(Optimal) Program Analysis of
Sequential and Parallel Programs

Markus Müller-Olm
Westfälische Wilhelms-Universität Münster, Germany
3rd Summer School on
Verification Technology, Systems, and Applications
Luxemburg, September 6-10, 2010

Dream of Automatic Analysis

specification of property

Fundamental Problem

Rice‘s Theorem (informal version):
All non-trivial semantic properties of programs from a Turing-complete programming language are undecidable.

Consequence:

For Turing-complete programming languages:
Automatic analyzers of semantic properties, which are both correct and complete are impossible.

What can we do about it?

- Give up „automatic": interactive approaches:
- proof calculi, theorem provers, ...
- Give up „sound": ???
- Give up „complete": approximative approaches:
- Approximate analyses:
- data flow analysis, abstract interpretation, type checking, ...
- Analyse weaker formalism:
- model checking, reachability analysis, equivalence- or preorderchecking, ...

What can we do about it？

」 Gilye uf „亏ロunclat ？？？？
－Give up „complete＂：approximative approaches：
－Approximate analyses：
－data flow analysis，abstract interpretation，type checking，．．．
－Analyse weaker formalism：
－model checking，reachability analysis，equivalence－or preorder－ checking，．．．

Overview

- Introduction
- Fundamentals of Program Analysis Excursion 1
- Interprocedural Analysis

Excursion 2

- Analysis of Parallel Programs

Excursion 3
Appendix

- Conclusion

Overview

- Introduction
- Fundamentals of Program Analysis

Excursion 1

- Interprocedural Analysis Excursion 2
- Analysis of Parallel Programs

Excursion 3
Appendix

- Conclusion

From Programs to Flow Graphs

```
main()
{ x=17;
        if (x>63)
    { y=17;x=10;x=x+1;}
    else
    { x=x+42;
        while (y<99)
        { y=x+y;x=y+1;}
        y=11;}
        x=y+1;
}
```


Dead Code Elimination

Goal:
find and eliminate assignments that compute values which are never used
Fundamental problem:
undecidability
\rightarrow use approximate algorithm:
e.g.: ignore that guards prohibit certain execution paths

Technique:

1) perform live variables analyses:
variable x is live at program point u iff
there is a path from u on which x is used before it is modified
2) eliminate assignments to variables that are not live at the target point

Live Variables

Live Variables Analysis

Interpretation of Partial Orders in Approximate Program Analysis

$x \sqsubseteq y:$

- x is more precise information than y.
- y is a correct approximation of x.
$\sqcup X$ for $X \subseteq L$, where (L, \sqsubseteq) is the partial order:
the most precise information consistent with all informations $x \in X$.

Example:
order for live variables analysis:

- ($P(\mathrm{Var}), \subseteq) \quad$ with $\mathrm{Var}=$ set of variables in the program

Remark:
often dual interpretation in the literature!

Complete Lattice

Complete lattice (L, \sqsubseteq):

- a partial order (L, \sqsubseteq) for which the least upper bound, $\sqcup X$, exists for all $X \subseteq L$.

In a complete lattice (L, \sqsubseteq) :

- $\sqcap X$ exists for all $X \subseteq L$:
$\sqcap X=\sqcup\{x \in L \mid x \sqsubseteq X\}$
- least element \perp exists:
$\perp=\sqcup L=\sqcap \emptyset$
- greatest element T exists:
$\top=\sqcup \emptyset=\sqcap L$

Example:

- for any set A let $\mathrm{P}(A)=\{X \mid X \subseteq A\} \quad$ (power set of A).
- $(P(A), \subseteq)$ is a complete lattice.
- $\quad(P(A), \supseteq)$ is a complete lattice.

Specifying Live Variables Analysis by a Constraint System

Compute (smallest) solution over (L, \sqsubseteq) $=(\mathrm{P}(\mathrm{Var}), \subseteq$) of:

$$
\begin{array}{lll}
A[f i n] & \sqsupseteq \text { init, } & \text { for fin, the termination node } \\
A[u] \sqsupseteq f_{e}(A[v]), & \text { for each edge } e=(u, s, v)
\end{array}
$$

where init = Var,

$$
f_{e}: \mathrm{P}(\text { Var }) \rightarrow \mathrm{P}(\text { Var }), f_{e}(x)=x \backslash \text { kill }_{e} \cup \text { gen }_{e}, \text { with }
$$

- kill $_{e}=$ variables assigned at e
- gen $_{e}=$ variables used in an expression evaluated at e

Specifying Live Variables Analysis by a Constraint System

Remarks:

1. Every solution is „correct" (whatever this means).
2. The smallest solution is called MFP-solution; it comprises a value MFP $[u] \in L$ for each program point u.
3. MFP abbreviates „maximal fixpoint" for traditional reasons.
4. The MFP-solution is the most precise one.

Backwards vs. Forward Analyses

Live Variables Analysis is a Backwards Analysis, i.e.:

- analysis info flows from target node to source node of an edge
- the initial inequality is for the termination node of the flow graph

$$
\begin{array}{lll}
A[t e] \sqsupseteq i n i t, & \text { for te, the termination point } \\
A[u] \sqsupseteq f_{e}(A[v]), & & \text { for each edge } e=(u, s, v) \in E
\end{array}
$$

Dually, there are Forward Analyses i.e..:

- analysis info flows from source node to target node of an edge.
- the initial inequality is for the start node of the flow graph

$$
\begin{array}{lll}
A[s t] & \sqsupseteq \text { init, } & \\
\text { for st, the start node } \\
A[v] \sqsupseteq f_{e}(A[u]), & & \text { for each edge } e=(u, s, v) \in E
\end{array}
$$

Examples: reaching definitions, available expressions, constant propagation, ...

Data-Flow Frameworks

Correctness

- generic properties of frameworks can be studied and proved

Implementation

- efficient, generic implementations can be constructed

Three Questions

- Do (smallest) solutions always exist?
- How to compute the (smallest) solution ?
- How to justify that a solution is what we want ?

Three Questions

- Do (smallest) solutions always exist?

」 How to corripute the (srnallest) solution?

」 How to justify tinat el solution is whair we went?

Knaster-Tarski Fixpoint Theorem

Definitions:
Let (L, \sqsubseteq) be a partial order.

- $f: L \rightarrow L$ is monotonic iff $\forall x, y \in L: x \sqsubseteq y \Rightarrow f(x) \sqsubseteq f(y)$.
- $\mathrm{x} \in L$ is a fixpoint of f iff $f(x)=x$.

Fixpoint Theorem of Knaster-Tarski:
Every monotonic function f on a complete lattice L has a least fixpoint lfp(f) and a greatest fixpoint gfp(f).

More precisely,

$$
\begin{array}{ll}
\operatorname{lfp}(f)=\sqcap\{x \in L \mid f(x) \sqsubseteq x\} & \text { least pre-fixpoint } \\
\operatorname{gfp}(f)=\sqcup\{x \in L \mid x \sqsubseteq f(x)\} & \text { greatest post-fixpoint }
\end{array}
$$

Knaster-Tarski Fixpoint Theorem

Picture from: Nielson/Nielson/Hankin, Principles of Program Analysis

Smallest Solutions Always Exist

- Define functional $F: L^{n} \rightarrow L^{n}$ from right hand sides of constraints such that:
- σ solution of constraint system iff σ pre-fixpoint of F
- Functional F is monotonic.
- By Knaster-Tarski Fixpoint Theorem:
- F has a least fixpoint which equals its least pre-fixpoint.

Three Questions

- How to compute the (smallest) solution?

」 How to justify trat al solution is what we want?

Workset-Algorithm

```
\(W=\varnothing ;\)
forall (program points \(v\) ) \(\{A[v]=\perp ; W=W \cup\{v\} ;\}\)
A[fin] = init;
while \(W \neq \varnothing\) \{
    \(v=\operatorname{Extract}(W)\);
    forall ( \(u, s\) with \(e=(u, s, v)\) edge) \{
        \(t=f_{e}(A[v])\);
        if \(\neg(t \sqsubseteq A[u])\{\)
        \(A[u]=A[u] \sqcup t ;\)
        \(W=W \cup\{u\}\);
        \}
    \}
\}
```


Invariants of the Main Loop

a) $\quad A[u] \sqsubseteq \operatorname{MFP}[u] \quad$ f.a. prg. points u
b1) $A[f i n] \sqsupseteq$ init
b2) $v \notin W \Rightarrow A[u] \sqsupseteq f_{e}(A[v])$ f.a. edges $e=(u, s, v)$

If and when workset algorithm terminates:
A is a solution of the constraint system by b1)\&b2)

$$
\Rightarrow \quad A[u] \sqsupseteq M F P[u] \text { f.a. } u
$$

Hence, with a): $A[u]=M F P[u]$ f.a. u

How to Guarantee Termination

- Lattice ($L, \underline{\square}$) has finite heights
\Rightarrow algorithm terminates after at most
\#prg points • (heights(L)+1)
iterations of main loop
- Lattice (L, \sqsubseteq) has no infinite ascending chains
\Rightarrow algorithm terminates
- Lattice (L, \sqsubseteq) has infinite ascending chains:
\Rightarrow algorithm may not terminate;
use widening operators in order to enforce termination

Widening Operator

$\nabla: L \times L \rightarrow L$ is called a widening operator iff

1) $\forall x, y \in L: x \sqcup y \sqsubseteq x \nabla y$
2) for all sequences $\left(I_{n}\right)_{n}$, the (ascending) chain $\left(w_{n}\right)_{n}$

$$
\mathrm{w}_{0}=I_{0}, \quad w_{i+1}=w_{i} \nabla I_{i+1} \text { for } i>0
$$

stabilizes eventually.

Workset-Algorithm with Widening

```
\(W=\varnothing ;\)
forall (program points \(v\) ) \(\{A[v]=\perp ; W=W \cup\{v\} ;\}\)
A[fin] = init;
while \(W \neq \varnothing\) \{
    \(v=\operatorname{Extract}(W)\);
    forall ( \(u, s\) with \(e=(u, s, v)\) edge) \{
        \(t=f_{e}(A[v]) ;\)
        if \(\neg(t \sqsubseteq A[u])\{\)
        \(A[u]=A[u] \nabla t ;\)
        \(W=W \cup\{u\} ;\)
        \}
    \}
\}
```


Invariants of the Main Loop

$\frac{\text { a) A[U] MFPIU] }}{}$ f.a. prg. points u	
b1) $A[$ fin $] \sqsupseteq$ init	
b2) $v \notin W \Rightarrow A[u] \sqsupseteq f_{e}(A[v])$	f.a. edges $e=(u, s, v)$

With a widening operator we enforce termination but we loose invariant a).

Upon termination, we have:
A is a solution of the constraint system by b1)\&b2)

$$
\Rightarrow \quad A[u] \sqsupseteq M F P[u] \quad \text { f.a. } u
$$

Compute a sound upper approximation (only)!

Example of a Widening Operator: Interval Analysis

The goal
Find save interval for the values of program variables, e.g. of i in:

```
for (i=0; i<42; i++)
    if (0<=i and i<42)
    {
        A1 = A+i;
        M[A1] = i;
        }
```

..., e.g., in order to remove the redundant array range check.

Example of a Widening Operator: Interval Analysis

The lattice...

$$
(L, \sqsubseteq)=(\{[I, u] \mid I \in \mathbb{Z} \cup\{-\infty\}, u \in \mathbb{Z} \cup\{+\infty\}, I \leq u\} \cup\{\varnothing\}, \subseteq)
$$

... has infinite ascending chains, e.g.:

$$
[0,0] \subset[0,1] \subset[0,2] \subset \ldots
$$

A widening operator:

$$
\begin{aligned}
& {\left[I_{0}, u_{0}\right] \nabla\left[I_{1}, u_{1}\right]=\left[I_{2}, u_{2}\right] \text {, where }} \\
& \qquad I_{2}=\left\{\begin{array}{cc}
I_{0} & \text { if } I_{0} \leq I_{1} \\
-\infty & \text { otherwise }
\end{array} \text { and } u_{2}=\left\{\begin{array}{cc}
u_{0} & \text { if } u_{0} \geq u_{1} \\
+\infty & \text { otherwise }
\end{array}\right.\right.
\end{aligned}
$$

A chain of maximal length arising with this widening operator:

$$
\varnothing \subset[3,7] \subset[3,+\infty] \subset[-\infty,+\infty]
$$

Analyzing the Program with the Widening Operator

	1		2		3	
	l	u	l	u	l	u
0	$-\infty$	$+\infty$	$-\infty$	$+\infty$		
1	0	0	0	$+\infty$		
2	0	0	0	$+\infty$		
3	0	0	0	$+\infty$		
4	0	0	0	$+\infty$	dito	
5	0	0	0	$+\infty$		
6	1	1	1	$+\infty$		
7		\perp	42	$+\infty$		
8		\perp	42	$+\infty$		

$\Rightarrow \quad$ Result is far too imprecise !

Remedy 1: Loop Separators

- Apply the widening operator only at a „loop separator" (a set of program points that cuts each loop).
- We use the loop separator $\{1\}$ here.

	1		2		3	
	l	u	l	u	l	u
0	$-\infty$	$+\infty$	$-\infty$	$+\infty$		
1	0	0	0	$+\infty$		
2	0	0	0	41		
3	0	0	0	41		
4	0	0	0	41		
4		dito				
5	0	0	0	41		
6	1	1	1	42		
7		\perp		\perp		
8		\perp	42	$+\infty$		

$\Rightarrow \quad$ Identify condition at edge from 2 to 3 as redundant !

Remedy 2: Narrowing

- Iterate again from the result obtained by widening
--- Iteration from a prefix-point stays above the least fixpoint ! ---

	0		1		2	
	l	u	l	u	l	u
0	$-\infty$	$+\infty$	$-\infty$	$+\infty$	$-\infty$	$+\infty$
1	0	$+\infty$	0	$+\infty$	0	42
2	0	$+\infty$	0	41	0	41
3	0	$+\infty$	0	41	0	41
4	0	$+\infty$	0	41	0	41
5	0	$+\infty$	0	41	0	41
6	1	$+\infty$	1	42	1	42
7	42	$+\infty$				
8	42	$+\infty$	42	$+\infty$	42	42

$\Rightarrow \quad$ We get the exact result in this example (but not guaranteed) !

Remarks

- Can use a work-list instead of a work-set
- Special iteration strategies in special situations
- Semi-naive iteration

Recall: Specifying Live Variables Analysis by a Constraint System

Compute (smallest) solution over (L, \sqsubseteq) $=(\mathrm{P}(\mathrm{Var}), \subseteq$) of:

$$
\begin{array}{ll}
A[f i n] \sqsupseteq \text { init, } & \text { for fin, the termination node } \\
A[u] \sqsupseteq f_{e}(A[v]), & \text { for each edge } e=(u, s, v)
\end{array}
$$

where init = Var,

$$
f_{e}: P(\operatorname{Var}) \rightarrow \mathrm{P}(\operatorname{Var}), f_{e}(x)=x \backslash \text { kill }_{e} \cup \text { gen }_{e}, \text { with }
$$

- kill $_{e}=$ variables assigned at e
- gen $_{e}=$ variables used in an expression evaluated at e

Recall: Questions

- Do (smallest) solutions always exist ?
- How to compute the (smallest) solution ?
- How to justify that a solution is what we want ?

Three Questions

- How to justify that a solution is what we want ?
- MOP vs MFP-solution
- Abstract interpretation

Three Questions

- How to justify that a solution is what we want ?
- MOP vs MFP-solution

」 Ábetrest interpretelios

Assessing Data Flow Frameworks

Live Variables

Meet-Over-All-Paths Solution (MOP)

- Forward Analysis

$$
\operatorname{MOP}[u]:=\bigsqcup_{p \in \text { Pathss }[\text { entry, } u]} \mathrm{F}_{p} \text { (init) }
$$

- Backward Analysis

$$
\operatorname{MOP}[u]:=\bigsqcup_{p \in \operatorname{Paths}[u, \text { exit }]} \mathrm{F}_{p}(\text { init })
$$

- Here: „Join-over-all-paths"; MOP traditional name

Coincidence Theorem

Definition:
A framework is positively-distributive if

$$
f(\sqcup X)=\sqcup\{f(x) \mid x \in X\} \text { for all } \emptyset \neq X \subseteq L, f \in F \text {. }
$$

Theorem:
For any instance of a positively-distributive framework:

$$
\operatorname{MOP}[u]=\operatorname{MFP}[u] \quad \text { for all program points } u
$$

(if all program points reachable).

Remark:
A framework is positively-distributive if a) and b) hold:
(a) it is distributive: $\quad f(x \sqcup y)=f(x) \sqcup f(y)$ f.a. $f \in F, x, y \in L$.
(b) it is effective:
L does not have infinite ascending chains.

Remark: All bitvector frameworks are distributive and effective.

Lattice for Constant Propagation

lattice $L: \quad\{\rho \mid \rho: \operatorname{Var} \rightarrow(\mathbb{Z} \cup\{\top\})\} \cup\{\perp\}$

$$
\begin{aligned}
\sqsubseteq: \quad \rho \sqsubseteq \rho^{\prime}: \Leftrightarrow & \rho=\perp \vee \\
& \left(\rho, \rho^{\prime} \neq \perp \wedge \forall x: \rho(x) \sqsubseteq \rho^{\prime}(x)\right)
\end{aligned}
$$

Correctness Theorem

Definition:
A framework is monotone if for all $f \in F, x, y \in L$:

$$
x \sqsubseteq y \Rightarrow f(x) \sqsubseteq f(y)
$$

Theorem:
In any monotone framework:
MOP[u] \sqsubseteq MFP[u] for all program points u.

Remark:
Any "reasonable" framework is monotone.

Assessing Data Flow Frameworks

Where Flow Analysis Looses Precision

Potential loss of precision

Three Questions

- How to justify that a solution is what we want ?

- Abstract interpretation

Abstract Interpretation

constraint system for Reference Semantics on concrete lattice ($\mathrm{D}, \underline{\sqsubseteq}$)

MFP

Often used as reference semantics:

- sets of reaching runs:

$$
(\mathrm{D}, \sqsubseteq)=\left(\mathrm{P}\left(\text { Edges }^{*}\right), \subseteq\right) \quad \text { or } \quad(\mathrm{D}, \sqsubseteq)=\left(\mathrm{P}\left(\text { Stmt }^{*}\right), \subseteq\right)
$$

- sets of reaching states („collecting semantics"):

$$
(\mathrm{D}, \sqsubseteq)=\left(\mathrm{P}\left(\Sigma^{*}\right), \subseteq\right) \quad \text { with } \quad \Sigma=\mathrm{Var} \rightarrow \mathrm{Val}
$$

Abstract Interpretation

constraint system for Reference Semantics on concrete lattice ($\mathrm{D}, \underline{\square}$)

Replace

concrete operators o by abstract operators $0^{\#}$
constraint system for
Analysis on abstract lattice ($\mathrm{D}^{\#}$, ■ ${ }^{\#}$)

MFP

Assume a universally-disjunctive abstraction function $\alpha: D \rightarrow D^{\#}$.
Correct abstract interpretation:
Show $\alpha\left(o\left(x_{1}, \ldots, x_{k}\right)\right) \sqsubseteq^{\#} o^{\#}\left(\alpha\left(x_{1}\right), \ldots, \alpha\left(x_{k}\right)\right)$ f.a. $x_{1}, \ldots, x_{k} \in L$, operators 0 Then α (MFP[u]) $\sqsubseteq^{\#}$ MFP\#[u] f.a. u

Correct and precise abstract interpretation:
Show $\alpha\left(0\left(x_{1}, \ldots, x_{k}\right)\right)=o^{\#}\left(\alpha\left(x_{1}\right), \ldots, \alpha\left(x_{k}\right)\right)$ f.a. $x_{1}, \ldots, x_{k} \in L$, operators 0
Then $\alpha($ MFP $[u])=$ MFP\# $[u]$ f.a. u
Use this as a guideline for designing correct (and precise) analyses !

Abstract Interpretation

Constraint system for reaching runs:

$$
\begin{array}{ll}
R[s t] \supseteq\{\varepsilon\}, & \text { for } s t, \text { the start node } \\
R[v] \supseteq R[u] \cdot\{\langle e\rangle\}, & \text { for each edge } e=(u, s, v)
\end{array}
$$

Operational justification:

Let $\underline{R}[u]$ be components of smallest solution over $P\left(\right.$ Edges $\left.{ }^{*}\right)$. Then

$$
\underline{R}[u]=R^{o \infty}[u]=_{\text {def }}\left\{r \in \text { Edges }^{*} \mid s t \xrightarrow{r} u\right\} \quad \text { for all } u
$$

Prove:
a) $R^{\circ o p}[u]$ satisfies all constraints
(direct)

$$
\Rightarrow \quad \underline{R}[u] \subseteq R^{\circ p}[u] \quad \text { f.a. } u
$$

b) $w \in R \circ p[u] \Rightarrow w \in \underline{R}[u]$
(by induction on $|\mathrm{w}|$)

$$
\Rightarrow \quad \mathrm{Rop}[u] \subseteq \underline{R}[u] \quad \text { f.a. } u
$$

Abstract Interpretation

Constraint system for reaching runs:

$$
\begin{array}{lll}
R[s t] \supseteq\{\varepsilon\}, & \text { for st, the start node } \\
R[v] \supseteq R[u] \cdot\{\langle e\rangle\}, & \text { for each edge } e=(u, s, v)
\end{array}
$$

Derive the analysis:
Replace

$\{\varepsilon\}$	
$(\bullet) \cdot\{\langle e\rangle\}$	by init
f_{e}	

Obtain abstracted constraint system:

$$
\begin{array}{ll}
R^{\#}[s t] \sqsupseteq \text { init, } & \text { for } s t, \text { the start node } \\
R^{\#}[v] \sqsupseteq f_{e}\left(R^{\#}[u]\right), & \text { for each edge } e=(u, s, v)
\end{array}
$$

Abstract Interpretation

MOP-Abstraction:
Define $\alpha_{\text {MOP }}: P\left(\right.$ Edges $\left.^{*}\right) \rightarrow L$ by

$$
\alpha_{\text {MOP }}(R)=\sqcup\left\{f_{r}(\text { init }) \mid r \in R\right\} \quad \text { where } f_{\varepsilon}=I d, f_{s \cdot\langle e\rangle}=f_{e} \circ f_{s}
$$

Remark:
For all transfer functions f_{e} are monotone, the abstraction is correct:
$\alpha_{\text {MOP }}(\underline{R}[u]) \sqsubseteq \underline{R}^{\#}[u]$ f.a. prg. points u
If all transfer function f_{e} are universally-distributive, the abstraction is correct and precise:

$$
\alpha_{\text {MOP }}(\underline{R}[u])=\underline{R}^{\#}[u] \quad \text { f.a. prg. points } u
$$

Justifies MOP vs. MFP theorems (cum grano salis).

Overview

- Introduction
- Fundamentals of Program Analysis

Excursion 1

- Interprocedural Analysis

Excursion 2

- Analysis of Parallel Programs

Excursion 3
Appendix

- Conclusion

Challenges for Automatic Analysis

- Data aspects:
- infinite number domains
- dynamic data structures (e.g. lists of unbounded length)
- pointers
- ...
- Control aspects:
- recursion
- concurrency
- creation of processes / threads
- synchronization primitives (locks, monitors, communication stmts ...)
- ...
\Rightarrow infinite/unbounded state spaces

Classifying Analysis Approaches

control aspects

(My) Main Interests of Recent Years

Data aspects:

- algebraic invariants over $\mathbb{Q}, \mathbb{Z}, \mathbb{Z}_{m}\left(m=2^{n}\right)$ in sequential programs, partly with recursive procedures
- invariant generation relative to Herbrand interpretation

Control aspects:

- recursion
- concurrency with process creation / threads
- synchronization primitives, in particular locks/monitors

Technics:

- fixpoint-based
- automata-based
- (linear) algebra
- syntactic substitution-based techniques
- ...

Overview

- Introduction
- Fundamentals of Program Analysis

Excursion 1

- Interprocedural Analysis

Excursion 2

- Analysis of Parallel Programs

Excursion 3
Appendix

- Conclusion

A Note on Karr's Algorithm

Markus Müller-Olm
FernUniversität Hagen
(on leave from Universität Dortmund)
Joint work with
Helmut Seidl (TU München)

ICALP 2004, Turku, July 12-16, 2004

What this Excursion is About...

Affine Programs

- Basic Statements:
- affine assignments:

$$
\begin{aligned}
& x_{1}:=x_{1}-2 x_{3}+7 \\
& x_{i}:=?
\end{aligned}
$$

- unknown assignments:
$\rightarrow \quad$ abstract too complex statements
- Affine Programs:
- control flow graph $\mathrm{G}=(\mathrm{N}, \mathrm{E}, \mathrm{st})$, where
- N
- $\mathrm{E} \subseteq \mathrm{N} \times \operatorname{Stmt} \times \mathrm{N}$
- $s t \in N$
finite set of program points
set of edges
start node
- Note: non-deterministic instead of guarded branching

The Goal: Precise Analysis

Given an affine program, determine for each program point

- all valid affine relations:

$$
\mathrm{a}_{0}+\sum \mathrm{a}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}=0 \quad \mathrm{a}_{\mathrm{i}} \in \mathbb{Q}
$$

$$
5 x_{1}+7 x_{2}-42=0
$$

More ambitious goal:

- determine all valid polynomial relations (of degree $\leq \mathrm{d}$):

$$
p\left(x_{1}, \ldots, x_{k}\right)=0 \quad p \in \mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]
$$

$$
5 x_{1} x_{2}{ }^{2}+7 x_{3}{ }^{3}=0
$$

Applications of Affine (and Polynomial) Relations

- Data-flow analysis:
- definite equalities:

$$
\begin{aligned}
& x=y \\
& x=42 \\
& x=5 y z+17 \\
& x y+42=y^{2}+5
\end{aligned}
$$

- constant detection:
- discovery of symbolic constants:
- complex common subexpressions:
- loop induction variables
- Program verification
- strongest valid affine (or polynomial) assertions (cf. Petri Net invariants)

Karr's Algorithm

- Determines valid affine relations in programs.
- Idea: Perform a data-flow analysis maintaining for each program point a set of affine relations, i.e., a linear equation system.
- Fact: Set of valid affine relations forms a vector space of dimension at most $k+1$, where $k=\#$ program variables.
\Rightarrow can be represented by a basis.
\Rightarrow forms a complete lattice of height $\mathrm{k}+1$.

Deficiencies of Karr's Algorithm

- Basic operations are complex
- „non-invertible" assignments
- union of affine spaces
- $O\left(n \cdot k^{4}\right)$ arithmetic operations
- n size of the program
- k number of variables
- Numbers may have exponential length

Our Contribution

- Reformulation of Karr's algorithm:
- basic operations are simple
- $\mathrm{O}\left(n \cdot k^{3}\right)$ arithmetic operations
- numbers stay of polynomial length: $\mathrm{O}\left(n \cdot k^{2}\right)$

Moreover:

- generalization to polynomial relations of bounded degree
- show, algorithm finds all affine relations in „affine programs"
- Ideas:
- represent affine spaces by affine bases instead of lin. eq. syst.
- use semi-naive fixpoint iteration
- keep a reduced affine basis for each program point during fixpoint iteration

Affine Basis

Concrete Collecting Semantics

Smallest solution over subsets of \mathbb{Q}^{k} of:

$$
\begin{aligned}
& V[s t] \supseteq \mathbb{Q}^{k} \\
& V[v] \supseteq f_{s}(V[u]), \quad \text { for each edge }(u, s, v)
\end{aligned}
$$

where

$$
\begin{aligned}
& f_{x_{i}=t}(X)=\left\{x\left[x_{i} \mapsto t(x)\right] \mid x \in X\right\} \\
& f_{x_{i}=?}(X)=\left\{x\left[x_{i} \mapsto c\right] \mid x \in X, c \in \mathbb{Q}\right\}
\end{aligned}
$$

First goal: compute affine hull of $V[u]$ for each u.

Abstraction

Affine hull:

$$
\operatorname{aff}(X)=\left\{\sum \lambda_{i} x_{i} \mid x_{i} \in X, \lambda_{i} \in \mathbb{Q}, \sum \lambda_{i}=1\right\}
$$

The affine hull operator is a closure operator:

$$
\operatorname{aff}(X) \supseteq X, \operatorname{aff}(\operatorname{aff}(X))=X, X \subseteq Y \Rightarrow \operatorname{aff}(X) \subseteq \operatorname{aff}(Y)
$$

$\Rightarrow \quad$ Affine subspaces of \mathbb{Q}^{k} ordered by set inclusion form a complete lattice:

$$
(D, \sqsubseteq)=\left(\left\{X \subseteq \mathbb{Q}^{k} \mid \operatorname{aff}(X)=X\right\}, \subseteq\right) .
$$

Affine hull is even a precise abstraction:
Lemma: $f_{s}(\operatorname{aff}(X))=\operatorname{aff}\left(f_{s}(X)\right)$.

Abstract Semantics

Smallest solution over (D, ㄷ) of:

$$
\begin{aligned}
& V^{\#}[s t] \sqsupseteq \mathbb{Q}^{k} \\
& V^{\#}[v] \sqsupseteq f_{s}\left(V^{\#}[u]\right), \quad \text { for each edge }(u, s, v)
\end{aligned}
$$

Lemma: $V^{\#}[u]=\operatorname{aff}(V[u])$ for all program points u.

Basic Semi-naive Fixpoint Algorithm

```
forall (v\inN) G[v]=\varnothing;
G[st] = {0, e, ,.., e}\mp@subsup{e}{k}{}}
W ={(st,0),(st,\mp@subsup{e}{1}{}),\ldots,(st,\mp@subsup{e}{k}{})};
while W\not=\varnothing {
    (u,x) = Extract(W);
    forall (s,v with (u,s,v)\inE) {
        t=\llbrackets\rrbracketx;
        if (t\not\inaff(G[v])) {
        G[v]=G[v]\cup{t};
        W=W\cup{(v,t)};
        }
    }
}
```


Example

Correctness

Theorem:

a) Algorithm terminates after at most $n k+n$ iterations of the loop, where $n=|N|$ and k is the number of variables.
b) For all $v \in N$, we have $\operatorname{aff}\left(G_{i f}[v]\right)=V^{\#}[v]$.

Invariants for b)
11: $\forall v \in N: G[v] \subseteq V[v]$ and $\forall(u, x) \in W: x \in V[u]$.
I2: $\forall(u, s, v) \in \mathrm{E}: \operatorname{aff}(G[v] \cup\{\llbracket s \rrbracket x \mid(u, x) \in W\}) \sqsupseteq f_{s}(\operatorname{aff}(G[u])$.

Complexity

Theorem:

a) The affine hulls $\mathrm{V}^{\#}[u]=\operatorname{aff}(V[u])$ can be computed in time $\mathrm{O}\left(n \cdot k^{3}\right)$, where $n=|N|+|E|$.
b) In this computation only arithmetic operations on numbers with $\mathrm{O}\left(n \cdot k^{2}\right)$ bits are used.

Store diagonal basis for membership tests.
Propagate original vectors.

Point + Linear Basis

Example

Determining Affine Relations

Lemma: a is valid for $X \Leftrightarrow a$ is valid for $\operatorname{aff}(X)$.
\Rightarrow suffices to determine the affine relations valid for affine bases; can be done with a linear equation system!

Theorem:

a) The vector spaces of all affine relations valid at the program points of an affine program can be computed in time $O\left(n \cdot k^{3}\right)$.
b) This computation performs arithmetic operations on integers with $\mathrm{O}\left(n \cdot k^{2}\right)$ bits only.

Example

$a_{0}+a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{3}=0$ is valid at 2
$\Leftrightarrow \quad \begin{array}{r}a_{0}+2 a_{1}+3 a_{2}+4 a_{3}\end{array}=0$
$\Leftrightarrow \quad a_{0}=a_{2}, a_{1}=-2 a_{2}, a_{3}=0$
$\Rightarrow \quad 2 x_{1}-x_{2}-1$ is valid at 2

Also in the Paper

- Non-deterministic assignments
- Bit length estimation
- Polynomial relations
- Affine programs + affine equality guards
- validity of affine relations undecidable

End of Excursion 1

(Optimal) Program Analysis of
Sequential and Parallel Programs

Markus Müller-Olm
Westfälische Wilhelms-Universität Münster, Germany
3rd Summer School on
Verification Technology, Systems, and Applications
Luxemburg, September 6-10, 2010

Overview

- Introduction
- Fundamentals of Program Analysis

$$
\text { Excursion } 1
$$

- Interprocedural Analysis

Excursion 2

- Analysis of Parallel Programs

Excursion 3
Appendix

- Conclusion

Interprocedural Analysis

Running Example:
 (Definite) Availability of the single expression a+b

The lattice:
false a+b not available
true
a+b available

Initial value: false

Intra-Procedural-Like Analysis

Conservative assumption: procedure destroys all information; information flows from call node to entry point of procedure

The lattice:
false I
true

Context-Insensitive Analysis

Conservative assumption: Information flows from each call node to entry of procedure and from exit of procedure back to return point

The lattice:
false
true

Context-Insensitive Analysis

Conservative assumption: Information flows from each call node to entry of procedure and from exit of procedure bac to return point

Recall: Abstract Interpretation Recipe

constraint system for Reference Semantics on concrete lattice ($\mathrm{D}, \underline{\square}$)

MFP

constraint system for
Analysis on abstract lattice ($\mathrm{D}^{\#, \text {, }}$ \#)

MFP\#

Assume a universally-disjunctive abstraction function $\alpha: D \rightarrow D^{\#}$.
Correct abstract interpretation:

```
Show \alpha(o(\mp@subsup{x}{1}{},\ldots,\mp@subsup{x}{k}{}))\sqsubseteq# \mp@subsup{@}{}{#}(\alpha(\mp@subsup{x}{1}{}),\ldots,\alpha(\mp@subsup{x}{k}{})) f.a. }\mp@subsup{\textrm{x}}{1}{},\ldots,\mp@subsup{\textrm{x}}{\textrm{k}}{}\in\textrm{L}\mathrm{ , operators o
Then \alpha(MFP[u]) \sqsubseteq# MFP#[u] f.a.u
```

Correct and precise abstract interpretation:

$$
\begin{aligned}
& \text { Show } \alpha\left(o\left(x_{1}, \ldots, x_{k}\right)\right)=o^{\#}\left(\alpha\left(x_{1}\right), \ldots, \alpha\left(x_{k}\right)\right) \text { f.a. } x_{1}, \ldots, x_{k} \in L \text {, operators } 0 \\
& \text { Then } \alpha(\operatorname{MFP}[u])=\text { MFP } \#[u] \text { f.a. } u
\end{aligned}
$$

Use this as a guideline for designing correct (and precise) analyses !

Example Flow Graph

Main:

The lattice: false true

Let‘s Apply Our Abstract Interpretation Recipe: Constraint System for Feasible Paths

Operational justification:

$$
\begin{aligned}
& \underline{S}(u)=\left\{r \in \text { Edges }^{*} \mid s t_{p} \xrightarrow{r} u\right\} \quad \text { for all } u \text { in procedure } p \\
& \underline{S}(p)=\left\{r \in \text { Edges }^{*} \mid s t_{p} \xrightarrow{r} \varepsilon\right\} \text { for all procedures } p \\
& \underline{R}(u)=\left\{r \in \text { Edges }^{*} \mid \exists w \in \text { Nodes }^{*}: s t_{\text {Main }} \xrightarrow{r} u w\right\} \text { for all } u
\end{aligned}
$$

Same-level runs:

$$
\begin{array}{ll}
S(p) \supseteq S\left(r_{p}\right) & r_{p} \text { return point of } p \\
S\left(s t_{p}\right) \supseteq\{\varepsilon\} & s t_{p} \text { entry point of } p \\
S(v) \supseteq S(u) \cdot\{\langle e\rangle\} & e=(u, s, v) \text { base edge } \\
S(v) \supseteq S(u) \cdot S(p) & e=(u, p, v) \text { call edge }
\end{array}
$$

Reaching runs:

$$
\begin{array}{ll}
R\left(s t_{\text {Main }}\right) & \supseteq\{\varepsilon\} \\
R(v) & \supseteq R(u) \cdot\{\langle e\rangle\} \\
R(v) & \supseteq R(u) \cdot S(p) \\
R\left(s t_{p}\right) & \supseteq R(u)
\end{array}
$$

$$
s t_{\text {Main }} \text { entry point of Main }
$$

$$
e=(u, s, v) \text { basic edge }
$$

$$
e=(u, p, v) \text { call edge }
$$

$$
e=(u, p, v) \text { call edge, } s t_{p} \text { entry point of } p
$$

Context-Sensitive Analysis

Idea:
Phase 1: Compute summary information for each procedure...
... as an abstraction of same-level runs
Phase 2: Use summary information as transfer functions for procedure calls...
... in an abstraction of reaching runs
Classic approaches for summary informations:

1) Functional approach: [Sharir/Pnueli 81, Knoop/Steffen: CC'92] Use (monotonic) functions on data flow informations !
2) Relational approach: [Cousot/Cousot: POPL'77] Use relations (of a representable class) on data flow informations !
3) Call string approach: [Sharir/Pnueli 81], [Khedker/Karkare: CĆ08] Analyse relative to finite portion of call stack !

Formalization of Functional Approach

Abstractions:

Abstract same-level runs with $\alpha_{\text {Funct }}:$ Edges $^{*} \rightarrow(L \rightarrow L)$:

$$
\alpha_{\text {Funct }}(R)=\sqcup\left\{f_{r} \mid r \in R\right\} \quad \text { for } R \subseteq \text { Edges* }^{*}
$$

Abstract reaching runs with $\alpha_{\text {MOP }}$:Edges* $\rightarrow L$:

$$
\alpha_{\text {MOP }}(R)=\sqcup\left\{f_{r}(\text { init }) \mid r \in R\right\} \quad \text { for } R \subseteq \text { Edges }^{*}
$$

1. Phase: Compute summary informations, i.e., functions:

$$
\begin{array}{lll}
S^{\#}(p) \sqsupseteq S^{\#}\left(r_{p}\right) & & r_{p} \text { return point of } p \\
S^{\#}\left(s t_{p}\right) \sqsupseteq i d & & s t_{p} \text { entry point of } p \\
S^{\#}(v) \sqsupseteq f_{e}^{\#} \circ S^{\#}(u) & & e=(u, s, v) \text { base edge } \\
S^{\#}(v) & \sqsupseteq S^{\#}(p) \circ S^{\#}(u) & \\
e=(u, p, v) \text { call edge }
\end{array}
$$

2. Phase: Use summary informations; compute on data flow informations:

$$
\begin{array}{lll}
R^{\#}\left(s t_{\text {Main }}\right) & \sqsupseteq \text { init } & \\
R^{\#}(v) & \sqsupseteq t_{e}^{\#}\left(R^{\#}(u)\right) & \\
\text { Mantry point of Main } \\
R^{\#}(v) & \sqsupseteq S^{\#}(p)\left(R^{\#}(u)\right) & \\
R^{\#}\left(s t_{p}\right) & \sqsupseteq R^{\#}(u) & e=(u, p, v) \text { basic edge call edge } \\
\end{array}
$$

Functional Approach

Theorem:
Correctness: For any monotone framework:

$$
\alpha_{\text {MOP }}(\underline{\mathrm{R}}[u]) \sqsubseteq \underline{\mathrm{R}}^{\#}[u] \quad \text { f.a. } u
$$

Completeness: For any universally-distributive framework:

$$
\alpha_{\text {MOP }}(\underline{\mathrm{R}}[u])=\underline{\mathrm{R}}^{\#}[u] \quad \text { f.a. } u
$$

Alternative condition:
framework positively-distributive \& all prog. point dyn. reachable
Remark:
a) Functional approach is effective, if L is finite...
b) ... but may lead to chains of length up to $|L| \cdot$ height(L) at each program point (in general).

Functional Approach for Availability of Single Expression Problem

Observations:

Just three montone functions on lattice L :

Functional composition of two such functions $f, g: L \rightarrow L$:

$$
h \circ f= \begin{cases}f & \text { if } h=\mathrm{i} \\ h & \text { if } h \in\{\mathrm{~g}, \mathrm{k}\}\end{cases}
$$

Analogous: precise interprocedural analysis for all (separable) bitvector problems in time linear in program size.

Context-Sensitive Analysis, 1. Phase

the lattice:

Context-Sensitive Analysis, 2. Phase

Functional Approach

Theorem:
Correctness: For any monotone framework:

$$
\alpha_{\text {MOP }}(\underline{\mathrm{R}}[u]) \sqsubseteq \underline{\mathrm{R}}^{\#}[u] \quad \text { f.a. } u
$$

Completeness: For any universally-distributive framework:

$$
\alpha_{\text {MOP }}(\underline{\mathrm{R}}[u])=\underline{\mathrm{R}}^{\#}[u] \quad \text { f.a. } u
$$

Alternative condition:

framework positively-distributive \& all prog. point dyn. reachable
Remark:
a) Functional approach is effective, if L is finite ...
b) ... but may lead to chains of length up to $|L| \cdot$ height (L) at each program point.

Overview

- Introduction
- Fundamentals of Program Analysis

Excursion 1

- Interprocedural Analysis

Excursion 2

- Analysis of Parallel Programs

Excursion 3
Appendix

- Conclusion

Precise Interprocedural Analysis through Linear Algebra

Markus Müller-Olm
FernUniversität Hagen
(on leave from Universität Dortmund)

Joint work with
Helmut Seidl (TU München)

POPL 2004, Venice, January 14-16, 2004

Finding Invariants...

Main:

... through Linear Algebra

- Linear Algebra
- vectors
- vector spaces, sub-spaces, bases
- linear maps, matrices
- vector spaces of matrices
- Gaussian elimination

Applications

- definite equalities:
- constant propagation:
- discovery of symbolic constants:
- complex common subexpressions:
- loop induction variables
- program verification

A Program Abstraction

Affine programs:

- affine assignments: $\mathrm{x}_{1}:=\mathrm{x}_{1}-2 \mathrm{x}_{3}+7$
- unknown assignments: $x_{i}:=$?
$\rightarrow \quad$ abstract too complex statements!
- non-deterministic instead of guarded branching

The Challenge

Given an affine program (with procedures, parameters, local and global variables, ...) over R :
(R the field \mathbb{Q} or \mathbb{Z}_{p}, a modular ring \mathbb{Z}_{m}, the ring of integers \mathbb{Z}, an effective PIR,...)

- determine all valid affine relations:

$$
a_{0}+\sum a_{i} x_{i}=0 \quad a_{i} \in R
$$

$$
5 x+7 y-42=0
$$

- determine all valid polynomial relations (of degree $\leq \mathrm{d}$):

$$
p\left(x_{1}, \ldots, x_{k}\right)=0 \quad p \in R\left[x_{1}, \ldots, x_{n}\right] \quad 5 x y^{2}+7 z^{3}-42=0
$$

... and all this in polynomial time (unit cost measure) !!!

Infinity Dimensions

Use a Standard Approach for Interprocedural Generalization of Karr ?

Functional approach [Sharir/Pnueli, 1981], [Knoop/Steffen, 1992]

- Idea: summarize each procedure by function on data flow facts
- Problem: not applicable

Call-string approach [Sharir/Pnueli, 1981], [Khedker/Karkare: CC'08]

- Idea: take just a finite piece of run-time stack into account
- Problem: not exact

Relational approach [Cousot/Cousot, 1977]

- Idea: summarize each procedure by approximation of I/O relation
- Problem: not exact

Towards the Algorithm ...

Concrete Semantics of an Execution Path

- Every execution path π induces an affine transformation of the program state:

$$
\begin{aligned}
& \llbracket x_{1}:=x_{1}+x_{2}+1 ; x_{3}:=x_{3}+1 \rrbracket(v) \\
= & \llbracket x_{3}:=x_{3}+1 \rrbracket\left(\llbracket x_{1}:=x_{1}+x_{2}+1 \rrbracket(v)\right) \\
= & \llbracket x_{3}:=x_{3}+1 \rrbracket\left(\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right)+\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)\right) \\
= & \left(\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right)+\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)\right)
\end{aligned}
$$

Affine Relations

- An affine relation can be viewed as a vector:

$$
x_{1}-3 x_{2}+5=0 \quad \text { corresponds to } a=\left(\begin{array}{l}
5 \\
1 \\
3 \\
0
\end{array}\right)
$$

Affine Assignments induce linear wp- Transformations on Affine Relations

$$
\left\{x_{2}+x_{3}+5=0\right\} \quad x_{1}:=4 x_{2}+x_{3}+3 \quad\left\{x_{1}-3 x_{2}+2=0\right\}
$$

A linear transformation:

$$
\left(\begin{array}{llll}
1 & 3 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 4 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
2 \\
1 \\
-3 \\
0
\end{array}\right)=\left(\begin{array}{l}
5 \\
0 \\
1 \\
1
\end{array}\right)
$$

WP of Affine Relations

- Every execution path π induces a linear transformation of affine post-conditions into their weakest pre-conditions:

$$
\begin{aligned}
& \llbracket x_{1}:=x_{1}+x_{2}+1 ; x_{3}:=x_{3}+1 \rrbracket^{\top}(a) \\
= & \llbracket x_{1}:=x_{1}+x_{2}+1 \rrbracket^{\top}\left(\llbracket x_{3}:=x_{3}+1 \rrbracket^{\top}(a)\right) \\
= & \llbracket x_{1}:=x_{1}+x_{2}+1 \rrbracket^{\top}\left(\left(\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
a_{0} \\
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right)\right)
\end{aligned}
$$

$$
=\left(\begin{array}{llll}
1 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right)
$$

Observations

- Only the zero relation is valid at program start:

$$
0: 0+0 x_{1}+\ldots+0 x_{k}=0
$$

- Thus, relation $\mathrm{a}_{0}+\mathrm{a}_{1} x_{1}+\ldots+\mathrm{a}_{\mathrm{k}} x_{\mathrm{k}}=0$ is valid at program point v iff

$$
\begin{gathered}
\left.M a=0 \quad \text { for all } M \in \underset{\text { iff }}{\left\{\llbracket \pi \rrbracket^{\top} \mid\right.} \mid \pi \text { reaches } v\right\} \\
\hline
\end{gathered}
$$

$$
M a=0 \quad \text { for all } M \in \operatorname{Span}\left\{\llbracket \pi \rrbracket^{\top} \mid \pi \text { reaches } v\right\}
$$

iff
$M a=0 \quad$ for all M in a basis of $\operatorname{Span}\left\{\llbracket \pi \rrbracket^{\top} \mid \pi\right.$ reaches $\left.v\right\}$

- Matrices M form a vector space of dimension $(k+1) \times(k+1)$
- Sub-spaces form a complete lattice of height $O\left(k^{2}\right)$.

Let‘s Apply Our Abstract Interpretation Recipe: Constraint System for Feasible Paths

Operational justification:

$$
\begin{aligned}
& \underline{S}(u)=\left\{r \in \text { Edges }^{*} \mid s t_{p} \xrightarrow{r} u\right\} \quad \text { for all } u \text { in procedure } p \\
& \underline{S}(p)=\left\{r \in \text { Edges }^{*} \mid s t_{p} \xrightarrow{r} \varepsilon\right\} \text { for all procedures } p \\
& \underline{R}(u)=\left\{r \in \text { Edges }^{*} \mid \exists \omega \in \text { Nodes }^{*}: s t_{\text {Main }} \xrightarrow{r} u \omega\right\} \quad \text { for all } u
\end{aligned}
$$

Same-level runs:

$$
\begin{array}{ll}
S(p) \supseteq S\left(r_{p}\right) & r_{p} \text { return point of } p \\
S\left(s t_{p}\right) \supseteq\{\varepsilon\} & s t_{p} \text { entry point of } p \\
S(v) \supseteq S(u) \cdot\{\langle e\rangle\} & e=(u, s, v) \text { base edge } \\
S(v) \supseteq S(u) \cdot S(p) & e=(u, p, v) \text { call edge }
\end{array}
$$

Reaching runs:

$$
\begin{array}{ll}
R\left(s t_{\text {Main }}\right) & \supseteq\{\varepsilon\} \\
R(v) & \supseteq R(u) \cdot\{\langle e\rangle\} \\
R(v) & \supseteq R(u) \cdot S(p) \\
R\left(s t_{p}\right) & \supseteq R(u)
\end{array}
$$

$$
s t_{\text {Main }} \text { entry point of Main }
$$

$$
e=(u, s, v) \text { basic edge }
$$

$$
e=(u, p, v) \text { call edge }
$$

$$
e=(u, p, v) \text { call edge, } s t_{p} \text { entry point of } p
$$

Algorithm for Computing Affine Relations

1) Compute a basis B with:

Span $B=\operatorname{Span}\left\{\llbracket \pi \rrbracket^{\top} \mid \pi\right.$ reaches $\left.v\right\}$
for each program point by a precise abstract interpretation:
Lattice: Subspaces of IF(k+1) ${ }^{(k+1)}$
Replace:

$\{\varepsilon\}$	by	$\{I\}$
concatenation	by	matrix product
$\{\langle e\rangle\}$	(I identity matrix)	
(lifted to subspaces)		

2) Solve the linear equation system:
$M a=0$ for all $M \in B$

Theorem

In an affine program:

- The following vector spaces of matrices can be computed precisely:

$$
\alpha(R(v))=\operatorname{Span}\left\{\llbracket \pi \rrbracket^{\top} \mid \pi \in R(v)\right\} \text { for each prg. point } v \text {. }
$$

- The vector spaces $\left\{a \in \mathbb{F}^{k+1} \mid\right.$ affine relation a is valid at $\left.v\right\}$ can be computed precisely for all prg. points v.
- The time complexity is linear in the program size and polynomial in the number of variables: $\mathcal{O}\left(n \cdot k^{8}\right)$
(n size of the program, k number of variables)

An Example

Extensions

- Also in the paper:
- Local variables, value parameters, return values
- Computing polynomial relations of bounded degree
- Affine pre-conditions
- Formalization as an abstract interpretation
- In follow-up papers (see webpage):
- Computing over modular rings (e.g. modulo 2^{w}) or PIRs
- Forward algorithm

End of Excursion 2

Overview

- Introduction
- Fundamentals of Program Analysis

$$
\text { Excursion } 1
$$

- Interprocedural Analysis

$$
\text { Excursion } 2
$$

- Analysis of Parallel Programs

Excursion 3

Appendix

- Conclusion

Interprocedural Analysis of Parallel Programs

Interleaving- Operator \otimes (Shuffle-Operator)

Example:

$$
\langle a, b\rangle \otimes\langle x, y\rangle=\left\{\begin{array}{l}
\langle a, b, x, y\rangle \\
\langle a, x, b, y\rangle,\langle a, x, y, b\rangle \\
\langle x, a, b, y\rangle,\langle x, a, y, b\rangle,\langle x, y, a, b\rangle
\end{array}\right\}
$$

Constraint System for Same-Level Runs

Operational justification:

$$
\begin{array}{ll}
\underline{S}(u)=\left\{r \in \text { Edges }^{*} \mid s t_{p} \xrightarrow{r} u\right\} & \text { for all } u \text { in procedure } p \\
\underline{S}(p)=\left\{r \in \text { Edges }^{*} \mid s t_{p} \xrightarrow{r} \varepsilon\right\} & \text { for all procedures } p
\end{array}
$$

Same-level runs:

$$
\begin{array}{ll}
S(p) \supseteq S\left(r_{p}\right) & r_{p} \text { return point of } p \\
S\left(s t_{p}\right) \supseteq\{\varepsilon\} & s t_{p} \text { entry point of } p \\
S(v) \supseteq S(u) \cdot\langle\{e\}\rangle & e=(u, s, v) \text { base edge } \\
S(v) \supseteq S(u) \cdot S(p) & e=(u, p, v) \text { call edge } \\
S(v) \supseteq S(u) \cdot\left(S\left(p_{0}\right) \otimes S\left(p_{1}\right)\right) & e=\left(u, p_{0} \| p_{1}, v\right) \text { parallel call edge }
\end{array}
$$

Constraint System for a Variant of Reaching Runs

Operational justification:

$$
\begin{aligned}
& \underline{R}(u, q)=\left\{r \in \text { Edges }^{*} \mid \exists c \in{\text { Config: } \left.s t_{q} \xrightarrow{r} c, \text { At }_{u}(c)\right\}}_{\text {for progam point } u \text { and procedure } q}\right. \\
& \underline{P}(q)=\left\{r \in \text { Edges }^{*} \mid \exists c \in{\text { Config: } \left.s t_{q} \xrightarrow{r} c\right\}}^{r}\right\}
\end{aligned}
$$

Reaching runs:

$$
\begin{array}{lll}
R(u, q) & \supseteq S(u) & u \text { program point in procedure q } \\
R(u, q) & \supseteq S(v) \cdot R(u, p) & e=\left(v, p, _\right) \text {call edge in proc. } \mathrm{q} \\
R(u, q) & \supseteq S(v) \cdot\left(R\left(u, p_{i}\right) \otimes P\left(p_{1-i}\right)\right) & e=\left(v, p_{0} \| p_{1}, _\right) \text {parallel call edge in proc. } \mathrm{q}, i=0,1
\end{array}
$$

Interleaving potential:

$$
P(p) \supseteq R(u, p) \quad u \text { program point and } \mathrm{p} \text { procedure }
$$

Interleaving- Operator \otimes (Shuffle-Operator)

Example:

$$
\langle a, b\rangle \otimes\langle x, y\rangle=\left\{\begin{array}{l}
\langle a, b, x, y\rangle \\
\langle a, x, b, y\rangle,\langle a, x, y, b\rangle \\
\langle x, a, b, y\rangle,\langle x, a, y, b\rangle,\langle x, y, a, b\rangle
\end{array}\right\}
$$

The only new ingredient:
interleaving operator \otimes must be abstracted!

Case: Availability of Single Expression

[Seidl/Steffen: ESOP 2000]
Abstract shuffle operator:

$\otimes^{\#}$	i	g	k
i	i	g	k
g	g	g	k
k	k	k	k

The lattice:

Main lemma:

$$
\forall f_{j} \in\{g, k, i\}: \overbrace{f_{n} \circ \ldots \circ f_{j+1}}^{\in\{\{ \}} \circ f_{\in\{\{, k\} \vee j=1}^{f_{j}} \circ \ldots \circ f_{1}=f_{j}
$$

Treat other (separable) bitvector problems analogously...
\Rightarrow precise interprocedural analyses for all bitvector problems !

Overview

- Introduction
- Fundamentals of Program Analysis

Excursion 1

- Interprocedural Analysis

Excursion 2

- Analysis of Parallel Programs

Excursion 3

Appendix

- Conclusion

Precise Fixpoint-Based Analysis of Programs with Thread-Creation and Procedures

Markus Müller-Olm
Westfälische Wilhelms-Universität Münster
Joint work with:
Peter Lammich
[same place]

CONCUR 2007

(My) Main Interests of Recent Years

Data aspects

- algebraic invariants over $\mathbb{Q}, \mathbb{Z}, \mathbb{Z}_{m}\left(m=2^{n}\right)$ in sequential programs, partly with recursive procedures
- invariant generation relative to Herbrand interpretation

Control aspects

- recursion
- concurrency with process creation / threads
- synchronization primitives, in particular locks/monitors

Technics used

- fixpoint-based
- automata-based
- (linear) algebra
- syntactic substitution-based techniques
\qquad

Another Program Model

> Entry point, e_{q}, of C

Q:

Spawns are Fundamentally Different

P induces trace language: $L=U\left\{A^{n} \cdot\left(B^{m} \otimes\left(C^{i} \cdot D^{j}\right) \mid n \geq m \geq 0, i \geq j \geq 0\right\}\right.$

Cannot characterize L by constraint system with „" and „ه". [Bouajjani, MO, Touili: CONCUR 2005]

Gen/Kill-Problems

- Class of simple but important DFA problems
- Assumptions:
- Lattice (L, $\sqsubseteq)$ is distributive
- Transfer functions have form $f_{e}(\mathrm{I})=\left(\mathrm{I} \sqcap\right.$ kill $\left._{\mathrm{e}}\right) \sqcup$ gen ${ }_{\mathrm{e}}$ with kill,gen $\in \mathrm{L}$
- Examples:
- bitvector problems, e.g.
- available expressions, live variables, very busy expressions, ...

Data Flow Analysis

Goal:

Compute, for each program point u:

- Forward analysis: MOPF[u] = $\alpha^{F}(\operatorname{Reach}[u])$, where $\alpha^{F}(X)=\sqcup\left\{f_{w}\left(x_{0}\right) \mid w \in X\right\}$
- Backward analysis: $\operatorname{MOP}^{\mathrm{B}}[u]=\alpha^{\mathrm{B}}($ Leave $[u])$, where $\alpha^{\mathrm{B}}(\mathrm{X})=\sqcup\left\{\mathrm{f}_{\mathrm{w}}(\perp) \mid \mathrm{w}^{\mathrm{R}} \in \mathrm{X}\right\}$

$$
\begin{aligned}
& \operatorname{Reach}[\mathrm{u}]=\left\{w \mid \exists c:\left\{\left[e_{\text {Main }}\right]\right\} \xrightarrow{w} c \wedge a t_{u}(c)\right\} \\
& \operatorname{Leave}[\mathrm{u}]=\left\{w \mid \exists c:\left\{\left[e_{\text {Main }}\right]\right\} \xrightarrow{*} c \xrightarrow{w}{ }_{-} \wedge a t_{u}(c)\right\} \\
& a t_{u}(c) \Leftrightarrow \exists w:(u w) \in c \\
& f_{w}=f_{e_{n}} \circ \cdots \circ f_{e_{1}}, \text { for } w=e_{1} \cdots e_{n}
\end{aligned}
$$

Data Flow Analysis

Goal:

Compute, for each program point u:

- Forward analysis: MOPF[u] = $\alpha^{F}(\operatorname{Reach}[u])$, where $\alpha^{F}(X)=\sqcup\left\{f_{w}\left(X_{0}\right) \mid w \in X\right\}$
- Backward analysis: MOP ${ }^{\mathrm{B}}[u]=\alpha^{\mathrm{B}}($ Leave $[u])$, where $\alpha^{\mathrm{B}}(\mathrm{X})=\sqcup\left\{\mathrm{f}_{\mathrm{w}}(\perp) \mid \mathrm{w}^{\mathrm{R}} \in \mathrm{X}\right\}$

Problem for programs with threads and procedures:
We cannot characterize Reach[u] and Leave[u] by a constraint system with operators „concatenation" and „interleaving".

One Way Out

[Lammich/MO: CONCUR 2007]

- Derive alternative characterization of MOP-solution:
- reason on level of execution paths
- exploit properties of gen/kill-problems
- Characterize the path sets occuring as least solutions of constraint systems
- Perform analysis by abstract interpretation of these constraint systems

Forward Analysis

Directly Reaching Paths and Potential Interleaving

Reaching path: a suitable interleaving of the red and blue paths
Directly reaching path: the red path
Potential interference:
set of edges in the blue paths (note: no order information!)

Formalization by augmented operational semantics with markers (see paper)

Forward MOP-solution

Theorem: For gen/kill problems:

$$
\begin{aligned}
\operatorname{MOP}^{F}[u]=\alpha^{\mathrm{F}}(\mathrm{DReach}[\mathrm{u}]) \sqcup & \alpha^{\mathrm{PI}}(\mathrm{PI}[\mathrm{u}]), \\
& \text { where } \alpha^{\mathrm{PI}}(\mathrm{X})=\sqcup\left\{\text { gen }_{\mathrm{e}} \mid \mathrm{e} \in \mathrm{X}\right\} .
\end{aligned}
$$

Remark

- DReach[u] and PI[u] can be characterized by constraint systems (see paper)
- $\alpha^{\mathrm{F}}(\mathrm{DReach}[\mathrm{u}])$ and $\alpha^{\mathrm{PI}}(\mathrm{PI}[u])$ can be computed by an abstract interpretation of these constraint systems

Characterizing Directly Reaching Paths

Same level paths:

$$
\begin{array}{lll}
{[\text { init }]} & \mathrm{S}\left[\mathrm{e}_{q}\right] \supseteq\{\varepsilon\} & \text { for } q \in P \\
\text { [base] } & \mathrm{S}[v] \supseteq \mathrm{S}[u] ; e & \text { for } e=(u, \text { base }, v) \in E \\
{[\text { call }]} & \mathrm{S}[v] \supseteq \mathrm{S}[u] ; ; \mathrm{S}\left[r_{q}\right] ; \text { ret } & \text { for } e=(u, \text { call } q, v) \in E \\
{[\text { spawn }]} & \mathrm{S}[v] \supseteq \mathrm{S}[u] ; e & \text { for } e=(u, \text { spawn } q, v) \in E
\end{array}
$$

Directly reaching paths:

$$
\begin{array}{lll}
\text { [init] } & \mathrm{R}\left[\mathrm{e}_{\text {main }}\right] \supseteq\{\varepsilon\} & \\
\text { [reach }] & \mathrm{R}[u] \supseteq \mathrm{R}\left[\mathrm{e}_{p}\right] ; \mathrm{S}[u] & \text { for } u \in N_{p} \\
{[\text { call }]} & \mathrm{R}\left[\mathrm{e}_{q}\right] \supseteq \mathrm{R}[u] ; e & \text { for } e=\left(u, \text { call } q,{ }_{-}\right) \in E \\
\text { [spawnp }] & \mathrm{R}\left[\mathrm{e}_{q}\right] \supseteq \mathrm{R}[u] ; e & \text { for } e=\left(u, \text { spawn } q,,_{-}\right) \in E
\end{array}
$$

Backwards Analysis

Directly Leaving Paths and Potential Interleaving

Formalization by augmented operational semantics with markers (see paper)

Interleaving from Threads created in the Past

Theorem: For gen/kill problems:

$$
\begin{aligned}
& \operatorname{MOP}^{\mathrm{B}}[\mathrm{u}]=\alpha^{\mathrm{B}}(\text { DLeave }[u]) \sqcup \alpha^{\mathrm{PI}}(\mathrm{PI}[\mathrm{u}]), \\
& \text { where } \alpha^{\mathrm{PI}}(\mathrm{E})=\sqcup\left\{\text { gen }_{\mathrm{e}} \mid \mathrm{e} \in \mathrm{E}\right\} .
\end{aligned}
$$

Remark

- We know no simple characterization of DLeave[u] by a constraint system.
- Main problem: Threads generated in a procedure instance survive that instance.

Representative Directly Leaving Paths

A representative

directly leaving path:

Interleaving from Threads created in the Future

Lemma
$\alpha^{\mathrm{B}}($ DLeave $[\mathrm{u}])=\alpha^{\mathrm{B}}($ RDLeave $[u])$
(for gen/kill problems).

Corollary
$\operatorname{MOP}^{\mathrm{B}}[u]=\alpha^{\mathrm{B}}($ RDLeave $[\mathrm{u}]) \sqcup \alpha^{\mathrm{PI}}(\mathrm{PI}[\mathrm{u}]) \quad$ (for gen/kill problems).

Remark

- RDLeave[u] and PI[u] can be characterized by constraint systems (see paper)
- α^{B} (RDLeave[u]) and $\alpha^{\mathrm{PI}}(\mathrm{PI}[u])$ can be computed by an abstract interpretation of these constraint systems

Also in the Paper

- Formalization of these ideas
- constraint systems for path sets
- validation with respect to operational semantics
- Parallel calls in combination with threads
- threads become trees instead of stacks ...
- Analysis of running time:
- global information in time linear in the program size

Summary

- Forward- and backward gen/kill-analysis for programs with threads and procedures
- More efficient than automata-based approach
- More general than known fixpoint-based approach
- Current work: Precise analysis in presence of locks/monitors (see papers at SAS 2008, CAV 2009 for first results)

End of Excursion 3

Appendix

Regular Symbolic Analysis of
Dynamic Networks of Pushdown Systems

DPNs: Dynamic Pushdown-Networks

A dynamic pushdown-network (over a finite set of actions Act) consists of:

- P, a finite set of control symbols
- Γ, a finite set of stack symbols
- Δ, a finite set of rules of the following form

$$
\begin{gathered}
p \gamma \xrightarrow{a} p_{1} w_{1} \\
p \gamma \xrightarrow{a} p_{1} w_{1} \triangleright p_{2} w_{2} \\
\text { (with } p, p_{1}, p_{2} \in \mathrm{P}, \gamma \in \Gamma, w_{1}, w_{2} \in \Gamma^{*}, \mathrm{a} \in \mathrm{Act} \text {). }
\end{gathered}
$$

DPNs: Dynamic Pushdown-Networks

A State of a DPN is a word in $\left(P \Gamma^{*}\right)^{+}$:

$$
p_{1} w_{1} p_{2} w_{2} \cdots p_{k} w_{k} \quad \text { (with } p_{i} \in P, w_{i} \in \Gamma^{*}, k>0 \text {) }
$$

... an infinite state space

The transition relation of a DPN:

$$
\begin{array}{ll}
\left(p \gamma \xrightarrow{a} p_{1} w_{1}\right) \in \Delta: & u p \gamma v \xrightarrow{a} u p_{1} w_{1} v \\
\left(p \gamma \xrightarrow{a} p_{1} w_{1} \triangleright p_{2} w_{2}\right) \in \Delta: & \text { up } \gamma v \xrightarrow{a} u p_{2} w_{2} p_{1} w_{1} v
\end{array}
$$

Example

Consider the following DPN with a single rule

$$
p \gamma \xrightarrow{a} p \gamma \gamma \triangleright \gamma
$$

Transitions:

$$
\begin{gathered}
p \gamma \\
q \gamma p \% \\
q \gamma q \gamma p \% \gamma \\
q \gamma q \gamma q \gamma p \% \% \\
q \gamma q \gamma q \gamma q \gamma p \ngtr \% \gamma \\
:
\end{gathered}
$$

Reachability Analysis

Given:

- Model of a system: M
- Set of system states: Bad

Reachability analysis:

- Can a state from Bad be reached from an initial states of the system?

$$
\exists \sigma_{0}, \ldots, \sigma_{k}: \text { Init } \ni \sigma_{0} \rightarrow \cdots \rightarrow \sigma_{k} \in \operatorname{Bad} \text { ? }
$$

Applications:

- Check safety properties:

Bad is a set of states to be avoided

- More applications by iterated computation of reachability sets for submodels of the system model, e.g. data-flow analysis...

Reachability Analysis

Given:

- Model of a system: M
- Set of system states: Bad

Reachability analysis:

- Can a state from Bad be reached from an initial state of the system?

$$
\exists \sigma_{0}, \ldots, \sigma_{k}: \text { Init } \ni \sigma_{0} \rightarrow \cdots \rightarrow \sigma_{k} \in \operatorname{Bad} \text { ? }
$$

$$
\begin{aligned}
\text { Def.: } & -\operatorname{pre}^{*}(X)={ }_{\text {df }}\left\{\sigma \mid \exists \sigma^{\prime} \in X: \sigma \rightarrow^{*} \sigma^{*}\right\} \\
& -\operatorname{post}^{*}(X)==_{\text {df }}\left\{\sigma \mid \exists \sigma^{\prime} \in X: \sigma^{\prime} \rightarrow{ }^{*} \sigma\right\}
\end{aligned}
$$

Equivalent formulations of reachability analysis:

- pre*(Bad) \cap Init $\neq \emptyset$
- post*(Init) \cap Bad $\neq \emptyset$
\Rightarrow Computation of pre* or post* is key to reachability analysis

Reachability Analysis of Finite State Systems

$$
\begin{array}{ll}
\varphi_{0} & ={ }_{d f} \text { Init } \\
\varphi_{i+1} & ={ }_{d f} \varphi_{i} \cup \operatorname{post}\left(\varphi_{1}\right)
\end{array}
$$

$$
\operatorname{post}(X)==_{d f}\left\{\sigma \mid \exists \sigma^{\prime} \in X: \sigma \rightarrow \sigma^{\prime}\right\} \quad \Rightarrow \text { Bad reachable from initial state }
$$

Reachability Analysis of Finite State Systems

$$
\begin{array}{ll}
\varphi_{0} & =_{d f} \text { Init } \\
\varphi_{i+1} & =_{d f} \varphi_{i} \cup \operatorname{post}\left(\varphi_{1}\right) \\
\operatorname{post}(X) & ={ }_{d f}\left\{\sigma \mid \exists \sigma^{\prime} \in X: \sigma \rightarrow \sigma^{\prime}\right\}
\end{array}
$$

\Rightarrow Bad not reachable from initial state

Problems with Infinite-State Systems

- State sets φ_{i} can be infinite
\Rightarrow symbolic representation of (certain) infinite state sets

Here: by finite automata

Example: Representation of an Infinite State Set of a DPN by a Word Automaton

An automaton A:

The regular set of states represented by A:

$$
L(A)=\left(q \gamma q \gamma p \gamma^{*}\right)^{*}
$$

... an infinite set of states.

Problems with Infinite-State Systems

- State sets φ_{i} can be infinite
\Rightarrow symbolic representation of (certain) infinite state sets

Here: by finite (word) automata

- Iterated computation of reachability sets does not terminate in general
\Rightarrow Methods for acceleration of the computation

Here: by computing with finite automata

Computing pre* for DPNs with Finite Automata

Theorem [Bouajjani, MO, Touili, 2005]
For every DPN and every regular state set R, pre* (R) is regular and can be computed in polynomial time.

Proof:
[Bouajjani/Esparza/Maler, 1997]

Generalization of a known technique for single pushdown systems: saturation of an automaton for R.
\Rightarrow Reachability analysis is effective for regular sets Bad of states !

Example: Reachability Analysis for DPNs

Consider again DPN with the rule

$$
p \gamma \xrightarrow{a} p \gamma \gamma \triangleright q \gamma
$$

and the infinite set of states

$$
\mathrm{Bad}=\left(q \gamma q \gamma p \gamma^{*}\right)^{*}=L(A)
$$

Analysis problem: can Bad be reached from $\mathrm{p} \gamma$?

Example: Reachability Analysis for DPNs

1. Step: Saturate automaton for Bad with the DPN rule: $\quad p \gamma \xrightarrow{a} p \gamma \gamma q \gamma$

Resulting automaton $\mathrm{A}_{\text {pre* }}$ represents pre*(Bad)!
2. Step: Check, whether $\mathrm{p} \gamma$ is accepted by $\mathrm{A}_{\mathrm{pre}}$ or not

Result: Bad is reachable from $p \gamma$, as $A_{\text {pre* }}$ accepts $p \gamma$.

Modelling Programs with Procedures and Threads by DPNs

Live Variables Analysis via
 Iterated pre ${ }^{[\star]}$-computation

Observation
Esparza, Knoop
Steffen, Schmidt

$$
\text { Variable } \mathrm{x} \text { is live at } \mathrm{u}
$$

iff

$$
e_{\text {Main }} \in \operatorname{pre}^{*}\left(A t_{u} \cap \operatorname{pre}_{\Delta_{\text {non-def }}}^{*}\left(\operatorname{pre}_{\Delta_{\text {use }}}(\operatorname{Conf})\right)\right)
$$

Remark
This condition can be checked by computing with automata

A Non-Representability Result

Q:

- P induces trace language: $L=U\left\{A^{n} \cdot\left(B^{m} \otimes\left(C^{i} \cdot D^{j}\right)\right) \mid n \geq m \geq 0, i \geq j \geq 0\right\}$
- L cannot be characterized by constraint system with operators „concatenation" and „interleaving"

Forward Reachability Analysis of DPNs

Observation [Bouajjani, MO, Touili, 2005]
In general, post $^{\star}(R)$ is not regular, not even if R is finite.
Example:
Consider DPN with the rule $p \gamma \xrightarrow{a} p \gamma \gamma \triangleright q \gamma$ Recall:

Theorem [Bouajjani, MO, Touili, 2005]
For every DPN, post ${ }^{*}(R)$ is contextfree if R is contextfree.
It can be computed in polynomial time.

A Little Bit of Synchronization ...

- CDPNs - Constrained Dynamic Pushdown Networks
- Idea: Threads can observe (stable regular patterns of) their children, but not vice versa
- States are represented by trees in order to mirror father/child relationship
- Use tree automata techniques for
- representation of state sets and
- symbolic computation of pre* (under certain conditions)
- See the CONCUR 2005 paper
- More recent papers: lock and monitor-sensitive analysis

Comparison of
 Fixpoint-based and Automata-based Algorithm

Fixpoint-based algorithm: [Lammich/MO: CONCUR 2007]

- computes information for all program points at once in linear time
- can use bitvector operations for computing multiple bits at once

Automata-based algorithm: [Bouajjani/MO/Touili: CONCUR 2005]

- based on pre*-computations of regular sets of configurations
- needs linear time for each program point: thus: overall running time is quadradic
- must be iterated for each bit
- more generic w.r.t. sets of configurations

End of Appendix

Conclusion

- Program analysis very broad topic
- Provides generic analysis techniques for (software) systems
- Here just one path through the forest
- Many interesting topics not covered

Thank you!

