

(Optimal) Program Analysis of Sequential and Parallel Programs

Markus Müller-Olm Westfälische Wilhelms-Universität Münster, Germany

3rd Summer School on Verification Technology, Systems, and Applications

Luxemburg, September 6-10, 2010

Fundamental Problem

Rice's Theorem (informal version):

All non-trivial semantic properties of programs from a Turing-complete programming language are undecidable.

Consequence:

For Turing-complete programming languages:

Automatic analyzers of semantic properties, which are both correct and complete are impossible.

What can we do about it?

• Give up "automatic": interactive approaches:

- proof calculi, theorem provers, ...
- Give up "sound": ???
- Give up "complete": approximative approaches:
 - Approximate analyses:
 - data flow analysis, abstract interpretation, type checking, ...
 - Analyse weaker formalism:
 - model checking, reachability analysis, equivalence- or preorderchecking, ...

What can we do about it?

> Give up "automatic": interactive approaches:

- proof calculi, theorem provers, ...
- > Give up "sound": ???
- Give up "complete": approximative approaches:
 - Approximate analyses:
 - data flow analysis, abstract interpretation, type checking, ...
 - Analyse weaker formalism:
 - model checking, reachability analysis, equivalence- or preorderchecking, ...

Overview

- Introduction
- Fundamentals of Program Analysis Excursion 1
- Interprocedural Analysis
 Excursion 2
- Analysis of Parallel Programs Excursion 3 Appendix
- Conclusion

Apology for not giving proper credit in these lectures !

Markus Müller-Olm, WWU Münster

VTSA 2010, Luxembourg, September 6-10, 2010

Overview

- Introduction
- Fundamentals of Program Analysis

Excursion 1

- Interprocedural Analysis
 Excursion 2
- Analysis of Parallel Programs Excursion 3 Appendix
- Conclusion

Apology for not giving proper credit in these lectures !

Markus Müller-Olm, WWU Münster

VTSA 2010, Luxembourg, September 6-10, 2010

Dead Code Elimination

Goal:

find and eliminate assignments that compute values which are never used

Fundamental problem:

undecidability

- \rightarrow use approximate algorithm:
 - e.g.: ignore that guards prohibit certain execution paths

Technique:

1) perform *live variables* analyses:

variable x is live at program point u iff there is a path from u on which x is used before it is modified

2) eliminate assignments to variables that are not live at the target point

Live Variables Analysis

Interpretation of Partial Orders in Approximate Program Analysis

$x \sqsubseteq y$:

- x is more precise information than y.
- *y* is a correct approximation of *x*.

 $\sqcup X$ for $X \subseteq L$, where (L, \sqsubseteq) is the partial order:

the most precise information consistent with all informations $x \in X$.

Example:

order for live variables analysis:

• $(P(Var), \subseteq)$ with Var = set of variables in the program

Remark:

often dual interpretation in the literature !

Complete Lattice

Complete lattice (L, \sqsubseteq) :

a partial order (*L*, ⊆) for which the least upper bound, ⊔ *X*, exists for all *X*⊆ *L*.

In a complete lattice (L, \sqsubseteq) :

- $\sqcap X \text{ exists for all } X \subseteq L$: $\sqcap X = \sqcup \{ x \in L \mid x \sqsubseteq X \}$
- least element \perp exists: $\perp = \sqcup L = \sqcap \emptyset$
- greatest element \top exists: $\top = \sqcup \emptyset = \sqcap L$

 $\Box X = \sqcup \{ x \in L \mid x \sqsubseteq X \}$ $\bot = \sqcup L = \Box \emptyset$ $\top = \sqcup \emptyset = \Box L$

Example:

- for any set A let $P(A) = \{X \mid X \subseteq A\}$ (power set of A).
- $(P(A),\subseteq)$ is a complete lattice.
- $(P(A), \supseteq)$ is a complete lattice.

Specifying Live Variables Analysis by a Constraint System

Compute (smallest) solution over $(L, \sqsubseteq) = (P(Var), \subseteq)$ of:

 $A[fin] \supseteq init,$ for fin, the termination node $A[u] \supseteq f_e(A[v]),$ for each edge e = (u, s, v)

where *init* = Var,

 $f_e: \mathsf{P}(\mathsf{Var}) \to \mathsf{P}(\mathsf{Var}), f_e(x) = x \setminus \mathsf{kill}_e \cup \mathsf{gen}_e, \text{ with}$

- kill_e = variables assigned at e
- gen_e = variables used in an expression evaluated at e

Specifying Live Variables Analysis by a Constraint System

Remarks:

- 1. Every solution is "correct" (whatever this means).
- 2. The smallest solution is called MFP-solution; it comprises a value MFP[u] \in L for each program point u.
- 3. MFP abbreviates "maximal fixpoint" for traditional reasons.
- 4. The MFP-solution is the **most precise** one.

Backwards vs. Forward Analyses

Live Variables Analysis is a *Backwards Analysis*, i.e.:

- analysis info flows from target node to source node of an edge
- the initial inequality is for the termination node of the flow graph

 $A[te] \supseteq init,$ for te, the termination point $A[u] \supseteq f_e(A[v]),$ for each edge $e = (u, s, v) \in E$

Dually, there are *Forward Analyses* i.e..:

- analysis info flows from source node to target node of an edge.
- the initial inequality is for the start node of the flow graph

 $A[st] \supseteq init,$ for st, the start node $A[v] \supseteq f_e(A[u]),$ for each edge $e = (u, s, v) \in E$

Examples: reaching definitions, available expressions, constant propagation, ...

Data-Flow Frameworks

Correctness

generic properties of frameworks can be studied and proved

Implementation

• efficient, generic implementations can be constructed

Three Questions

- Do (smallest) solutions always exist ?
- How to compute the (smallest) solution ?
- How to justify that a solution is what we want ?

Three Questions

- Do (smallest) solutions always exist ?
- > How to compute the (smallest) solution ?
- > How to justify that a solution is what we want ?

Knaster-Tarski Fixpoint Theorem

Definitions:

Let (L, \sqsubseteq) be a partial order.

- $f: L \to L$ is monotonic iff $\forall x, y \in L : x \sqsubseteq y \Rightarrow f(x) \sqsubseteq f(y)$.
- $x \in L$ is a *fixpoint* of f iff f(x)=x.

Fixpoint Theorem of Knaster-Tarski:

Every monotonic function f on a complete lattice L has a least fixpoint lfp(f) and a greatest fixpoint gfp(f).

More precisely,

 $lfp(f) = \Box \{ x \in L \mid f(x) \sqsubseteq x \}$ least pre-fixpoint $gfp(f) = \sqcup \{ x \in L \mid x \sqsubseteq f(x) \}$

greatest post-fixpoint

Smallest Solutions Always Exist

- Define functional $F: L^n \rightarrow L^n$ from right hand sides of constraints such that:
 - σ solution of constraint system iff σ pre-fixpoint of F
- Functional *F* is monotonic.
- By Knaster-Tarski Fixpoint Theorem:
 - F has a least fixpoint which equals its least pre-fixpoint.

Three Questions

- > Do (smallesi) solutions always exist?
- How to compute the (smallest) solution ?
- > How to justify that a solution is what we want ?

Workset-Algorithm

```
W = \emptyset;
forall (program points v) { A[v] = \bot; W = W \cup \{v\}; }
A[fin] = init;
while W \neq \emptyset {
     v = Extract(W);
     forall (u, s \text{ with } e = (u, s, v) \text{ edge}) {
          t = f_{\rho}(A[v]);
          if \neg(t \sqsubseteq A[u]) {
               A[u] = A[u] \sqcup t;
               W = W \cup \{u\};
  Markus Müller-Olm, WWU Münster
                                  VTSA 2010, Luxembourg, September 6-10, 2010
```

Invariants of the Main Loop

a)
$$A[u] \sqsubseteq MFP[u]$$
 f.a. prg. points *u*
b1) $A[fin] \sqsupseteq init$
b2) $v \notin W \implies A[u] \sqsupseteq f_e(A[v])$ f.a. edges $e = (u, s, v)$

If and when workset algorithm terminates:

A is a solution of the constraint system by b1)&b2) $\Rightarrow A[u] \supseteq MFP[u]$ f.a. u

Hence, with a): A[u] = MFP[u] f.a. u

How to Guarantee Termination

- Lattice (L,⊑) has no infinite ascending chains
 ⇒ algorithm terminates
- Lattice (L, \sqsubseteq) has infinite ascending chains:
 - \Rightarrow algorithm may not terminate;

use widening operators in order to enforce termination

Widening Operator

[Cousot]

 $\bigtriangledown: L \times L \to L$ is called a *widening operator* iff

1)
$$\forall x,y \in L: x \sqcup y \sqsubseteq x \bigtriangledown y$$

2) for all sequences $(I_n)_n$, the (ascending) chain $(w_n)_n$

$$W_0 = I_0, \quad W_{i+1} = W_i \bigtriangledown I_{i+1} \text{ for } i > 0$$

stabilizes eventually.

Workset-Algorithm with Widening

 $W = \emptyset;$ **forall** (program points v) { $A[v] = \bot$; $W = W \cup \{v\}$; } A[fin] = init;while $W \neq \emptyset$ { v = Extract(W);forall (u, s with e = (u, s, v) edge) { $t = f_{\rho}(A[v]);$ if $\neg(t \sqsubseteq A[u])$ { $A[u] = A[u] \nabla t;$ $W = W \cup \{u\};$ Markus Müller-Olm, WWU Münster VTSA 2010, Luxembourg, September 6-10, 2010

Example of a Widening Operator: Interval Analysis

The goal

Find save interval for the values of program variables, e.g. of *i* in:

```
for (i=0; i<42; i++)
  if (0<=i and i<42)
  {
    A1 = A+i;
    M[A1] = i;
  }</pre>
```

..., e.g., in order to remove the redundant array range check.

Example of a Widening Operator: Interval Analysis

The lattice...

 $(L, \sqsubseteq) = \left(\left\{ [I, u] \mid I \in \mathbb{Z} \cup \left\{ -\infty \right\}, u \in \mathbb{Z} \cup \left\{ +\infty \right\}, I \le u \right\} \cup \left\{ \varnothing \right\}, \ \sqsubseteq \right)$

... has infinite ascending chains, e.g.:

 $[0,0] \subset [0,1] \subset [0,2] \subset \dots$

A widening operator:

 $[I_0, u_0] \bigtriangledown [I_1, u_1] = [I_2, u_2], \text{ where}$ $I_2 = \begin{cases} I_0 & \text{if } I_0 \le I_1 \\ -\infty & \text{otherwise} \end{cases} \text{ and } u_2 = \begin{cases} u_0 & \text{if } u_0 \ge u_1 \\ +\infty & \text{otherwise} \end{cases}$

A chain of maximal length arising with this widening operator: $\emptyset \subset [3,7] \subset [3,+\infty] \subset [-\infty,+\infty]$

Analyzing the Program with the Widening Operator

	1		2		3	
	1	и	1	и	1	и
0	-8	$+\infty$	-8	$+\infty$		
1	0	0	0	$+\infty$		
2	0	0	0	$+\infty$		
3	0	0	0	$+\infty$		
4	0	0	0	$+\infty$	dito	
5	0	0	0	$+\infty$		
6	1	1	1	$+\infty$		
7	<u>⊥</u>		42	$+\infty$		
8	\perp		42	$+\infty$		

 \Rightarrow Result is far too imprecise !

 $(\mathbf{\dot{e}})$

Example taken from: H. Seidl, Vorlesung "Programmoptimierung"

Remedy 1: Loop Separators

- Apply the widening operator only at a "*loop separator*" (a set of program points that cuts each loop).
- We use the loop separator {1} here.

Remedy 2: Narrowing

- Iterate again from the result obtained by widening
 - --- Iteration from a prefix-point stays above the least fixpoint ! ---

	0			1	2	
	1	и	1	и	1	и
0	$-\infty$	$+\infty$	$-\infty$	$+\infty$	$-\infty$	$+\infty$
1	0	$+\infty$	0	$+\infty$	0	42
2	0	$+\infty$	0	41	0	41
3	0	$+\infty$	0	41	0	41
4	0	$+\infty$	0	41	0	41
5	0	$+\infty$	0	41	0	41
6	1	$+\infty$	1	42	1	42
7	42	$+\infty$				
8	42	$+\infty$	42	$+\infty$	42	42

Remarks

- Can use a work-list instead of a work-set
- Special iteration strategies in special situations
- Semi-naive iteration

Recall: Specifying Live Variables Analysis by a Constraint System

Compute (smallest) solution over $(L, \sqsubseteq) = (P(Var), \subseteq)$ of:

 $A[fin] \supseteq init,$ for fin, the termination node $A[u] \supseteq f_e(A[v]),$ for each edge e = (u, s, v)

where *init* = Var,

 $f_e: \mathsf{P}(\mathsf{Var}) \to \mathsf{P}(\mathsf{Var}), f_e(x) = x \setminus \mathsf{kill}_e \cup \mathsf{gen}_e, \text{ with }$

- kill_e = variables assigned at e
- gen_e = variables used in an expression evaluated at e

Recall: Questions

- Do (smallest) solutions always exist ?
- How to compute the (smallest) solution ?
- How to justify that a solution is what we want ?

Three Questions

- > Do (smallesi) solutions always exist?
- > How to compute the (smallest) solution ?
- How to justify that a solution is what we want ?
 - MOP vs MFP-solution
 - Abstract interpretation

Three Questions

- > Do (smallesi) solutions always exist?
- > How to compute the (smallest) solution ?
- How to justify that a solution is what we want ?
 - MOP vs MFP-solution
 - Abstract interpretation

Meet-Over-All-Paths Solution (MOP)

• Forward Analysis

$$MOP[u] \coloneqq \bigsqcup_{p \in Paths[entry,u]} F_p(init)$$

• Backward Analysis

$$MOP[u] \coloneqq \bigsqcup_{p \in Paths[u,exit]} F_p(init)$$

• Here: "Join-over-all-paths"; MOP traditional name

Coincidence Theorem

Definition:

A framework is positively-distributive if $f(\sqcup X) = \sqcup \{ f(x) \mid x \in X \}$ for all $\emptyset \neq X \subseteq L$, $f \in F$.

Theorem:

For any instance of a positively-distributive framework: MOP[u] = MFP[u] for all program points u (if all program points reachable).

Remark:

A framework is positively-distributive if a) and b) hold: (a) it is distributive: $f(x \sqcup y) = f(x) \sqcup f(y)$ f.a. $f \in F$, $x, y \in L$. (b) it is effective: L does not have infinite ascending chains.

Remark: All bitvector frameworks are distributive and effective.

Markus Müller-Olm, WWU Münster VTSA 2010, Luxembourg, September 6-10, 2010

Correctness Theorem

Definition:

A framework is monotone if for all $f \in F$, $x, y \in L$: $x \sqsubseteq y \Rightarrow f(x) \sqsubseteq f(y)$.

Theorem:

In any monotone framework: $MOP[u] \sqsubseteq MFP[u]$ for all program points u.

Remark:

Any "reasonable" framework is monotone.

Three Questions

- > Do (smallesi) solutions always exist?
- > How to compute the (smallest) solution ?
- How to justify that a solution is what we want ?
 - > MOP vs MFP-solution
 - Abstract interpretation


```
Then \alpha(MFP[u]) \sqsubseteq^{\#} MFP^{\#}[u] f.a. u
```

Correct and precise abstract interpretation:

Show $\alpha(o(x_1,...,x_k)) = o^{\#}(\alpha(x_1),...,\alpha(x_k))$ f.a. $x_1,...,x_k \in L$, operators o Then $\alpha(MFP[u]) = MFP^{\#}[u]$ f.a. u

Use this as a guideline for designing correct (and precise) analyses !

Abstract Interpretation

Constraint system for reaching runs:

$$\begin{array}{ll}
R[st] &\supseteq \{\varepsilon\}, & \text{for } st, \text{ the start node} \\
R[v] &\supseteq R[u] \cdot \{\langle e \rangle\}, & \text{for each edge } e = (u, s, v)
\end{array}$$

Operational justification:

Let <u>R[u]</u> be components of smallest solution over $P(Edges^*)$. Then

$$\underline{R}[u] = R^{op}[u] =_{def} \{ r \in Edges^* \mid st \xrightarrow{r} u \}$$
 for all u

Prove:

a)
$$R^{op}[u]$$
 satisfies all constraints (direct)
 $\Rightarrow \underline{R}[u] \subseteq R^{op}[u]$ f.a. u

b)
$$w \in R^{op}[u] \Rightarrow w \in \underline{R}[u]$$
 (by induction on $|w|$)
 $\Rightarrow R^{op}[u] \subseteq \underline{R}[u]$ f.a. u

Abstract Interpretation

Constraint system for reaching runs:

 $R[st] \supseteq \{\varepsilon\}, \qquad \text{for } st, \text{ the start node}$ $R[v] \supseteq R[u] \cdot \{\langle e \rangle\}, \qquad \text{for each edge } e = (u, s, v)$

Derive the analysis:

Replace

Obtain abstracted constraint system:

 $R^{\#}[st] \supseteq init$, for *st*, the start node $R^{\#}[v] \supseteq f_{e}(R^{\#}[u])$, for each edge e = (u, s, v)

Abstract Interpretation

MOP-Abstraction:

Define $\alpha_{\text{MOP}}: \text{P}(\text{Edges}^*) \rightarrow \text{L}$ by

$$\alpha_{\text{MOP}}(R) = \bigsqcup \{ f_r(\textit{init}) \mid r \in R \} \text{ where } f_{\varepsilon} = \textit{Id}, \ f_{s \cdot \langle e \rangle} = f_e \circ f_s$$

Remark:

For all transfer functions f_e are monotone, the abstraction is correct: $\alpha_{MOP}(\underline{R}[u]) \sqsubseteq \underline{R}^{\#}[u]$ f.a. prg. points u

If all transfer function f_e are universally-distributive, the abstraction is correct and precise:

 $\alpha_{MOP}(\underline{R}[u]) = \underline{R}^{\#}[u]$ f.a. prg. points u

Justifies MOP vs. MFP theorems (*cum grano salis*).

Overview

- Introduction
- Fundamentals of Program Analysis

Excursion 1

- Interprocedural Analysis
 Excursion 2
- Analysis of Parallel Programs Excursion 3 Appendix
- Conclusion

Challenges for Automatic Analysis

• Data aspects:

- infinite number domains
- dynamic data structures (e.g. lists of unbounded length)
- pointers
- ..

• Control aspects:

- recursion
- concurrency
- creation of processes / threads
- synchronization primitives (locks, monitors, communication stmts ...)
- ...

\Rightarrow infinite/unbounded state spaces

(My) Main Interests of Recent Years

Data aspects:

- algebraic invariants over \mathbb{Q} , \mathbb{Z} , \mathbb{Z}_m ($m = 2^n$) in sequential programs, partly with recursive procedures
- invariant generation relative to Herbrand interpretation

Control aspects:

- recursion
- concurrency with process creation / threads
- synchronization primitives, in particular locks/monitors

Technics:

- fixpoint-based
- automata-based
- (linear) algebra
- syntactic substitution-based techniques

• •••

Overview

- Introduction
- Fundamentals of Program Analysis

Excursion 1

- Interprocedural Analysis
 Excursion 2
- Analysis of Parallel Programs Excursion 3 Appendix
- Conclusion

A Note on Karr's Algorithm

Markus Müller-Olm FernUniversität Hagen (on leave from Universität Dortmund)

Joint work with Helmut Seidl (TU München)

ICALP 2004, Turku, July 12-16, 2004

Affine Programs

- Basic Statements:
 - affine assignments: $x_1 := x_1 2x_3 + 7$
 - unknown assignments:
 x_i := ?
 - \rightarrow abstract too complex statements
- Affine Programs:
 - control flow graph G=(N,E,st), where
 - N finite set of program points
 - $E \subseteq N \times Stmt \times N$ set of edges
 - $st \in N$ start node
- Note: non-deterministic instead of guarded branching

The Goal: Precise Analysis

Given an affine program, determine for each program point

• all valid affine relations:

$$\mathbf{a}_0 + \sum \mathbf{a}_i \mathbf{x}_i = \mathbf{0} \qquad \mathbf{a}_i \in \mathbb{Q}$$

 $5x_1 + 7x_2 - 42 = 0$

More ambitious goal:

• determine all valid polynomial relations (of degree \leq d):

 $p(x_1,\ldots,x_k)=0 \qquad p\in \mathbb{Q}[x_1,\ldots,x_n]$

 $5x_1x_2^2 + 7x_3^3 = 0$

Applications of Affine (and Polynomial) Relations

- Data-flow analysis:
 - definite equalities:
 - constant detection:
 - discovery of symbolic constants:
 - complex common subexpressions:
 - loop induction variables
- Program verification
 - strongest valid affine (or polynomial) assertions (cf. Petri Net invariants)

x = y
x = 42
x = 5yz+17
xy+42 =
$$y^2+5$$

Karr's Algorithm

- Determines valid affine relations in programs.
- Idea: Perform a data-flow analysis maintaining for each program point a set of affine relations, i.e., a linear equation system.
- Fact: Set of valid affine relations forms a vector space of dimension at most *k*+1, where *k* = #program variables.
 - \Rightarrow can be represented by a basis.
 - \Rightarrow forms a complete lattice of height k+1.

Deficiencies of Karr's Algorithm

- Basic operations are complex
 - "non-invertible" assignments
 - union of affine spaces
- $O(n \cdot k^4)$ arithmetic operations
 - *n* size of the program
 - *k* number of variables
- Numbers may have exponential length

Our Contribution

- Reformulation of Karr's algorithm:
 - basic operations are simple
 - $O(n \cdot k^3)$ arithmetic operations
 - numbers stay of polynomial length: $O(n \cdot k^2)$ Moreover:
 - generalization to polynomial relations of bounded degree
 - show, algorithm finds all affine relations in "affine programs"

• Ideas:

- represent affine spaces by affine bases instead of lin. eq. syst.
- use semi-naive fixpoint iteration
- keep a reduced affine basis for each program point during fixpoint iteration

Concrete Collecting Semantics

Smallest solution over subsets of \mathbb{Q}^k of:

 $V[st] \supseteq \mathbb{Q}^{k}$ $V[v] \supseteq f_{s}(V[u]), \quad \text{for each edge } (u, s, v)$ where

$$f_{x_i:=t}(X) = \{x[x_i \mapsto t(x)] \mid x \in X\}$$
$$f_{x_i:=?}(X) = \{x[x_i \mapsto c] \mid x \in X, c \in \mathbb{Q}\}$$

First goal: compute affine hull of V[u] for each u.

Abstraction

Affine hull:

aff
$$(X) = \{ \sum \lambda_i x_i \mid x_i \in X, \lambda_i \in \mathbb{Q}, \sum \lambda_i = 1 \}$$

The affine hull operator is a closure operator:

 $aff(X) \supseteq X, aff(aff(X)) = X, X \subseteq Y \Rightarrow aff(X) \subseteq aff(Y)$

⇒ Affine subspaces of \mathbb{Q}^k ordered by set inclusion form a complete lattice:

$$(D, \sqsubseteq) = \left(\left\{ X \subseteq \mathbb{Q}^k \mid aff(X) = X \right\}, \subseteq \right).$$

Affine hull is even a precise abstraction:

Lemma:
$$f_s(aff(X)) = aff(f_s(X))$$
.

Abstract Semantics

Smallest solution over (D, \sqsubseteq) of:

 $V^{\#}[st] \supseteq \mathbb{Q}^{k}$ $V^{\#}[v] \supseteq f_{s}(V^{\#}[u]), \text{ for each edge } (u, s, v)$

Lemma: $V^{\#}[u] = aff(V[u])$ for all program points u.

Basic Semi-naive Fixpoint Algorithm

```
forall (v \in N) G[v] = \emptyset;
G[st] = \{0, e_1, \dots, e_k\};
W = \{(st, 0), (st, e_1), \dots, (st, e_k)\};
while W \neq \emptyset {
     (u, x) = Extract(W);
     forall (s, v \text{ with } (u, s, v) \in E) {
          t = \llbracket s \rrbracket x;
          if (t \notin aff(G[v])) {
               G[v] = G[v] \cup \{t\};
               W = W \cup \{(v, t)\};
          }
```


Correctness

Theorem:

a) Algorithm terminates after at most nk + n iterations of the loop, where n = |N| and k is the number of variables.

b) For all $v \in N$, we have $aff(G_{fin}[v]) = V^{\#}[v]$.

```
Invariants for b)

I1: \forall v \in N : G[v] \subseteq V[v] and \forall (u, x) \in W : x \in V[u].

I2: \forall (u, s, v) \in E: aff(G[v] \cup \{ [s] | x | (u, x) \in W \} ) \supseteq f_s(aff(G[u])).
```

Complexity

Theorem:

- a) The affine hulls $V^{\#}[u] = aff(V[u])$ can be computed in time $O(n \cdot k^3)$, where n = |N| + |E|.
- b) In this computation only arithmetic operations on numbers with $O(n \cdot k^2)$ bits are used.

Store diagonal basis for membership tests. Propagate original vectors.

Determining Affine Relations

Lemma: *a* is valid for $X \Leftrightarrow a$ is valid for aff(X).

 \Rightarrow suffices to determine the affine relations valid for affine bases; can be done with a linear equation system!

Theorem:

a) The vector spaces of all affine relations valid at the program points of an affine program can be computed in time O(n ⋅ k³).
b) This computation performs arithmetic operations on integers with O(n ⋅ k²) bits only.

Also in the Paper

- Non-deterministic assignments
- Bit length estimation
- Polynomial relations
- Affine programs + affine equality guards
 - validity of affine relations undecidable

End of Excursion 1

(Optimal) Program Analysis of Sequential and Parallel Programs

Markus Müller-Olm Westfälische Wilhelms-Universität Münster, Germany

3rd Summer School on Verification Technology, Systems, and Applications

Luxemburg, September 6-10, 2010

Overview

- Introduction
- Fundamentals of Program Analysis

Excursion 1

- Interprocedural Analysis
 Excursion 2
- Analysis of Parallel Programs Excursion 3 Appendix
- Conclusion

Running Example: (Definite) Availability of the single expression a+b

Intra-Procedural-Like Analysis

Conservative assumption: procedure destroys all information; information flows from call node to entry point of procedure

Context-Insensitive Analysis

Conservative assumption: Information flows from each call node to entry of procedure and from exit of procedure back to return point

Context-Insensitive Analysis

Conservative assumption: Information flows from each call node to entry of procedure and from exit of procedure bac to return point

Let's Apply Our Abstract Interpretation Recipe: Constraint System for Feasible Paths

Operational justification:

 $\underline{S}(u) = \left\{ r \in \operatorname{Edges}^* | St_p \xrightarrow{r} u \right\} \text{ for all } u \text{ in procedure } p$ $\underline{S}(p) = \left\{ r \in \operatorname{Edges}^* | St_p \xrightarrow{r} \varepsilon \right\} \text{ for all procedures } p$

$$\underline{R}(u) = \left\{ r \in \mathsf{Edges}^* \mid \exists w \in \mathsf{Nodes}^* : st_{Main} \xrightarrow{r} uw \right\} \text{ for all } u$$

Same-level runs:

 $S(p) \supseteq S(r_p)$ r_p return point of p $S(st_p) \supseteq \{\varepsilon\}$ st_p entry point of p $S(v) \supseteq S(u) \cdot \{\langle e \rangle\}$ e = (u, s, v) base edge $S(v) \supseteq S(u) \cdot S(p)$ e = (u, p, v) call edge

Reaching runs:

$$R(st_{Main}) \supseteq \{\varepsilon\}$$

$$R(v) \supseteq R(u) \cdot \{\langle e \rangle\}$$

$$R(v) \supseteq R(u) \cdot S(p)$$

$$R(st_p) \supseteq R(u)$$

 st_{Main} entry point of *Main* e = (u, s, v) basic edge e = (u, p, v) call edge e = (u, p, v) call edge, st_p entry point of p

Context-Sensitive Analysis

Idea:

Phase 1: Compute summary information for each procedure... ... as an abstraction of same-level runs

Phase 2: Use summary information as transfer functions for procedure calls... ... in an abstraction of reaching runs

Classic approaches for summary informations:

- Functional approach: [Sharir/Pnueli 81, Knoop/Steffen: CC'92] Use (monotonic) functions on data flow informations !
- 2) Relational approach: [Cousot/Cousot: POPL'77]
 Use relations (of a representable class) on data flow informations !
- 3) Call string approach: [Sharir/Pnueli 81], [Khedker/Karkare: CC´08] Analyse relative to finite portion of call stack !

Formalization of Functional Approach

Abstractions:

Abstract same-level runs with α_{Funct} : Edges^{*} \rightarrow ($L \rightarrow L$) : $\alpha_{Funct}(R) = \bigsqcup \{ f_r \mid r \in R \}$ for $R \subseteq$ Edges^{*}

Abstract reaching runs with α_{MOP} : Edges^{*} $\rightarrow L$: $\alpha_{MOP}(R) = \bigsqcup \{ f_r(init) \mid r \in R \} \text{ for } R \subseteq \text{Edges}^*$

1. Phase: Compute summary informations, i.e., functions:

$S^{*}(p)$	\square	$S^{*}(r_{ ho})$	r_p return point of p
$S^{\#}(st_{\rho})$		id	st_p entry point of p
$S^{\#}(v)$		$f_e^{\#} \circ S^{\#}(u)$	e = (u, s, v) base edge
S [#] (v)	\square	$S^{\#}(p) \circ S^{\#}(u)$	e = (u, p, v) call edge

2. Phase: Use summary informations; compute on data flow informations:

$R^{*}(st_{Main})$	\square init	<i>st_{Main}</i> entry point of <i>Main</i>
$R^{\#}(v)$	$\supseteq f_e^{\#}(R^{\#}(u))$	e = (u, s, v) basic edge
$R^{\#}(v)$	$\supseteq S^{\#}(p)(R^{\#}(u))$	e = (u, p, v) call edge
$R^{\#}(st_{\rho})$	$\supseteq R^{\#}(u)$	$e = (u, p, v)$ call edge, st_p entry point of p

Functional Approach

Theorem:

Correctness: For any monotone framework:

 $\alpha_{MOP}(\underline{R}[u]) \subseteq \underline{R}^{\#}[u]$ f.a. u

Completeness: For any universally-distributive framework:

 $\alpha_{MOP}(\underline{R}[u]) = \underline{R}^{\#}[u]$ f.a. u

Alternative condition:

framework positively-distributive & all prog. point dyn. reachable

Remark:

- a) Functional approach is effective, if *L* is finite...
- b) ... but may lead to chains of length up to $|L| \cdot \text{height}(L)$ at each program point (in general).

Functional Approach for Availability of Single Expression Problem

$$h \circ f = \begin{cases} f & \text{if } h = \mathsf{i} \\ h & \text{if } h \in \{\mathsf{g},\mathsf{k}\} \end{cases}$$

Analogous: precise interprocedural analysis for all (separable) bitvector problems in time linear in program size.

Functional Approach

Theorem:

Correctness:	For any monotone framework: $\alpha_{MOP}(\underline{R}[u]) \sqsubseteq \underline{R}^{\#}[u]$ f.a. <i>u</i>	
Completeness:	For any universally-distributive framework: $\alpha_{MOP}(\underline{R}[u]) = \underline{R}^{\#}[u]$ f.a. <i>u</i>	
	Alternative condition: framework positively-distributive & all prog. point dyn. reachable	

Remark:

- a) Functional approach is effective, **if** *L* **is finite**
- b) ... but may lead to chains of length up to $|L| \cdot \text{height}(L)$ at each program point.

Markus Müller-Olm, WWU Münster VTSA 2010, Luxembourg, September 6-10, 2010

Overview

- Introduction
- Fundamentals of Program Analysis
 Excursion 1
- Interprocedural Analysis
 Excursion 2
- Analysis of Parallel Programs Excursion 3 Appendix
- Conclusion

Precise Interprocedural Analysis through Linear Algebra

Markus Müller-Olm FernUniversität Hagen (on leave from Universität Dortmund)

Joint work with Helmut Seidl (TU München)

POPL 2004, Venice, January 14-16, 2004

... through Linear Algebra

• Linear Algebra

- vectors
- vector spaces, sub-spaces, bases
- linear maps, matrices
- vector spaces of matrices
- Gaussian elimination
- •

Applications

- definite equalities: x
- constant propagation:
- discovery of symbolic constants:
- complex common subexpressions: xy+42 = y²+5
- loop induction variables
- program verification

• ...

x = y x = 42x = 5yz+17

A Program Abstraction

Affine programs:

- affine assignments: $x_1 := x_1 2x_3 + 7$
- unknown assignments: $x_i := ?$ \rightarrow abstract too complex statements!
- non-deterministic instead of guarded branching

The Challenge

Given an affine program

(with procedures, parameters, local and global variables, ...) over *R* :

(*R* the field \mathbb{Q} or \mathbb{Z}_p , a modular ring \mathbb{Z}_m , the ring of integers \mathbb{Z} , an effective PIR,...)

- determine all valid affine relations: $a_0 + \sum a_i x_i = 0$ $a_i \in R$ 5x+7y-42=0

... and all this in polynomial time (unit cost measure) !!!

Use a Standard Approach for Interprocedural Generalization of Karr ?

Functional approach [Sharir/Pnueli, 1981], [Knoop/Steffen, 1992]

- Idea: summarize each procedure by function on data flow facts
- Problem: not applicable

Call-string approach [Sharir/Pnueli, 1981] , [Khedker/Karkare: CC´08]

- Idea: take just a finite piece of run-time stack into account
- Problem: not exact

Relational approach [Cousot/Cousot, 1977]

- Idea: summarize each procedure by approximation of I/O relation
- Problem: not exact

Towards the Algorithm ...

Concrete Semantics of an Execution Path

• Every execution path π induces an **affine transformation** of the program state:

$$\begin{bmatrix} x_1 \coloneqq x_1 + x_2 + 1; \ x_3 \succeq x_3 + 1 \end{bmatrix} (v)$$

=
$$\begin{bmatrix} x_3 \coloneqq x_3 + 1 \end{bmatrix} (\begin{bmatrix} x_1 \coloneqq x_1 + x_2 + 1 \end{bmatrix} (v))$$

=
$$\begin{bmatrix} x_3 \coloneqq x_3 + 1 \end{bmatrix} \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} + \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} + \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

Affine Relations

• An affine relation can be viewed as a vector:

$$x_1 - 3x_2 + 5 = 0$$
 corresponds to $a = \begin{pmatrix} 5 \\ 1 \\ 3 \\ 0 \end{pmatrix}$

Affine Assignments induce linear wp- Transformations on Affine Relations

$${x_2 + x_3 + 5 = 0}$$
 $x_1 := 4x_2 + x_3 + 3$ ${x_1 - 3x_2 + 2 = 0}$
weakest precondition!

A linear transformation:

$$\begin{pmatrix} 1 & 3 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 4 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \\ -3 \\ 0 \end{pmatrix} = \begin{pmatrix} 5 \\ 0 \\ 1 \\ 1 \end{pmatrix}$$

WP of Affine Relations

• Every execution path π induces a linear transformation of affine post-conditions into their weakest pre-conditions:

$$\begin{bmatrix} x_{1} \coloneqq x_{1} + x_{2} + 1; \ x_{3} \succeq x_{3} + 1 \end{bmatrix}^{\mathsf{T}} (a)$$

$$= \begin{bmatrix} x_{1} \succeq x_{1} + x_{2} + 1 \end{bmatrix}^{\mathsf{T}} \left(\begin{bmatrix} x_{3} \succeq x_{3} + 1 \end{bmatrix}^{\mathsf{T}} (a) \right)$$

$$= \begin{bmatrix} x_{1} \coloneqq x_{1} + x_{2} + 1 \end{bmatrix}^{\mathsf{T}} \left(\begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a_{0} \\ a_{1} \\ a_{2} \\ a_{3} \end{pmatrix} \right)$$

$$= \begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a_{0} \\ a_{1} \\ a_{2} \\ a_{3} \end{pmatrix}$$

Observations

- Only the zero relation is valid at program start:
 - **0**: $0+0x_1+\ldots+0x_k = 0$
- Thus, relation a₀+a₁x₁+...+a_kx_k=0 is valid at program point v iff
 M a = 0 for all M ∈ {[[π]]^T | π reaches v} iff
 M a = 0 for all M ∈ Span {[[π]]^T | π reaches v} iff
 M a = 0 for all M in a basis of Span {[[π]]^T | π reaches v}
- Matrices *M* form a vector space of dimension (k+1) x (k+1)
- Sub-spaces form a complete lattice of height $O(k^2)$.

Let's Apply Our Abstract Interpretation Recipe: Constraint System for Feasible Paths

Operational justification:

 $\underline{S}(u) = \left\{ r \in \operatorname{Edges}^* | St_p \xrightarrow{r} u \right\} \text{ for all } u \text{ in procedure } p$ $\underline{S}(p) = \left\{ r \in \operatorname{Edges}^* | St_p \xrightarrow{r} \varepsilon \right\} \text{ for all procedures } p$

 $\underline{R}(u) = \left\{ r \in \mathsf{Edges}^* \mid \exists \omega \in \mathsf{Nodes}^* : st_{\mathsf{Main}} \xrightarrow{r} u\omega \right\} \text{ for all } u$

Same-level runs:

 $S(p) \supseteq S(r_p)$ r_p return point of p $S(st_p) \supseteq \{\varepsilon\}$ st_p entry point of p $S(v) \supseteq S(u) \cdot \{\langle e \rangle\}$ e = (u, s, v) base edge $S(v) \supseteq S(u) \cdot S(p)$ e = (u, p, v) call edge

Reaching runs:

$$R(st_{Main}) \supseteq \{\varepsilon\}$$

$$R(v) \supseteq R(u) \cdot \{\langle e \rangle\}$$

$$R(v) \supseteq R(u) \cdot S(p)$$

$$R(st_p) \supseteq R(u)$$

 st_{Main} entry point of *Main* e = (u, s, v) basic edge e = (u, p, v) call edge e = (u, p, v) call edge, st_p entry point of p

Algorithm for Computing Affine Relations

 Compute a basis *B* with: Span *B* = Span {[[π]]^T | π reaches *v*} for each program point by a precise abstract interpretation:

Lattice: Subspaces of IF^{(k+1) x (k+1)}

Replace:

 $\begin{cases} \varepsilon \\ concatenation \\ dv \\ dv \\ dv \\ e \\ \end{pmatrix}$ by $\begin{cases} I \\ matrix \\ product \\ (lifted to subspaces) \\ by \\ delta \\ del$

2) Solve the linear equation system: $M a = \mathbf{0}$ for all $M \in B$

Theorem

In an affine program:

• The following vector spaces of matrices can be computed precisely:

 $\alpha(R(v)) = \text{Span} \{ \llbracket \pi \rrbracket^T \mid \pi \in R(v) \} \text{ for each prg. point } v.$

- The vector spaces
 { a ∈ ℝ^{k+1} | affine relation a is valid at v }
 can be computed precisely for all prg. points v.
- The time complexity is linear in the program size and polynomial in the number of variables: $O(n \cdot k^8)$ (*n* size of the program, *k* number of variables)

Extensions

- Also in the paper:
 - Local variables, value parameters, return values
 - Computing polynomial relations of bounded degree
 - Affine pre-conditions
 - Formalization as an abstract interpretation
- In follow-up papers (see webpage):
 - Computing over modular rings (e.g. modulo 2^w) or PIRs
 - Forward algorithm

End of Excursion 2

Markus Müller-Olm, WWU Münster V

VTSA 2010, Luxembourg, September 6-10, 2010

Overview

- Introduction
- Fundamentals of Program Analysis
 Excursion 1
- Interprocedural Analysis
 Excursion 2
- Analysis of Parallel Programs
 - Excursion 3 Appendix
- Conclusion

Interleaving- Operator ⊗ (Shuffle-Operator)

Example:

$$\langle a, b \rangle \otimes \langle x, y \rangle = \begin{cases} \langle a, b, x, y \rangle \\ \langle a, x, b, y \rangle, \langle a, x, y, b \rangle \\ \langle x, a, b, y \rangle, \langle x, a, y, b \rangle, \langle x, y, a, b \rangle \end{cases}$$

Constraint System for Same-Level Runs

Operational justification:

 $\underline{S}(u) = \left\{ \begin{array}{l} r \in \operatorname{Edges}^* | \operatorname{St}_{\rho} \xrightarrow{r} u \end{array} \right\} \text{ for all } u \text{ in procedure } p \\ \underline{S}(p) = \left\{ \begin{array}{l} r \in \operatorname{Edges}^* | \operatorname{St}_{\rho} \xrightarrow{r} \varepsilon \end{array} \right\} \text{ for all procedures } p \end{array}$

Same-level runs:

[Seidl/Steffen: ESOP 2000]

$S(p) \supseteq S(r_p)$	r_{p} return point of p
$S(st_{ ho}) {}_{\supseteq} \ \left\{ arepsilon ight\}$	st_p entry point of p
$S(v) \supseteq S(u) \cdot \langle \{e\} \rangle$	e = (u, s, v) base edge
$S(v) \supseteq S(u) \cdot S(p)$	e = (u, p, v) call edge
$S(v) \supseteq S(u) \cdot (S(p_0) \otimes S(p_1))$	$e = (u, p_0 p_1, v)$ parallel call edge

Constraint System for a Variant of Reaching Runs

Operational justification:

 $\underline{R}(u,q) = \left\{ r \in \operatorname{Edges}^* \mid \exists c \in \operatorname{Config} : st_a \xrightarrow{r} c, \operatorname{At}_u(c) \right\}$ for progam point *u* and procedure *q*

 $\underline{P}(q) = \{ r \in \mathsf{Edges}^* \mid \exists c \in \mathsf{Config} : st_a \xrightarrow{r} c \}$

Reaching runs:

[Seidl/Steffen: ESOP 2000]

R(u,q)	$\supseteq S(u)$	<i>u</i> program point in procedure q
R(u,q)	$\supseteq S(v) \cdot R(u,p)$	$e = (v, p, _)$ call edge in proc. q
R(u,q)	$\supseteq S(v) \cdot (R(u, p_i) \otimes P(p_{1-i}))$	$e = (v, p_0 p_1, _)$ parallel call edge in proc. q, $i = 0, 1$

Interleaving potential:

 $P(p) \supseteq R(u,p)$ *u* program point and p procedure Markus Müller-Olm, WWU Münster VTSA 2010, Luxembourg, September 6-10, 2010

Interleaving- Operator ⊗ (Shuffle-Operator)

Example:

$$\langle a, b \rangle \otimes \langle x, y \rangle = \begin{cases} \langle a, b, x, y \rangle \\ \langle a, x, b, y \rangle, \langle a, x, y, b \rangle \\ \langle x, a, b, y \rangle, \langle x, a, y, b \rangle, \langle x, y, a, b \rangle \end{cases}$$

The only new ingredient:

interleaving operator \otimes must be abstracted !

Case: Availability of Single Expression

[Seidl/Steffen: ESOP 2000]

Abstract shuffle operator:

$$f_1 \otimes^{\#} f_2 \coloneqq f_1 \cdot f_2 \bigsqcup f_2 \cdot f_1$$

The lattice: k (ill) i (gnore) g (enerate)

Main lemma:

$$\forall f_j \in \{g, k, i\}: \quad \overbrace{f_n \circ \ldots \circ f_{j+1}}^{\in \{l\}} \circ \underbrace{f_j}_{\in \{g, k\} \lor j=1} \circ \ldots \circ f_1 = f_j$$

(n

Treat other (separable) bitvector problems analogously...

 \Rightarrow precise interprocedural analyses for all bitvector problems !

Overview

- Introduction
- Fundamentals of Program Analysis
 Excursion 1
- Interprocedural Analysis
 Excursion 2
- Analysis of Parallel Programs
 Excursion 3
 Appendix
- Conclusion

Precise Fixpoint-Based Analysis of Programs with Thread-Creation and Procedures

Markus Müller-Olm Westfälische Wilhelms-Universität Münster

> Joint work with: Peter Lammich [same place]

CONCUR 2007

(My) Main Interests of Recent Years

Data aspects

- algebraic invariants over \mathbb{Q} , \mathbb{Z} , \mathbb{Z}_m ($m = 2^n$) in sequential programs, partly with recursive procedures
- invariant generation relative to Herbrand interpretation

Control aspects

- recursion
- concurrency with process creation / threads
- synchronization primitives, in particular locks/monitors

Technics used

- fixpoint-based
- automata-based
- (linear) algebra
- syntactic substitution-based techniques

• ...

P induces trace language: $L = \bigcup \{ A^n \cdot (B^m \otimes (C^i \cdot D^j) \mid n \ge m \ge 0, i \ge j \ge 0 \}$

Cannot characterize L by constraint system with "." and " \otimes ". [Bouajjani, MO, Touili: CONCUR 2005]

Gen/Kill-Problems

• Class of simple but important DFA problems

• Assumptions:

- Lattice (L,⊑) is distributive
- Transfer functions have form $f_e(I) = (I \sqcap kill_e) \sqcup gen_e$ with kill, gen $\in L$

• Examples:

- bitvector problems, e.g.
- available expressions, live variables, very busy expressions, ...

Data Flow Analysis

Goal:

Compute, for each program point u:

- Forward analysis: $MOP^{F}[u] = \alpha^{F}(Reach[u])$, where $\alpha^{F}(X) = \sqcup \{ f_{w}(x_{0}) \mid w \in X \}$
- Backward analysis: $MOP^{B}[u] = \alpha^{B}(Leave[u])$, where $\alpha^{B}(X) = \sqcup \{ f_{w}(\bot) \mid w^{R} \in X \}$

$$\begin{aligned} \operatorname{Reach}[\mathbf{u}] &= \left\{ w \mid \exists c : \{[e_{Main}]\} \xrightarrow{w} c \land at_u(c) \right\} \\ \operatorname{Leave}[\mathbf{u}] &= \left\{ w \mid \exists c : \{[e_{Main}]\} \xrightarrow{*} c \xrightarrow{w} \land at_u(c) \right\} \\ at_u(c) \Leftrightarrow \exists w : (uw) \in c \\ f_w &= f_{e_n} \circ \cdots \circ f_{e_1}, \text{ for } w = e_1 \cdots e_n \end{aligned}$$

Data Flow Analysis

Goal:

Compute, for each program point u:

- Forward analysis: $MOP^{F}[u] = \alpha^{F}(Reach[u])$, where $\alpha^{F}(X) = \sqcup \{ f_{w}(x_{0}) \mid w \in X \}$
- Backward analysis: $MOP^{B}[u] = \alpha^{B}(Leave[u])$, where $\alpha^{B}(X) = \sqcup \{ f_{w}(\bot) \mid w^{R} \in X \}$

Problem for programs with threads and procedures:

We cannot characterize Reach[u] and Leave[u] by a constraint system with operators "concatenation" and "interleaving".

One Way Out

[Lammich/MO: CONCUR 2007]

- Derive alternative characterization of MOP-solution:
 - reason on level of execution paths
 - exploit properties of gen/kill-problems
- Characterize the path sets occuring as least solutions of constraint systems
- Perform analysis by abstract interpretation of these constraint systems

Forward Analysis

Markus Müller-Olm, WWU Münster

VTSA 2010, Luxembourg, September 6-10, 2010

Formalization by augmented operational semantics with markers (see paper)

Forward MOP-solution

```
Theorem: For gen/kill problems:

MOP^{F}[u] = \alpha^{F}(DReach[u]) \sqcup \alpha^{PI}(PI[u]),
where \alpha^{PI}(X) = \sqcup \{ gen_{e} \mid e \in X \}.
```

Remark

- DReach[u] and PI[u] can be characterized by constraint systems (see paper)
- α^F(DReach[u]) and α^{PI}(PI[u]) can be computed by an abstract interpretation of these constraint systems

Characterizing Directly Reaching Paths

Same level paths:

$$\begin{array}{ll} [\mathrm{init}] & \mathsf{S}[\mathsf{e}_q] \supseteq \{\varepsilon\} & \text{for } q \in P \\ [\mathrm{base}] & \mathsf{S}[v] \supseteq \mathsf{S}[u]; e & \text{for } e = (u, \mathsf{base}_, v) \in E \\ [\mathrm{call}] & \mathsf{S}[v] \supseteq \mathsf{S}[u]; e; \mathsf{S}[\mathsf{r}_q]; \mathsf{ret} & \text{for } e = (u, \mathsf{call} \ q, v) \in E \\ [\mathrm{spawn}] & \mathsf{S}[v] \supseteq \mathsf{S}[u]; e & \text{for } e = (u, \mathsf{spawn} \ q, v) \in E \\ \end{array}$$

Directly reaching paths:

$$\begin{array}{ll} [\text{init}] & \mathsf{R}[\mathsf{e}_{\mathsf{main}}] \supseteq \{\varepsilon\} \\ [\text{reach}] & \mathsf{R}[u] \supseteq \mathsf{R}[\mathsf{e}_p]; \mathsf{S}[u] & \text{for } u \in N_p \\ [\text{callp}] & \mathsf{R}[\mathsf{e}_q] \supseteq \mathsf{R}[u]; e & \text{for } e = (u, \mathsf{call} \ q, _) \in E \\ [\text{spawnp}] & \mathsf{R}[\mathsf{e}_q] \supseteq \mathsf{R}[u]; e & \text{for } e = (u, \mathsf{spawn} \ q, _) \in E \end{array}$$

VTSA 2010, Luxembourg, September 6-10, 2010

Backwards Analysis

Markus Müller-Olm, WWU Münster

VTSA 2010, Luxembourg, September 6-10, 2010

Interleaving from Threads created in the Past

```
Theorem: For gen/kill problems:
```

```
MOP^{B}[u] = \alpha^{B}(DLeave[u]) \sqcup \alpha^{PI}(PI[u]),
```

where $\alpha^{\mathsf{PI}}(\mathsf{E}) = \sqcup \{ \mathsf{gen}_{\mathsf{e}} \mid \mathsf{e} \in \mathsf{E} \}.$

Remark

- We know no simple characterization of DLeave[u] by a constraint system.
- Main problem: Threads generated in a procedure instance survive that instance.

Interleaving from Threads created in the Future

Lemma

```
\alpha^{B}(DLeave[u]) = \alpha^{B}(RDLeave[u])
```

(for gen/kill problems).

Corollary

 $MOP^{B}[u] = \alpha^{B}(RDLeave[u]) \sqcup \alpha^{PI}(PI[u])$ (for gen/kill problems).

Remark

- RDLeave[u] and PI[u] can be characterized by constraint systems (see paper)
- $\alpha^{B}(RDLeave[u])$ and $\alpha^{PI}(PI[u])$ can be computed by an abstract interpretation of these constraint systems

Also in the Paper

- Formalization of these ideas
 - constraint systems for path sets
 - validation with respect to operational semantics
- Parallel calls in combination with threads
 - threads become trees instead of stacks ...
- Analysis of running time:
 - global information in time linear in the program size

Summary

- Forward- and backward gen/kill-analysis for programs with threads and procedures
- More efficient than automata-based approach
- More general than known fixpoint-based approach
- Current work: Precise analysis in presence of locks/monitors (see papers at SAS 2008, CAV 2009 for first results)

End of Excursion 3

Appendix

Regular Symbolic Analysis of Dynamic Networks of Pushdown Systems

DPNs: Dynamic Pushdown-Networks

- A *dynamic pushdown-network* (over a finite set of actions Act) consists of:
 - P, a finite set of control symbols
 - Γ , a finite set of stack symbols
 - Δ , a finite set of rules of the following form

$$p\gamma \xrightarrow{a} p_1 w_1$$
$$p\gamma \xrightarrow{a} p_1 w_1 \triangleright p_2 w_2$$

(with $p, p_1, p_2 \in \mathsf{P}, \gamma \in \Gamma, w_1, w_2 \in \Gamma^*, a \in \mathsf{Act}$).

DPNs: Dynamic Pushdown-Networks

A State of a DPN is a word in $(P\Gamma^*)^+$:

 $p_1 w_1 p_2 w_2 \cdots p_k w_k \qquad (\text{with } p_i \in P, w_i \in \Gamma^*, k > 0)$

... an infinite state space

The transition relation of a DPN:

 $(p\gamma \xrightarrow{a} p_1 w_1) \in \Delta: \qquad u p \gamma v \xrightarrow{a} u p_1 w_1 v$ $(p\gamma \xrightarrow{a} p_1 w_1 \triangleright p_2 w_2) \in \Delta: \qquad u p \gamma v \xrightarrow{a} u p_2 w_2 p_1 w_1 v$

Example

Consider the following DPN with a single rule

 $p\gamma \xrightarrow{a} p\gamma\gamma \triangleright q\gamma$

Transitions:

ΡΥ *ϤΥΡΥΥ ϤΥϤΥΡΥΥΥ ϤΥϤΥϤΥΡΥΥΥΥ ϤΥϤΥϤΥΡΥΥΥΥ*

- •
- •

Markus Müller-Olm, WWU Münster VTSA 2010, Luxembourg, September 6-10, 2010

Reachability Analysis

Given:

- Model of a system: M
- Set of system states: Bad

Reachability analysis:

• Can a state from Bad be reached from an initial states of the system? $\exists \sigma_0, ..., \sigma_k$: Init $\ni \sigma_0 \rightarrow \cdots \rightarrow \sigma_k \in \text{Bad}$?

Applications:

• Check safety properties:

Bad is a set of states to be avoided

 More applications by iterated computation of reachability sets for submodels of the system model, e.g. data-flow analysis...

Reachability Analysis

Given:

- Model of a system: M
- Set of system states: Bad

Reachability analysis:

- Can a state from Bad be reached from an initial state of the system? $\exists \sigma_0, ..., \sigma_k: \text{ Init } \ni \sigma_0 \rightarrow \cdots \rightarrow \sigma_k \in \text{Bad } ?$
- $\mathsf{Def.:} \ \ \mathsf{-pre}^*(\mathsf{X}) \ \ =_{\mathsf{df}} \{ \ \sigma \ | \ \exists \ \sigma^{'} \in \mathsf{X} \text{:} \ \sigma \rightarrow^* \sigma^{'} \}$
 - $\text{post}^*(X) =_{df} \{ \sigma \mid \exists \sigma' \in X : \sigma' \rightarrow^* \sigma \}$

Equivalent formulations of reachability analysis:

- pre*(Bad) \cap Init $\neq \emptyset$
- post*(Init) \cap Bad $\neq \emptyset$
- \Rightarrow Computation of pre* or post* is key to reachability analysis

Problems with Infinite-State Systems

- State sets ϕ_i can be infinite
 - \Rightarrow symbolic representation of (certain) infinite state sets

Here: by finite automata

Example: Representation of an Infinite State Set of a DPN by a Word Automaton

An automaton A:

Problems with Infinite-State Systems

- State sets ϕ_i can be infinite
 - \Rightarrow symbolic representation of (certain) infinite state sets

Here: by finite (word) automata

- Iterated computation of reachability sets does not terminate in general
 - \Rightarrow Methods for *acceleration* of the computation

Here: by computing with finite automata

Computing pre* for DPNs with Finite Automata

Theorem [Bouajjani, MO, Touili, 2005]

Proof:

For every DPN and every regular state set R, pre*(R) is regular and can be computed in polynomial time.

[Bouajjani/Esparza/Maler, 1997]

Generalization of a known technique for single pushdown systems: saturation of an automaton for R.

 \Rightarrow Reachability analysis is effective for regular sets Bad of states !

Example: Reachability Analysis for DPNs

Consider again DPN with the rule

 $p\gamma \xrightarrow{a} p\gamma\gamma \triangleright q\gamma$

and the infinite set of states

Bad =
$$(q\gamma q\gamma p\gamma^*)^* = L(A)$$

Analysis problem: can Bad be reached from $p\gamma$?

Example: Reachability Analysis for DPNs

Result: Bad is reachable from $p\gamma$, as A_{pre^*} accepts $p\gamma$.

Remark

This condition can be checked by computing with automata

- P induces trace language: L = U { Aⁿ · (B^m \otimes (Cⁱ· D^j)) | n \ge m \ge 0, i \ge j \ge 0 }
- L cannot be characterized by constraint system with operators "concatenation" and "interleaving"

Forward Reachability Analysis of DPNs

Observation [Bouajjani, MO, Touili, 2005]

αγργγ

*ϥγϥγ*ϼγγγ *ϥγϥγ*ϥγργγγ

*ϥϒϥϒϥϒϥϒ*Ϸϒϒϒϒ

In general, post*(R) is not regular, not even if R is finite.

Example:

Consider DPN with the rule $p\gamma \xrightarrow{a} p\gamma\gamma \triangleright q\gamma$ Recall: $p\gamma$

 $post^*(\{p\gamma\}) = \{ (q\gamma)^k p\gamma^{k+1} \ | \ k \ge 0 \} \text{ is not regular}.$

Theorem [Bouajjani, MO, Touili, 2005] For every DPN, post*(R) is *contextfree* if R is contextfree. It can be computed in polynomial time.

A Little Bit of Synchronization ...

- CDPNs Constrained Dynamic Pushdown Networks
- Idea: Threads can observe (stable regular patterns of) their children, but not vice versa
- States are represented by trees in order to mirror father/child relationship
- Use tree automata techniques for
 - representation of state sets and
 - symbolic computation of pre* (under certain conditions)
- See the CONCUR 2005 paper
- More recent papers: lock and monitor-sensitive analysis

Comparison of

Fixpoint-based and Automata-based Algorithm

Fixpoint-based algorithm: [Lammich/MO: CONCUR 2007]

- computes information for all program points at once in linear time
- can use bitvector operations for computing multiple bits at once

Automata-based algorithm: [Bouajjani/MO/Touili: CONCUR 2005]

- based on pre^{*}-computations of regular sets of configurations
- needs linear time for each program point: thus: overall running time is quadradic
- must be iterated for each bit
- more generic w.r.t. sets of configurations

End of Appendix

Conclusion

- Program analysis very broad topic
- Provides generic analysis techniques for (software) systems
- Here just one path through the forest
- Many interesting topics not covered

Thank you !