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Dream of Automatic Analysis

resultprogram analyzer

main()
{ x=17;
if (x>63)
{ y=17;x=10;x=x+1;}
else
{ x=42;
while (y<99)
{ y=x+y;x=y+1;}
y=11;}

x=y+1;
printf(x);

}

G( FΦ→ Ψ)

specification of property
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Fundamental Problem

Rice‘s Theorem (informal version):

All non-trivial semantic properties of programs from a  Turing-complete

programming language are undecidable.

Consequence:

For Turing-complete programming languages:

Automatic analyzers of semantic properties, which are both correct and 

complete are impossible.

����



What can we do about it?

� Give up „automatic“: interactive approaches:
� proof calculi, theorem provers, …

� Give up „sound“: ???

� Give up „complete“: approximative approaches:

� Approximate analyses:

� data flow analysis, abstract interpretation, type checking, …

� Analyse weaker formalism:

� model checking, reachability analysis, equivalence- or preorder-

checking, …



What can we do about it?

��� GiveGiveGive up up up „„„automaticautomaticautomatic“““: : : interactiveinteractiveinteractive approachesapproachesapproaches:::
��� proofproofproof calculicalculicalculi, , , theoremtheoremtheorem proversproversprovers, , , ………

��� GiveGiveGive up up up „„„soundsoundsound“““: ???: ???: ???

� Give up „complete“: approximative approaches:

� Approximate analyses:

� data flow analysis, abstract interpretation, type checking, …

� Analyse weaker formalism:

� model checking, reachability analysis, equivalence- or preorder-

checking, …
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Overview

� Introduction

� Fundamentals of Program Analysis

Excursion 1

� Interprocedural Analysis

Excursion 2

� Analysis of Parallel Programs

Excursion 3

Appendix

� Conclusion
Apology for not giving proper credit in these lectures !
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From Programs to Flow Graphs

main()
{ x=17;
if (x>63)
{ y=17;x=10;x=x+1;}
else
{ x=x+42;
while (y<99)
{ y=x+y;x=y+1;}
y=11;}

x=y+1;
}

1

5

11

x=x+42

2

3 6

10

y>63

y:=17

x:=y+1

4 9

7

8x:=10

x:=x+1

¬ (y>63)

y:=11

¬ (y<99)

y=x+y

y<99

x=y+1

0

x=17
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Dead Code Elimination

Goal:
find and eliminate assignments that compute values which are never used

Fundamental problem: 
undecidability

→ use approximate algorithm: 
e.g.: ignore that guards prohibit certain execution paths

Technique:
1) perform live variables analyses:

variable x is live at program point u iff

there is a path from u on which x is used before it is modified

2) eliminate assignments to variables that are not live at the target point



1

5

11

x=x+42

2

3 6

10

y>63

y:=17

x:=y+1

4 9

7

8x:=10

x:=x+1

¬ (y>63)

y:=11

¬ (y<99)

y=x+y

y<99

x=y+1

0

x=17

Live Variables

y live

y live

x dead



{x,y}

{y}

{x,y}

1

5

11

x=x+42

2

3 6

10

y>63

y:=17

x:=y+1

4 9

7

8x:=10

x:=x+1

¬ (y>63)

y:=11

¬ (y<99)

y=x+y

y<99

x=y+1

0

x=17

{y}

∅∅∅∅

{y}

{y}

∅∅∅∅

{y}

{x,y}

{y}

{x,y}

{x,y}

{x,y}

Live Variables Analysis



Interpretation of Partial Orders in 
Approximate Program Analysis

x ⊑ y:

� x is more precise information than y.

� y is a correct approximation of x.

⊔ X    for X ⊆ L, where (L,⊑) is the partial order:

the most precise information consistent with all informations x∈X.

Example:

order for live variables analysis:

� (P(Var),⊆)        with Var = set of variables in the program

Remark:

often dual interpretation in the literature !



Complete Lattice

Complete lattice (L,⊑):

� a partial order (L,⊑) for which the least upper bound, ⊔ X, exists
for all X⊆ L.

In a complete lattice (L,⊑):

� ⊓ X exists for all X⊆ L:  ⊓ X = ⊔ { x∈ L | x ⊑ X }

� least element ⊥ exists: ⊥ = ⊔ L = ⊓ ∅

� greatest element ⊤ exists: ⊤ = ⊔ ∅ = ⊓ L

Example:
� for any set A let P(A) = {X | X⊆ A }    (power set of A).

� (P(A),⊆) is a complete lattice.

� (P(A),⊇) is a complete lattice.



Specifying Live Variables Analysis
by a Constraint System

Compute (smallest) solution over (L,⊑) = (P(Var),⊆) of:

where init = Var,

fe:P(Var) → P(Var),  fe(x)  =  x\kille ∪ gene,  with

� kille = variables assigned at e

� gene = variables used in an expression evaluated at e

=

[ ] , for , the termination node

[ ] ( [ ]), for each edge ( , , )e

A fin init fin

A u f A v e u s v

⊒

⊒



Specifying Live Variables Analysis
by a Constraint System

Remarks:

1. Every solution is „correct“ (whatever this means).

2. The smallest solution is called MFP-solution; 
it comprises a value MFP[u] ∈ L for each program point u.

3. MFP abbreviates „maximal fixpoint“ for traditional reasons.

4. The MFP-solution is the most precise one.
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Live Variables Analysis is a Backwards Analysis, i.e.:

� analysis info flows from target node to source node of an edge

� the initial inequality is for the termination node of the flow graph

Dually, there are Forward Analyses i.e..:

� analysis info flows from source node to target node of an edge.

� the initial inequality is for the start node of the flow graph

Examples: reaching definitions, available expressions, constant
propagation, ... 

Backwards vs. Forward Analyses

= ∈[ ] ( [ ]), for each edge ( , , )eA v f A u e u s v E⊒

[ ] , for ,the start nodeA st init st⊒

[ ] , for ,  the termination pointA te init te⊒

= ∈[ ] ( [ ]), for each edge ( , , )eA u f A v e u s v E⊒
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Data-Flow Frameworks

Correctness

� generic properties of frameworks can be studied and 

proved

Implementation

� efficient, generic implementations can be constructed
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Three Questions

� Do (smallest) solutions always exist ?

� How to compute the (smallest) solution ?

� How to justify that a solution is what we want ?
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Three Questions

� Do (smallest) solutions always exist ?

��� HowHowHow to to to computecomputecompute thethethe (((smallestsmallestsmallest) ) ) solutionsolutionsolution ???

��� HowHowHow to to to justifyjustifyjustify thatthatthat a a a solutionsolutionsolution isisis whatwhatwhat wewewe wantwantwant ???



Knaster-Tarski Fixpoint Theorem 

Definitions:

Let (L,⊑) be a partial order.

� f : L→ L is monotonic iff ∀ x,y∈ L :   x ⊑ y ⇒ f(x) ⊑ f(y).

� x ∈ L is a fixpoint of f iff f(x)=x.

Fixpoint Theorem of Knaster-Tarski:

Every monotonic function f on a complete lattice L has a least 

fixpoint lfp(f) and a greatest fixpoint gfp(f).

More precisely,

lfp(f)  =  ⊓ { x∈ L |  f(x) ⊑ x }          least pre-fixpoint

gfp(f) =  ⊔ { x∈ L |  x ⊑ f(x) }          greatest post-fixpoint



Knaster-Tarski Fixpoint Theorem

Picture from: Nielson/Nielson/Hankin, Principles of Program Analysis

pre-fixpoints of f

post-fixpoints of f

L:
⊤⊤⊤⊤

gfp(f)

lfp(f)

⊥⊥⊥⊥

fixpoints of f
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Smallest Solutions Always Exist

� Define functional F : Ln→Ln from right hand sides of 

constraints such that:

� σ solution of constraint system iff σ pre-fixpoint of F 

� Functional F is monotonic.

� By Knaster-Tarski Fixpoint Theorem:

� F has a least fixpoint which equals its least pre-fixpoint.

☺☺☺☺
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Three Questions

��� Do (Do (Do (smallestsmallestsmallest) ) ) solutionssolutionssolutions alwaysalwaysalways existexistexist ???

� How to compute the (smallest) solution ?

��� HowHowHow to to to justifyjustifyjustify thatthatthat a a a solutionsolutionsolution isisis whatwhatwhat wewewe wantwantwant ???
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Workset-Algorithm

{ }

{ }

program points

edge

;

( ) { [ ] ; ; }

[ ] ;
{
( );

( , ( , , ) ) {
( [ ]);

( [ ]) {
[ ] [ ] ;

;

}
}

}

e

W

v A v W W v

A fin init
W

v Extract W
u s e u s v

t f A v

t A u
A u A u t

W W u

= ∅

= ⊥ = ∪

=
≠ ∅

=
=

=

¬
=

= ∪

forall

while

forall with

if ⊑

⊔
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Invariants of the Main Loop

a) [ ] MFP[ ] f.a. prg. points 

b1) [ ] 

b2)   [ ] ( [ ]) f.a. edges ( , , )e

A u u u

A fin init

v W A u f A v e u s v∉ ⇒ =

⊑ 

⊒ 

⊒

⇒

=

 If and when workset algorithm terminates:

         is a solution of the constraint system by b1)&b2)

               [ ] [ ]    f.a. 

        Hence, with a):   [ ] [ ]    f.a. 

A

A u MFP u u

A u MFP u u

⊒  

  ☺☺☺☺
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How to Guarantee Termination

� Lattice (L,⊑) has finite heights

⇒ algorithm terminates after at most

#prg points · (heights(L)+1) 

iterations of main loop

� Lattice (L,⊑) has no infinite ascending chains

⇒ algorithm terminates

� Lattice (L,⊑) has infinite ascending chains:

⇒ algorithm may not terminate;

use widening operators in order to enforce termination



▽: L×L → L is called a widening operator iff

1) ∀ x,y ∈ L: x ⊔ y ⊑ x ▽ y

2) for all  sequences (ln)n, the (ascending) chain (wn)n

w0 = l0,   wi+1 = wi ▽ li+1 for i > 0 

stabilizes eventually.

Widening Operator [Cousot]
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Workset-Algorithm with Widening

{ }

{ }

program points

edge

;

( ) { [ ] ; ; }

[ ] ;
{
( );

[ ]

( , ( , , ) ) {
( [ ]);

( [ ]) {
[ ]

;

}
}

}

;

e

A u

W

v A v W W v

A fin init
W

v Extract W
u s e u s v

t f A v

t A u
A u

W

t

W u

= ∅

= ⊥ = ∪

=
≠ ∅

=
=

=

¬
=

= ∪

forall

while

forall with

if
▽

⊑
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Invariants of the Main Loop

a) [ ] MFP[ ] f.a. prg. points 

b1) [ ] 

b2)   [ ] ( [ ]) f.a. edges ( , , )e

A u u u

A fin init

v W A u f A v e u s v∉ ⇒ =

⊑ 

⊒ 

⊒

⇒

With a widening operator we  but 

we .

Upon termination, we have:

         is a solution of the constraint system by b1)&b2)

     

enforce termination

loose invariant a

          [ ] [ ]    f.a

 

)

. 

A

A u MFP u u⊒  

       Compute a sound upper approximation (only) ! ����



Example of a Widening Operator:
Interval Analysis

The goal

..., e.g., in order to remove the redundant array range check.

for (i=0; i<42; i++)

if (0<=i and i<42) 

{

A1 = A+i;

M[A1] = i;

}

Find save interval for the values of program variables, e.g. of i in:

☺



Example of a Widening Operator:
Interval Analysis

The lattice...

( ) { } { }{ } { }( ), [ , ] |  , , ,L l u l u l u= ∈ ∪ −∞ ∈ ∪ +∞ ≤ ∪ ∅ ⊆ℤ ℤ⊑

... has infinite ascending chains, e.g.:

[0,0] [0,1] [0,2] ...⊂ ⊂ ⊂

A chain of maximal length arising with this widening operator:

0 0 1 1 2 2

0 0 1 0 0 1

2 2

[ , ] [ , ] [ , ],  where 

if if u
                 and  

otherwise otherwise

l u l u l u

l l l u u
l u

=

≤ ≥ 
= = 

−∞ +∞ 

▽ 

A widening operator:

[3,7] [3, ] [ , ]∅ ⊂ ⊂ +∞ ⊂ −∞ +∞ 



Analyzing the Program with the
Widening Operator

⇒ Result is far too imprecise ! �
Example taken from: H. Seidl, Vorlesung „Programmoptimierung“



Remedy 1: Loop Separators

� Apply the widening operator only at a „loop separator“

(a set of program points that cuts each loop).

� We use the loop separator {1} here.

⇒ Identify condition at edge from 2 to 3 as redundant ! ☺



Remedy 2: Narrowing

� Iterate again from the result obtained by widening

--- Iteration from a prefix-point stays above the least fixpoint ! ---

⇒ We get the exact result in this example (but not guaranteed) ! ☺
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Remarks

� Can use a work-list instead of a work-set

� Special iteration strategies in special situations

� Semi-naive iteration



Recall: Specifying Live Variables Analysis
by a Constraint System

Compute (smallest) solution over (L,⊑) = (P(Var),⊆) of:

where init = Var,

fe:P(Var) → P(Var),  fe(x)  =  x\kille ∪ gene,  with

� kille = variables assigned at e

� gene = variables used in an expression evaluated at e

=

[ ] , for , the termination node

[ ] ( [ ]), for each edge ( , , )e

A fin init fin

A u f A v e u s v

⊒

⊒
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Recall: Questions

� Do (smallest) solutions always exist ?

� How to compute the (smallest) solution ?

� How to justify that a solution is what we want ?
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Three Questions

��� Do (Do (Do (smallestsmallestsmallest) ) ) solutionssolutionssolutions alwaysalwaysalways existexistexist ???

��� HowHowHow to to to computecomputecompute thethethe (((smallestsmallestsmallest) ) ) solutionsolutionsolution ???

� How to justify that a solution is what we want ?

� MOP vs MFP-solution

� Abstract interpretation
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Three Questions

��� Do (Do (Do (smallestsmallestsmallest) ) ) solutionssolutionssolutions alwaysalwaysalways existexistexist ???

��� HowHowHow to to to computecomputecompute thethethe (((smallestsmallestsmallest) ) ) solutionsolutionsolution ???

� How to justify that a solution is what we want ?

� MOP vs MFP-solution

��� Abstract Abstract Abstract interpretationinterpretationinterpretation
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Assessing Data Flow Frameworks

Abstraction MOP-solution
Execution

Semantics

MFP-solution
sound?

how precise?

sound?

precise?



x := 17

x := 10

x := x+1

x := 42

y := 11

y := x+y

x := y+1

x := y+1

out(x)

y := 17

∅ {y}∅

MOP[ ] { } { }v y y= ∅ ∪ =

infinitely many such paths

Live Variables 
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Meet-Over-All-Paths Solution (MOP)

� Forward Analysis

� Backward Analysis

� Here: „Join-over-all-paths“; MOP traditional name

Paths[ , ]MOP[ ] : F ( )∈= p entry u pu init⊔
�

Paths[ , ]MOP[ ] : F ( )∈=
p u exit p

u init⊔
�
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Coincidence Theorem

Definition:

A framework is positively-distributive if

f(⊔X)=  ⊔{ f(x) | x∈X} for all ∅ ≠ X⊆L, f∈F.

Theorem:

For any instance of a positively-distributive framework:

MOP[u] = MFP[u]            for all program points u

(if all program points reachable).

Remark:

A framework is positively-distributive if a) and b) hold:

(a) it is distributive:       f(x ⊔ y) = f(x) ⊔ f(y)  f.a. f∈ F, x,y∈ L.

(b) it is effective:           L does not have infinite ascending chains.

Remark: All bitvector frameworks are distributive and effective.



Lattice for Constant Propagation

0

⊤

1 2 . . .-2. . . -1

unknown value

lattice : { | : Var ( { })} { }

: ' :

( , ' : ( ) '( ) )

L

x x x

ρ ρ

ρ ρ ρ

ρ ρ ρ ρ

→ ∪ ∪

⇔ = ∨

≠ ∧∀

ℤ ⊤ ⊥

⊥

⊥

       ⊑ �� ⊑

⊑
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x := 17

y := 3

x := 3

z := x+y

out(x)

x := 2

y := 2

(3,2,5)(2,3,5)

MOP[ ] ( , ,5)=v ⊤ ⊤

( ( ), ( ), ( ))x y zρ ρ ρ
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(⊤,⊤,⊤)

x := 17

y := 3

x := 3

z := x+y

out(x)

x := 2

y := 2

(⊤,⊤,⊤)

(⊤,⊤,⊤)

(2,3,⊤) (3,2,⊤)

(2, ⊤,⊤) (3,⊤,⊤)

MOP[ ] ( , ,5)=v ⊤ ⊤

M FP[ ] ( , , )=v ⊤ ⊤ ⊤

( ( ), ( ), ( ))x y zρ ρ ρ
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Correctness Theorem

Definition:

A framework is monotone if for all f∈ F, x,y ∈ L: 

x ⊑ y ⇒ f(x) ⊑ f(y) .

Theorem:

In any monotone framework:

MOP[u] ⊑ MFP[u]  for all program points u.

Remark:

Any "reasonable" framework is monotone. ☺☺☺☺
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Assessing Data Flow Frameworks

Abstraction MOP-solution
Execution

Semantics

MFP-solutionsound
sound

precise, if distrib.
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Where Flow Analysis Looses
Precision

Execution
semantics

MOP MFP Widening

Potential loss of precision
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Three Questions

��� Do (Do (Do (smallestsmallestsmallest) ) ) solutionssolutionssolutions alwaysalwaysalways existexistexist ???

��� HowHowHow to to to computecomputecompute thethethe (((smallestsmallestsmallest) ) ) solutionsolutionsolution ???

� How to justify that a solution is what we want ?

��� MOP MOP MOP vsvsvs MFPMFPMFP---solutionsolutionsolution

� Abstract interpretation
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Abstract Interpretation

Often used as reference semantics:

� sets of reaching runs: 

(D,⊑) = (P(Edges*),⊆)    or (D,⊑) = (P(Stmt*),⊆) 

� sets of reaching states („collecting semantics“):

(D,⊑) = (P(Σ*),⊆)    with Σ = Var → Val 

Replace
concrete operators o

by abstract operators o#

constraint system for

Reference Semantics
on concrete lattice (D,⊑)

constraint system for

Analysis
on abstract lattice (D#,⊑#)

MFP MFP#
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Assume a universally-disjunctive abstraction function α : D → D#.

Correct abstract interpretation:

Show  α(o(x1,...,xk))  ⊑
# o#(α(x1),...,α(xk))   f.a. x1,...,xk∈ L, operators o

Then α(MFP[u])  ⊑# MFP#[u]   f.a. u 

Correct and precise abstract interpretation:

Show  α(o(x1,...,xk))  =  o#(α(x1),...,α(xk))   f.a. x1,...,xk∈ L, operators o

Then α(MFP[u])  = MFP#[u]   f.a. u

Use this as a guideline for designing correct (and precise) analyses !

Abstract Interpretation

Replace
concrete operators o

by abstract operators o#

constraint system for

Reference Semantics
on concrete lattice (D,⊑)

constraint system for

Analysis
on abstract lattice (D#,⊑#)

MFP MFP#



Abstract Interpretation

Constraint system for reaching runs:

Operational justification:

Let R[u] be components of smallest solution over P(Edges*). Then

Prove:

a)  Rop[u]  satisfies all constraints (direct)
⇒ R[u]  ⊆ Rop[u]     f.a. u

b)  w∈ Rop[u]   ⇒ w∈ R[u] (by induction on |w|)

⇒ Rop[u] ⊆ R[u] f.a. u

{ }

{ }

[ ] , for , the start node

[ ] [ ] , for each edge ( , , )

R st st

R v R u e e u s v

ε⊇

⊇ ⋅ =

= = ∈ →[ ] [ ] { * | }       for all  rop

defR u R u r Edges st u u



Abstract Interpretation

Constraint system for reaching runs:

Derive the analysis:

Replace

{ε}             by init
(•) · {〈e〉}   by fe

Obtain abstracted constraint system:

{ }

{ }

[ ] , for , the start node

[ ] [ ] , for each edge ( , , )

R st st

R v R u e e u s v

ε⊇

⊇ ⋅ =

#

# #

[ ] , for , the start node

[ ] ( [ ]), for each edge ( , , )e

R st init st

R v f R u e u s v=

⊒

⊒



Abstract Interpretation 

MOP-Abstraction:

Define αMOP : P(Edges*) → L by

Remark:

For all transfer functions fe are monotone, the abstraction is correct:

αΜOP(R[u])  ⊑ R#[u]    f.a. prg. points u

If all transfer function fe are universally-distributive, the abstraction is
correct and precise:

αΜOP(R[u])  =  R#[u]    f.a. prg. points u 

Justifies MOP vs. MFP theorems (cum grano salis).

{ }MOP( ) ( ) |    where ,r e ss e
R f init r R f Id f f fεα

⋅
= ∈ = = �⊔

☺☺☺☺
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Overview

� Introduction

� Fundamentals of Program Analysis

Excursion 1

� Interprocedural Analysis

Excursion 2

� Analysis of Parallel Programs

Excursion 3

Appendix

� Conclusion
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Challenges for Automatic Analysis

� Data aspects:
� infinite number domains

� dynamic data structures (e.g. lists of unbounded length)

� pointers

� ...

� Control aspects:
� recursion

� concurrency

� creation of processes / threads

� synchronization primitives (locks, monitors, communication stmts ...)

� ...

⇒⇒⇒⇒ infinite/unbounded state spaces
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Classifying Analysis Approaches

control aspects

data aspects

analysis techniques



(My) Main Interests of Recent Years

Data aspects:
� algebraic invariants over Q, Z, Zm (m = 2n) in sequential programs, 

partly with recursive procedures

� invariant generation relative to Herbrand interpretation

Control aspects:

� recursion

� concurrency with process creation / threads

� synchronization primitives, in particular locks/monitors

Technics:

� fixpoint-based

� automata-based

� (linear) algebra

� syntactic substitution-based techniques

� ...
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A Note on Karr´s Algorithm

Markus Müller-Olm

FernUniversität Hagen

(on leave from Universität Dortmund)

Joint work with

Helmut Seidl (TU München)

ICALP 2004, Turku, July 12-16, 2004



What this Excursion is About…

0

1

2

x1:=1

x2:=1

x3:=1

x2:=2x2-2x1+5

x1:=x1+1

x3:=x3+x2

x2 = 2x1-1x3 = x1
2



Affine Programs

� Basic Statements:
� affine assignments: x1 := x1-2x3+7

� unknown assignments: xi := ?     

→ abstract too complex statements

� Affine Programs:
� control flow graph G=(N,E,st), where

� N finite set of program points

� E ⊆ N×Stmt×N set of edges

� st ∈ N start node

� Note: non-deterministic instead of guarded branching



The Goal: Precise Analysis

Given an affine program, determine for each program point

� all valid affine relations:

a0 + ∑ aixi = 0 ai ∈ Q

5x1+7x
2
-42=0

More ambitious goal:

� determine all valid polynomial relations (of degree � d):

p(x1,…,xk) = 0 p ∈ Q[x1,…,xn]

5x1x2
2+7x3

3=0



Applications of Affine (and Polynomial) 
Relations

� Data-flow analysis:
� definite equalities: x = y

� constant detection: x = 42

� discovery of symbolic constants: x = 5yz+17

� complex common subexpressions: xy+42 = y2+5

� loop induction variables

� Program verification
� strongest valid affine (or polynomial) assertions

(cf. Petri Net invariants)



Karr´s Algorithm

� Determines valid affine relations in programs.

� Idea: Perform a data-flow analysis maintaining for each
program point a set of affine relations, i.e., a linear equation
system.

� Fact: Set of valid affine relations forms a vector space of 
dimension at most k+1, where k = #program variables.

⇒ can be represented by a basis.

⇒ forms a complete lattice of height k+1.

[Karr, 1976]



Deficiencies of Karr´s Algorithm

� Basic operations are complex

� „non-invertible“ assignments

� union of affine spaces

� O(n·k4) arithmetic operations

� n size of the program

� k number of variables

� Numbers may have exponential length



Our Contribution

� Reformulation of Karr´s algorithm:

� basic operations are simple

� O(n·k3) arithmetic operations

� numbers stay of polynomial length: O(n·k2)

Moreover:

� generalization to polynomial relations of bounded degree

� show, algorithm finds all affine relations in „affine programs“

� Ideas:

� represent affine spaces by affine bases instead of lin. eq. syst.

� use semi-naive fixpoint iteration

� keep a reduced affine basis for each program point during fixpoint

iteration



Affine Basis



Concrete Collecting Semantics

Smallest solution over subsets of Qk of:

where

First goal: compute affine hull of V[u] for each u.

[ ]

[ ] ( [ ]) , for each edge ( , , )

k

s

V st

V v f V u u s v

⊇

⊇

ℚ

{ }

{ }

:

: ?

( ) [ ( )] |

( ) [ ] | ,

i

i

x t i

x i

f X x x t x x X

f X x x c x X c

=

=

= ∈

= ∈ ∈

֏

֏ ℚ



Abstraction

Affine hull:

The affine hull operator is a closure operator:

⇒ Affine subspaces of Qk ordered by set inclusion

form a complete lattice:

Affine hull is even a precise abstraction:

{ }( ) | , , 1i i i i iaff X x x X= ∑ ∈ ∈ ∑ =ℚλ λ λ

( ) , ( ( )) , ( ) ( )aff X X aff aff X X X Y aff X aff Y⊇ = ⊆ ⇒ ⊆

{ }( )( , ) | ( ) , .kD X aff X X= ⊆ = ⊆ℚ⊑

:  ( ( )) Lemma  ( ( )).s sf aff X aff f X=



Abstract Semantics

Smallest solution over (D,⊑) of:

#

# #

[ ]

[ ] ( [ ]) , for each edge ( , , )

k

s

V st

V v f V u u s v

ℚ⊒

⊒

#:  [ ] ( [ ])  for all progrLe am points u.mma V u aff V u=



Basic Semi-naive Fixpoint Algorithm

� �

{ }
{ }

1

1

( ) [ ] ;
[ ] {0, ,..., };

{( ,0),( , ),...,( , )};

{
( , ) ( );

( , ( , , ) ) {

;

( ( [ ])) {

[ ] [ ] ;

( , ) ;

}
}

}

k

k

v N G v
G st e e

W st st e st e

W
u x Extract W

s v u s v E

t s x

t aff G v

G v G v t

W W v t

∈ = ∅
=

=

≠ ∅
=

∈

=

∉

= ∪

= ∪

forall

while

forall with

if



Example

0

1

2

x1:=1

x2:=1

x3:=1

x2:=2x2-2x1+5

x1:=x1+1

x3:=x3+x2

0 1 0 0
0 , 0 , 1 , 0
0 0 0 1

       
       
       
       

1
1
1

 
 
 
 

2
3
4

 
 
 
 

2
3
4

 
 
 
 

 
 
 
 

3
5
9

3
5
9

 
 
 
 

4
7

16

 
 
 
 

4
7

16

 
 
 
 

1 2 3
1 , 3 , 5
1 4 9

aff
              ∈                



Correctness

#

:

  a) Algorithm terminates after at most  iterations of the loop,

      where  and  is the number of variables.

  b) For all ,  we have ( [ ]) [

Theore

.

m

]fin

nk n

n N k

v N aff G v V v

+

=

∈ =

� �{ }( )
∀ ∈ ⊆ ∀ ∈ ∈

∀ ∈ ∪ ∈

Invariants for b)

  I1: : [ ] [ ]  and  ( , ) : [ ].

  I2: (u,s,v) E: [ ] | ( , ) ( ( [ ]).s

v N G v V v u x W x V u

aff G v s x u x W f aff G u⊒



Complexity

#

3

2

:

  a) The affine hulls V [ ] ( [ ]) can be computed in time

      O( ), where | | | | .

  b) In this computation only arithmetic operations on numbers 

      with O(

Theo

) bits are 

re

sed

m

u .

u aff V u

n k n N E

n k

=

⋅ = +

⋅

Store diagonal basis for membership tests.

Propagate original vectors.



Point + Linear Basis



Example

0

1

2

x1:=1

x2:=1

x3:=1

x2:=2x2-2x1+5

x1:=x1+1

x3:=x3+x2

0 1 0 0
0 , 0 , 1 , 0
0 0 0 1

       
       
       
       

1
1
1

 
 
 
 
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3
4

 
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 
 
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3
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 
 
 
 

 
 
 
 
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5
9

3
5
9

 
 
 
 

4
7

16

 
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 
 

4
7

16

 
 
 
 

1
2
3

 
 
 
 

 
 
 
 

2
4
8

0
0
0

 
 
 
 

1
2
5

 
 
 
 

2
4

12

 
 
 
 

1 0
2 , 0
0 2

   
   
   
   

1 0
2 , 0
0 2

   
   
   
   



Determining Affine Relations

3

:

  a) The vector spaces of all affine relations valid at the program

      points of an affine program can be computed in time O( ).

  b) This computation performs arithmetic operatio

Theorem

ns on int

n k⋅

2

egers 

      with O( ) bits only.n k⋅

:  is valid for  is vaLemm lid for ( ).a a X a aff X⇔

suffices to determine the affine relations valid for affine bases; 

     can be done with a linear equation system!

⇒



Example

0

1

2

x1:=1

x2:=1

x3:=1

x2:=2x2-2x1+5

x1:=x1+1

x3:=x3+x2
2
3
4

 
 
 
 

 
 
 
 

3
5
9

4
7

16

 
 
 
 

1 0
2 , 0
0 2

   
   
   
   

0 1 1 2 2 3 3a 0 is valid at 2a x a x a x+ + + =

0 1 2 3

1 2

3

2 3 4 0

1 2 0

2 0

a a a a

a a

a

+ + + =

+ =

=

⇔

0 2 1 2 3, 2 , 0a a a a a= = − =⇔

1 22 1  is valid at 2x x− −⇒
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Also in the Paper

� Non-deterministic assignments

� Bit length estimation

� Polynomial relations

� Affine programs + affine equality guards

� validity of affine relations undecidable



End of Excursion 1
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Interprocedural Analysis

Q()

Main:

R()

P()

c:=a+b

P:

c:=a+b

R()

R:

c:=a+ba:=7
c:=a+ba:=7

Q:

P()

call edges

recursion

procedures



Running Example:
(Definite) Availability of the single expression a+b

The lattice:

false

true

a+b not available

a+b available c:=a+b

a:=7

c:=a+b

a:=42

c:=c+3

false

Initial value: false
true

true

true

false

false

false



Intra-Procedural-Like Analysis

Conservative assumption: procedure destroys all information; 

information flows from call node to entry point of procedure

stM

u1

u2

u3

c:=a+b

P()

false

rM

stP

rPa:=7

P()

c:=a+b

P:

Main: The lattice:

false

true
true

false

false

false

true false

true

����

λ x. false

λ x. false



Context-Insensitive Analysis

Conservative assumption: Information flows from each call node
to entry of procedure and from exit of procedure back to return point

stM

u1

u2

u3

c:=a+b

P()

false

rM

stP

rPa:=7

P()

c:=a+b

P:

Main: The lattice:

false

true
true

true

false

true

true false

true

☺☺☺☺



Context-Insensitive Analysis

Conservative assumption: Information flows from each call node
to entry of procedure and from exit of procedure bac to return point

stM

u1

u2

u3

c:=a+b

P()

false

rM

stP

rPa:=7

P()

P:

Main: The lattice:

false

true
true

true

false

true false

true

����

false

false

false
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Assume a universally-disjunctive abstraction function α : D → D#.

Correct abstract interpretation:

Show  α(o(x1,...,xk))  ⊑
# o#(α(x1),...,α(xk))   f.a. x1,...,xk∈ L, operators o

Then α(MFP[u])  ⊑# MFP#[u]   f.a. u 

Correct and precise abstract interpretation:

Show  α(o(x1,...,xk))  =  o#(α(x1),...,α(xk))   f.a. x1,...,xk∈ L, operators o

Then α(MFP[u])  = MFP#[u]   f.a. u

Use this as a guideline for designing correct (and precise) analyses !

Recall: Abstract Interpretation Recipe

Replace
concrete operators o

by abstract operators o#

constraint system for

Reference Semantics
on concrete lattice (D,⊑)

constraint system for

Analysis
on abstract lattice (D#,⊑#)

MFP MFP#



Example Flow Graph

stM

u1

u2

u3

c:=a+b

P()

rM

stP

rPa:=7

P()

c:=a+b

P:

Main: The lattice:

false

true
e0 :

e1:

e2:

e3:

e4:



Let‘s Apply Our Abstract Interpretation Recipe:
Constraint System for Feasible Paths

{ }

{ }

( ) ( )  return point of 

( )  entry point of 

( ) ( ) ( , , ) base edge

S(v) ( ) ( ) ( , , ) call edge

p p

p p

S p S r r p

S st st p

S v S u e e u s v

S u S p e u p v

ε

⊇

⊇

⊇ ⋅ =

⊇ ⋅ =

Same-level runs:

Operational justification:

{ }
{ }

( ) Edges for all  in procedure 

( ) Edges for all procedures 

|

|
p

p

r

r

S u r u u p

S p r p

st

st ε

∗

∗

= ∈ →

= ∈ →

Reaching runs:

{ }

{ }

ε

⊇

⊇

⊇

⋅

⋅ =

=

⊇ =

( ) ( )

( )  entry point of 

( ) ( ) ( , , ) basic e

( ) ( , , ) call edge

( ) ( ) ( , , ) call ed

dg

ge,  entry point of 

e

Main Main

p p

R st

R v R u S p e u p v

R st R u e u p v st

st Main

R v R u e e u s v

p

{ }∗∗= ∈ →∃ ∈( ) Edges : for all | Nodes Main

rR u r uw uw st



Context-Sensitive Analysis

Idea:

Classic approaches for summary informations:

Phase 1: Compute summary information for each procedure...

... as an abstraction of same-level runs

Phase 2: Use summary information as transfer functions for procedure calls...

... in an abstraction of reaching runs

1) Functional approach: [Sharir/Pnueli 81, Knoop/Steffen: CC´92]

Use (monotonic) functions on data flow informations !

2) Relational approach: [Cousot/Cousot: POPL´77]

Use relations (of a representable class) on data flow informations !

3) Call string approach: [Sharir/Pnueli 81], [Khedker/Karkare: CC´08]

Analyse relative to finite portion of call stack !



Formalization of Functional Approach

Abstractions:

{ }
α

α

∗

∗

→

=

→

⊆∈

Abstract same-level runs with : Edges :

( ) for Edges

( ) 

|
Funct

Func rt

L L

fR Rr R⊔

=

=

�

�

# #

#

# # #

# # #

( ) ( )  return point of 

( )  entry point of 

( ) ( ) ( , , )  base edge 

S (v) ( ) ( ) ( , , ) call edge

p p

p p

e

S p S r r p

S st id st p

S v f S u e u s v

S p S u e u p v

⊒

⊒

⊒

⊒

1. Phase: Compute summary informations, i.e., functions:

2. Phase: Use summary informations; compute on data flow informations:

{ }
α

α

∗

∗

→

= ⊆∈

Abstract reaching runs with : Edges  :

( ) for Edge( ) s|
O

r

M P

MOP

L

f initR Rr R⊔

=

=

=

#

# # #

# # #

# #

( )

(

( )  entry point of 

( ) ( ) ( , , ) basic edge

( ) ( ) ( ) ( , , ) call edg) e

( ) ( ) ( , , ) call edge,  entry point of 

Main Main

e

p p

R st init st Main

R v f R u e u s v

R v S p R u e u p v

R st R u e u p v st p

⊒

⊒

⊒

⊒
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Theorem:

Remark:

Correctness:      For any monotone framework:

αMOP(R[u])  ⊑ R#[u]     f.a. u

Completeness:   For any universally-distributive framework:

αMOP(R[u])  = R#[u]     f.a. u

a) Functional approach is effective, if L is finite...

b) ... but may lead to chains of length up to |L| · height(L) at  each

program point (in general).

Functional Approach

Alternative condition: 

framework positively-distributive & all prog. point dyn. reachable



Observations:

Just three montone functions on lattice L: 

Functional composition of two such functions f,g : L→ L:

Functional Approach for
Availability of Single Expression Problem

Analogous: precise interprocedural analysis for

all (separable) bitvector problems

in time linear in program size.
☺☺☺☺

{ }
if 

i

i

f k ,g

f h
h f

h h

=
= 

∈
�

k (ill)

i (gnore)

g (enerate)

λλλλ x . false

λλλλ x . x

λλλλ x . true

false

true



Context-Sensitive Analysis, 1. Phase

Q()

Main:

R()

P()

c:=a+b

P:

c:=a+b

R()

R:

c:=a+ba:=7
c:=a+ba:=7

Q:

P()

the lattice:

k

i

g

gg

g g
k k

i

g

g

i

i

i

g

g

k

k

i

g

g

k

i

k g



Context-Sensitive Analysis, 2. Phase

Q()

Main:

R()

P()

P:

R()

R:
Q:

P()

the lattice:

false

true

gg

g g
k k

i

k g

false

true

true false

true

true

true

true

true

true

false

false

false true

true

true

true

false

false

false

false

false
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Theorem:

Remark:

Correctness:      For any monotone framework:

αMOP(R[u])  ⊑ R#[u]     f.a. u

Completeness:   For any universally-distributive framework:

αMOP(R[u])  = R#[u]     f.a. u

a) Functional approach is effective, if L is finite ...

b) ... but may lead to chains of length up to |L| · height(L) at  each

program point.

Functional Approach

Alternative condition: 

framework positively-distributive & all prog. point dyn. reachable

����
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Finding Invariants...

0

1

2

3

4

x1:=x2

x3:=0

x1:=x1-x2-x3

P()

Main: 5

6

7

8

9

x3:=x3+1

x1:=x1+x2+1

x1:=x1-x2

P()

P:

x1 = 0

x1-x2-x3 = 0

x1-x2-x3-x2x3 = 0

x1-x2-x3 = 0
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… through Linear Algebra

� Linear Algebra
� vectors

� vector spaces, sub-spaces, bases

� linear maps, matrices

� vector spaces of matrices

� Gaussian elimination

� ...
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Applications

� definite equalities: x = y

� constant propagation: x = 42

� discovery of symbolic constants: x = 5yz+17

� complex common subexpressions: xy+42 = y2+5

� loop induction variables

� program verification

� ...
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A Program Abstraction

Affine programs:

� affine assignments: x1 := x1-2x3+7

� unknown assignments: xi := ?     

→ abstract too complex statements!

� non-deterministic instead of guarded branching



The Challenge

Given an affine program

(with procedures, parameters, local and global variables, ...) 

over R :

(R the field Q or Zp, a modular ring Zm, the ring of integers Z, 

an effective PIR,...)

� determine all valid affine relations:
a0 + ∑ aixi = 0 ai ∈ R 5x+7y-42=0

� determine all valid polynomial relations (of degree � d):

p(x1,…,xk) = 0 p ∈ R [x1,…,xn] 5xy2+7z3-42=0

… and all this in polynomial time (unit cost measure) !!!
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Infinity Dimensions

push-down

arithmetic



Markus Müller-Olm, WWU Münster               VTSA 2010, Luxembourg, September 6-10, 2010 109

Use a Standard Approach for
Interprocedural Generalization of Karr ?

Functional approach [Sharir/Pnueli, 1981], [Knoop/Steffen, 1992]

� Idea: summarize each procedure by function on data flow facts

� Problem: not applicable

Call-string approach [Sharir/Pnueli, 1981] , [Khedker/Karkare: CC´08]

� Idea: take just a finite piece of run-time stack into account

� Problem: not exact

Relational approach [Cousot/Cousot, 1977]

� Idea: summarize each procedure by approximation of I/O relation

� Problem: not exact



Towards the Algorithm ...



Concrete Semantics of an Execution Path

� Every execution path π induces an affine transformation of the
program state:

� �

� � � �( )

� �

= + + = +

= = + = + +

     
     

= = + +     
     
     

     
     

= +     
     
     

1 1 2 3 3

3 3 1 1 2

1

3 3 2

3

1

2

3

: 1; : 1 ( )

: 1 : 1 ( )

1 1 0 1

: 1 0 1 0 0

0 0 1 0

1 1 0 1

0 1 0 0

0 0 1 1

x x x x x v

x x x x x v

v

x x v

v

v

v

v
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Affine Relations

� An affine relation can be viewed as a vector:

 
 
 = =
 
 
 

1 2

5

1
- 3 + 5  0    corresponds to    

3

0

x x a



Markus Müller-Olm, WWU Münster               VTSA 2010, Luxembourg, September 6-10, 2010 113

{ } { }+ + = = + + − + =2 3 1 2 3 1 25 0 : 4 3 3 2 0x x x x x x x

    
    
    =
    −
    
    

1 3 0 0 2 5

0 0 0 0 1 0

0 4 1 0 3 1

0 1 0 1 0 1

A linear transformation:

weakest precondition!

Affine Assignments induce linear 
wp- Transformations on Affine Relations
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WP of Affine Relations

� Every execution path π induces a linear transformation of 
affine post-conditions into their weakest pre-conditions:

� �

� � � �( )

� �

T

1 1 2 3 3

T T

1 1 2 3 3

0

T 1

1 1 2

2

3

0

1

2

3

: 1; : 1 ( )

: 1 : 1 ( )

1 0 0 1

0 1 0 0
: 1

0 0 1 0

0 0 0 1

1 1 0 1

0 1 0 0

0 1 1 0

0 0 0 1

x x x x x a

x x x x x a

a

a
x x x

a

a

a

a

a

a

= + + = +

= = + + = +

   
   
   = = + +
   
      
   

  
  
  =
  
    

  



Observations

� Only the zero relation is valid at program start: 

0 :  0+0x1+…+0xk = 0

� Thus, relation a0+a1x1+…+akxk=0 is valid at program point v

iff

M a = 0    for all M ∈ {�π�T | π reaches v}

iff

M a = 0    for all M ∈ Span {�π�T | π reaches v}

iff

M a = 0    for all M in a basis of Span {�π�T | π reaches v}

� Matrices M form a vector space of dimension (k+1) x (k+1) 

� Sub-spaces form a complete lattice of height O(k2).



Let‘s Apply Our Abstract Interpretation Recipe:
Constraint System for Feasible Paths

{ }

{ }

( ) ( )  return point of 

( )  entry point of 

( ) ( ) ( , , ) base edge

S(v) ( ) ( ) ( , , ) call edge

p p

p p

S p S r r p

S st st p

S v S u e e u s v

S u S p e u p v

ε

⊇

⊇

⊇ ⋅ =

⊇ ⋅ =

Same-level runs:

Operational justification:

{ }
{ }

( ) Edges for all  in procedure 

( ) Edges for all procedures 

|

|
p

p

r

r

S u r u u p

S p r p

st

st ε

∗

∗

= ∈ →

= ∈ →

Reaching runs:

{ }

{ }

ε

⊇

⊇

⊇

⋅

⋅ =

=

⊇ =

( ) ( )

( )  entry point of 

( ) ( ) ( , , ) basic e

( ) ( , , ) call edge

( ) ( ) ( , , ) call ed

dg

ge,  entry point of 

e

Main Main

p p

R st

R v R u S p e u p v

R st R u e u p v st

st Main

R v R u e e u s v

p

{ }( ) Edges : for all | Nodes Main

rR u r u ust ωω ∗∗= ∈ →∃ ∈
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Algorithm for Computing Affine Relations

1) Compute a basis B with:
Span B = Span {�π�T | π reaches v}

for each program point by a precise abstract interpretation:

Lattice: Subspaces of IF(k+1) x (k+1)

Replace:  

2) Solve the linear equation system:
M a = 0   for all M∈B

{ } { }

{ }

ε

=

                         ( identity matrix)
matrix product (lifted to subspaces)

 for affine assignment edge ( , , ) e

by I I
concatenation by

e by A e u s v
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Theorem

In an affine program:

� The following vector spaces of matrices can be computed

precisely:

α(R(v)) = Span { �π�T | π ∈ R(v) }  for each prg. point v.

� The vector spaces

{ a ∈ Fk+1 | affine relation a is valid at v }  

can be computed precisely for all prg. points v.

� The time complexity is linear in the program size and 
polynomial in the number of variables:  O(n· k8) 

(n size of the program, k number of variables)



An Example

0

1

2

3

4

x1:=x2

x3:=0

x1:=x1-x2-x3

P()

Main: 0

1

2

3

4

x3:=x3+1

x1:=x1+x2+1

x1:=x1-x2

P()

P:
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 
 
 
 
  
 

1 0 0 1

0 1 0 0

0 0 1 0

0 0 0 1

 
 
 
 
  
 

1 1 0 1

0 1 0 0

0 1 1 0

0 0 0 1

 
 
 
 
  
 

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 
 
 
 
  
 

1 1 0 1

0 1 0 0

0 1 1 0

0 0 0 1

 
 
 
 
  
 

1 2 0 2

0 1 0 0

0 0 1 0

0 0 0 1

 
 
 
 
  
 

1 2 0 2

0 1 0 0

0 1 1 0

0 0 0 1

 
 
 
 
  
 

1 2 0 2

0 1 0 0

0 0 1 0

0 0 0 1

 
 
 
 
  
 

⇒ stable!

=



An Example

0

1

2

3

4

x1:=x2

x3:=0

x1:=x1-x2-x3

P()

Main:

    
    
                    

1 0 0 0 0 1 0 1

0 1 1 0 0 0 0 0
,

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Span

0 2 3 10a a a a= ∧ = = −⇔

− − = ∈1 1 1 2 1 3 1

Just the affine relations of the form 

          a a a 0 (a )

are valid at 3

x x x F⇒ ☺☺☺☺

+ + + =0 1 1 2 2 3 3a 0 is valid at 3a x a x a x

      
      
      = =
      
            

      

0 0

1 1

2 2

3 3

1 0 0 0 0 1 0 1

0 1 1 0 0 0 0 0
0 and 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

a a

a a

a a

a a

⇔
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Extensions

� Also in the paper:
� Local variables, value parameters, return values

� Computing polynomial relations of bounded degree

� Affine pre-conditions

� Formalization as an abstract interpretation

� In follow-up papers (see webpage):
� Computing over modular rings (e.g. modulo 2w) or PIRs

� Forward algorithm
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End of Excursion 2
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Overview

� Introduction

� Fundamentals of Program Analysis

Excursion 1

� Interprocedural Analysis

Excursion 2

� Analysis of Parallel Programs

Excursion 3

Appendix

� Conclusion



Interprocedural Analysis of Parallel Programs

Q()||P()

Main:

R()

P()

c:=a+b

P:

c:=a+b

R()||Q()

R:

c:=a+ba:=7
c:=a+ba:=7

Q:

P()

parallel call edge
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, , ,

, , , , , , , ,

,

,

,, , , , , , , , ,

x y

x y x y x y

x y x y x y

a b

a b a b a b

a b a b a b

 
 

⊗ =  
 
 

Interleaving- Operator ⊗⊗⊗⊗
(Shuffle-Operator) 

Example:
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{ }

{ }

0 1 0 1

( ) ( )  return point of 

( )  entry point of 

( ) ( ) ( , , ) base edge

S(v) ( ) ( ) ( , , ) call edg

S(v) ( ) ( ( ) ( )) ( , || , ) parallel call edg

e

e

p p

p p

S u S

S p S r r p

S st st p

S v S u e e u s v

S u S p e u

p

p

S p e u p

v

p v

ε

⊇

⊇

⊇ ⋅ =

⊇ ⋅ =

⊇ ⋅ ⊗ =

Same-level runs:

Operational justification:

{ }
{ }

( ) Edges for all  in procedure 

( ) Edges for all procedures 

|

|
p

p

r

r

S u r u u p

S p r p

st

st ε

∗

∗

= ∈ →

= ∈ →

Constraint System for Same-Level Runs

[Seidl/Steffen: ESOP 2000]
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Operational justification:

Reaching runs:

−⊇ ⋅ ⊗

⊇

⊇ ⋅ =

= =1 0 1

( , ) ( )  program point in procedure q

( , ) ( ) ( , ) ( , , _) call edge in pro

( , ) ( ) ( ( , ) ( )

c. q

( , || , _) parallel call edge in proc. q, 0 1) ,i i

R u q S u u

R u q S v R u p e v p

e v pR u q S v R p iu p P p

{ }∗= ∈ →∃ ∈ u( , ) Edges : , At ( )

for progam point  and procedure 

| Config q

rR u q r c c

u q

c st

Interleaving potential:

 program point and ( ) p procedu( e, ) rP p R u p u⊇

{ }( ) Edges :| Config q

rP q r cc st∗= ∈ →∃ ∈

Constraint System for a 
Variant of Reaching Runs

[Seidl/Steffen: ESOP 2000]
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, , ,

, , , , , , , ,

,

,

,, , , , , , , , ,

x y

x y x y x y

x y x y x y

a b

a b a b a b

a b a b a b

 
 

⊗ =  
 
 

Interleaving- Operator ⊗⊗⊗⊗
(Shuffle-Operator) 

Example:

The only new ingredient:

☺☺☺☺interleaving operator ⊗ must be abstracted !



Case: Availability of Single Expression

k (ill)

i (gnore)

g (enerate)

The lattice:

kkkk

kggg

kgii

kgi⊗#

Abstract shuffle operator:

Main lemma:

Treat other (separable) bitvector problems analogously...

☺☺☺☺

{ }
{ }

{ }
�1 1

, 1

, , : ... ...j n j

i

k

j j

jg

f f f f f fikg

∈

+

∈ ∨ =

∀ ∈ =
�	
	�
� � � � �

⇒ precise interprocedural analyses for all bitvector problems !

[Seidl/Steffen: ESOP 2000]

#

1 2 1 2 2 1:f f f f f f⊗ = ⋅ ⋅⊔
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Precise Fixpoint-Based Analysis 
of Programs with

Thread-Creation and Procedures

Markus Müller-Olm

Westfälische Wilhelms-Universität Münster

Joint work with:

Peter Lammich

[same place]

CONCUR 2007



(My) Main Interests of Recent Years

Data aspects
� algebraic invariants over Q, Z, Zm (m = 2n) in sequential programs, 

partly with recursive procedures

� invariant generation relative to Herbrand interpretation

Control aspects

� recursion

� concurrency with process creation / threads

� synchronization primitives, in particular locks/monitors

Technics used

� fixpoint-based

� automata-based

� (linear) algebra

� syntactic substitution-based techniques

� ...



Another Program Model

4

5

6

7

D

call Q

Q:

C

Procedures

0

1

2

33

B

call P

P:

A

spawn Q

Recursive
procedure calls

Spawn
commands

Basic 
actions

Return point, xq, 
of Q

Entry point, eq, 
of Q



Spawns are Fundamentally Different

4

5

6

7

D

call Q

Q:

C

0

1

2

3

B

call P

P:

A

spawn Q

P induces trace language:  L = ∪ { An ⋅ ( Bm ⊗ (Ci⋅ Dj) | n ≥ m≥ 0, i ≥ j ≥ 0 }

Cannot characterize L by constraint system with „⋅“ and „⊗“. 

[Bouajjani, MO, Touili: CONCUR 2005] ����
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Gen/Kill-Problems

� Class of simple but important DFA problems

� Assumptions:
� Lattice (L,⊑) is distributive

� Transfer functions have form fe(l)= (l ⊓ kille) ⊔ gene with kill,gen∈L

� Examples:

� bitvector problems, e.g.

� available expressions, live variables, very busy expressions, ...
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Data Flow Analysis

Goal:

Compute, for each program point u: 

� Forward analysis:    MOPF[u] = αF(Reach[u]) , where αF(X) = ⊔ { fw(x0) | w ∈ X }

� Backward analysis: MOPB[u] = αB(Leave[u]) , where αB(X) = ⊔ { fw(⊥) | wR ∈ X }

{ }

{ }

1

*

1

Reach[u] | :{[ ]} ( )

Leave[u] | :{[ ]} _ ( )

( ) : ( )

,  for 
n

w

Main u

w

Main u

u

w e e n

w c e c at c

w c e c at c

at c w uw c

f f f w e e

= ∃ → ∧

= ∃ → → ∧

⇔ ∃ ∈

= ⋅⋅⋅ = ⋅⋅⋅� �
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Data Flow Analysis

Goal:

Compute, for each program point u: 

� Forward analysis:    MOPF[u] = αF(Reach[u]) , where αF(X) = ⊔ { fw(x0) | w ∈ X }

� Backward analysis: MOPB[u] = αB(Leave[u]) , where αB(X) = ⊔ { fw(⊥) | wR ∈ X }

Problem for programs with threads and procedures:

We cannot characterize Reach[u] and Leave[u] by a constraint system

with operators „concatenation“ and „interleaving“.
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One Way Out

� Derive alternative characterization of MOP-solution:

� reason on level of execution paths

� exploit properties of gen/kill-problems

� Characterize the path sets occuring as least solutions of 
constraint systems

� Perform analysis by abstract interpretation of these
constraint systems

[Lammich/MO: CONCUR 2007]
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Forward Analysis



Directly Reaching Paths and 
Potential Interleaving

Reaching path:             a suitable interleaving of the red and blue paths

Directly reaching path: the red path

Potential interference:   set of edges in the blue paths (note: no order information!)

Formalization by augmented operational semantics with markers (see paper)

at u

eMain
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Forward MOP-solution

Theorem: For gen/kill problems:

MOPF[u] = αF(DReach[u]) ⊔ αPI(PI[u]), 

where αPI(X) = ⊔ { gene | e ∈ X }.

Remark

� DReach[u] and PI[u] can be characterized by constraint systems

(see paper)

� αF(DReach[u]) and αPI(PI[u]) can be computed by an abstract
interpretation of these constraint systems
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Characterizing Directly Reaching Paths

Same level paths:

Directly reaching paths:
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Backwards Analysis



Directly Leaving Paths and 
Potential Interleaving

Leaving path: a suitable interleaving of orange, black and parts of blue paths

Directly leaving path: a suitable interleaving of orange and black paths

Potential interference:   the edges in the blue paths

Formalization by augmented operational semantics with markers (see paper)

at u

eMain
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Interleaving from Threads created in the Past

Theorem: For gen/kill problems:

MOPB[u] = αB(DLeave[u]) ⊔ αPI(PI[u]), 

where αPI(E) = ⊔ { gene | e ∈ E }.

Remark

� We know no simple characterization of DLeave[u] by a constraint
system.

� Main problem: Threads generated in a procedure instance survive
that instance.
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Representative Directly Leaving Paths

at u

A representative

directly leaving path: 

1

1 2 3 4 5

2

3

4

5

. . .

. . .

. . .
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Interleaving from Threads created in the Future

Lemma
αB(DLeave[u]) = αB(RDLeave[u]) (for gen/kill problems).

Corollary

Remark
� RDLeave[u] and PI[u] can be characterized by constraint systems

(see paper)

� αB(RDLeave[u]) and αPI(PI[u]) can be computed by an abstract
interpretation of these constraint systems

MOPB[u] = αB(RDLeave[u]) ⊔ αPI(PI[u])        (for gen/kill problems).
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Also in the Paper

� Formalization of these ideas

� constraint systems for path sets

� validation with respect to operational semantics

� Parallel calls in combination with threads

� threads become trees instead of stacks ...

� Analysis of running time: 

� global information in time linear in the program size
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Summary

� Forward- and backward gen/kill-analysis for programs with

threads and procedures

� More efficient than automata-based approach

� More general than known fixpoint-based approach

� Current work:  Precise analysis in presence of locks/monitors

(see papers at SAS 2008, CAV 2009 for first results)



End of Excursion 3



Appendix

Regular Symbolic Analysis of 
Dynamic Networks of Pushdown Systems
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DPNs: Dynamic Pushdown-Networks

A dynamic pushdown-network (over a finite set of actions Act) 

consists of:

� P, a finite set of control symbols

� Γ, a finite set of stack symbols

� ∆, a finite set of rules of the following form

(with p,p1,p2 ∈ P, γ ∈ Γ, w1,w2∈ Γ*, a∈ Act).

1 1

1 1 2 2

γ

γ

→

→ ⊳

a

a

p p w

p p w p w
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DPNs: Dynamic Pushdown-Networks

A State of a DPN is a word in (PΓ*)+:

... an infinite state space

The transition relation of a DPN:

( )1 1 1 1:γ γ→ ∈∆ →a a
p p w u p v u p w v

( )1 1 2 2 2 2 1 1:γ γ→ ∈∆ →⊳a a
p p w p w u p v u p w p w v

*

1 1 2 2 (with , , 0)
k k i i

p w p w p w p P w k∈ ∈Γ >⋯
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Example

Consider the following DPN with a single rule

Transitions:

γ γγ γ→ ⊳a
p p q

γp

γ γ γγγq q p

γ γγq p

γ γ γ γγγγq q q p

⋮

γ γ γ γ γγγγγq q q q p



Reachability Analysis

Given:

� Model of a system: M

� Set of system states: Bad

Reachability analysis:

� Can a state from Bad be reached from an initial states of the system?

0 0,..., :   Init Bad   ?σ σ σ σ∃ ∋ → → ∈⋯k k

Applications:

� Check safety properties: 

Bad is a set of states to be avoided

� More applications by iterated computation of reachability sets for sub-

models of the system model, e.g. data-flow analysis...

☺☺☺☺



Reachability Analysis

Given:

� Model of a system: M

� Set of system states: Bad

Reachability analysis:

� Can a state from Bad be reached from an initial state of the system? 

Def.:  - pre*(X)   =df { σ | ∃ σ´ ∈ X: σ →* σ´}

- post*(X) =df { σ | ∃ σ´ ∈ X: σ´ →* σ}

Equivalent formulations of reachability analysis:

� pre*(Bad) ∩ Init ≠ ∅

� post*(Init) ∩ Bad ≠ ∅

⇒  ⇒  ⇒  ⇒  Computation of pre* or post* is key to reachability analysis

0 0,..., :   Init Bad   ?σ σ σ σ∃ ∋ → → ∈⋯k k
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Reachability Analysis of Finite State Systems 

Badϕ0=Init ϕ1 ϕ2 ϕ3
ϕn-1

ϕn
…

{ }

0

1 i

Init

post( )

post( ) | ' : '

ϕ
ϕ ϕ ϕ

σ σ σ σ
+

=
= ∪

= ∃ ∈ →

df

i df i

df
X X ⇒⇒⇒⇒ Bad reachable from initial state
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Reachability Analysis of Finite State Systems

Badϕ0=Init ϕ1 ϕ2 ϕ3

ϕn-1=ϕn
…

{ }

0

1 i

Init

post( )

post( ) | ' : '

ϕ
ϕ ϕ ϕ

σ σ σ σ
+

=
= ∪

= ∃ ∈ →

df

i df i

df
X X ⇒⇒⇒⇒ Bad not reachable from initial state
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Problems with Infinite-State Systems

� State sets φi can be infinite

⇒⇒⇒⇒ symbolic representation of (certain) infinite state sets

Here: by finite automata
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Example: Representation of an Infinite State Set of a 
DPN by a Word Automaton

p

q

p

q

p

qγ γ

γ

γ

An automaton A:

The regular set of states represented by A:

( )
*

*( )L A q q pγ γ γ=

... an infinite set of states. ☺☺☺☺



Problems with Infinite-State Systems

� State sets φi can be infinite

⇒⇒⇒⇒ symbolic representation of (certain) infinite state sets

Here: by finite (word) automata

� Iterated computation of reachability sets does not terminate in 

general

⇒⇒⇒⇒ Methods for acceleration of the computation

Here: by computing with finite automata
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Computing pre* for DPNs
with Finite Automata

Theorem [Bouajjani, MO, Touili, 2005]

Generalization of a known technique for single pushdown systems: 

saturation of an automaton for R.

Proof:

⇒⇒⇒⇒ Reachability analysis is effective for regular sets Bad of states !

For every DPN and every regular state set R, 

pre*(R) is regular and can be computed in polynomial time.

[Bouajjani/Esparza/Maler, 1997]
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Example: Reachability Analysis for DPNs

Consider again DPN with the rule

Analysis problem: can Bad be reached from pγ ?

( )
*

*Bad ( )q q p L Aγ γ γ= =

and the infinite set of states

γ γγ γ→ ⊳a
p p q



Example: Reachability Analysis for DPNs

1. Step: Saturate automaton for Bad with the DPN rule:

Resulting automaton Apre* represents pre*(Bad) !

p

q

p

q

p

qγ γ

γ

γ

γ γγ γ→ ⊳a
p p q

2. Step: Check, whether pγ is accepted by Apre* or not

Result: Bad is reachable from pγ, as Apre* accepts pγ.

γ

γ



Modelling Programs with Procedures and Threads
by DPNs

m1

m2

m3

m4

x:= y+1

call Q

Q:

y:= x*y

n1

n2

n3

n4

y:= 0

call Main

Main:

x:=x+1

spawn Q

: 1

1 2

2 1 3

: 0

3 4

1 4 1

# #

# #

# #

# # #

P

Q

x x

call

y

spawn

N N

N N N

N N

N N M

= +

=

→

→

→

→ ⊳

: *

1 2

2 1 3

: 1

3 4

1 4

# #

# #

# #

# #

Q

y x y

call

x y

skip

M M

M M M

M M

N M

=

= +

→

→

→

→



Live Variables Analysis 
via 

Iterated pre[*]-computation

Observation

Variable x is live at u

* *( ( ( )))
non def useMain ue pre At pre pre Conf

−∆ ∆∈ ∩

iff

Remark

This condition can be checked by computing with automata

Esparza, Knoop

Steffen, Schmidt
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A Non-Representability Result

u

v

w

x

D

call Q

Q:

C

a

b

c

d

B

call P

P:

A

spawn Q

- P induces trace language:  L = ∪ { An ⋅ ( Bm ⊗ (Ci⋅ Dj)) | n ≥ m≥ 0, i ≥ j ≥ 0 }

- L cannot be characterized by constraint system with operators

„concatenation“ and  „interleaving“



Forward Reachability Analysis of DPNs

Observation [Bouajjani, MO, Touili, 2005]

Consider DPN with the rule

Example:

In general, post*(R) is not regular, not even if R is finite.

γ γγ γ→ ⊳a
p p q

γp

γ γ γγγq q p
γ γγq p

γ γ γ γγγγq q q p

⋮
γ γ γ γ γγγγγq q q q p

post*({pγ}) = { (qγ)kpγk+1 |  k ≥ 0 }  is not regular.

Theorem [Bouajjani, MO, Touili, 2005]

For every DPN, post*(R) is contextfree if R is contextfree.

It can be computed in polynomial time.

Recall:
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A Little Bit of Synchronization ...

� CDPNs – Constrained Dynamic Pushdown Networks

� Idea: Threads can observe (stable regular patterns of) their children, 
but not vice versa

� States are represented by trees in order to mirror father/child
relationship

� Use tree automata techniques for
� representation of state sets and 
� symbolic computation of pre* (under certain conditions)

� See the CONCUR 2005 paper

� More recent papers: lock and monitor-sensitive analysis



Comparison of 
Fixpoint-based and Automata-based Algorithm

Fixpoint-based algorithm: [Lammich/MO: CONCUR 2007]

� computes information for all program points at once

in linear time

� can use bitvector operations for computing multiple bits at once

Automata-based algorithm: [Bouajjani/MO/Touili: CONCUR 2005]

� based on pre*-computations of regular sets of configurations

� needs linear time for each program point: 

thus: overall running time is quadradic

� must be iterated for each bit

� more generic w.r.t. sets of configurations



End of Appendix
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Conclusion

� Program analysis very broad topic

� Provides generic analysis techniques for (software) systems

� Here just one path through the forest

� Many interesting topics not covered



Thank you !


