Fixed-Priority Multiprocessor Scheduling
[RTAS 2010]

Joint work with
Nan Guan, Martin Stigge and Yu Ge

Northeastern University, China
Uppsala University, Sweden

On Single-processors

B Lju and Layland’s Utilization Bound [1973]
(the 19t most cited paper in computer science)

S U< N@EYN -1

TiET

number of

= the task set is schedulable P {00

BN oo, N2VY 1) =69.3%
B Scheduled by RMS (Rate Monotonic Scheduling)

Liu and Layland’s Utilization Bound

O Schedulability Analysis

Schedulable?
¥ T I

100% | U’:’- :
i 77.9% ;’,:., --1

i
i
i
v I S Ui=G/T

Liu and Layland’s bound:
3x (2V 1) = TT.9%

2010-09-11

Real-time Systems

QO N periodic tasks (of different rates/periods)

[A S S A —
D e Ve tesg

i [e r
Utilization/workload: C./T;

O How to schedule the jobs to avoid deadline miss?

Rate Monotonic Scheduling

QO Priority assignment: shorter period - higher prio.
O Run-time schedule: the highest priority first

high priority [- _ 1
mediate priority L- i T - i _ I
low priority T -i :h; T

Run-time schedule NN DR

0 How to check whether all deadlines are met?

Liu and Layland’s Utilization Bound

O Schedulability Analysis

' B
100% !
i 77.9% Yes, schedulable!

i
oo
i '

[SRS A SR

Liu and Layland’s bound:
3x (27— 1) = TT.9%

Multiprocessor (multicore) Scheduling
O Significantly more difficult:
B Timing anomalies
B Hard to identify the worst-case scenario
B Bin-packing/NP-hard problems

B Multiple resources e.g. caches, bandwidth

Multiprocessor Scheduling

Global Scheduling Partitioned Scheduling Pavvi':;‘o?::kssc;‘“etfil;gng

new task
9 0
0 e

EEE CIGIE

cpul cpu2 cpu3 cpul cpu2 cpu3 cpul cpu2 cpu3

waiting queug

Best Known Results (before 2010)

80 Liu and Layland’s

Utilization Bound
{1 S Sy gy S g gy A

60

50

40

30 i
[ECRTS 03] [RTCSATE]

20

[TPDS05] [ECRTS03] [RTSS04]

10 [omms 08]
\
Fixed Dynamic Fixed Dynamic Fired Dynamic
Priority Priority Priority Priority Phnrlly‘ Priority

Tasl\ Splitting

Global

Multiprocessor Scheduling

2010-09-11

Open Problem (since 1973)

O Find a multiprocessor scheduling algorithm that
can achieve Liu and Layland’s utilization bound

z(‘/T T
oM
<17 = the task set is schedulable
number of
processors

Best Known Results (before 2010)

80 Liu and Layland’s
Utilization Bound

60
50
65 66
[ECRTS'09] [RTCSA0G]

[TPDS05] [ECRTS03] [RTSS04)

Fixed
Priarity

Dynamic Fixed Dynamic Fixed Dynamic
Priority Priority Priority Priority Priority

Task Splitting

‘ Global ‘ ‘Panilmned Frf‘j
Multiprecessor Scheduling

Best Known Results

o
80 % Our New Result Liu and Layland’s
RTAS 2010 ™~ . uitilization Bound
70| — — RTSS 2010_submitted F— _——— =
60
50
40
30 66
[RTCSA06]
20 [TPDS'05] [ECRTS'03] [RTSS'04]
10| [OPODIS8]
Fixed ‘Dynamlc Fixed Dynamic ‘ Fixed Dynamic
Priority Priority Priority Priority Priority Priority
‘ Task Splitting ‘
Global Partitioned

Multiprocessor Scheduling

2010-09-11

Multiprocessor Scheduling Multiprocessor Scheduling

Global Scheduling . L. ~ Global Scheduling . . .
Would fixed-priority scheduling Would fixed-priority scheduling

e.g. "RMS” work? e.g. "RMS” work?
new task new task

L Unfortunately "RMS” suffers
waiting queug

plaltinglg ety from the Dhall's anomali

Utilization may be "0%"”

cpul cpu2 cpu3

cpul cpu2 cpu3

Dhall’s anomali Dhall’s anomali

H
Task 2 h h cPU2
o I

0 £ 1 1+¢

Deadline miss _—

Schedule the 3 tasks on 2 CPUs using “"RMS

Dhall’s anomali

Multiprocessor Scheduling
(M+1 tasks and M processors)

Partitioned Scheduling

1/(s+1)

/1 /1 /1 #M+1
C#1 1 [C#2 1 .. &M]
P P. P, E
1 2 M
U - M*s+1/(1+s)_’

I CIEIE]
when = — Oand M — +00

cpul cpu2 cpu3

Multiprocessor Scheduling

Partitioned Scheduling

FIEIE]

cpul cpu2 cpu3

Resource utilization may
be limited to 50%

Partitioned Scheduling

O The Partitioning Problem is similar to
Bin-packing Problem (NP-hard)
SNoyni<

necessary condition to
guarantee schedulability

O Limited Resource Usage

3
...... #M+1 | 50%+e

¥

Py P, Y

} e
) = (M u‘[ln‘, fe) _us

#1 #2 #M when = — Oand M — +nc

Partitioned Scheduling

O The Partitioning Problem is similar to
Bin-packing Problem (NP-hard)
Meyr<a

necessary condition to
guarantee schedulability

O Limited Resource Usage

...... | 50%+ &
R
Py Py Py
#M+1,1 Ulr) = (M +1)(05+2) 0.5
M
#1 #2 #M when = — Oand M — +0c

2010-09-11

Partitioned Scheduling

0 The Partitioning Problem is similar to
Bin-packing Problem (NP-hard)

Zf’i:"Tﬁ =1
O Limited Resource Usage, 50% necessary condition to
guarantee schedulability
1
#1 #2 #M #M+1 | 50%+e
y
Py P, P
. (M +1)(0.54¢) i
1) = —————— — 0]
U(r) i g
when = — Oand M — +nc

Partitioned Scheduling

O The Partitioning Problem is similar to
Bin-packing Problem (NP-hard)
SNoyni<

necessary condition to
guarantee schedulability

O Limited Resource Usage

Pl Pz PM
. (M + 1)(0.5+¢) :
(1) = —————— — O
U(r) M 5
#1 #2 #M when = — Oand M — +nc

Multiprocessor Scheduling

Partitioned Scheduling
with Task Splitting

cpul cpu2 cpu3

Partitioned Scheduling

O Partitioning

Previous Algorithms

[Kato etal. IPDPS’08] [Kato et al. RTAS'09] [Lakshmanan et al. ECRTS'09]

O Sort the tasks in some order e.g. utilization or priority order
0 Select a processor, and assign as many tasks as possible

P1

NN

Lakshmanan’s Algorithm [ecrrsoo;

O Pick up one processor, and assign as many
tasks as possible

P1
highest util.

lowest util.

2010-09-11

Bin-Packing with Item Splitting

O Resource can be “fully” (better) utilized

Binl Bin2 Bin3

H =

Lakshmanan’s Algorithm (ecrrsoo;

O Sort all tasks in decreasing order of utilization

highest util.

lowestutil.[1]

Lakshmanan’s Algorithm (ecrrsoo;

O Pick up one processor, and assign as many
tasks as possible

P1
highest util.

lowestutil.[1]

Lakshmanan’s Algorithm tecrrsoo;

QO Pick up one processor, and assign as many
tasks as possible

P1

highest util.

lowest util.

Lakshmanan’s Algorithm [ecrrsoo;

O Pick up one processor, and assign as many
tasks as possible

P1 P2
highest util.
61
7
62 8
3 _]
E
lowestutil.[1]

Lakshmanan’s Algorithm [ecrrsoo;

O Pick up one processor, and assign as many
tasks as possible

P1 P2
highest util.
61
7
8 5
62

lowestutil. [1]

2010-09-11

Lakshmanan’s Algorithm tecrrsos)

O Pick up one processor, and assign as many
tasks as possible

. . P1
highest util. 0
7
62 8
ENE
(2]
lowestutil. [1]

Lakshmanan’s Algorithm (ecrrsoo;

O Pick up one processor, and assign as many
tasks as possible

P1 P2
highest util.
61
7
8
5| >
(3]
2|
lowestutil.[1]

Lakshmanan’s Algorithm (ecrrsoo;

O Pick up one processor, and assign as many
tasks as possible

A
P1 P2
highest util.
61
7 4
8 5
6<2
3
lowest util.

2010-09-11

Lakshmanan’s Algorithm tecrrsoo; Lakshmanan’s Algorithm tecrrsos)
QO Pick up one processor, and assign as many O Pick up one processor, and assign as many
tasks as possible tasks as possible

P1 P2 P1 P2
highest util. i highest util. i 21
6 3 6 3
7 P 7 a4
8 5 8 5
62— 62

2 22
lowest util. lowest util.

Lakshmanan’s Algorithm [ecrrsoo; Lakshmanan’s Algorithm (ecrrsoo;
O Pick up one processor, and assign as many O Pick up one processor, and assign as many
tasks as possible tasks as possible

P1 P2 P3 P1 P2 P3
highest util. 0 21 highest util. i 21
6 3 6 3
7 4 7 a4
5 5 1
8 B2 22 8 B2 22
lowest util.

lowest util. | 1

Lakshmanan’s Algorithm [ecrrsoo; Lakshmanan’s Algorithm (ecrrsoo;
O Pick up one processor, and assign as many

O Pick up one processor, and assign as many
tasks as possible tasks as possible
A A
Pl . P2,.-- P3 Pl _ P2,.--, P3
highest util. 2N >t highest util. 2N >t
6 [ET | 6 hIEl |k
7] 7]
s P Polils |
E ‘ | B2 22 s ‘ | B2 \ 22

key feature: Utilization Bound:

“depth-first” partitioning
with decreasing utilization order 65%
lowest util.

lowest util.

Our Algorithm
[RTAS10]

“width-first” partitioning
with increasing priority order

Our Algorithm

O Select the processor on which the assigned
utilization is the lowest

lowest priority

P1 P2 P3

highest priority

Our Algorithm

O Select the processor on which the assigned
utilization is the lowest

lowest priority

P1 P2 P3

5 |
o]
5]
2 |
F

highest priority

2010-09-11

Our Algorithm

O Sort all tasks in increasing priority order

lowest priority | 7

highest priority

Our Algorithm

O Select the processor on which the assigned
utilization is the lowest

lowest priority

P1 P2 P3

6 1
5 |
]
5]
2|
i

highest priority

Our Algorithm

O Select the processor on which the assigned
utilization is the lowest

lowest priority

P1 P2 P3

(4]
==Ll
F

highest priority

Our Algorithm

O Select the processor on which the assigned
utilization is the lowest

lowest priority

P1 P2 P3

ali=l=L
]

highest priority

Our Algorithm

O Select the processor on which the assigned
utilization is the lowest

lowest priority

P1 P2 P3
21 2 3
7 5 5
2z
highest priority E}
Our Algorithm

O Select the processor on which the assigned
utilization is the lowest

lowest priority

N =

21

O & N=

highest priority Iz

2010-09-11

Our Algorithm

O Select the processor on which the assigned
utilization is the lowest

lowest priority

P1 P2 P3

highest priority E]

Our Algorithm

O Select the processor on which the assigned
utilization is the lowest

lowest priority

P1 P2 P3
21 2 3
4
7 5 5
highest priority E]
Our Algorithm

O Select the processor on which the assigned
utilization is the lowest

P1 P2 P3
1 1<
21 i‘ 3
7 ps 5

Our Algorithm

0 Select the processor on which the assigned
utilization is the lowest

4 key feature:
“width-first” partitioning

lowest priority
with increasing prio order

highest priority

Comparison

Why is our algorithm better?

By our algorithm split tasks generally have higher priorities

Ours: width-first
& increasing priority order

Previous: depth-first
& decreasing utilization order

P1 P2 P3 PL--. P27 P3
- F et 650 [3t) |}

i s R S S pmy gy N

=] - - [g— - i i LN | ‘A

, e |2

8 1o . 8 ! 15 |]

R - -7/ 6-- ! | B2 W32

Split Task

O Subtasks should execute in the correct order

=1 |
r d
vl M
P2] . Ll
P | 7 |

2010-09-11

Comparison

Why is our algorithm better?

Ours: width-first
& increasing priority order

Previous: depth-first
& decreasing utilization order

P1 P2 P3 PL--.. P2y P3
~i 61 \ 3t |
i 70 | ia
8 s | [5 |.[2
) B - :53: 3z
Split Task

0 Consider an extreme scenario:
B suppose each subtask has the highest priority
B schedulable anyway, we do not need to worry about
their deadlines

T3 12 11
2

3 4 5

8 7 6

QO The difficult case is when the tail task is not on the top
| the key point is to ensure the tail task is schedulable

Split Task

”

O Subtasks get “shorter deadlines

r d
P, |
R
P2] L [
R
Ps I ; 7
; A;=T;- Rit-R2—

10

Split Task

O Subtasks should execute in the correct order

il_’:
P, ' : 77

R
‘ :
.

L7

ﬁ A =T;- R -R2—

These two are on the top: no problem with schedulability

Why the tail task is schedulable?

The typical case: two CPUs

and task 2 is split to two N - y2

sub-tasks ng 21 ”f"uzz
¥ !

As we always select the X1 X2

CPU with the lowest load) i

assigned, we know

Y2+U2 <= Uyt

4

Y2<= U1 -U2
That is, the “blocking factor” for the tail task is bounded.

Theorem

= the task set is schedulable

int

a(N)

Al
I+ 0(N)

B(N)=N@2¥ —1) N —cc,

2010-09-11

Split Task

O Subtasks should execute in the correct order

r d
P, 77
R
P2 ;
R
P3 I | 7| =™
ﬁ "‘—AI_TI_Rll_Rlz_’

These two are on the top: no problem with schedulability

Theorem

For a task set in which each task 7; satisfies

U < BN
I +O(N)
we have
=5 (.ﬁ”’ SNEN -1

= the task set is schedulable

. A(N)

O(N)=N(2¥ -1 N e s a——— Y |
(V) = N) N-oo 1+ O(N)

Problem of Heavy Tasks

lowest priority [@

8 1

P1 P2 P3

6

5]

o w—!
31

2]

highest priority []

11

2010-09-11

Problem of Heavy Tasks Problem of Heavy Tasks
lowest priority lowest priority
[I
v — P1 P2 P3 E— P1 P2 P3
6 6
1 1 *
7 S— 7 —
B e I
2] 2]
highest priority [] highest priority []
Problem of Heavy Tasks Problem of Heavy Tasks
lowest priority lowest priority
P1 P2 P3 P1 P2 P3
6
g & 961 g
7: S— [—
e I B3]
2] 2]
highest priority [] highest priority []
Problem of Heavy Tasks Problem of Heavy Tasks
lowest priority lowest priority
P1 P2 P3 P1 P2 P3
¢ | o || &
2 2
[s_] o | Lg_l 7 o | Lg_l 7
; S— . m—
31 31
highest priority [] highest priority []

12

Problem of Heavy Tasks

lowest priority

P1 P2 P3

1
9 | 7

B

2]

highest priority []

Problem of Heavy Tasks

lowest priority

P1 P2 P3

E 2
1

6 2 5
9 | 7

highest priority []

Problem of Heavy Tasks

the heavy tasks’ tail task
may have too low priority level

P1 P2 P3

61 2
¢<186z==, |5
9 = v

2010-09-11

Problem of Heavy Tasks

lowest priority

P1 P2 P3

1
o | 7

2]

highest priority []

Problem of Heavy Tasks

P1 P2 P3

E 2
1

6 2 5
9 7

Solution for Heavy Tasks

O Pre-assigning the heavy tasks (that may have
low priorities)
lowest priority [@]

8 1
]

highest priority []

13

Solution for Heavy Tasks

O Pre-assigning the heavy tasks (that may have
low priorities)

lowest priority (@]
81

iy 2
P1 P2 P3

5]

4a—
B 1

2]

highest priority []

Solution for Heavy Tasks

O Pre-assigning the heavy tasks (that may have
low priorities)
lowest priority

[z
P1 P2 P3
6
5] 9 -
44—
i I
2]

highest priority []

Solution for Heavy Tasks

O Pre-assigning the heavy tasks (that may have
low priorities)

lowest priority

P1 P2 P3
6 7 5
9 8
Z—
i

highest priority []

2010-09-11

Solution for Heavy Tasks

O Pre-assigning the heavy tasks (that may have
low priorities)
lowest priority

- T

[y A
P1 P2 P3

5 | 9
44—
i -

2]

highest priority []

Solution for Heavy Tasks

O Pre-assigning the heavy tasks (that may have
low priorities)
lowest priority

P1 P2 P3
6 7

5]] -

|72 A—

3]

2|

highest priority [1]

Solution for Heavy Tasks
O Pre-assigning the heavy tasks (that may have

low priorities)

lowest priority

P1 P2 P3

)]
ONPN
u

3 1

2]

highest priority []

14

Solution for Heavy Tasks
O Pre-assigning the heavy tasks (that may have
low priorities)
lowest priority

P1 P2 P3

)]
ONPW
4]

2]

highest priority (1]

Solution for Heavy Tasks

O Pre-assigning the heavy tasks (that may have
low priorities)
lowest priority

PL P2 P3
2 2
6 4 5
9 8

highest priority 42

Solution for Heavy Tasks

O Pre-assigning the heavy tasks (that may have
low priorities)

P1 P2 P3
12 S 2
7 5
9 8 |

avoid to split heavy tasks
(that may have low priorities)

2010-09-

Solution for Heavy Tasks

O Pre-assigning the heavy tasks (that may have
low priorities)
lowest priority

P1 P2 P3
3 2
6 Vi 5
9 8 |

highest priority []

Solution for Heavy Tasks

O Pre-assigning the heavy tasks (that may have
low priorities)

P1 P2 P3
1= T 2
6 = 5
C -
Theorem

O By introducing the pre-assignment mechanism,
we have

—Z ('[/T’ <<
M -
= the task set is schedulable

N(@2YN 1)

Liu and Layland’s utilization bound for all task sets!

11

15

2010-09-11

Overhead Implementation
Q In both previous algorithms and ours a Easy!
B The number of task splitting is at most M-1 B One timer for each split task
“ task splitting -> extra “migration/preemption” B Implemented as “task migration”

B Our algorithm on average has less task splitting

Ours: width-first depth-first as being preempted
P1 P2 P3 PL-. P2 P3 1 B =
N R

S . 7 ‘ : as being resumed B
I I P2 | 7

—until finished —»

Further Improvement Uisng Liu and Layland'’s Utilization Bound
?
— PL P2 P3 Schedulable? S PL P2 P3
5 . J Yes, schedulable
100% | 100% by our algorithm
v o N2 -1
Utilization Bound is Pessimistic Exact Analysis

O The Liu and Layland utilization bound is 0 Exact Analysis: Response Time Analysis [Lehoczky_89]

sufficient but not necessary B pseudo-polynomial

O many task sets are actually schedulable even if
the total utilization is larger than the bound

,,,,,,,,,,,,,, P

;

: (1,4)

S

; 5 (1,4) s Ry =-nnmammi J

0.69 ——
P Rl task k is schedulable iff
e v 212) | . R =) A
« [Z“_ (11 ! R, <=T,

16

Utilization Bound v.s. Exact Analysis

0 On single processors

Utilization bound Test Exact Analysis
for RMS for RMS

Beyond Layland & Liu’s Bound (rrss 2010, rejected!]

0O Our RTAS10 algorithm:
m Increasing RMS priority order & worst-fit partitioning
m Utilization test to determine the maximal load for each processor

® The maximal load for each processor bounded by 69.3%
N(2% 1)

O Improved algorithm:

m Employ Response Time Analysis to determine the maximal
workload on each processor

m more flexible behavior (more difficult to prove ...)
® Same utilization bound for the worst case, but
® Much better average performance (by simulation)

I believe this is “the best algorithm” one can hope
for “‘fixed-prioritiy multiprocessor scheduling”

Thanks!

2010-09-11

On Multiprocessors

O Can we do something similar on multiprocessors?

Utilization bound Test ?

the algorithm introduced above -

N Pt P2 P3 | P1 P2 P3

100% | % |

N NN

b b
Conclusions

O The (multicore) Timing Problem is challenging
m Difficult to guarantee Real-Time
B and Difficult to analyze/predict

O Solutions: Partition & Isolation
B Shared caches: coloring/partition
B Memory bus/bandwidth: TDMA, ?
B Processor cores: partition-based scheduling

17

