
1

Here I am Stockholm
Uppsala University

founded 1477, ~40,000 students Plan for today

 Part 1: Model Checking of Timed Systems

 A UPPAAL Tutorial

 Part 2: Multicore Real-Time Systems

 Challenges

 The Timing Analysis Problems and Solutions

2

3

Model-Checking of Timed Systems

Wang Yi
Uppsala University, Sweden

VTSA Summer School
Luxembourg, Sept 2010

A UPPAAL Tutorial

PART 1
This is simple, simple, simple … …

4

LESLIE LAMPORT

5

The main goal of this lecture

What’s inside the tool: UPPAAL

6

UPPAAL: www.uppaal.com

 Developed jointly by

 Uppsala university, Sweden

 Aalorg university, Denmark

 UPPsala + AALborg = UPPAAL

2

7

UPPAAL: www.uppaal.com

 Developed jointly by

 Uppsala university, Sweden

 Aalorg university, Denmark

 UPPsala + AALborg = UPPAAL
 SWEDEN + DENMARK = SWEDEN

 SWEDEN + DENMARK = DENMARK

Main Authors/Contributors of UPPAAL

 Gerd Behrman

 Johan Bengtsson

 Alexandre David

 Kim G Larsen

 Fredrik Larsson

 Paul Pettersson

 Wang Yi

THANKS!

9

OUTLINE

 Model Checking in a Nutshell

 Timed automata and TCTL

 A UPPAAL Tutorial
 Data stuctures & central algorithms

 UPPAAL input languages

10

Main references

 Temporal Logics (CTL)
 Automatic Verification of Finite State Concurrent Systems Using Temporal Logic Specifications: A

Practical Approach. Edmund M. Clarke, E. Allen Emerson, A. Prasad Sistla, POPL 1983: 117-126, also
as ”Automatic Verification of Finite-State Concurrent Systems Using Temporal Logic Specifications.
ACM Trans. Program. Lang. Syst. 8(2): 244-263 (1986) ”

 Timed Systems (Timed Automata, TCTL)
 A Theory of Timed Automata. Rajeev Alur, David L. Dill. Theor. Comput. Sci. 126(2): 183-235

(1994)”
 Symbolic Model Checking for Real-Time Systems, Thomas A. Henzinger, Xavier Nicollin, Joseph

Sifakis, and Sergio Yovine. Information and Computation 111:193-244, 1994.

 UPPAAL in a Nutshell. Kim Guldstrand Larsen, Paul Pettersson, Wang Yi. STTT 1(1-2): 134-152

(1997)

 Timed Automata – Semantics, Algorithms and Tools, a tutorial on timed automata Johan
Bengtsson and Wang Yi: (a book chapter in Rozenberg et al, 2004, LNCS).

 On-line help of UPPAAL: www.uppaal.com

11

Model-Checking
in a Nutshell

12

Merits of model checking …

 Checking simple properties (e.g. deadlock-free) is already extremely useful!

 It is not to prove that a system is completely correct (bug-free)

 The goal is to have tools that can help a developer find errors and improve the

quality of her/his design.

 It is to complement testing

 Now widely used in hardware design, protocol design, and hopefully soon,

embedded systems!

3

13

History: Model checking for real time systems, started in the 80s/90s

 Models of timed systems
• Timed automata, [Alur&Dill 1990]

• Timed process algebras, Timed CSP, Timed CCS

 Extension of model checking to consider time quantities
• Timed variants of temporal logics e.g TCTL

 Tools

• KRONOS, Hytech: 1993 --

• UPPAAL 1995 –

o TAB 1993/Prototype of UPPAAL [FORTE94, Wang et al]

14

A1 B1 CS1
V:=1 V=1

A2 B2 CS2
V:=2 V=2

Init
V=1

8
´

V
Criticial Section

Example: Fischer’s Protocol

Y<100

X:=0

Y:=0

X>100

Y>100

X<100

15

Example: the Vikings Problem
Real time scheduling

UNSAFE SAFE

5 10 20 25

At most 2

crossing at a time

Need torch

Mines

Can they make

it within 60 minutes ?

Torch

What is the fastest time

for getting all vikings on

the
safe side ?

5,10
5,10

20,25, 10
10

20,25
5,20,25

5

10

10,20
5

5,10

5,10
5,10,20,25

10

10

25

5

10

20,25

UN-SAFE

5,10,20,25
SAVE

Solution

17

CPU

L1

CPU

L1

CPU

L1

CPU

L1

CPU

L1

CPU

L1

CPU

L1

CPU

L1

B
an

d
w

id
th

Multicore Challenges

17

L2 Cache

Off-chip memory

Shared Resources -- cpu’s, caches, bandwidth, energy budget etc.

Worst-Case Execution Time Analysis
of Concurrent Programs on Multicores

A duo-core processor with private L1 cache and shared memory bus

18

Core 0

L1
I-Cache

L1
D-Cache

Core 1

L1
I-Cache

L1
D-Cache

Shared Memory Bus

Off-Chip Memory

4

Combining Static Analysis & Model-Checking
[RTSS 2010]

19

L1 Cache
Config.

Task 1
CFG

Core 1

L1 Cache
Analysis

L1 CHMC

L1 Cache
Config.

Task 2
CFG

Core 2

L1 Cache
Analysis

L1 CHMC

Shared Bus
Analysis
Using MC

WCET of
Task 1

WCET of
Task 2

Bus
Configurations

(1) Local cache analysis by

abstract interpretation

(2) Construct a timed automaton

for each program to model the

precise timing information on

when to access the shared bus

(3) Construct the timed

automaton for the given bus

arbitration

(4) Explore the TA models using
UPPAAL to get the WCETs

20

UPPAAL A model checker for real-time systems

UPPAAL

System Model

(Modeling)

Questions

(specification)

Yes

(Debugging Information)

No!

(Debugging Information)

21

MODELING

How to construct Model ?

22

Modeling Real Time Systems

 Events

 synchronization

 interrupts

 Timing constraints

 specifying event arrivals

 e.g. Periodic and sporadic
a

X>10

X:=0

23

Modeling Real Time Systems

 Events

 synchronization

 interrupts

 Timing constraints

 specifying event arrivals

 e.g. Periodic and sporadic

 Data variables & C-subset

 Guards

 assignments

a

X>10

X:=0

&& v==100

; v++

24

A Light Controller

Off Light Bright
press? press?

press?

press?

WANT: if press is issued twice quickly
then the light will get brighter; otherwise the light is
turned off.

5

25

A Light Controller (with timer)

Off Light Bright
press? press?

press?

press?

Solution: Add real-valued clock x

X:=0 X<=3

X>3

26

Construction of Models: Concurrency

Plant
Continuous

Controller Program
Discretesensors

actuators

Task
Task

Task
Task

a

cb

1 2

43

a

cb

1 2

43

1 2

43

1 2

43

a

cb

UPPAAL Model

Model

of

environment
(user-supplied)

Model

of

tasks
(automatic)

27 28

SPECIFICATION

How to ask questions: Specs ?

29

Specification=Requirement, Lamport 1977

 Safety

 Something (bad) should not happen

 Liveness

 Something (good) must happen/should be repeated

And for systems with limited resources

Realizability

Schedulability, enough resources

30

Reachable?

(bug?)
An ’abstract’ version of a fieled bus protocol

6

31

Computation Tree Logic, CTL
Clarke & Emerson 1980

 :: = P |   |    | EX  | E[ U ] | A[ U ]

Syntax

where P  AP (atomic propositions)

p
p

AG p EG p EF p AF p

Derived Operators

32

Liveness: p - -> q ”p leads to q”

p

q

p

q

q

q
q

q

AG (p imply AF q)

33

Specification: Examples

 Safety
 AG (P1.CS1 & P2.CS2) Invariant

 AG (temp > 10 & speed < 120)

 EF (time>60 imply viking4.safe) Reachability

 EF (viking1.safe & viking2.safe & viking3.safe & viking4.safe)

 Liveness
 AF (speed >100) Eventually

 AG (P1.try imply AF P1.CS1) Leads to

34

VERIFICATION
Model meets Specs ?

35

Verification

 Semantics of a system

= all states + state transitions

(all possible executions)

 Verification

= state space exploration + examination

36

Two basic verification algorithms

 Reachability analysis

 Checking safety properties

 Loop detection

 Checking liveness properties

7

37

Problem with verification:

‘State Explosion’

a

cb

1

2

4
3

1,a 4,a

3,a
4,a

1,b 2,b

3,b 4,b

1,c 2,c

3,c 4,c

All combinations = exponential in no. of components

M1 M2

M1 x M2

38

EXAMPLE

13 components and each with 1 clock & 10 states

of states = 10,000,000,000,000 =10,000 G

Each needs (10 * 10)* 4Bytes = 400 Bytes

Worst case memory usage >> 4,000,000GB

39

UPPAAL DEMO

