UNIVERSITY OF

OXFORD

Probabilistic Model Checking

Marta Kwiatkowska

Oxford University Computing Laboratory

VTSA’10 Summer School, Luxembourg, September 2010

Course overview

2 sessions (Tue/Wed am): 4 x 1.5 hour lectures

— Introduction

— 1 - Discrete time Markov chains (DTMCs)
— 2 - Markov decision processes (MDPs)

— 3 - LTL model checking for DTMCs/MDPs
— 4 - Probabilistic timed automata (PTAS)

For extended versions of this material
— and an accompanying list of references
— see: http://www.prismmodelchecker.org/lectures/

Probabilistic models

Fully probabilistic

Nondeterministic

Discrete-time

Markov decision

Ditsifrzgte Markov chains processes (MDPs)

(DTMCs) (probabilistic automata)

Probabilistic timed

Conti Continuous-time automata (PTAS)
ontimléous Markov chains

(CTMCs)

CTMDPs/IMCs

Part 3

LTL Model Checking
for DTMCs and MDPs

Overview (Part 3)

- Linear temporal logic (LTL)

- Strongly connected components

- w-automata (Buchi, Rabin)
+ LTL model checking for DTMCs

+ LTL model checking for MDPs

Limitations of PCTL

PCTL, although useful in practice, has limited expressivity

— essentially: probability of reaching states in X, passing only
through states in Y (and within k time-steps)

+ One useful approach: extend models with costs/rewards
— see last two lectures

- Another direction: Use more expressive logics. e.g.:

— LTL [Pnu77] - (non-probabilistic) linear-time temporal logic
— PCTL* [ASB+95,BdA95] - which subsumes both PCTL and LTL
— both allow path operators to be combined

— (in PCTL, P_, [...] always contains a single temporal operator)

LTL - Linear temporal logic

+ LTL syntax (path formulae only)

—pu=true lalpAaw|-p|Xw|[puy
— where a € AP is an atomic proposition
— usual equivalences hold: Fd =true U d, G b = —(F —¢)

- LTL semantics (for a path w)

— w E true always

— WkEa < a € L(w(0))

- WEY, AY, S WEY,and w E Y,

— WE Y S WHEY

—WEXY < wl[l...]=yY

- wWwEY, Uy, < Jk=0s.t. wlk...] E Y, AVi<k w[i...] E P,

where w(i) is ith state of w, and wli...] is suffix starting at w(i)

LTL examples

(F tmp_fail,) A (F tmp_fail,)
— “both servers suffer temporary failures at some point”

- GF ready

— “the server always eventually returns to a ready-state

FG error
— “an irrecoverable error occurs”

G (req — X ack)
— “requests are always immediately acknowledged”

LTL for DTMCs

- Same idea as PCTL: probabilities of sets of path formulae
— for a state s of a DTMC and an LTL formula y:

— Prob(s, W) = Pr,{ w € Path(s) | w = @ }

— all such path sets are measurable [Var85]

- A (probabilistic) LTL specification often comprises
an LTL (path) formula and a probability bound

— e.g. P_, [GF ready] - “with probability 1, the server always
eventually returns to a ready-state”

— e.g. P_yo [FG error | - “with probability at most 0.01, an
irrecoverable error occurs”

- PCTL* subsumes both LTL and PCTL

—e.g. Py [GF crit;] A P.ys [GF crit,]

Overview (Part 3)

« Linear temporal logic (LTL)

- Strongly connected components

- w-automata (Buchi, Rabin)

+ LTL model checking for DTMCs

- LTL model checking for MDPs

10

Strongly connected components

- Long-run properties of DTMCs rely on an analysis of their
underlying graph structure (i.e. ignoring probabilities)

. Strongly connected set of states T

— for any pair of states s and s’ in T, there is a path from s to s’,
passing only through states in T

- Strongly connected component (SCC)

— a maximally strongly connected set of states
(i.e. no superset of it is also strongly connected)

- Bottom strongly connected component (BSCC)
— an SCC T from which no state outside T is reachable from T

11

Example - (B)SCCs

Fundamental property of DTMCs

- Fundamental property of (finite) DTMCs...

- With probability 1,
a BSCC will be reached
and all of its states
visited infinitely often

- Formally:

— Pr.{ w € Path(s) | 3i=0, 3 BSCC T such that
V j=i w(i) € T and
V €T w(k) = s' for infinitely many k} = 1

13

LTL model checking for DTMCs

LTL model checking for DTMCs relies on:
— computing the probability Prob(s,) for LTL formula g

— reduces to probability of reaching a set of “accepting” BSCCs
— 2 simple cases: GF a and FG a...

Prob(s, GF a) = Prob(s, F T¢.)

— where T, = union of all BSCCs
containing some state satisfying a

Prob(s, FG a) = Prob(s, F Tr..)

— where T;-, = union of all BSCCs Example:
containing only a-states Prob(s,, GF a)
— PrOb(So, F TGFa)
. To extend this idea to arbitrary = Prob(s,, F {s3,52,55})

LTL formula, we use w-automata... =2/3+1/6=5/6 ,,

Overview (Part 3)

« Linear temporal logic (LTL)

- Strongly connected components

- w-automata (Buchi, Rabin)

+ LTL model checking for DTMCs

- LTL model checking for MDPs

15

Reminder - Finite automata

- A regular language over alphabet >
— is a set of finite words L < >* such that either:
— L = L(E) for some regular expression E
— L = L(A) for some nondeterministic finite automaton (NFA) A

— L = L(A) for some deterministic finite automaton (DFA) A

Example:

Regexp: (x+B)*B(x+p) NFA A:

NFAs and DFAs have the same expressive power
— we can always determinise an NFA to an equivalent DFA

— (with a possibly exponential blow-up in size)
16

Bluchi automata

w-automata represent sets of infinite words L < >®
— e.g. Bluchi automata, Rabin automata, Streett, Muller, ...

- A nondeterministic Bichi automaton (NBA) is...
— atuple A =(Q, %, 5, Q, F) where:

— Q is a finite set of states Example:
— 3 is an alphabet ‘words w € {«,B}*
— 0 :Q X 2 — 2%ijs a transition function with infinitely many o
— Q, < Qs a set of initial states X
— F< Qs a set of “accept” states ®-’ X
) B
B

NBA acceptance condition

— language L(A) for A contains w € 2% if there is a corresponding
run in A that passes through states in F infinitely often

17

w-regular properties

- Consider a model, i.e. an LTS/DTMC/MDP/ ...
— for example: DTMC D = (S, s,,, P, Lab)
— where labelling Lab uses atomic propositions from set AP

- We can capture properties of these using w-automata
— let w € Path(s) be some infinite path in D
— trace(w) € (2AP)» denotes the projection of state labels of w
— i.e. trace(sys;5,53...) = Lab(sy)Lab(s)Lab(s,)Lab(s;)...
— can specify a set of paths of D with an w-automata over 2A?

Let ProbP(s, A) denote the probability...
— from state s in a discrete-time Markov chain D
— of satisfying the property specified by automaton A

— i.e. ProbP(s, A) = PrP{ w € Path(s) | trace(w) € L(A) }
18

Example

- Nondeterministic Blichi automaton
— for LTL formula GF a, i.e. “infinitely often a”
— for a DTMC with atomic propositions AP = {a,b}

{a}, {a,b}
(9, gio}
&, {b}
&, {b}

—d 19

Blchi automata + LTL

Nondeterministic Buchi automata (NBAs)
— define the set of w-regular languages

w-regular languages are more expressive than LTL
— can convert any LTL formula g over atomic propositions AP

— into an equivalent NBA A, over 24

— i.e. W E P < trace(w) € L(Aw) for any path w

— for LTL-to-NBA translation, see e.g. [VW94], [DGV99], [BKO8]
— worst-case: exponential blow-up from [p] to [A)|

But deterministic Buchi automata (DBAs) are less expressive
— e.g. there is no DBA for the LTL formula FG a
— for probabilistic model checking, need deterministic automata

— so we use deterministic Rabin automata (DRAS)
20

Deterministic Rabin automata

- A deterministic Rabin automaton is a tuple (Q, 2, 9, q,, Acc):
— Q is a finite set of states, g, € Q is an initial state

— 2 is an alphabet, 8 : Q X ~ — Q is a transition function

— Acc ={ (L, K) }_; € 22 x 2Qis an acceptance condition

- A run of a word on a DRA is accepting iff:

— for some pair (L, K), the states in L, are visited finitely often
and (some of) the states in K, are visited infinitely often

— orin LTL: Vk(FG -L. A GF Ki)

l=<i<

. Example: DRA for FG a @-@’ a

— acceptance condition is ~a
Acc = { {qohia;} } '

21

Overview (Part 3)

« Linear temporal logic (LTL)

- Strongly connected components

- w-automata (Buchi, Rabin)

+ LTL model checking for DTMCs

- LTL model checking for MDPs

22

LTL model checking for DTMCs

+ LTL model checking for DTMC D and LTL formula p

1. Construct DRA A, for w

- 2. Construct product D ® A of DTMC D and DRA A,
- 3. Compute ProbP(s,) from DTMC D ® A

- Running example:

— compute probability of
satisfying LTL formula
Y = G—b A GF a on:

23

Example - DRA

DRA A, for p = G-b A GF a
— acceptance condition is Acc = { {},{q}) }
— (i.e. this is actually a deterministic Buchi automaton)

Need to visit here

infinitely often
aA—b A/ to satisfy GF a

:rue\ If G—b violated

(because we see a b),
end up stuck here

24

Product DTMC for a DRA

- We construct the product DTMC
— for DTMC D and DRA A, denoted D ® A

— D ® A can be seen as an unfolding of D with states (s,q),
where q records state of automata A for path fragment so far

— since A is deterministic, D ® A is a also a DTMC
— each path in D has a corresponding (unique) path in D ® A
— the probabilities of paths in D are preserved in D ® A

. Formally, for D = (S,s,,,,P,L) and A = (Q,%,5,d, {(L;,Kp}_;)
— D ® A is the DTMC (SXQ, (S, P', L)) where:
— Qjnit = 6(q01|—(sini'[))

p if g, = 5(qy,L
- P'((S1’Q1),(52’Q2))={ (S“SZ) T 6(C|1, (Sz))

0 otherwise

— |, e L'(s,q) ifg € L,and k; € L’(s,q) if g € K,
25

Example - Product DTMC

DRA A, for p = G-b A GF a

Product DTMC D ® A,

) - .
| s, satisfies neither a or b
so we stay in g, in DRA A,

\

Sg is initial
state of DTMC D

26

Example - Product DTMC

DTMC D DRA A, for p = G-b A GF a

0.1 ‘
>
oo ("Go @9«

0.3 s, satisfies b so
we move to g, in A,

@ ¥—— s, satisfies a but not b
SO we move to q; in A, 27

Example - Product DTMC

DRA A, for p = G-b A GF a

2 copies of s;/s,, one after
Product DTMC D ® A, / seeing a b and one no b’s
0.1

S0dg
0.6@ label states
0.3 ¢ satisfying
1 acceptance pair
GO T G 'S

kb eJd_ - 28

Product DTMC for a DRA

- For DTMC D and DRA A

PrObD(S, A) — PrObD®A((S!q5)1 v]gigk (FG ﬁli A GF I(I)

— where g, = 8(qg,L(s))
- Hence:

ProbP(s, A) = ProbP®A((s,q.), F T.)

— where T, is the union of all accepting BSCCs in D®A

— an accepting BSCC T of D®A is such that, for some 1<i<k,
no states in T satisfy |, and some state in T satisfies k;

- Reduces to computing BSCCs and reachability probabilities

29

Example: LTL for DTMCs

- Compute Prob(s,, G=b A GF a) for DTMC D:

DTMC D DRA A, for p = G-b A GF a

30

Example: LTL for DTMCs

DRA A, for p = G-b A GF a

Example: LTL for DTMCs

DRA A, for p = G-b A GF a

Complexity of LTL model checking

» Complexity of model checking LTL formula ¢ on DTMC D
— is doubly exponential in |@| and polynomial in |D|
— (for the algorithm presented in these lectures)
- Double exponential blow-up comes from use of DRAs
— size of NBA can be exponential in ||
— and DRA can be exponentially bigger than NBA
— in practice, this does not occur and ¢ is small anyway
Polynomial-time operations required on product model
— BSCC computation - linear in (product) model size
— probabilistic reachability - cubic in (product) model size
In total: O(poly(|DI,|A,))

- Complexity can be reduced to single exponential in ||

— see e.g. [CY88,CY95] 13

PCTL* model checking

PCTL* syntax:
~—¢ i=truela|ldAad| - |P, [P]

—p i=b YA | -p Xy |lpUuy
Example:
— P, [GF (send — Py [Fack])]

PCTL* model checking algorithm
— bottom-up traversal of parse tree for formula (like PCTL)
— to model check P., RUNE
. replace maximal state subformulae with atomic propositions
. (state subformulae already model checked recursively)
. modified formula @ is now an LTL formula
. which can be model checked as for LTL

34

Overview (Part 3)

« Linear temporal logic (LTL)

- Strongly connected components

- w-automata (Buchi, Rabin)

+ LTL model checking for DTMCs

+ LTL model checking for MDPs

35

End components

- Consider an MDP M = (§,s;,,,Steps,L)

« A sub-MDP of M is a pair (§’,Steps’) where:
— S’ € Sis a (hon-empty) subset of M’s states
— Steps’(s) < Steps(s) for eachs € §’
— is closed under probabilistic branching, i.e.:

.............................

— {8’ | u(s")>0 for some (a,u)eSteps’(s) } = " 7

D

- An end component of M is a
strongly connected sub-MDP

! sEsmsssEsEsEsEsEsEEEEEs:.‘

....................................

End components

For finite MDPs...

For every end component, there

is an adversary which,

with probability 1, forces the MDP
to remain in the end component
and visit all its states infinitely often

Under every adversary A,

with probability 1 an end component
will be reached and all of its states
visited infinitely often

— (analogue of fundamental property of finite DTMCs)

37

Long-run properties of MDPs

Maximum probabilities

o pmax(S’ GF a) = pmax(S! F TGFa)

- where T, is the union of sets T for all end components
(T,Steps’) with T n Sat(a) + &

o pmax(si FG a) = pmax(S! F TFGa)

.- where T, is the union of sets T for all end components
(T,Steps’) with T < Sat(a)

Minimum probabilities
— need to compute from maximum probabilities...
— Pmin(s, GF @) = T- pax(s, FG—a)
— Pmin(s, FG a) = T- pax(s, GF—a)

38

Example

Model check: P_y 5 [GF b] for s,

- Compute p,,..(GF b)

- pmax(GF b) = pmax(S! F TGFb)

— Tcpp is the union of sets T
for all end components
with T n Sat(b) + &

— Sat(b) ={ s,, s¢}

— Tepp = T{UT,UT; =154, S3 5S4, S¢ }
— Prmax(S, F Tep,) = 0.75

— Pmax(GF b) = 0.75

Result: s = P_,5[GF b]

39

Automata-based properties for MDPs

- For an MDP M and automaton A over alphabet 2A°

— consider probability of “satisfying” language L(A) < (2AP)w
— ProbMadv(s P) = PrMadv{ oy € PathM-adv(s) | trace(w) € L(A) }
— PraxV(S, A) = SUpP.4yeagy ProbM2adv(s; A)

— PminM(s, A) = inf 4, cagqy ProbMadv(s A)

- Might need minimum or maximum probabilities
—€.9.5F P99l Wgooda] & Prin" (S5 Wyooa) = 0.99
—€.9.5 = P_gos[Whag] © Pmax™ (S, Wpag) = 0.05

- But, Y-regular properties are closed under negation
— as are the automata that represent them

— so can always consider maximum probabilities...

— pmaxM(S’ Lpbad) orl - pmaxM(S’ _'Lpgood)

40

LTL model checking for MDPs

- Model check LTL specification P_,[@ | against MDP M

1. Convert problem to one needing maximum probabilities
— e.g. convert P, [p]to P, [~Y]

- 2. Generate a DRA for @ (or —p)

— build nondeterministic Blichi automaton (NBA) for ¢ [VW94]
— convert the NBA to a DRA [Saf88]

- 3. Construct product MDP M®A
- 4. |ldentify accepting end components (ECs) of M®A
- 5. Compute max. probability of reaching accepting ECs

— from all states of the D®A
- 6. Compare probability for (s, gq.) against p for each s

41

Product MDP for a DRA

- Foran MDP M = (S, s, Steps, L)
- and a (total) DRA A = (Q, 2, 9, q4, AcC)
— where Acc ={ (L, K) | T<i<k}

- The product MDP M ® A is:
— the MDP (SxQ, (S,it,Qinit), Steps’, L’) where:
Oinic = 0(dg,L(Sinir)
Steps’(s,q) = { M9 | u € Step(s) }
ager oy _ | MG i q'=8(q,L(s))
s a) { 0 otherwise

. € L'(s,q) if g € L, and k; € L’(s,q) if g € K,
(i.e. state sets of acceptance condition used as labels)

42

Product MDP for a DRA

- For MDP M and DRA A

pmaxM(S’ A) = pmaxM®A((S!qs)’ V]sisk (FG _Ili N GF kl)

— where g, = 8(qg,L(s))

- Hence:

pmaxM(51 A) — pmaxM®A((Siq5)s F TACC)

— where T, is the union of all sets T for accepting end
components (T,Steps’) in D®A

— an accepting end components is such that, for some 1<i<k:

- gk —l forall (s,q) € Tand g = k,for some (s,q) € T
e TNSXL) =and TN (SxK) =+

43

Example: LTL for MDPs

- Model check P_, 3 [G =b A GF a] for MDP M:
— nheed to compute p,..(So, G =b A GF a)

MDP M DRA A, for p = G-b A GF a

44

Example: LTL for MDPs

MDP M DRA A, for p = G-b A GF a

LTL model checking for MDPs

- Complexity of model checking LTL formula ¢ on MDP M
— is doubly exponential in |Q| and polynomial in |M|
— unlike DTMCs, this cannot be improved upon

PCTL* model checking
— LTL model checking can be adapted to PCTL*, as for DTMCs

Maximal end components

— can optimise LTL model checking using maximal end
components (there may be exponentially many ECs)

- Optimal adversaries for LTL formulae

— e.g. memoryless adversary always exists for p...(s, GF a),
but not for p,,.,(s, FG a)

46

Summary

Linear temporal logic (LTL)

— combines path operators; PCTL* subsumes LTL and PCTL
w-automata: represent w-reqgular languages/properties

— can translate any LTL formula into a Blichi automaton

— for deterministic w-automata, we use Rabin automata
Long-run properties of DTMCs

— need bottom strongly connected components (BSCCs)
LTL model checking for DTMCs

— construct product of DTMC and Rabin automaton

— identify accepting BSCCs, compute reachability probability
LTL model checking for MDPs

— MDP-DRA product, reachability of accepting end components

Next: Probabilistic timed automata (PTAS) 47

