity of model checking LTL formula ψ on DTMC D
 - is doubly exponential in $|\psi|$ and polynomial in |D|
 - (for the algorithm presented in these lectures)
- Double exponential blow-up comes from use of DRAs
 - size of NBA can be exponential in $|\psi|$
 - and DRA can be exponentially bigger than NBA
 - in practice, this does not occur and ψ is small anyway
- Polynomial-time operations required on product model
 - BSCC computation linear in (product) model size
 - probabilistic reachability cubic in (product) model size
- In total: $O(poly(|D|, |A_{\psi}|))$
- Complexity can be reduced to single exponential in $|\psi|$
 - see e.g. [CY88,CY95]

PCTL* model checking

• PCTL* syntax:

$$- \varphi ::= true | a | \varphi \wedge \varphi | \neg \varphi | P_{\sim p} [\psi]$$

$$- \psi ::= \varphi | \psi \wedge \psi | \neg \psi | X \psi | \psi U \psi$$

Example:

$$-P_{>p}$$
 [GF (send $\rightarrow P_{>0}$ [F ack])]

- PCTL* model checking algorithm
 - bottom-up traversal of parse tree for formula (like PCTL)
 - to model check $P_{\sim p}$ [ψ]:
 - · replace maximal state subformulae with atomic propositions
 - (state subformulae already model checked recursively)
 - modified formula ψ is now an LTL formula
 - which can be model checked as for LTL

Overview (Part 3)

- Linear temporal logic (LTL)
- Strongly connected components
- ω–automata (Büchi, Rabin)
- LTL model checking for DTMCs
- LTL model checking for MDPs

End components

• Consider an MDP $M = (S, s_{init}, Steps, L)$

A sub-MDP of M is a pair (S',Steps') where:

- S' ⊆ S is a (non-empty) subset of M's states

- Steps'(s) ⊆ Steps(s) for each s ∈ S'

– is closed under probabilistic branching, i.e.:

- { s' $\mid \mu(s') > 0$ for some $(a,\mu) \in Steps'(s)$ } $\subseteq S'$

 An end component of M is a strongly connected sub-MDP

End components

- For finite MDPs...
- For every end component, there
 is an adversary which,
 with probability 1, forces the MDP
 to remain in the end component
 and visit all its states infinitely often
- Under every adversary A, with probability 1 an end component will be reached and all of its states visited infinitely often

(analogue of fundamental property of finite DTMCs)

Long-run properties of MDPs

Maximum probabilities

- $p_{max}(s, GF a) = p_{max}(s, F T_{GFa})$
 - where T_{GFa} is the union of sets T for all end components (T,Steps') with $T \cap Sat(a) \neq \emptyset$
- $-p_{max}(s, FG a) = p_{max}(s, FT_{FGa})$
 - where T_{FGa} is the union of sets T for all end components (T,Steps') with $T \subseteq Sat(a)$

Minimum probabilities

- need to compute from maximum probabilities...
- $-p_{min}(s, GFa) = 1 p_{max}(s, FG \neg a)$
- $-p_{min}(s, FG a) = 1 p_{max}(s, GF \neg a)$

Example

- Model check: P_{<0.8} [GF b] for s₀
- Compute p_{max}(GF b)
 - $p_{max}(GF b) = p_{max}(s, F T_{GFb})$
 - T_{GFb} is the union of sets T for all end components with T ∩ Sat(b) $\neq \emptyset$
 - $Sat(b) = \{ s_4, s_6 \}$
 - $T_{GFb} = T_1 \cup T_2 \cup T_3 = \{ s_1, s_3, s_4, s_6 \}$
 - $p_{max}(s, F T_{GFb}) = 0.75$
 - $p_{max}(GF b) = 0.75$
- Result: $s_0 = P_{<0.8}$ [GF b]

Automata-based properties for MDPs

- For an MDP M and automaton A over alphabet 2^{AP}
 - consider probability of "satisfying" language $L(A) \subseteq (2^{AP})^{\omega}$
 - − Prob^{M,adv}(s, P) = Pr_s^{M,adv} { ω ∈ Path^{M,adv}(s) | trace(ω) ∈ L(A) }
 - $-p_{\text{max}}^{M}(s, A) = \sup_{\text{adv} \in Adv} \text{Prob}^{M,adv}(s, A)$
 - $-p_{min}^{M}(s, A) = inf_{adv \in Adv} Prob^{M,adv}(s, A)$
- Might need minimum or maximum probabilities
 - $-\text{ e.g. s} \models P_{\geq 0.99} [\psi_{qood}] \Leftrightarrow p_{min}^{M} (s, \psi_{qood}) \geq 0.99$
 - e.g. $s \models P_{<0.05} [\psi_{bad}] \Leftrightarrow p_{max}^{M} (s, \psi_{bad}) \leq 0.05$
- But, ψ-regular properties are closed under negation
 - as are the automata that represent them
 - so can always consider maximum probabilities...
 - $-p_{\text{max}}^{M}(s, \psi_{\text{bad}}) \text{ or } 1 p_{\text{max}}^{M}(s, \neg \psi_{\text{good}})$

LTL model checking for MDPs

- Model check LTL specification $P_{\sim p}[\psi]$ against MDP M
- 1. Convert problem to one needing maximum probabilities
 - e.g. convert $P_{>p}$ [ψ] to $P_{<1-p}$ [$\neg\psi$]
- 2. Generate a DRA for ψ (or $\neg \psi$)
 - build nondeterministic Büchi automaton (NBA) for ψ [VW94]
 - convert the NBA to a DRA [Saf88]
- 3. Construct product MDP M⊗A
- 4. Identify accepting end components (ECs) of $M \otimes A$
- 5. Compute max. probability of reaching accepting ECs
 - from all states of the D⊗A
- 6. Compare probability for (s, q_s) against p for each s

Product MDP for a DRA

- For an MDP M = (S, s_{init}, Steps, L)
- and a (total) DRA $A = (Q, \Sigma, \delta, q_0, Acc)$
 - where Acc = { $(L_i, K_i) \mid 1 \le i \le k$ }
- The product MDP M ⊗ A is:
 - the MDP ($S \times Q$, (s_{init} , q_{init}), Steps', L') where:

$$\begin{split} &q_{init} = \delta(q_0, L(s_{init})) \\ &\textbf{Steps'}(s,q) = \{ \ \mu^q \mid \mu \in Step(s) \ \} \\ &\mu^q(s',q') = \begin{cases} \mu(s') & \text{if } q' = \delta(q,L(s)) \\ 0 & \text{otherwise} \end{cases} \end{split}$$

 $I_i \in L'(s,q)$ if $q \in L_i$ and $k_i \in L'(s,q)$ if $q \in K_i$ (i.e. state sets of acceptance condition used as labels)

Product MDP for a DRA

For MDP M and DRA A

$$p_{\text{max}}^{M}(s, A) = p_{\text{max}}^{M \otimes A}((s,q_s), \bigvee_{1 \leq i \leq k} (FG \neg I_i \land GF k_i)$$

- where $q_s = \delta(q_0, L(s))$
- Hence:

$$p_{max}^{M}(s, A) = p_{max}^{M \otimes A}((s,q_s), F T_{Acc})$$

- where T_{Acc} is the union of all sets T for accepting end components (T,Steps') in D \otimes A
- an accepting end components is such that, for some $1 \le i \le k$:
 - $\cdot q \models \neg l_i \text{ for all } (s,q) \in T \text{ and } q \models k_i \text{ for some } (s,q) \in T$
 - i.e. $T \cap (S \times L_i) = \emptyset$ and $T \cap (S \times K_i) \neq \emptyset$

Example: LTL for MDPs

- Model check $P_{<0.8}$ [G $\neg b \land GF a$] for MDP M:
 - need to compute $\underline{p}_{max}(s_0, G \neg b \wedge GF a)$

MDP M

DRA A_{ω} for $\psi = G \neg b \wedge GF$ a

Example: LTL for MDPs

MDP M

Product MDP M ⊗ A_ψ

$$p_{\text{max}}^{M}(s_0, \psi) = p_{\text{max}}^{M \otimes A \psi}(s_0 q_0, F T_1) = 0.7$$

LTL model checking for MDPs

- Complexity of model checking LTL formula ψ on MDP M
 - is doubly exponential in $|\psi|$ and polynomial in |M|
 - unlike DTMCs, this cannot be improved upon
- PCTL* model checking
 - LTL model checking can be adapted to PCTL*, as for DTMCs
- Maximal end components
 - can optimise LTL model checking using maximal end components (there may be exponentially many ECs)
- Optimal adversaries for LTL formulae
 - e.g. memoryless adversary always exists for $p_{max}(s, GF a)$, but not for $p_{max}(s, FG a)$

Summary

- Linear temporal logic (LTL)
 - combines path operators; PCTL* subsumes LTL and PCTL
- ω -automata: represent ω -regular languages/properties
 - can translate any LTL formula into a Büchi automaton
 - for deterministic ω -automata, we use Rabin automata
- Long-run properties of DTMCs
 - need bottom strongly connected components (BSCCs)
- LTL model checking for DTMCs
 - construct product of DTMC and Rabin automaton
 - identify accepting BSCCs, compute reachability probability
- LTL model checking for MDPs
 - MDP-DRA product, reachability of accepting end components
- Next: Probabilistic timed automata (PTAs)