UPPAAL tutorial

Verificatioﬂ

Architecture of UPPAAL

@ What's inside UPPAAL

Server

Linux, Windows, Solaris, MacOS 3 4

All Operations on Zones
Inside the UPPAAL tool (needed for verification)
= Transformation

S1
= Conjunction TN

. S2,S3, ..., 5n
= Post condition (delay)
= Reachability analysis

/S
= Reset ji Sj j \\
« Liveness checking = Consistency Checking /f\

= Verification Options = Inclusion
= Emptiness

= Data Structures
= DBM’s (Difference Bounds Matrices)
= Canonical and Minimal Constraints
= Algorithms

Zones = Conjuctive constraints

= Azone Zis a conjunctive formula:
9 &g, &... &g,
where g; may be x, ~ b; or x-x~by
= Use a zero-clock x, (constant0), we have
{X% ~ by | ~is <or<,ijn}
= This can be represented as a MATRIX, DBM
(Difference Bound Matrices)

Canonical Datastructures for Zones

Difference Bounded Matrices Bellman 1958, Dill 1989

Inclusion
X

x<=1 1 2
71 Y-x<=§ Graph 0/ \ y

z-y<=

7<=9 9\. z‘/z

22

Z2 |x<=2 2/' X3

y-x<=3

y<=3 Graph 0 3 y

z-y<=3

7<=7 7\‘ z‘/3

Canonical Datastructures for Zones

Difference Bounded Matrices ~ Be'™an 1958, Dil 1989

Emptiness
X
4 x<=1 P 3
y>=5 Graph 0/
y-x<=3 v

Negative Cycle
iff
empty solution set

Datastructures for Zones in UPPAAL

= Difference Bounded Matrices
[Bellman58, Dillg9]

= Minimal Constraint Form
[RTSS97]

= Clock Difference Diagrams
[CAV99]

Canonical Dastructures for Zones
. . Bellman 1958, Dill 1989
Difference Bounded Matrices

Inclusion

x<=1 1 2 1 2
Z1 y-x<=2 Graph 0/ \Y ShPC)aTESt /3\

§'<V:<9:2 9\‘ ‘/2 Closure 0

z 2~ 2
2S? Z1 22!
Z2 | x<=2 X X
= 2 3 Shortest 2/’ 3
y-x<=3
y<=3 Graph 0/ 3 y Path 0. —3\‘, y

e Closure
i N R

Canonical Datastructures for Zones
Difference Bounded Matrices

—x 1<=x, 1<=y
-2<=x-y<=3
3<=x

Add ?:IY\;edge GZ/XP) ‘ 6% >
-l\y 2 fl¥y 2

12

Canonical Dastructures for Zones Canonical Datastructures for Zones
Difference Bounded Matrices Difference Bounded Matrices

Reset Y|
Delay
| | &
z {y}z
z _‘ L z7?)
X
1<=x<=4
=y <= 1<=x, 1<=y
.y Remove all 1
/4/. X 4 M M 0) bouqu 0 b
lving y 0
- Shortest /1- Remove ./ 'Zvo tyto 0
0< Path 0_<a upper _l\y 2 and sety to ok
Closure
4& M »1\ on clocks JK

y

Datastructures for Zones in UPPAAL
COMPLEXITY

= Computing the shortest path closure, the - D‘fgerlfnces?gqggd Matrices
cannonical form of a zone: O(n3) [Dijkstra’s alg.] (Belmanse, D]
= Run-time complexity, mostly in O(n) = Minimal Constraint Form

(when we keep all zones in cannonical form) Rres7]

= Clock Difference Diagrams
[CAV99]

Minimal Graph Graph Reduction Algorithm

x1-x2<=-4 Shortest 1. Equivalence classes based
x2-x1<=10 Path on 0-cycles.

X3-x1<=2 Closure

X2-x3<=2 o(n?) l“ 2

X0-x1<=3

Xx3-x0<=5

(5BM)

Shortest

N :atl;_ Space worst O(n?)
eduction 5
gy practice O(n)

(Minimal graph, a.ka.
compact data structure)
17 18

Graph Reduction Algorithm

G: weighted graph

1. Equivalence classes based
on 0-cycles.

2. Graph based on

representatives.
Safe to remove redundant edges

Datastructures for Zones in UPPAAL

= Difference Bounded Matrices
[Bellman58, Dill89]

= Minimal Constraint Form
[RTSS97]

= Clock Difference Diagrams
[CAV99]

Inside the UPPAAL tool

= Data Structures
= DBM’s (Difference Bounds Matrices)
= Canonical and Minimal Constraints
" Algorithms
= Reachability analysis
= Liveness checking
= Verification Options

23

Graph Reduction Algorithm

G: weighted graph

1. Equivalence classes based
on 0-cycles.

2. Graph based on
representatives.
Safe to remove redundant edges

3. Shortest Path Reduction

One cycle pr. class

+
Removal of redundant edges
between classes

20

Other Symbolic Datastructures

CDD-representations |

= NDD's Maler et. al. v L sy
\ | e XS
u CDD’s UPPAAL/CAV99 N) 0 @
Y BT o
= DDD’s Mgller, Lichtenberg : o h“:{!‘i."]?’l
TITEE
= Polyhedra HyTech 5 =
.. . %)
0,2
p o g
Ty TS Y @y
. o o
© LT‘

22

Timed CTL in UPPAAL

|E[1p|A<>p|p-->q

Pi=Ad|gc| gal| notp|porp|pandp | pimply p

/AN

Process Clock predicate

Location constraint overdata variables
(a bocation in
automatonA)

denotes

==. SAFETY PROPERTIES "I ™™P¥*=>a.

24

Timed CTL (a simplified version)

Syntax
o= pl=olovelEXo|EOU AU]

where p e AP (atomic propositions) Or Clock constraint

Derived Operators

AGp EF p

¢ e g

A[]P in UPPAAL Eo P inUPPAAL

Forward Reachability

Init -> Final ?

/ .\ : INITIAL Passed:= @; :
- Final H Waiting := {(n0,20)} !
Waiting [
REPEAT
OOOO O - pick (n,Z) in Waiting
- iffor someZ' 27
(n,Z") in Passed then STOP
- else /explore/ add
{(m,U):(n,2) =>(m,U)}
to Waiting;
Add (n,2) to Passed

UNTIL Waiting= @
Passed or
Final is in Waiting

27

Forward Reachability

Init -> Final ?

INITIAL Passed:= J;
Waiting := {(n0,20)}

REPEAT
- pick (n,Z) in Waiting
- iffor someZ' 27
- --{0Z)inPassedthen STQP _ _
- else /explore/ add
{(m,U):(n,2) =>(m,U)}
to Waiting;

Add (n,Z) to Passed

UNTIL Waiting= @
or
Final is in Waiting

29

We have a search problem

(no,Zo) Symbolic state

sz/ £ \§ Symbolic transitions
Tl/ T, Z / ‘r\
/N

® Reachable?
Es®

26

Forward Reachability

Init -> Final ?

/ .\ INITIAL Passed := @;
. Final Waiting := {(n0,20)}
Waiting

O~@, _REPEAT _______________ .
O O O ' - pick (n,Z)in Waiting 1
| -ifforsomez 22 H
- {nZ)in Passedthen STOP _ !
{(mV):(n,2) =>(m,U)}
to Waiting;
Add (n,Z) to Passed

UNTIL Waiting= @
Passed or
Final is in Waiting

28

Forward Reachability

Init -> Final ?

INITIAL Passed:= J;
Final Waiting := {(n0,20)}

REPEAT
- pick (n,Z) in Waiting
- iffor someZ' 2z
(n,Z’) in Passed then STOP
- else /explore/ add
{(mU):(n,2) =>(m,U)}

|m————— toWaiting; - - - - - - - -
3 Add (n,Z) to Passed

UNTIL Waiting= @
Passed or
Final is in Waiting

30

Forward Reachability

Init -> Final ?

INITIAL Passed:= @;
Final Waiting := {(n0,20)}

REPEAT
- pick (n,Z) in Waiting
- iffor someZ' 2 Z
(n,Z") in Passed then STOP

- else /explore/ add
{(mU):(n2)=>(m,U)}
to Waiting;
Add (n,Z) to Passed

| UNTIL Waiting= @
Passed H or

1

1

Final is in Waiting

Verification vs. Optimization

&

—l 92 Q
= Verification Algorithms: S TS Q9
= Checks a logical property of the P (@) .

entire state-space of a model. g f 3 80

= Efficient Blind search. A A N O o

= Optimization Algorithms: .

= Finds (near) optimal solutions. —
= Uses techniques to avoid non- @ '}\'.. ®oe
optimal parts of the state-space 7‘. : ® .

(e.g. Branch and Bound).
= Goal: solve opt. problems with
verification.

33

Find the trace leading to P with min delay

There may

be a lot of
pathes leading
toP

Which one
with the shortest
delay?

35

Further question

Can we find the path with shortest delay, leadingto P ?
(i.e. a state satisfying P)

OBSERVATION:

Many scheduling problems can be phrased naturally as
reachability problems for timed automata.

32

OPTIMAL REACHABILITY

The maximal and minimal delay problem

34

Find the trace leading to P with min delay

Idea: delay as "Cost” to reach
a state, thus cost increases
with time at rate 1

36

An Simple Algorithm for minimal-cost reachability

State-Space Exploration + Use of global variable Cost and global clock &
Update Cost whenever goal state with min(C) < Cost is found:

= Terminates when entire state-space is explored.
Problem: The search may never terminate!

37

Example (min delay to reach G)

(nx20,x=8)

[(nx=0, 5=10,59=10) | —{ (x> 0,510, 6x=10) |

l (n,x=0,x=0, §=20,8-x=20) * (n,x> 0, § >20, §-x=20)
X=>0
l (n,x=0, 3=30,8-x=30) ‘—'{ (n,x> 0, 8230, 3-x=30) |

The minimal delay = 0 but the search may never terminate!
Problem: How to symbolically represent the zone C.

39

Priced-Zone

¢ Cost = min total time

o Ccan be represented as the zone Z%, where:
— Z° is the original zone Z extended with the
global clock 8 keeping track of the cost/time.
— Delay, Reset, Conjunction etc. on C are the
standard DBM-operations

« Butinclusion-checking will be different
Then: C,E C,EC,
But ©.¢C,cCy

41

An Simple Algorithm for minimal-cost reachability

State-Space Exploration + Use of global variable Cost and global clock &
Update Cost whenever goal state with min(C) < Cost is found:

80

o D
= Terminates when entire state-space is explored.

Problem: The search may never terminate!

38

Priced-Zone

¢ Cost = minimal total time

e Ccan be represented as the zone Z3, where:
— 25 original (ordinary) DBM plus...
— & clock keeping track of the cost/time.

. Delay, Reset, Conjunction etc. on Z are
the standard DBM-operations

« Delay-Cost s incremented by Delay-operation on Z2.

40

Solution: ()"-widening operation
= ()" removes upper bound on the 5—clock:
C,E C,ECy
! = sz < ClT
= Inthe Algorithm:
= Delay(C") = (Delay(C"))"

= Reset(x,C") = (Reset(x,C"))"
= Giag=(GIag)

= Itissuffices to apply () to the initial state (l,,Co).

42

Example (widening for Min)
8

Z1¢_ Zz

Example (widening for Min)

3

Inside the UPPAAL tool

= Data Structures |
= DBM’s (Difference Bounds Matrices)
= Canonical and Minimal Constraints | £§
. -
= Algorithms
= Reachability analysis
= Liveness checking
= Verification Options

43

45

Example (widening for Min)
)
Z+= Widen(Z)

ZIéZZ

44

An Algorithm (Min)

Cost:=w, Pass := {}, Wait := {(1,,Co)}
while Wait # {} do
select (1,C) from Wait
if (1,C) |= P and Min(C)<Cost then Cost:= Min(C)
if (1,C) E (1,C’) for some (1,C’) in Pass then skip
otherwise add (1,C) to Pass
and forall (m,C’) such that (1,Cl—, (m,C’'):

Return Cost
Output: Cost = the min cost of a found trace satisfyingp.

46

Timed CTL in UPPAAL

N\E[lp | A<>p|p-->q

Pu=Aldlgclgal

plporp | pandp | pimply p

Process Clock predicate

Location constraint overdata variables
(a bocation in

automatonA)

LIVENESS PROPERTIES
denotes

SAFETY PROPERTIES All(p imply A<>q)

48

Timed CTL (a simplified version)

Syntax
o= pl=dlovelEXo|EU ALV G]
where p e AP (atomic propositions) Or Clock constraint

Derived Operators

AFp

“ E[1P inUPPAAL Ao P in UPPAAL

Question

A<>P P will be true for sure in future”

?? Does this automaton satisfy AF P

x< 5
51
Note that
A<>P ”P will be true for sure in future”
X< 5 This automaton satisfies AF P

53

Derived Operators (cont.)
AG (p imply AF q)

p-->qin UPPAAL

50

Note that

A<> P P will be true for sure in future”

NO T there isa path:
X< 5 (m, x=0) >(m,x=1)>(m,2) ... (M,x=K) ...
Idling forever in location m

52

Algorithm for checking A<> P~ FEventually P

Bouajjani, Tripakis, Yovine'97
On-the-fly symbolic model checking of TCTL

There is no cycle containing
only states where p is false: not E [] (not p)

54

Question: Time bound synthesis

A<>P “P will be true eventually ”
But no time bound is given.

Assume AF P is satisfied by an automaton A.
Can we calculate the Max time bound?

OBS: we know how to calculate the Min !

55

An Algorlthm (MaX) — not supported by UPPAAL

Cost:=0, Pass := {}, Wait := {(1,,Co)}
while Wait # {} do
select (1,C) from Wait
if (1,C) |= P and Max(C)>Cost then Cost:= Max (C)
else if forall (1,C’) in Pass: C C’ then
add (1,C) to Pass
forall (m,C’) such that (1,C).—~_(m,C"):
add (m,C’) to Wait

Return Cost _

Output: Cost = the max cost of a found trace satisfying P.
BUT: E is defined on zones where the lower bound of “cost” is removed

57

Zone-Widening operation for Max

S
‘ GEG
C CHe Ch
c | c,Caol

59

Assume A<> P is satisfied

Find the traceleading to P with the max delay

S Almost the same
algorithm as for
synthesizing Min

We need
to explore
p the Green part

-%'U

p
P PPpPPRp pPppp

56

Zone-Widening operation for Max

8

G ¢ G
y A

58

Inside the UPPAAL tool

= Data Structures
= DBM’s (Difference Bounds Matrices)
= Canonical and Minimal Constraints
= Algorithms
= Reachability analysis
= Liveness checking

I::} Verification Options

60

10

[UPPAAL2K
File Templates View Queries |Options |

® Diagnostic Trace

Veri [Diagnostic Trace
) # Breacth-First e Breadth-First
Overview ¥ Lacal Reuction | ¢ Depth-First
= PO ! Global Recuction L
PAE<> (Vikringl. safe)| 7 pctive.cl a1 .
PAEO [VikingZ-sate) oo ico stato-Space e Local Reduction
PIES | Vikingd.zate || o [o Active-Clock Reduction
P4E<> | Viking4.safe — :
o Un L
PSE<>(Viking4.safe o * GIObal Reductlon
PBE<>(Vikingl.safe and Viking2.safe and Viking3.:
e Re-Use State-Space

Over-Approximation
Under-Approximation

61

Global Reduction
(When to store symbolic state)

50

However,
Passed list useful for
efficiency

No Cycles: Passed list not needed for termination
63

[RTSS97,CAV03]

To Store Or Not To Store?

117 ftatesn,m
81 stateSentrypoint

9 states

Time OH
less than 10%
(need to
re-explore
some states)

Inactive (passive) Clock Reduction

X is only activein location S1

7 Definition
s xis inactiveat S if on all path from
S, xis always reset before being
tested.
x:=0
x:=0
x<5 \ x>3

62

Global Reduction trrsseny
(When to store symbolic state)

Cycles:
Only symbolic states
involving loop-entry points
need to be saved on Passed list

64
Reuse of State Space
Waiting OP"’PZ A[] propl
A[] prop2
A[] prop3
A[] prop4 Sear(_:hl
A[l props in existing
Passed
. list before
continuing
. search
A[]l propn
Passed j Which order
to search?
66

11

Reuse of State Space

Waiting C)I’“’lJ2 A[] propl
A[] prop2
A[] prop3
A[] prop4 _Seargh_
All props in existing
Passed
list before
continuing
. search
0.0-0 A[] propn
Passed Which order
h—/ to search?
67
Reuse of State Space
Waiting A[] propl
A[] prop2
A[] prop3 'Seart.:h'
All propd in existing
Passed
A[]l prop5 list before
continuing
search
. Which order
ALl propn to search?
ed to)
—~—— generation order Ay mempory: 69
Under-approximation
Bitstate Hashing
1 q
Waiting O o) O Firal 0 Bitarray
1
oTe1o°)
O e | O 0 UPPAAL
8 Mbits
Hashfunction
F
} 0
k Passed 1

71

Reuse of State Space

©)

Waiting prop2

0-0-0O
\ Passed /
(0] Swapped to
se

All

All
All
All
All

All

Under-approximation
Bitstate Hashing (Holzman,SPIN)

ing (O @O .
ofe 2

Waiting

Passed j

Bit-state Hashing

INITIAL Passed:= @;
Waiting := {(n0,20)}

REPEAT

P!
{(m,U):(n,2) =>(m,U)}
to Waiting;

Add (n,Z) to Passed

UNTIL Waiting= @
or
Final is in Waiting

propl
prop2
prop3
prop4 ,Sear(.:h.
zop5 in existing
prop Passed
list before
continuing
search
propn
Which order
to search?
nemory

68

70

Passed(F(n,2)) =1

Passed(F(n,2)) :=1

72

12

Under Approximation
(good for finding Bugs quickly, debugging)

= Possitive answer is safe (you can trust)
= You can trust your tool if it tells:
a state is reachable (it means Reachable!)
= Negative answer is Inconclusive
= You should not trust your tool if it tells:
a state is non-reachable

= Some of the branch may be terminated by
conflict (the same hashing value of two states)

73

Over-Approximation
(good for safety property-checking)

= Possitive answer is Inconclusive
= a state is reachable means Nothing
(you should not trust your tool when it says so)

= Some of the transitions may be enabled by
Enlarged zones

= Negative answer is safe
= a state is not reachable means Non-reachable
(you can trust your tool when it says so)

75

Over-approximation
Convex Hull

I
1 Convex Hull .

74

Now, you can go home

= Download and use UPPAAL or
= Start to implement your own model checker

76

13

