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On Single-processors

B Lju and Layland’s Utilization Bound [1973]
(the 19t most cited paper in computer science)
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Real-time Systems

QO N periodic tasks (of different rates/periods)
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Utilization/workload: C./T;

O How to schedule the jobs to avoid deadline miss?

Rate Monotonic Scheduling

QO Priority assignment: shorter period - higher prio.
O Run-time schedule: the highest priority first
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0 How to check whether all deadlines are met?

Liu and Layland’s Utilization Bound
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Multiprocessor (multicore) Scheduling
O Significantly more difficult:
B Timing anomalies
B Hard to identify the worst-case scenario
B Bin-packing/NP-hard problems

B Multiple resources e.g. caches, bandwidth
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Open Problem (since 1973)

O Find a multiprocessor scheduling algorithm that
can achieve Liu and Layland’s utilization bound
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Multiprocessor Scheduling Multiprocessor Scheduling

Global Scheduling . L. ~ Global Scheduling . . .
Would fixed-priority scheduling Would fixed-priority scheduling

e.g. "RMS” work? e.g. "RMS” work?
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Multiprocessor Scheduling
(M+1 tasks and M processors)

Partitioned Scheduling
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Multiprocessor Scheduling

Partitioned Scheduling
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Resource utilization may
be limited to 50%

Partitioned Scheduling

O The Partitioning Problem is similar to
Bin-packing Problem (NP-hard)
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O Limited Resource Usage
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Partitioned Scheduling

O The Partitioning Problem is similar to
Bin-packing Problem (NP-hard)
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Partitioned Scheduling

0 The Partitioning Problem is similar to
Bin-packing Problem (NP-hard)
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Partitioned Scheduling

O The Partitioning Problem is similar to
Bin-packing Problem (NP-hard)
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Partitioned Scheduling

O Partitioning

Previous Algorithms

[Kato etal. IPDPS’08] [Kato et al. RTAS'09] [Lakshmanan et al. ECRTS'09]

O Sort the tasks in some order e.g. utilization or priority order
0 Select a processor, and assign as many tasks as possible

P1
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Lakshmanan’s Algorithm [ecrrsoo;

O Pick up one processor, and assign as many
tasks as possible

P1
highest util.

lowest util.
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Bin-Packing with Item Splitting

O Resource can be “fully” (better) utilized

Binl Bin2 Bin3

H =

Lakshmanan’s Algorithm (ecrrsoo;

O Sort all tasks in decreasing order of utilization

highest util.

lowestutil.[1 ]

Lakshmanan’s Algorithm (ecrrsoo;

O Pick up one processor, and assign as many
tasks as possible

P1
highest util.

lowestutil.[1 ]



Lakshmanan’s Algorithm tecrrsoo;

QO Pick up one processor, and assign as many
tasks as possible
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lowest util.
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Lakshmanan’s Algorithm tecrrsos)

O Pick up one processor, and assign as many
tasks as possible
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tasks as possible

A
P1 P2
highest util.
61
7 4
8 5
6<2
3
lowest util.



2010-09-11

Lakshmanan’s Algorithm tecrrsoo; Lakshmanan’s Algorithm tecrrsos)
QO Pick up one processor, and assign as many O Pick up one processor, and assign as many
tasks as possible tasks as possible
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Lakshmanan’s Algorithm [ecrrsoo; Lakshmanan’s Algorithm (ecrrsoo;
O Pick up one processor, and assign as many

O Pick up one processor, and assign as many
tasks as possible tasks as possible
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key feature: Utilization Bound:

“depth-first” partitioning
with decreasing utilization order 65%
lowest util.

lowest util.



Our Algorithm
[RTAS10]

“width-first” partitioning
with increasing priority order

Our Algorithm

O Select the processor on which the assigned
utilization is the lowest
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Our Algorithm

O Sort all tasks in increasing priority order
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highest priority
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O Select the processor on which the assigned
utilization is the lowest
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Our Algorithm

O Select the processor on which the assigned
utilization is the lowest

lowest priority
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Our Algorithm

O Select the processor on which the assigned
utilization is the lowest

lowest priority
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Our Algorithm

O Select the processor on which the assigned
utilization is the lowest

lowest priority
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Our Algorithm

O Select the processor on which the assigned
utilization is the lowest

lowest priority
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O Select the processor on which the assigned
utilization is the lowest
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Our Algorithm

0 Select the processor on which the assigned
utilization is the lowest

4 key feature:
“width-first” partitioning

lowest priority
with increasing prio order

highest priority

Comparison

Why is our algorithm better?

By our algorithm split tasks generally have higher priorities

Ours: width-first
& increasing priority order

Previous: depth-first
& decreasing utilization order
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O Subtasks should execute in the correct order
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Comparison

Why is our algorithm better?

Ours: width-first
& increasing priority order

Previous: depth-first
& decreasing utilization order
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Split Task

0 Consider an extreme scenario:
B suppose each subtask has the highest priority
B schedulable anyway, we do not need to worry about
their deadlines

T3 12 11
2

3 4 5
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QO The difficult case is when the tail task is not on the top
| the key point is to ensure the tail task is schedulable

Split Task

”

O Subtasks get “shorter deadlines
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Split Task

O Subtasks should execute in the correct order
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These two are on the top: no problem with schedulability

Why the tail task is schedulable?

The typical case: two CPUs

and task 2 is split to two N - y2

sub-tasks ng 21 ”f"uzz
¥ !

As we always select the X1 X2

CPU with the lowest load ) i

assigned, we know

Y2+U2 <= Uyt

4

Y2<= U1 -U2
That is, the “blocking factor” for the tail task is bounded.

Theorem

= the task set is schedulable
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Split Task

O Subtasks should execute in the correct order
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These two are on the top: no problem with schedulability

Theorem

For a task set in which each task 7; satisfies
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Problem of Heavy Tasks Problem of Heavy Tasks
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Problem of Heavy Tasks

lowest priority

P1 P2 P3

1
9 | 7

B

2]

highest priority [ ]

Problem of Heavy Tasks
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Problem of Heavy Tasks

the heavy tasks’ tail task
may have too low priority level
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Problem of Heavy Tasks

lowest priority

P1 P2 P3

1
o | 7

2]

highest priority [ ]

Problem of Heavy Tasks
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Solution for Heavy Tasks

O Pre-assigning the heavy tasks (that may have
low priorities)
lowest priority [@ ]
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Solution for Heavy Tasks

O Pre-assigning the heavy tasks (that may have
low priorities)

lowest priority (@]
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Solution for Heavy Tasks

O Pre-assigning the heavy tasks (that may have
low priorities)
lowest priority
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Solution for Heavy Tasks

O Pre-assigning the heavy tasks (that may have
low priorities)
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Solution for Heavy Tasks

O Pre-assigning the heavy tasks (that may have
low priorities)
lowest priority
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Solution for Heavy Tasks

O Pre-assigning the heavy tasks (that may have
low priorities)
lowest priority
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Solution for Heavy Tasks
O Pre-assigning the heavy tasks (that may have

low priorities)

lowest priority
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Solution for Heavy Tasks
O Pre-assigning the heavy tasks (that may have
low priorities)
lowest priority
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Solution for Heavy Tasks

O Pre-assigning the heavy tasks (that may have
low priorities)
lowest priority
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2 2
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highest priority 42

Solution for Heavy Tasks

O Pre-assigning the heavy tasks (that may have
low priorities)
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12 S 2
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avoid to split heavy tasks
(that may have low priorities)
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Solution for Heavy Tasks

O Pre-assigning the heavy tasks (that may have
low priorities)
lowest priority
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Solution for Heavy Tasks

O Pre-assigning the heavy tasks (that may have
low priorities)

P1 P2 P3
1= T 2
6 = 5
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Theorem

O By introducing the pre-assignment mechanism,
we have
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= the task set is schedulable
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Liu and Layland’s utilization bound for all task sets!
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Overhead Implementation
Q In both previous algorithms and ours a Easy!
B The number of task splitting is at most M-1 B One timer for each split task
“ task splitting -> extra “migration/preemption” B Implemented as “task migration”

B Our algorithm on average has less task splitting

Ours: width-first depth-first as being preempted
P1 P2 P3 PL-. P2  P3 1 B =
N R

S . 7 ‘ : as being resumed B
I I P2 | 7

—until finished —»

Further Improvement Uisng Liu and Layland'’s Utilization Bound
?
— PL P2 P3 Schedulable? S PL P2 P3
5 . J Yes, schedulable
100% | 100% by our algorithm
v o N2 -1
Utilization Bound is Pessimistic Exact Analysis

O The Liu and Layland utilization bound is 0 Exact Analysis: Response Time Analysis [Lehoczky_89]

sufficient but not necessary B pseudo-polynomial

O many task sets are actually schedulable even if
the total utilization is larger than the bound
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Utilization Bound v.s. Exact Analysis

0 On single processors

Utilization bound Test Exact Analysis
for RMS for RMS

Beyond Layland & Liu’s Bound (rrss 2010, rejected!]

0O Our RTAS10 algorithm:
m  Increasing RMS priority order & worst-fit partitioning
m  Utilization test to determine the maximal load for each processor

®  The maximal load for each processor bounded by 69.3%
N(2% 1)

O Improved algorithm:

m Employ Response Time Analysis to determine the maximal
workload on each processor

m more flexible behavior (more difficult to prove ...)
®  Same utilization bound for the worst case, but
®  Much better average performance (by simulation)

I believe this is “the best algorithm” one can hope
for “‘fixed-prioritiy multiprocessor scheduling”

Thanks!
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On Multiprocessors

O Can we do something similar on multiprocessors?

Utilization bound Test ?

the algorithm introduced above -

N Pt P2 P3 | P1 P2 P3

100% | % |

N NN

b b
Conclusions

O The (multicore) Timing Problem is challenging
m Difficult to guarantee Real-Time
B and Difficult to analyze/predict

O Solutions: Partition & Isolation
B Shared caches: coloring/partition
B Memory bus/bandwidth: TDMA, ?
B Processor cores: partition-based scheduling

17



