Uppsala University
Here Iam Plan for today

= Part 1: Model Checking of Timed Systems
= A UPPAAL Tutorial

= Part 2: Multicore Real-Time Systems
= Challenges

= The Timing Analysis Problems and Solutions

PART 1 This is simple, simple, simple

A UPPAAL Tutorial

Model-Checking of Timed Systems

Wang Yi
Uppsala University, Sweden

VTSA Summer School
Luxembourg, Sept2010

i AT 3

LESLIE LAMPORT

The main goal of this lecture UPPAAL: www.uppaal.com

= Developed jointly by
= Uppsala university, Sweden
= Aalorg university, Denmark

What's inside the tool: UPPAAL

= UPPsala + AALborg = UPPAAL

UPPAAL: www.uppaal.com

= Developed jointly by
= Uppsala university, Sweden
= Aalorg university, Denmark

= UPPsala + AALborg = UPPAAL
= SWEDEN + DENMARK = SWEDEN
= SWEDEN + DENMARK = DENMARK

OUTLINE

= Model Checking in a Nutshell
= Timed automata and TCTL
= A UPPAAL Tutorial

= Data stuctures & central algorithms
= UPPAAL input languages

Main Authors/Contributors of UPPAAL

Gerd Behrman
Johan Bengtsson
Alexandre David
Kim G Larsen
Fredrik Larsson
Paul Pettersson
Wang Yi

THANKS!

Main references

= Temporal Logics (CTL)
= Automatic Verification of Finite State Concurrent Systems Using Temporal Logic Specifications: A
Practical Approach. Edmund M. Clarke, E. Allen Emerson, A. Prasad Sistla, POPL 1983: 117-126, also
25 "Automatic Verification of Finite.tate Concurrent S stems Using Temporal Logic Specifications.
ACM Trans. Program. Lang. Syst. 8(2): 244-263 (1986]
. Tmed Systems (Timed Automata, TCTL)
E\lThiory of Timed Automata. Rajeev Alur, David L. Dill. Theor. Comput. Sci. 126(2): 183-235
= Symbolic Model Checking for Real-Time Systems, Thomas A. Henzinger, Xavier Nicollin, Joseph
Sifakis, and Sergio Yovine. Information and Computation 111:193-244, 1994.
= UPPAAL in a Nutshell. Kim Guldstrand Larsen, Paul Pettersson, Wang Yi. STTT 1(1-2): 134-152
(1997)
* Timed Automata — Semantics, Algorithms and Tools, a tutorial on timed automata Johan
Bengtsson and Wang Yi: (a book chapter in Rozenberg et al, 2004, LNCS).
= On-line help of UPPAAL: www.uppaal.com

Model-Checking

in a Nutshell

Merits of model checking

= Checking simple properties (e.g. deadlock-free) is already extremely useful!
= Itis not to prove that a system is completely correct (bug-free)

= Thegoal is to have tools that can help a developer find errors and improve the
quality of her/his design.
= It isto complement testing

= Now widely used in hardware design, protocol design, and hopefully soon,
embedded systems!

Example: Fischer’s Protocol
History: Model checking for real time systems, started in the 80s/90s

(3 -
= Models of timed systems .8 kZ' 8

Timed automata, [Alur&Dill 1990]

[] ,
Timed process algebras, Timed CSP, Timed CCS ° / +
= Extension of model checking to consider time quantities 8. l Vv
Timed variants of temporal logics e.g TCTL /\% Criticial Section
= Tools
KRONOS, Hytech: 1993 -- B X<100 X:= >100
UPPAAL 1995 — [”\Z) @ Vit m v=1 .
TAB 1993/Prototype of UPPAAL [FORTE94, Wang et al] N
Y <100 Y::Oe >100, .
Vi=2 V=2
.@ (4
°

Example: the Vikings Problem

Real time scheduling Solution
UN-SAFE SAVE
(5,10,20,25
UNSAFE 5,10
SAFE 20,25 ! 5,10
5 S > 10
§ ! 2 Mines
** 20,25, 10 10 5
10
* 10 20,25 520,25
5 10 20 25 25
What is the fastest time 5
Atmost 2 :Q? h for getting all vikings on 510 5 10,20
crossing at a time ord the 510
Need torch safelsdery i 5,10,20,25
10

Multicore Challenges ; . .
Worst-Case Execution Time Analysis
Off-chip memory of Concurrent Programs on Multicores

Core0 Corel
I-Cache | D-Cache I-Cache D-Cache

[[[

A duo-core processor with private L1 cache and shared memory bus

Shared Resources -- cpu’s, caches, bandwidth, energy budget etc.

Combining Static Analysis & Model-Checking
[RTSS 2010] U PPAAL A model checker for real-tine systems

Core1 Core2

L1 Cache 1 Task 1 i 11 cache 1 Task 2 System Model No!
Config. Config. - \ . . .
(1) Local cache analysis by 3 (Modeling) (Debugging Information)
abstract interpretation i
UPPAAL
"'(z) Construct a timed automaton \‘1 ’_\‘
i i for each program to model the | N
N precise timing information on ! Questions Yes
when to access the shared bus | (specification) (Debugging Information)

§ (3) Construct the timed
automaton for the given bus

H arbitration

! (4) Explore the TA models using

\ UPPAAL to get the WCETs

Modeling Real Time Systems

= Events
= synchronization
= interrupts

MODELING o o " spectyingeventarias

e = e.g. Periodic and sporadic

a
How to construct Model ? x:=0
21 22
Modeling Real Time Systems A Light Controller
= Events

= synchronization
= interrupts
= Timing constraints

S ==100 _, ma(on = specifying event arrivals
;10 &&V Tlr'"edAmo

press?

= e.g. Periodic and sporadic
l = Data variables & C-subset
X:=0 ; V++ I” = Guards press?
= assignments

WANT: if press is issued twice quickly
then the light will get brighter; otherwise the light is
turned off.

23 2%

A Light Controller (with timer)

press?

@ X<=3 press?

19

X>3

press?

Solution: Add real-valued clock x

25

(omarcankel mans1 1, Ghudeh ans1y
[ES—p———

e

(Bur,Gait, Ints, Mol SHossd)
S)
ot IR, 3L M, 1o
wrarcank manszi) oGtz Pt
ReaameSseed. s eats®, I, el

Buarcank mans32, Evgive yancty
(ChecsSsmsSposd, chhdaiR, Finddpsar

27

Construction of Models: Concurrency

Plant Controller Program
Continuous Discrete

sensors

actuators

Model

of —_—
environment

(user-suppliel)

UPPAAL Model

tasks
(automatic)

SPECIFICATION

How to ask questions: Specs ?

Specification=Requirement, Lamport 1977

= Safety
= Something (bad) should not happen
= Liveness
= Something (good) must happen/should be repeated

29

Reachable?
(bug?)
An “abstract’ version of a fieled bus protocol

Computation Tree Logic, CTL
Clarke & Emerson 1980

Syntax
ou=P| ¢l ove | EX|E[pU]| AU ¢]

where P € AP (atomic propositions)

Derived Operators

AGp EGp EF p AFp
<\\
./ ' <{<}\“ ({@ ({@
_,’II’
31

Specification: Examples

= Safety
= AG —(P1.CS1 & P2.CS2) Invariant
= AG (temp > 10 & speed < 120)
= EF (time>60 imply viking4.safe) Reachability
= EF (vikingl.safe & viking2.safe & viking3.safe & viking4.safe)

Liveness: p - -> q “p leads to ¢”

AG (p imply AF q)

VERIFICATION

Model meets Specs ?

= Liveness
= AF(speed >100) Eventually
= AG (Pl.try imply AF P1.CS1) Leads to
Verification Two basic verification algorithms

= Semantics of a system
= all states + state transitions
(all possible executions)

= Verification
= state space exploration + examination

35

= Reachability analysis
= Checking safety properties

= Loop detection
= Checking liveness properties

* Problem with verification: *

‘State Explosion’ EXAMPLE

13 components and each with 1 clock & 10 states

of states = 10,000,000,000,000 =10,000 G
Eachneeds (10 * 10)* 4Bytes = 400 Bytes

Worst case memory usage >> 4,000,000GB

All combinations = exponential in no. of components 37

UPPAAL DEMO

39

