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Finite tree automata

◮ tree recognizers

◮ generalize NFA from words to trees

= finite representations of infinite set of labeled trees

are a useful tool for verification procedures

◮ composition results
◮ closure under Boolean operations
◮ closure under transformations

◮ decision results, efficient algorithms

◮ expressiveness, close relationship with logic
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Verification of infinite state systems
regular model checking : static analysis of safety properties for
infinite state systems, using symbolic reachability verification
techniques.

reachable
configurations

initial
configurations

erroneous
configurations
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Concurrent readers/writers

Example from [Clavel et al. LNCS 4350 2007]

1. state(0, 0) = state(0, s(0))
2. state(r, 0) = state(s(r), 0)
3. state(r, s(w)) = state(r, w)
4. state(s(r), w) = state(r, w)

◮ writers can access the file if nobody else is accessing it (1)

◮ readers can access the file if no writer is accessing it (2)

◮ readers and writers can leave the file at any time (3,4)

Properties expected:

◮ mutual exclusion between readers and writers

◮ mutual exclusion between writers
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Concurrent readers/writers: reachable configurations

1. state(0, 0) = state(0, s(0))
2. state(r, 0) = state(s(r), 0)
3. state(r, s(w)) = state(r, w)
4. state(s(r), w) = state(r, w)

Initial configuration: state(0, 0)
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Concurrent readers/writers: reachable configurations

1. state(0, 0) = state(0, s(0))
2. state(r, 0) = state(s(r), 0)
3. state(r, s(w)) = state(r, w)
4. state(s(r), w) = state(r, w)

Reachable configura-
tions:

state(0, 0)
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Concurrent readers/writers: reachable configurations

1. state(0, 0) = state(0, s(0))
2. state(r, 0) = state(s(r), 0)
3. state(r, s(w)) = state(r, w)
4. state(s(r), w) = state(r, w)

Reachable configura-
tions:

state(0, 0) state
(

0, s(0)
)

1

3
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Concurrent readers/writers: reachable configurations

1. state(0, 0) = state(0, s(0))
2. state(r, 0) = state(s(r), 0)
3. state(r, s(w)) = state(r, w)
4. state(s(r), w) = state(r, w)

Reachable configura-
tions:

state(0, 0) state
(

0, s(0)
)

state
(

s(0), 0
)

state
(

s(s(0)), 0
)

...

1

32 4

2 4

9 / 200



Concurrent readers/writers: finite representation

state(0, 0) state
(

0, s(0)
)

state
(

s(0), 0
)

state
(

s(s(0)), 0
)

...

1

32 4

2 4

q0 := 0
q := state(q0, q0) | state(q0, q1) | state(q1, q0) | state(q2, q0)
q1 := s(q0)
q2 := s(q1) | s(q2)
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Concurrent readers/writers: automata construction

1. state(0, 0) = state(0, s(0))

2. state(r, 0) = state(s(r), 0)

3. state(r, s(w)) = state(r, w)

4. state(s(r), w) = state(r, w)

q0 := 0
q := state(q0, q0)
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Concurrent readers/writers: automata construction

1. state(0, 0) = state(0, s(0))
state(0, 0) ∈ q ⇒ state(0, s(0)) ∈ q

2. state(r, 0) = state(s(r), 0)

3. state(r, s(w)) = state(r, w)

4. state(s(r), w) = state(r, w)

q0 := 0
q := state(q0, q0)
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Concurrent readers/writers: automata construction

1. state(0, 0) = state(0, s(0))
state(0, 0) ∈ q ⇒ state(0, s(0)) ∈ q

2. state(r, 0) = state(s(r), 0)

3. state(r, s(w)) = state(r, w)

4. state(s(r), w) = state(r, w)

q0 := 0
q := state(q0, q0) | state(q0, q1)
q1 := s(q0)
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Concurrent readers/writers: automata construction

1. state(0, 0) = state(0, s(0))

2. state(r, 0) = state(s(r), 0)
state(q0, 0) ∈ q ⇒ state(s(q0), 0) ∈ q

3. state(r, s(w)) = state(r, w)

4. state(s(r), w) = state(r, w)

q0 := 0
q := state(q0, q0) | state(q0, q1)
q1 := s(q0)
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Concurrent readers/writers: automata construction

1. state(0, 0) = state(0, s(0))

2. state(r, 0) = state(s(r), 0)
state(q0, 0) ∈ q ⇒ state(s(q0), 0) ∈ q

3. state(r, s(w)) = state(r, w)

4. state(s(r), w) = state(r, w)

q0 := 0
q := state(q0, q0) | state(q0, q1) | state(q1, q0)
q1 := s(q0)
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Concurrent readers/writers: automata construction

1. state(0, 0) = state(0, s(0))

2. state(r, 0) = state(s(r), 0)
state(q1, 0) ∈ q ⇒ state(s(q1), 0) ∈ q

3. state(r, s(w)) = state(r, w)

4. state(s(r), w) = state(r, w)

q0 := 0
q := state(q0, q0) | state(q0, q1) | state(q1, q0)
q1 := s(q0)
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Concurrent readers/writers: automata construction

1. state(0, 0) = state(0, s(0))

2. state(r, 0) = state(s(r), 0)
state(q1, 0) ∈ q ⇒ state(s(q1), 0) ∈ q

3. state(r, s(w)) = state(r, w)

4. state(s(r), w) = state(r, w)

q0 := 0
q := state(q0, q0) | state(q0, q1) | state(q1, q0) | state(q2, q0)
q1 := s(q0)

System Timbuk [Thomas Genet]. Automated construction, with
guess of accelaration q2 := s(q2) by user assistance.
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Concurrent readers/writers: automata construction

1. state(0, 0) = state(0, s(0))

2. state(r, 0) = state(s(r), 0)
state(q2, 0) ∈ q ⇒ state(s(q2), 0) ∈ q

3. state(r, s(w)) = state(r, w)

4. state(s(r), w) = state(r, w)

q0 := 0
q := state(q0, q0) | state(q0, q1) | state(q1, q0) | state(q2, q0)
q1 := s(q0)

System Timbuk [Thomas Genet]. Automated construction, with
guess of accelaration q2 := s(q2) by user assistance.
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Concurrent readers/writers: automata construction

1. state(0, 0) = state(0, s(0))

2. state(r, 0) = state(s(r), 0)

3. state(r, s(w)) = state(r, w)
state(q0, s(q0)) ∈ q ⇒ state(q0, q0) ∈ q

4. state(s(r), w) = state(r, w)

q0 := 0
q := state(q0, q0) | state(q0, q1) | state(q1, q0) | state(q2, q0)
q1 := s(q0)
q2 := s(q1) | s(q2)

System Timbuk [Thomas Genet]. Automated construction, with
guess of accelaration q2 := s(q2) by user assistance.
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Concurrent readers/writers: automata construction

1. state(0, 0) = state(0, s(0))

2. state(r, 0) = state(s(r), 0)

3. state(r, s(w)) = state(r, w)

4. state(s(r), w) = state(r, w)
state(s(q0 | q1 | q2), q0) ∈ q ⇒ state(q0 | q1 | q2, q0) ∈ q

q0 := 0
q := state(q0, q0) | state(q0, q1) | state(q1, q0) | state(q2, q0)
q1 := s(q0)
q2 := s(q1) | s(q2)

System Timbuk [Thomas Genet]. Automated construction, with
guess of accelaration q2 := s(q2) by user assistance.

20 / 200



Concurrent readers/writers: verification

Properties expected:

1. mutual exclusion between readers and writers
forbidden pattern: state(s(x), s(y))

2. mutual exclusion between writers
forbidden pattern: state(x, s(s(y)))

The red set: union of

1. state
(

(q1 | q2), (q1 | q2)
)

2. state
(

(q0 | q1 | q2), (q1 | q2)
)

with q0 := 0, q1 := s(q0), q2 := s(q1) | s(q2)

Verification: The intersection between the set of reachable
configurations and the red set is empty.
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Functional program

Lists built with constructor symbols cons and nil.

app(nil, y) = y
app

(

cons(x, y), z
)

= cons
(

x, app(y, z)
)
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Functional program analysis

set of initial configurations qapp: terms of the form app(ℓ1, ℓ2)
where ℓ1, ℓ2 are lists of 0 and 1, defined by

q := 0 | 1
qℓ := nil | cons(q, qℓ)

qapp := app(qℓ, qℓ)

set of reachable configurations = the closure according to

app(nil, y) = y
app

(

cons(x, y), z
)

= cons
(

x, app(y, z)
)

it is
q := 0 | 1
qℓ := nil | cons(q, qℓ)

qapp := app(qℓ, qℓ) | cons(q, qapp)
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Functional program : rev

[Thomas Genet, Valérie Viet Triem Tong, LPAR 01]. Timbuk.

app(nil, y) = y
app

(

cons(x, y), z
)

= cons
(

x, app(y, z)
)

rev(nil) = nil
rev

(

cons(x, y)
)

= app
(

rev(y), cons(x, nil)
)

set of initial config.:

q0 := 0
q1 := 1
qℓ1 := nil | cons(q1, qℓ1)
qℓ01 := nil | cons(q0, qℓ1) | cons(q0, qℓ01)
qrev := rev(qℓ01)
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Functional program : rev

[Thomas Genet, Valérie Viet Triem Tong, LPAR 01]. Timbuk.

app(nil, y) = y
app

(

cons(x, y), z
)

= cons
(

x, app(y, z)
)

rev(nil) = nil
rev

(

cons(x, y)
)

= app
(

rev(y), cons(x, nil)
)

set of initial config.: rev(ℓ) where ℓ ∈ qℓ01 , list of 0’s followed by 1’s

q0 := 0
q1 := 1
qℓ1 := nil | cons(q1, qℓ1)
qℓ01 := nil | cons(q0, qℓ1) | cons(q0, qℓ01)
qrev := rev(qℓ01)
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Functional program cntd
set of reachable configurations: by completion of equations for
initial configurations

q0 := 0
q1 := 1

qℓ1 := nil | cons(q1, qℓ1) | cons(q1, qnil) | app(qnil, qℓ1)

qℓ01 := nil | cons(q0, qℓ1) | cons(q0, qℓ01)

qrev := rev(qℓ01) | nil | app(qℓ10 , qnil)

qℓ10 := rev(qℓ01) | app(qℓ1 , qℓ0)

qnil := nil | rev(qnil)

qℓ0 := cons(q0, qnil) | app(qnil, qℓ0) | app(qℓ0 , qℓ0)

property expected: rev(ℓ) not reachable when
ℓ |= ∃x, y x < y ∧ 0(x) ∧ 1(y).

verification The intersection of qrev and the above set is empty.
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Imperative programs

p ::= 0 | X | p · p | p ‖ p

◮ 0: null process (termination)

◮ X: program point

◮ p · p: sequential composition

◮ p ‖ p: parallel composition

Transition rules

◮ procedure call: X → Y · Z (Z = return point)

◮ procedure call with global state: Q ·X → Q′ · Y · Z

◮ procedure return: Q · Y → Q′

◮ global state change: Q ·X → Q′ ·X

◮ dynamic thread creation: X → Y ‖Z

◮ handshake : X‖Y → X ′‖Y ′
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Imperative program

[Bouajjani Touili CAV 02]

void X() {

while(true) {

if Y() {

thread_create(&t1,Z)

} else { return }

}

}

X → Y · X (r1)
Y → t (r2)
Y → f (r3)
t · X → X ‖ Z (r4)
f → 0 (r5)

The set of reachable configurations is infinite but regular.
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Related models of imperative programs

◮ Pushdown systems (sequential programs with procedure calls)

X1 · . . . ·Xn → Y1 · . . . · Ym

◮ Petri nets (multi-threaded programs)

X1 ‖ . . . ‖Xn → Y1 ‖ . . . ‖ Ym

◮ PA processes

X1 → Y1 · . . . · Ym, X1 → Y1 ‖ . . . ‖ Ym

◮ Process rewrite systems (PRS) [Bouajjani, Touili RTA 05]

X1 · . . . ·Xn → Y1 · . . . · Ym, X1 ‖ . . . ‖Xn → Y1 ‖ . . . ‖ Ym

◮ Dynamic pushdown networks [Seidl CIAA 09]
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Tree languages modulo

In the above model,

◮ · is associative,

◮ ‖ is associative and commutative.

The terms of the above algebra correspond to unranked trees,

◮ ordered (modulo A) and

◮ unordered (modulo AC).

(models for XML processing)
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Overview

Verification of other infinite-states systems.

◮ configuration = tree (ranked or unranked)
◮ process,
◮ message exchanged in a protocol,
◮ local network with a tree shape,
◮ tree data structure in memory, with pointers

(e.g. binary search trees)...

◮ (infinite) set of configurations = tree language L

◮ transition relation between configurations

◮ safety: transitive closure(Linit) ∩ Lerror = ∅.
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Different kinds of trees

◮ finite ranked trees (terms in first order logic)

◮ finite unranked ordered trees

◮ finite unranked unordered trees

◮ infinite trees...

⇒ several classes of tree automata.
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Overview: properties of automata

◮ determinism,

◮ Boolean closures,

◮ closures under transformations
(homomorphismes, transducers, rewrite systems...)

◮ minimization,

◮ decision problems, complexity,
◮ membership,
◮ emptiness,
◮ universality,
◮ inclusion, equivalence,
◮ emptiness of intersection,
◮ finiteness...

◮ pumping and star lemma,

◮ expressiveness, correspondence with logics.
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Organization of the tutorial

1. finite ranked tree automata
◮ properties
◮ algorithms
◮ closure under transformation,

applications to program verification

2. correspondence with the monadic second order logic of the
tree (Thatcher and Wright’s theorem).

3. finite unranked tree automata
◮ ordered = Hedge Automata
◮ unordered = Presburger automata
◮ closure modulo A and AC
◮ XML typing and analysis of transformations

4. tree automata as Horn clause sets
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Part I

Automata on Finite Ranked Trees

Terms in first order logic
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Plan

Terms

TA: Definitions and Expressiveness

Determinism and Boolean Closures

Decision Problems

Minimization

Closure under Tree Transformations, Program Verification
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Signature

Definition : Signature

A signature Σ is a finite set of function symbols each of them with
an arity greater or equal to 0.

We denote Σi the set of symbols of arity i.

Example :

{+ : 2, s : 1, 0 : 0}, {∧ : 2,∨ : 2,¬ : 1,⊤,⊥ : 0}.

We also consider a countable set X of variable symbols.
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Terms

Definition : Term

The set of terms over the signature Σ and X is the smallest set
T (Σ,X ) such that:

- Σ0 ⊆ T (Σ,X ),

- X ⊆ T (Σ,X ),

- if f ∈ Σn and if t1, . . . , tn ∈ T (Σ,X ), then
f(t1, . . . , tn) ∈ T (Σ,X ).

The set of ground terms (terms without variables, i.e. T (Σ, ∅)) is
denoted T (Σ).

Example :

x, ¬(x), ∧
(

∨(x,¬(y)),¬(x)
)

.
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Terms (2)

A term where each variable appears at most once is called linear.
A term without variable is called ground.

Depth h(t):

◮ h(a) = h(x) = 0 if a ∈ Σ0, x ∈ X ,

◮ h
(

f(t1, . . . , tn)
)

= max{h(t1), . . . , h(tn)}+ 1.
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Positions
A term t ∈ T (Σ,X ) can also be seen as a function from the set of
its positions Pos(t) into Σ ∪ X .
The empty position (root) is denoted ε.

Pos(t) is a subset of N∗ satisfying the following properties:

◮ Pos(t) is closed under prefix,

◮ for all p ∈ Pos(t) such that t(p) ∈ Σn (n ≥ 1),
{

pj ∈ Pos(t)
∣

∣ j ∈ N
}

= {p1, ..., pn},

◮ every p ∈ Pos(t) such that t(p) ∈ Σ0 ∪ X is maximal in
Pos(t) for the prefix ordering.

The size of t is defined by ‖t‖ = |Pos(t)|.

Subterm t|p at position p ∈ Pos(t):

◮ t|ε = t,

◮ f(t1, . . . , tn)|ip = ti|p.

The replacement in t of t|p by s is denoted t[s]p.
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Positions (example)

Example :

t = ∧(∧(x,∨(x,¬(y))),¬(x)),
t|11 = x, t|12 = ∨(x,¬(y)), t|2 = ¬(x),
t[¬(y)]11 = ∧(∧(¬(y),∨(x,¬(y))),¬(x)).
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Contexts

Definition : Contexte

A context is a linear term.

The application of a context C ∈ T (Σ, {x1, . . . , xn}) to n terms
t1, . . . , tn, denoted C[t1, . . . , tn], is obtained by the replacement of
each xi by ti, for 1 ≤ i ≤ n.
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Plan

Terms

TA: Definitions and Expressiveness

Determinism and Boolean Closures

Decision Problems

Minimization

Closure under Tree Transformations, Program Verification
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Bottom-up Finite Tree Automata

(a+ b a∗b)∗

q0 q1

b

b

a a

word. run on aabba: q0 −→
a q0 −→

a q0 −→
b q1 −→

b q0 −→
a q0.

tree. run on a(a(b(b(a(ε))))):
q0 → a(q0)→ a(a(q0))→ a(a(b(q1)))→ a(a(b(b(q0))))→
a(a(b(b(a(q0)))))→ a(a(b(b(a(ε)))))

with q0 := ε, q0 := a(q0), q1 := a(q1), q1 := b(q0), q0 := b(q1).

44 / 200



Bottom-up Finite Tree Automata

(a+ b a∗b)∗

q0 q1

b

b

a a

word. run on aabba: q0 −→
a q0 −→

a q0 −→
b q1 −→

b q0 −→
a q0.

tree. run on a(a(b(b(a(ε))))):
a(a(b(b(a(ε))))) → a(a(b(b(a(q0)))))→ a(a(b(b(q0))))→
a(a(b(q1)))→ a(a(q0))→ a(q0)→ q0

with ε→ q0, a(q0)→ q0, a(q1)→ q1, b(q0)→ q1, b(q1)→ q0.
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Bottom-up Finite Tree Automata

Definition : Tree Automata

A tree automaton (TA) over a signature Σ is a tuple A =
(Σ, Q,Qf ,∆) where Q is a finite set of states, Qf ⊆ Q is the sub-
set of final states and ∆ is a set of transition rules of the form:
f(q1, . . . , qn)→ q with f ∈ Σn (n ≥ 0) and q1, . . . , qn, q ∈ Q.

The state q is called the head of the rule.
The language of A in state q is recursively defined by

L(A, q) =
{

a ∈ Σ0

∣

∣ a→ q ∈ ∆
}

∪
⋃

f(q1,...,qn)→q∈∆

f
(

L(A, q1), . . . , L(A, qn)
)

with f(L1, . . . , Ln) :=
{

f(t1, . . . , tn)
∣

∣ t1 ∈ L1, . . . , tn ∈ Ln

}

.

We say that t ∈ L(A, q) is accepted, or recognized, by A in state q.

The language of A is L(A) :=
⋃

qf∈Qf

L(A, qf) (regular language).
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Recognized Languages: Operational Definition

Rewrite Relation

The rewrite relation associated to ∆ is the smallest binary relation,
denoted −−→∆ , containing∆ and closed under application of contexts.

The reflexive and transitive closure of −−→∆ is denoted −−→∗∆ .

For A = (Σ, Q,Qf ,∆), it holds that

L(A, q) =
{

t ∈ T (Σ)
∣

∣ t −−→∗
∆

q
}

and hence
L(A) =

{

t ∈ T (Σ)
∣

∣ t −−→∗
∆

q ∈ Qf
}
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Tree Automata: example 1

Example :

Σ = {∧ : 2,∨ : 2,¬ : 1,⊤,⊥ : 0},

A =

















Σ, {q0, q1}, {q1},































⊥ → q0 ⊤ → q1
¬(q0) → q1 ¬(q1) → q0

∨(q0, q0) → q0 ∨(q0, q1) → q1
∨(q1, q0) → q1 ∨(q1, q1) → q1
∧(q0, q0) → q0 ∧(q0, q1) → q0
∧(q1, q0) → q0 ∧(q1, q1) → q1















































∧(∧(⊤,∨(⊤,¬(⊥))),¬(⊤)) −−→
A
∧(∧(⊤,∨(⊤,¬(⊥))),¬(q1))

−−→
A

∧(∧(q1,∨(q1,¬(q0))),¬(q1)) −−→A ∧(∧(q1,∨(q1,¬(q0))), q0)
−−→
A

∧(∧(q1,∨(q1, q1)), q0) −−→A ∧(∧(q1, q1), q0) −−→A ∧(q1, q0) −−→A q0
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Tree Automata: example 2

Example :

Σ = {∧ : 2,∨ : 2,¬ : 1,⊤,⊥ : 0},
TA recognizing the ground instances of ¬(¬(x)):

A =









Σ, {q, q¬, qf}, {qf},















⊥ → q ⊤ → q
¬(q) → q ¬(q) → q¬
¬(q¬) → qf
∨(q, q) → q ∧(q, q) → q























Example :

Ground terms embedding the pattern ¬(¬(x)): A ∪ {¬(qf) →
qf ,∨(qf , q∗)→ qf ,∨(q∗, qf)→ qf , . . .} (propagation of qf).
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Linear Pattern Matching

Proposition :

Given a linear term t ∈ T (Σ,X ), there exists a TA A recognizing
the set of ground instances of t: L(A) =

{

tσ
∣

∣ σ : X → T (Σ)
}

.

e.g. in regular tree model checking, definition of error
configurations by forbidden patterns.
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Runs

Definition : Run

A run of a TA (Σ, Q,Qf ,∆) on a term t ∈ T (Σ) is a function
r : Pos(t)→ Q such that for all p ∈ Pos(t),
if t(p) = f ∈ Σn, r(p) = q and r(pi) = qi for all 1 ≤ i ≤ n,
then f(q1, . . . , qn)→ q ∈ ∆.

The run r is accepting if r(ε) ∈ Qf .
L(A) is the set of ground terms of T (Σ) for which there exists an
accepting run.
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Pumping Lemma

Lemma : Pumping Lemma

Let A = (Σ, Q,Qf ,∆).
L(A) 6= ∅ iff there exists t ∈ L(A) such that h(t) ≤ |Q|.

Lemma : Iteration Lemma

For all TA A, there exists k > 0 such that for all term t ∈ L(A) with
h(t) > k, there exists 2 contexts C,D ∈ T (Σ, {x1}) with D 6= x1
and a term u ∈ T (Σ) such that t = C

[

D[u]
]

and for all n ≥ 0,
C
[

Dn[u]
]

∈ L(A).

usage: to show that a language is not regular.
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Non Regular Languages

We show with the pumping and iteration lemmatas that the
following tree languages are not regular:

◮ {f(t, t)
∣

∣ t ∈ T (Σ)},

◮ {f(gn(a), hn(a))
∣

∣ n ≥ 0},

◮ {t ∈ T (Σ)
∣

∣ |Pos(t)| is prime}.
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Epsilon-transitions

We extend the class TA into TAε with the addition of another type
of transition rules of the form q −→ε q′ (ε-transition).
with the same expressiveness as TA.

Proposition : Suppression of ε-transitions

For all TAε Aε, there exists a TA (without ε-transition) A′ such
that L(A) = L(Aε). The size of A is polynomial in the size of Aε.

pr.: We start with Aε and we add f(q1, . . . , qn)→ q′ if there exists
f(q1, . . . , qn)→ q and q −→ε q′.
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Top-Down Tree Automata

Definition : Top-Down Tree Automata

A top-down tree automaton over a signature Σ is a tuple A =
(Σ, Q,Qinit,∆) where Q is a finite set of states, Qinit ⊆ Q is the
subset of initial states and ∆ is a set of transition rules of the form:
q → f(q1, . . . , qn) with f ∈ Σn (n ≥ 0) and q1, . . . , qn, q ∈ Q.

A ground term t ∈ T (Σ) is accepted by A in the state q iff q −−→∗∆ t.

The language of A starting from the state q is
L(A, q) :=

{

t ∈ T (Σ)
∣

∣ q −−→∗∆ t
}

.

The language of A is L(A) :=
⋃

qi∈Qinit

L(Q, qi).
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Top-Down Tree Automata (expressiveness)

Proposition : Expressiveness

The set of top-down tree automata languages is exactly the set of
regular tree languages.
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Remark: Notations

In the next slides

TA = Bottom-Up Tree Automata
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Determinism

Definition : Determinism

A TA A is deterministic if for all f ∈ Σn, for all states q1, . . . , qn
of A, there is at most one state q of A such that A contains a
transition f(q1, . . . , qn)→ q.

If A is deterministic, then for all t ∈ T (Σ), there exists at most
one state q of A such that t ∈ L(A, q). It is denoted A(t) or ∆(t).
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Completeness

Definition : Completeness

A TA A is complete if for all f ∈ Σn, for all states q1, . . . , qn of A,
there is at least one state q of A such that A contains a transition
f(q1, . . . , qn)→ q.

If A is complete, then for all t ∈ T (Σ), there exists at least one
state q of A such that t ∈ L(A, q).
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Completion

Proposition : Completion

For all TA A, there exists a complete TA Ac such that L(Ac) =
L(A). Moreover, if A is deterministic, then Ac is deterministic.
The size of Ac is polynomial in the size of A, its construction is
PTIME.
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Completion

Proposition : Completion

For all TA A, there exists a complete TA Ac such that L(Ac) =
L(A). Moreover, if A is deterministic, then Ac is deterministic.
The size of Ac is polynomial in the size of A, its construction is
PTIME.

pr.: add a trash state q⊥.
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Determinization

Proposition : Determinization

For all TA A, there exists a deterministic TA Adet such that
L(Adet) = L(A). Moreover, ifA is complete, thenAdet is complete.
The size of Adet is exponential in the size of A, its construction is
EXPTIME.

pr.: subset construction. Transitions:

f(S1, . . . , Sn)→ {q | ∃q1 ∈ S1 . . . ∃qn ∈ Sn f(q1, . . . , qn → q ∈ ∆}

for all S1, . . . , Sn ⊆ Q.
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Determinization (example)

Exercice :

Determinise and complete the previous TA (pattern matching of
¬(¬(x))):

A =













Σ, {q, q¬, qf}, {qf},























⊥ → q ⊤ → q
¬(q) → q ¬(q) → q¬
¬(q¬) → qf ¬(qf) → qf
∨(q, q) → q ∧(q, q) → q
∨(qf , q∗) → qf ∨(q∗, qf) → qf
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Top-Down Tree Automata and Determinism

Definition : Determinism

A top-down tree automaton (Σ, Q,Qinit,∆) is deterministic if
|Qinit| = 1 and for all state q ∈ Q and f ∈ Σ, ∆ contains at
most one rule with left member q and symbol f .

The top-down tree automata are in general not determinizable .

Proposition :

There exists a regular tree language which is not recognizable by a
deterministic top-down tree automaton.
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Top-Down Tree Automata and Determinism

Definition : Determinism

A top-down tree automaton (Σ, Q,Qinit,∆) is deterministic if
|Qinit| = 1 and for all state q ∈ Q and f ∈ Σ, ∆ contains at
most one rule with left member q and symbol f .

The top-down tree automata are in general not determinizable .

Proposition :

There exists a regular tree language which is not recognizable by a
deterministic top-down tree automaton.

pr.: L =
{

f(a, b), f(b, a)
}

.
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Boolean Closure of Regular tree Languages

Proposition : Closure

The class of regular tree languages is closed under union, intersection
and complementation.

op. technique computation time
and size of automata

∪ disjoint ∪

∩ Cartesian product

¬ determinization, completion,
invert final / non-final states (lower bound)

Remark :

For the deterministic TA, the construction for the complementation
is polynomial.
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Boolean Closure of Regular tree Languages

Proposition : Closure

The class of regular tree languages is closed under union, intersection
and complementation.

op. technique computation time
and size of automata

∪ disjoint ∪ linear

∩ Cartesian product

¬ determinization, completion,
invert final / non-final states (lower bound)

Remark :

For the deterministic TA, the construction for the complementation
is polynomial.
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Boolean Closure of Regular tree Languages

Proposition : Closure

The class of regular tree languages is closed under union, intersection
and complementation.

op. technique computation time
and size of automata

∪ disjoint ∪ linear

∩ Cartesian product quadratic

¬ determinization, completion,
invert final / non-final states (lower bound)

Remark :

For the deterministic TA, the construction for the complementation
is polynomial.
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Boolean Closure of Regular tree Languages

Proposition : Closure

The class of regular tree languages is closed under union, intersection
and complementation.

op. technique computation time
and size of automata

∪ disjoint ∪ linear

∩ Cartesian product quadratic

¬ determinization, completion,
invert final / non-final states

exponential
(lower bound)

Remark :

For the deterministic TA, the construction for the complementation
is polynomial.
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Cleaning

Definition : Clean

A state q of a TA A is called inhabited if there exists at least one
t ∈ L(A, q). A TA is called clean if all its states are inhabited.

Proposition : Cleaning

For all TA A, there exists a clean TA Aclean such that L(Aclean) =
L(A). The size of Aclean is smaller than the size of A, its construc-
tion is PTIME.

pr.: state marking algorithm, running time O
(

|Q| × ‖∆‖
)

.
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State Marking Algorithm

We construct M ⊆ Q containing all the inhabited states.

◮ start with M = ∅

◮ for all f ∈ Σ, of arity n ≥ 0, and
all q1, . . . , qn ∈M st there exists f(q1, . . . , qn)→ q in ∆,
add q to M (if it was not already).

We iterate the last step until a fixpoint M∗ is reached.

Lemma :

q ∈M∗ iff ∃t ∈ L(A, q).
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Membership Problem

Definition : Membership

INPUT: a TA A over Σ, a term t ∈ T (Σ).
QUESTION: t ∈ L(A)?

Proposition : Membership

The membership problem is decidable in polynomial time.

Exact complexity:

◮ non-deterministic bottom-up: LOGCFL-complete

◮ deterministic bottom-up: unknown (LOGDCFL)

◮ deterministic top-down: LOGSPACE-complete.
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Emptiness Problem

Definition : Emptiness

INPUT: a TA A over Σ.
QUESTION: L(A) = ∅?

Proposition : Emptiness

The emptiness problem is decidable in linear time.
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Emptiness Problem

Definition : Emptiness

INPUT: a TA A over Σ.
QUESTION: L(A) = ∅?

Proposition : Emptiness

The emptiness problem is decidable in linear time.

pr.:
quadratic: clean, check if the clean automaton contains a final
state.
linear: reduction to propositional HORN-SAT.
linear bis: optimization of the data structures for the cleaning
(exo).

Remark :

The problem of the emptiness is PTIME-complete.
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Instance-Membership Problem

Definition : Instance-Membership (IM)

INPUT: a TA A over Σ, a term t ∈ T (Σ,X ).
QUESTION: does there exists σ : vars(t)→ T (Σ) s.t. tσ ∈ L(A)?

Proposition : Instance-Membership

1. The problem IM is decidable in polynomial time when t is
linear.

2. The problem IM is NP-complet when A is deterministic.

3. The problem IM is EXPTIME-complete in general.
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Problem of the Emptiness of Intersection

Definition : Emptiness of Intersection

INPUT: n TA A1, . . . ,An over Σ.
QUESTION: L(A1) ∩ . . . ∩ L(An) = ∅?

Proposition : Emptiness of Intersection

The problem of the emptiness of intersection is EXPTIME-complete.
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Problem of the Emptiness of Intersection

Definition : Emptiness of Intersection

INPUT: n TA A1, . . . ,An over Σ.
QUESTION: L(A1) ∩ . . . ∩ L(An) = ∅?

Proposition : Emptiness of Intersection

The problem of the emptiness of intersection is EXPTIME-complete.

pr.: EXPTIME: n applications of the closure under ∩ and
emptiness decision.

EXPTIME-hardness: APSPACE = EXPTIME
reduction of the problem of the existence of a successful run
(starting from an initial configuration) of an alternating Turing
machine (ATM) M = (Γ, S, s0, Sf , δ).
[Seidl 94], [Veanes 97]
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Let M = (Γ, S, s0, Sf , δ) be a Turing Machine (Γ: input alphabet,
S: state set, s0 initial state, Sf final states, δ: transition relation).
First some notations.

◮ a configuration of M is a word of Γ∗ΓSΓ
∗ where

ΓS = {as | a ∈ Γ, s ∈ S}. In this word, the letter of ΓS

indicates both the current state and the current position of
the head of M .

◮ a final configuration of M is a word of Γ∗ΓSf
Γ∗.

◮ an initial configuration of M is a word of Γs0Γ
∗.

◮ a transition of M (following δ) between two configurations v
and v′ is denoted v � v′

The initial configuration v0 is accepting iff there exists a final
configuration vf and a finite sequence of transitions v0 � . . .� vf?
This problem whether v0 is accepting is undecidable in general.
If the tape is polynomially bounded (we are restricted to
configurations of length n = |v0|

c, for some fixed c ∈ N), the
problem is PSPACE complete.
M alternating: S = S∃ ⊎ S∀.
Definition accepting configurations:
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◮ every final configuration (whose state is in Sf) is accepting

◮ a configuration c whose state is in S∃ is accepting if it has at
least one successor accepting

◮ a configuration c whose state is in S∀ is accepting if all its
successors are accepting

Theorem (Chandra, Kozen, Stockmeyer 81)

APSPACE = EXPTIME

In order to show EXPTIME-hardness, we reduce the problem of
deciding whether v0 is accepting for M alternating and
polynomially bounded.
Hypotheses (non restrictive):

◮ s0 ∈ S∃ or s0 ∈ S∀ ∩ Sf

◮ s0 is non reentering (it only occurs in v0)

◮ every configuration with state in S∀ has 0 or 2 successors

◮ final configurations are restricted to ♭Sf
♭∗ where ♭ ∈ Γ is the

blank symbol.
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◮ Sf is a singleton.

2 technical definitions: for k ≤ n,

view(v, k) = v[k]v[k + 1] if k = 1
v[k − 1]v[k] if k = n
v[k − 1]v[k]v[k + 1] otherwise

view(v, v1, v2, k) = 〈view(v, k), view(v1, k), view(v2, k)〉

v �k 〈v1, v2〉 iff

1. if v[k] ∈ ΓS , then ∃w � w1, w2 s.t.
view(v, v1, v2, k) = view(w,w1, w2, k)

2. if v[k] = a ∈ Γ, then v1[k] ∈ {a} ∪ aS and v2 = ε or
v2[k] ∈ {a} ∪ aS .

first item: around position k, we have two correct transitions of
M . This can be tested by the membership of view(v, v1, v2, k) to a
given set which only depends on M .

Lemma

v � v1, v2 iff ∀k ≤ n v �k 〈v1, v2〉.
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Term representations of runs:
rem. a run of M is not a sequence of configurations but a tree of
configurations (because of alternation).
Signature Σ: ∅: constant, Γ: unary, S: unaires, p binary.
Notation: if v = a1 . . . an, v(x) denotes an(an−1(. . . a1(x))).
Term representations of runs:

◮ vf(p(∅, ∅)) with vf final configuration,

◮ v(p(t1, t2)) with v ∀-configuration, t1 = v′1(p(t1,1, t1,2)),
t2 = v′2(p(t2,1, t2,2)) are two term representations of runs, and
v1 � v′1, v2 � v′2

◮ v(p(t1, ∅)) with v ∃-configuration, t1 = v′1(p(t1,1, t1,2)) term
representations of run, and v1 � v′1.

notations for t1 = v′1(p(t1,1, t1,2)):

◮ head(t1) = v1
◮ left(t1) = t1,1
◮ right(t1) = t1,2.

This recursive definition suggest the construction of a TA
recognizing term representations of successful runs. The difficulty
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is the conditions v1 � v′1, v2 � v′2, for which we use the above
lemma.
We build 2n deterministic automata :
for all 1 < k < n, Ak recognizes

◮ vf(p(∅, ∅)) (recall there is only 1 final configuration by hyp.)
◮ v(p(t1, t2)) such that t1 6= ∅ and

◮ v �k

〈

head(t1), head(t2)
〉

◮ left(t1) ∈ L(Ak), right(t1) ∈ L(Ak) ∪ {∅},
◮ t2 = ∅ or left(t2) ∈ L(Ak), right(t2) ∈ L(Ak) ∪ {∅}

idea: Ak memorizes view(head(t1), k) and view(head(t2), k) and
compare with view(v, k).
for all 1 < k < n, A′

k recognizes the terms v0(p(t1, t2)) with
t1 = t2 = ∅ (if s0 universal and final) or t2 = ∅ (if s0 existential,
not final) and t1, t2 ∈ T , minimal set of terms without s0
containing

◮ ∅
◮ v(p(t1, t2)) such that t1 6= ∅ and

◮ v �k

〈

head(t1), head(t2)
〉

◮ left(t1) ∈ T , right(t1) ∈ T ,
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◮ t2 = ∅ or left(t2) ∈ T , right(t2) ∈ T

representations of successful runs =
n
⋂

k=1

L(Ak) ∩ L(A
′
k).
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Problem of Universality

Definition : Universality

INPUT: a TA A over Σ.
QUESTION: L(A) = T (Σ)

Proposition : Universality

The problem of universality is EXPTIME-complete.
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Problem of Universality

Definition : Universality

INPUT: a TA A over Σ.
QUESTION: L(A) = T (Σ)

Proposition : Universality

The problem of universality is EXPTIME-complete.

pr.: EXPTIME: Boolean closure and emptiness decision.

EXPTIME-hardness: again APSPACE = EXPTIME.

Remark :

The problem of universality is decidable in polynomial time for the
deterministic (bottom-up) TA.

pr.: completion and cleaning.
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Problems of Inclusion an Equivalence

Definition : Inclusion

INPUT: two TA A1 and A2 over Σ.
QUESTION: L(A1) ⊆ L(A2)

Definition : Equivalence

INPUT: two TA A1 and A2 over Σ.
QUESTION: L(A1) = L(A2)

Proposition : Inclusion, Equivalence

The problems of inclusion and equivalence are EXPTIME-complete.
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Problems of Inclusion an Equivalence

Definition : Inclusion

INPUT: two TA A1 and A2 over Σ.
QUESTION: L(A1) ⊆ L(A2)

Definition : Equivalence

INPUT: two TA A1 and A2 over Σ.
QUESTION: L(A1) = L(A2)

Proposition : Inclusion, Equivalence

The problems of inclusion and equivalence are EXPTIME-complete.

pr.: L(A1) ⊆ L(A2) iff L(A1) ∩ L(A2) = ∅.
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Problems of Inclusion an Equivalence

Definition : Inclusion

INPUT: two TA A1 and A2 over Σ.
QUESTION: L(A1) ⊆ L(A2)

Definition : Equivalence

INPUT: two TA A1 and A2 over Σ.
QUESTION: L(A1) = L(A2)

Proposition : Inclusion, Equivalence

The problems of inclusion and equivalence are EXPTIME-complete.

pr.: L(A1) ⊆ L(A2) iff L(A1) ∩ L(A2) = ∅.
EXPTIME-hardness: universality is T (Σ) = L(A2)?

Remark :

If A1 and A2 are deterministic, it is O
(

‖A1‖ × ‖A2‖
)

.
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Problem of Finiteness

Definition : Finiteness

INPUT: a TA A
QUESTION: is L(A) finite?

Proposition : Finiteness

The problem of finiteness is decidable in polynomial time.
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Theorem of Myhill-Nerode

Definition :

A congruence ≡ on T (Σ) is an equivalence relation such that
for all f ∈ Σn, if s1 ≡ t1,. . . , sn ≡ tn, then f(s1, . . . , sn) ≡
f(t1, . . . , tn).

Given L ⊆ T (Σ), the congruence ≡L is defined by:

s ≡L t if for all context C ∈ T
(

Σ, {x}
)

, C[s] ∈ L iff C[t] ∈ L.

Theorem : Myhill-Nerode

The three following propositions are equivalent:

1. L is regular

2. L is a union of equivalence classes for a congruence ≡ of
finite index

3. ≡L is a congruence of finite index
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Proof Theorem of Myhill-Nerode

1 ⇒ 2. A deterministic, def. s ≡A t iff A(s) = A(t).

2 ⇒ 3. we show that if s ≡ t then s ≡L t, hence the
index of ≡L ≤ index of ≡ (since we have ≡⊆≡L).
If s ≡ t then C[s] ≡ C[t] for all C[ ] (induction on
C), hence C[s] ∈ L iff C[t] ∈ L, i.e. s ≡L t.

3 ⇒ 1. we construct Amin = (Qmin, Q
f
min,∆min),

◮ Qmin = equivalence classes of ≡L,
◮ Qf

min = {[s]
∣

∣ s ∈ L},
◮ ∆min = {f

(

[s1], . . . , [sn]
)

→
[

f(s1, . . . , sn)
]

}

Clearly, Amin is deterministic, and for all s ∈ T (Σ),
Amin(s) = [s]L, i.e. s ∈ L(Amin) iff s ∈ L.
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Minimization

Corollary :

For all DTA A = (Σ, Q,Qf ,∆), there exists a unique DTA Amin

whose number of states is the index of ≡L(A) and such that
L(Amin) = L(A).
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Minimization
Let A = (Σ, Q,Qf ,∆) be a DTA, we build a deterministic minimal
automaton Amin as in the proof of 3⇒ 1 of the previous theorem
for L(A) (i.e. Qmin is the set of equivalence classes for ≡L(A)).

We build first an equivalence ≈ on the states of Q:

◮ q ≈0 q
′ iff q, q′ ∈ Qf ou q, q′ ∈ Q \Qf .

◮ q ≈k+1 q
′ iff q ≈k q

′ et ∀f ∈ Σn,
∀q1, . . . , qi−1, qi+1, . . . , qn ∈ Q (1 ≤ i ≤ n),

∆
(

f(q1, . . . , qi−1, q, qi+1, . . . , qn)
)

≈k ∆
(

f(q1, . . . , qi−1, q
′, qi+1, . . . ,

Let ≈ be the fixpoint of this construction, ≈ is ≡L(A), hence

Amin = (Σ, Qmin, Q
f
min,∆min) with :

◮ Qmin = {[q]≈
∣

∣ q ∈ Q},

◮ Qf
min = {[qf ]≈

∣

∣ qf ∈ Qf},

◮ ∆min =
{

f
(

[q1]≈, . . . , [qn]≈
)

→
[

f(q1, . . . , qn)
]

≈

}

.

recognizes L(A). and it is smaller than A.
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Algebraic Characterization of Regular Languages

Corollary :

A set L ⊆ T (Σ) is regular iff there exists

◮ a Σ-algebra Q of finite domain Q,

◮ an homomorphism h : T (Σ)→ A,

◮ a subset Qf ⊆ Q such that L = h−1(Qf).

operations of Q:
for each f ∈ Σn, there is a function fQ : Qn → Q.
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Tree Transformations, Verification

◮ formalisms for the transformation of terms (languages):
rewrite systems, tree homomorphisms, transducers...

= transitions in an infinite states system,
= evaluation of programs,
= transformation of XML documents, updates...

◮ problem of the type checking:

given:
◮ Lin ⊆ T (Σ), (regular) input language
◮ h transformation T (Σ)→ T (Σ′)
◮ Lout ⊆ T (Σ′) (regular) output language

question: do we have h(Lin) ⊆ Lout?
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Tree Homomorphisms
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Tree Homomorphisms

Definition :

h : T (Σ)→ T (Σ′)

h
(

f(t1, . . . , tn)
)

:= tf
{

x1 ← h(t1), . . . , xn ← h(tn)
}

for f ∈ Σn, with tf ∈ T
(

Σ′, {x1, . . . , xn}
)

.

h is called

◮ linear if for all f ∈ Σ, tf is linear,

◮ complete if for all f ∈ Σn, vars(tf ) = {x1, . . . , xn},

◮ symbol-to-symbol if for all f ∈ Σn, height(tf ) = 1.
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Homomorphisms: examples

Example : ternary trees → binary trees

Let Σ = {a : 0, b : 0, g : 3}, Σ′ = {a : 0, b : 0, f : 2} and
h : T (Σ)→ T (Σ′) defined by

◮ ta = a,

◮ tb = b,

◮ tg = f(x1, f(x2, x3)).

h
(

g(a, g(b, b, b), a)
)

= f(a, f(f(f(b, f(b, b))), a))

Example : Elimination of the ∧

Let Σ = {0 : 0, 1 : 0,¬ : 1,∨ : 2,∧ : 2}, Σ′ = {0 : 0, 1 : 0,¬ : 1,∨ :
2} and h : T (Σ)→ T (Σ′) with t∧ = ¬(∨(¬(x1),¬(x2))).
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Closure of Regular Languages under Linear

Homomorphisms

Theorem :

If L is regular and h is a linear homomorphism, then h(L) is regular.
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Closure of Regular Languages under Linear

Homomorphisms

Theorem :

If L is regular and h is a linear homomorphism, then h(L) is regular.

let A = (Q,Qf ,∆) be clean, we build A′ = (Q′, Q′
f ,∆

′).
For each r = f(q1, . . . , qn)→ q ∈ ∆, with tf ∈ T (Σ

′,Xn) (linear),
let Qr = {qrp | p ∈ Pos(tf )}, and ∆r defined as follows:
for all p ∈ Pos(tf ):

◮ if tf (p) = g ∈ Σ′
m, then g(qrp1 , . . . , q

r
pm)→ qrp ∈ ∆r,

◮ if tf (p) = xi, then qi −→
ε qrp ∈ ∆r,

◮ qrε −→
ε q ∈ ∆r.

Q′ = Q ∪
⋃

r∈∆Q
r,

Q′
f = Qf ,

∆′ =
⋃

r∈∆∆r.

It holds that h
(

L(A)
)

= L(A′).
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Closure of Regular Languages under Linear

Homomorphisms

This is not true in general for the non-linear homomorphisms.
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Closure of Regular Languages under Linear

Homomorphisms

This is not true in general for the non-linear homomorphisms.

Example : Non-linear homomorphisms

Σ = {a : 0, g : 1, f : 1}, Σ′ = {a : 0, g : 1, f ′ : 2},
h : T (Σ)→ T (Σ′) with ta = a, tg = g(x1), tf = f ′(x1, x1).
Let L =

{

f
(

gn(a)
) ∣

∣ n ≥ 0
}

,
h(L) =

{

f ′
(

gn(a), gn(a)
) ∣

∣ n ≥ 0
}

is not regular.
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Closure of Regular Languages under Inverse

Homomorphisms

Theorem :

For all regular languages L and all homomorphisms h,
h−1(L) is regular.

A′ = (Q′, Q′
f ,∆

′) complete deterministic such that L(A′) = L.
We construct A = (Q,Qf ,∆) with Q = Q′ ⊎ {q∀} Qf = Q′

f and ∆
is defined by:

◮ for a ∈ Σ0, if ta −−→
∗

A′ q then a→ q ∈ ∆;

◮ for all f ∈ Σn with n > 0, for p1, . . . , pn ∈ Q,
if tf{x1 7→ p1, . . . , xn 7→ pn} −−→

∗
A′ q then

f(q1, . . . , qn)→ q ∈ ∆ where qi = pi if xi occurs in tf and
qi = q∀ otherwise;

◮ for a ∈ Σ0, a→ q∀ ∈ ∆;

◮ for f ∈ Σn where n > 0, f(q∀, . . . , q∀)→ q∀ ∈ ∆.

It holds that t −−→∗
A

q iff h(t) −−→∗
A′ q for all q ∈ Q′.
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Closure under Homomorphisms

Theorem :

The class of regular tree languages is the smallest non trivial class
of sets of trees closed under linear homomorphisms and inverse ho-
momorphisms.

A problem whose decidability has been open for 35 years:

INPUT: a TA A, an homomorphism h
QUESTION: is h(L(A)) regular?
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Tree Transducers
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Tree Transducers

Definition : Bottom-up Tree Transducers

A bottom-up tree transducer (TT) is a tuple U = (Σ,Σ′, Q,Qf ,∆)
where

◮ Σ, Σ′ are the input, resp. output, signatures,

◮ Q is a finite set of states,

◮ Qf ⊆ Q is the subset of final states

◮ ∆ is a set of transduction (rewrite) rules of the form:
◮ f(p1(x1), . . . , pn(xn))→ p(u) with f ∈ Σn (n ≥ 0),
p1, . . . , pn, p ∈ Q, x1, . . . , xn pairwise distinct and
u ∈ T (Σ′, {x1, . . . , xn}), or

◮ p(x1)→ p′(u) with q, q′ ∈ Q, u ∈ T (Σ′, {x1}).

A TT is linear if all the u in transduction rules are linear.

The transduction relation of U is the binary relation:

L(U) =
{

〈t, t′〉
∣

∣ t −→∗
U

q(t′), t ∈ T (Σ), t′ ∈ T (Σ′), q ∈ Qf
}
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Example 1

U1 =
(

{f : 1, a : 0}, {g : 2, f, f ′ : 1, a : 0}, {q, q′}, {q′},∆1

)

,

∆1 =

{

a → q(a)
f(q(x1)) → q(f(x1))

∣

∣ q(f ′(x1))
∣

∣ q′(g(x1, x1))

}
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Example 2

Σin = {f : 2, g : 1, a : 0},
U2 =

(

Σin,Σin ∪ {f
′ : 1}, {q, q′, qf}, {qf},∆2

)

,

∆2 =























a → q(a)
∣

∣ q′(a)
g(q(x1)) → q(g(x1))
g(q′(x1)) → q′(g(x1))

f(q′(x1), q
′(x2)) → q′(f(x1, x2))

f(q′(x1), q
′(x2)) → qf(f

′(x1))























L(U2) =
{

〈f(t1, t2), f
′(t1)

∣

∣ t2 = gm(a),m ≥ 0
}
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Tree Transducers, example

Token tree protocol [Abdulla et al CAV02]

n → q0(n
′)

t → q1(n
′)

n
(

q0(x1), q0(x2)
)

→ q0
(

n(x1, x2)
)

t
(

q0(x1), q0(x2)
)

→ q1
(

n(x1, x2)
)

n
(

q1(x1), q0(x2)
)

→ q2
(

t(x1, x2)
)

n
(

q0(x1), q1(x2)
)

→ q2
(

t(x1, x2)
)

n
(

q2(x1), q0(x2)
)

→ q2
(

n(x1, x2)
)

n
(

q0(x1), q2(x2)
)

→ q2
(

n(x1, x2)
)

property: mutual exclusion (for every network)
initial: terms of T

(

{t, n, t, n}
)

, containing exactly one token.
verification: the intersection of his closure with the set
{q2(t) | t ∈ T

(

{t, n, t, n}
)

, t contains at least 2 tokens} (regular) is
empty.
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Languages

◮ Linear bottom-up TT are closed under composition.

◮ Deterministic bottom-up TT are closed under composition.

Theorem :
◮ The domain of a TT is a regular tree language.

◮ The image of a regular tree language by a linear TT is a
regular tree language.
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Transducers and Homomorphisms

An homomorphism is called delabeling if it is linear, complete,
symbol-to-symbol.

Definition : Bimorphisms

A bimorphism is a triple B = (h, h′, L) where h, h′ are homomor-
phisms and L is a regular tree language.

L(B) =
{

〈h(t), h′(t)〉
∣

∣ t ∈ L
}

Theorem :

TT ≡ bimorphisms (h, h′, L) where h delabeling.
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Term Rewriting Systems
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Term Rewriting

Definition : Substitution

A substitution is a function of finite domain from X into T (Σ,X ).
We extend the definition to T (Σ,X )→ T (Σ,X ) by:

f(t1, . . . , tn)σ = f(t1σ, . . . , tnσ) (n ≥ 0)

The application C[t1, . . . , tn] of a context C ∈ T (Σ, {x1, . . . , xn})
to n terms t1, . . . , tn, is Cσ with σ = {x1 7→ t1, . . . , xn 7→ tn}.
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Term Rewriting

A rewrite system R is a finite set of rewrite rules of the form
ℓ→ r with ℓ, r ∈ T (Σ,X ).

The relation −−→
R

is the smallest binary relation containing R, and
closed under application of contexts and substitutions.
i.e. s −−→

R
t iff ∃p ∈ Pos(s), ℓ→ r ∈ R, σ, s|p = ℓσ and

t = s[rσ]p.

We note −−→∗
R

the reflexive and transitive closure of −−→
R

.

Example :

R = {+(0, x)→ x,+(s(x), y)→ s(+(x, y))}.

+
(

s(s(0)),+(0, s(0))
)

−−→
R

+
(

s(s(0)), s(0)
)

−−→
R

s
(

+(s(0), s(0))
)

−−→
R

s
(

s
(

+(0, s(0))
))

−−→
R

s(s(s(0)))
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TRS Preserving Regularity

For a TRS R over Σ and L ⊆ T (Σ),

R∗(L) = {t ∈ T (Σ) | ∃s ∈ L, s −−→∗
R

t}

Regularity Preservation

Identify a class C of TRS such that
for all R ∈ C, R∗(L) is regular if L is regular.

Theorem : [Gilleron STACS 91]

It is undecidable in general whether a given TRS is
preserving regularity.
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Ground TRS

Theorem : [Brainerd 69]

Ground TRS are preserving regularity.

Given: TA Ain and ground TRS R. We start with

Ain ∪ (Σ, QR, ∅, {f(qr1 , . . . , qrn)→ qr | r = f(r1, . . . rn) ∈ QR})

where QR = strict subterms(rhs(R)),
and add transitions according to the schema:

lhs(R) ∋ ℓ

f(r1, . . . , rn)

q

f(qr1 , . . . , qrn)

A
R

A

A

no states are added → termination.
The TA obtained recognizes R∗

(

L(Ain)
)

.
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Ground TRS (examples)

lhs(R) ∋ ℓ

f(r1, . . . , rn)

q

f(qr1 , . . . , qrn)

A
R

A

A

s(s(0))→ 0 ⊥+ 1→ s(⊥)

s(s(0)) q

0

A

∗

R
A

⊥+ 1 q

s(⊥) s(q⊥)

A
R

A

A
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Linear and right-shallow TRS
right-shallow: variables at depth at most 1 in rhs of rules.

Theorem : [Salomaa 88]

Linear and right-shallow TRS preserve regularity.

Given: TA Ain and linear and right-shallow TRS R.
The construction is similar to the ground TRS case: We start with

Ain ∪ (Σ, QR, ∅, {f(qr1 , . . . , qrn)→ qr | r = f(r1, . . . rn) ∈ QR})

where QR = strict subterms(rhs(R)) \ X ,
and add transitions according to the schema:

ℓσ

f(r1, . . . , rn)σ

q

f(q1, . . . , qn)

A
R

A

A

where ℓ ∈ lhs(R), substitution σ : vars(ℓ)→ Q, for all i ≤ n, if
ri /∈ X then qi = qri and qi = riσ otherwise.
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Linear and right-shallow TRS (examples)

ℓσ

f(r1, . . . , rn)σ

q

f(q1, . . . , qn)

A
R

A

A

where ℓ ∈ lhs(R), substitution σ : vars(ℓ)→ Q, for all i ≤ n, if
ri /∈ X then qi = qri and qi = riσ otherwise.

s(x)− s(y)→ x− y s(x)→ s(0) + x

s(q1)− s(q2) q′1 − q
′
2

q

q1 − q2

A

R A

s(q1) q

s(0) + q1 qs(0) + q1

A
R

A

A
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Linear and right-shallow TRS: extensions

Other classes of TRS preserving regularity

◮ [Coquide et al 94] semi-monadic or inverse-growing TRS:
for all ℓ→ r ∈ R, vars(r) ∩ vars(ℓ) at depth at most 1 in r.

◮ [Nagaya Toyama RTA 02] right-linear and right-shallow TRS.
NOT left-linear.

◮ [Gyenizse Vagvolgyi GSMTRS 98]
linear and generalized semi-monadic TRS

◮ [Takai Kaji Seki RTA 00]
right-linear finite path overlapping TRS
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Right-Linearity and Right-Shallowness Conditions

Relaxing these conditions generaly breaks regularity preservation.

Example : Right-Linearity

letR = {f(x)→ g(x, x)} (flat and left-linear), Lin = {f(. . . f(c))}.
R∗(Lin)∩T

(

{g, c}
)

is the set of balanced binary trees of T
(

{g, c}
)

,
which is not regular.

Example : Right-Shallowness

With rewrite rules whose left and right hand-side have height at most
two, it is possible simulate Turing machine computations, even in
the case of words (symbols of arity 0 or 1).

Exceptions (for the right-shallowness)

◮ [Rety LPAR 99] constructor based (with restrictions on Lin).
ex: app(nil, y)→ y, app

(

cons(x, y), z
)

→ cons
(

x, app(y, z)
)

.

◮ [Seki et al RTA 02] Layered Transducing TRS
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Linear I/O Separated Layered Transducing TRS

[Seki et al RTA 02]
This class corresponds to linear tree transducers.

over Σ = Σi ⊎ Σo ⊎Q, rewrite rules of the form

fi(p1(x1), ..., pn(xn)) → p(t)
p′1(x1) → p′(t′)

where fi ∈ Σi, p1, . . . , pn, p, p
′
1, p

′ ∈ Q x1, . . . , xn are disjoint
variables, t, t′ ∈ T (Σo,X ) such that vars(t) ⊆ {x1, . . . , xn} and
vars(t′) ⊆ {x1}.
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To know more

Further results closure of tree automata languages:

◮ closure of extended tree automata languages, modulo
[Gallagher Rosendahl 08], [JRV JLAP 08], [JKV LATA 09],
[JKV IC 11]

◮ rewrite strategies (bottom-up, context-sensitive, innermost,
outermost...) [Durand et al RTA 07,10,11],
[Kojima Sakai RTA 08], [Rety Vuotto JSC 05], [GGJ WRS 08]

◮ constrained/controlled rewriting
[Sénizergues French Spring School of TCS 93],
[JKS FroCoS 11]

◮ unranked tree rewriting (XML updates)
[JR RTA 08], [JR PPDP 10]
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Tree Automata Based Program Verification
Some Techniques and Tools

128 / 200



Program Analysis with Tree Automata / Grammars

(very partial list) focus on 3 approaches

◮ [Reynolds IP 68] LISP programs → lfp solutions of equations

◮ [Jones Muchnick POPL 79] LISP programs → tree grammars

◮ [Jones 87] lazy higher-order functional programs

◮ [Heintze Jaffar 90] logic programs → set constraints

◮ [Lugiez Schnoebelen CONCUR 98], [Bouajjani Touili 03+]
imperative programs w. prefix rewriting: PA-processes, PAD
systems, PRS...

◮ [Genet et al 98+]
functional programs, security protocols, Java Bytecode

◮ [Jones Andersen TCS 07] functional programs
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Timbuk

[Genet et al] (IRISA)
http://www.irisa.fr/celtique/genet/timbuk

Computation of rewrite closure by tree automata completion, with
over-approximations. User defined or infered accelerations.

◮ analysis of security protocols
SmartRight, Copy Protection Technology for DVB, Thomson

◮ analysis of Java Bytecode with Copster

Timbuk library, used in other tools like

◮ TA4SP, one of the proof back-ends of the AVISPA tool for
security protocol verification

◮ SPADE
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SPADE ♠

[Tayssir Touili et al CAV 07] (LIAFA).
http://www.liafa.jussieu.fr/~touili/spade.html

Reachability analysis for multithreaded dynamic and recursive
programs.

◮ (PAD) Systems [Touili VISSAS 05]

X1 · . . . ·Xn → Y1 · . . . · Ym, X1 → Y1 ‖ . . . ‖ Ym

Case studies

◮ Windows Bluetooth driver

◮ multithreaded program based on the class java.util.Vector
from the Java Standard Collection Framework

◮ concurrent insertions on a binary search tree
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Approximations of Collecting Semantics
[Jones Andersen TCS 07]

functional program P

right-linear TRS R
regular tree grammar G0
set of initial configurations

+

regular tree grammar G
over-approximation of

the collecting semantics of P

collecting semantics [Cousot2] (roughly): mapping associating to
each program point p the set of configurations reachable at p.

[Kochems Ong RTA 11] finer approximation using indexed linear
tree grammars (instead of regular grammars).
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Regular Tree Grammars

Definition : Regular Tree Grammars

A is a tuple G = 〈N , S,Σ, P 〉 where N is a finite set of nullary non-
terminal symbols, S ∈ N (axiom of G), Σ is a signature disjoint
from N and P is a set of production rules of the form X := r with
r ∈ T (Σ ∪ N ).

Example :

Σ = {∧ : 2,∨ : 2,¬ : 1,⊤,⊥ : 0}, G = ({X0,X1},X1,Σ, P ).

P =































X0 := ⊥ X1 := ⊤
X1 := ¬(X0) X0 := ¬(X1)
X0 := ∨(X0,X0) X1 := ∨(X0,X1)
X1 := ∨(X1,X0) X1 := ∨(X1,X1)
X0 := ∧(X0,X0) X0 := ∧(X0,X1)
X0 := ∧(X1,X0) X1 := ∧(X1,X1)
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Approximations of Collecting Semantics: Example
Concurrent readers/writers: reachable configurations

R = R1 : state(0, 0) → state(0, s(0))
R2 : state(X2, 0) → state(s(X2), 0)
R3 : state(X3, s(Y3)) → state(X3, Y3)
R4 : state(s(X4), Y4) → state(X4, Y4)

state(0, 0) state
(

0, s(0)
)

state
(

s(0), 0
)

state
(

s(s(0)), 0
)

...

1

32 4

2 4
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Approximations of Collecting Semantics: Example
R = R1 : state(0, 0) → state(0, s(0))

R2 : state(X2, 0) → state(s(X2), 0)
R3 : state(X3, s(Y3)) → state(X3, Y3)
R4 : state(s(X4), Y4) → state(X4, Y4)

R0 := state(0, 0)

R0 := R1 state(0, 0) = lhs(R1)
R1 := state(0, s(0))

R0 := R2 state(0, 0) = state(X2, 0){X2 7→ 0}
R2 := state(s(X2), 0)
X2 := 0

X2 := s(X2) state(s(X2), 0) =
state(X2, 0){X2 7→ s(X2)}

R1 := R3 state(0, s(0)) =
R3 := state(X3, Y3) state(X3, s(Y3)){X3 7→ 0, Y3 7→ 0}
X3 := 0, Y3 := 0

R2 := R4 state(s(X2), 0)) =
R4 := state(s(X4), Y4) state(s(X4), Y4){X4 7→ X2, Y4 7→ 0}
X4 := X2, Y4 := 0 135 / 200



Approximations of Collecting Semantics: Example

R = R1 : state(0, 0) → state(0, s(0))
R2 : state(X2, 0) → state(s(X2), 0)
R3 : state(X3, s(Y3)) → state(X3, Y3)
R4 : state(s(X4), Y4) → state(X4, Y4)

R0 := state(0, 0)

R0 := R1

R1 := state(0, s(0))

R0 := R2

R2 := state(s(X2), 0)
X2 := 0

X2 := s(X2)

R1 := R3

R3 := state(X3, Y3)
X3 := 0, Y3 := 0

R2 := R4

R4 := state(s(X4), Y4)
X4 := X2, Y4 := 0

state(0, 0) state
(

0, s(0)
)

state
(

s(0), 0
)

state
(

s(s(0)), 0
)

...

1

32 4

2 4
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Approximations of Collecting Semantics: Example 2
[Jones Andersen TCS 07]

let rec first l1 l2 =
match l1, l2 with
[], → []
l::m, x::xs → x::(first m xs);

R2 : first(nil,Xs) → nil
R3 : first(cons(1,M), cons(X,Xs)) → cons(X, first(M,Xs))

let rec sequence y =
y::(sequence (1::y));

R4 : sequence(Y ) → cons(Y, sequence(cons(1, Y )))

let g n =
first n (sequence []);

R1 : g(N) → first(N, sequence(nil))
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Part II

Weak Second Order Monadic Logic with k successors

138 / 200



Logic and Automata

◮ logic for expressing properties of labeled binary trees

= specification of tree languages,
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Logic and Automata

◮ logic for expressing properties of labeled binary trees

= specification of tree languages, example:

t |= ∀x a(x)⇒ ∃y y > x ∧ b(y)

◮ compilation of formulae into automata

= decision algorithms.

◮ equivalence between both formalisms

[Thatcher & Wright’s theorem].

140 / 200



Plan

WSkS: Definition

Automata → Logic

Logic → Automata

Fragments and Extensions of WSkS
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Interpretation Structures

L := set of predicate symbols P1, . . . Pn with arity.

A structureM over L is a tuple

M :=
〈

D, PM
1 , . . . , PM

n

〉

where

◮ D is the domain ofM,

◮ every PM
i (interpretation of Pi) is a subset of Darity(Pi)

(relation).
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Term as structure

Σ signature, k = maximal arity.

LΣ := {=, <, S1, . . . , Sk, La

∣

∣ a ∈ Σ}.

to t ∈ T (Σ), we associate a structure t over LΣ

t :=
〈

Pos(t),=, <, S1, . . . , Sk, L
t
a, L

t
b, · · ·

〉

where

◮ domain = positions of t (Pos(t) ⊂ {1, . . . , k}∗)

◮ = equality over Pos(t),

◮ < prefix ordering over Pos(t),

◮ Si =
{

〈p, p · i〉 | p, p · i ∈ Pos(t)
}

(ith successor position),

◮ L
t
a = {p ∈ Pos(t) | t(p) = a}.
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FOL with k successors

◮ first order variables x, y. . .

◮ form ::= x = y
∣

∣ x < y
∣

∣ S1(x, y)
∣

∣ . . .
∣

∣ Sk(x, y)
∣

∣ La(x) a ∈ Σ
∣

∣ form ∧ form
∣

∣ form ∨ form
∣

∣ ¬form
∣

∣ ∃x form
∣

∣ ∀x form

Notation: φ(x1, . . . , xm),
where x1, . . . , xm are the free variables of φ.
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WSkS: syntax

◮ first order variables x, y. . .

◮ second order variables X,Y . . .

◮ form ::= x = y
∣

∣ x < y
∣

∣ x ∈ X
∣

∣ S1(x, y)
∣

∣ . . .
∣

∣ Sk(x, y)
∣

∣ La(x) a ∈ Σ
∣

∣ form ∧ form
∣

∣ form ∨ form
∣

∣ ¬form
∣

∣ ∃x form
∣

∣ ∃X form
∣

∣ ∀x form
∣

∣ ∀X form

Notation: φ(x1, . . . , xm,X1, . . . ,Xn),
where x1, . . . , xm, X1, . . . ,Xn are the free variables of φ.
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WSkS: semantics

◮ t ∈ T (Σ),

◮ valuation σ of first order variables into Pos(t),

◮ valuation δ of second order variables into subsets of Pos(t),

◮ t, σ, δ |= x = y iff σ(x) = σ(y),

◮ t, σ, δ |= x < y iff σ(x) <prefix σ(y),

◮ t, σ, δ |= x ∈ X iff σ(x) ∈ δ(X),

◮ t, σ, δ |= Si(x, y) iff σ(y) = σ(x) · i,

◮ t, σ, δ |= La(x) iff t(σ(x)) = a i.e. σ(x) ∈ Lt
a,

◮ t, σ, δ |= φ1 ∧ φ2 iff t, σ, δ |= φ1 and t, σ, δ |= φ2,

◮ t, σ, δ |= φ1 ∨ φ2 iff t, σ, δ |= φ1 or t, σ, δ |= φ2,

◮ t, σ, δ |= ¬φ iff t, σ, δ 6|= φ,
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WSkS: semantics (quantifiers)

◮ t, σ, δ |= ∃x φ iff x /∈ dom(σ), x free in φ
and exists p ∈ Pos(t) s.t. t, σ ∪ {x 7→ p}, δ |= φ,

◮ t, σ, δ |= ∀x φ iff x /∈ dom(σ), x free in φ
and for all p ∈ Pos(t), t, σ ∪ {x 7→ p}, δ |= φ,

◮ t, σ, δ |= ∃X φ iff X /∈ dom(δ), X free in φ
and exists P ⊆ Pos(t) s.t. t, σ, δ ∪ {X 7→ P} |= φ,

◮ t, σ, δ |= ∀X φ iff X /∈ dom(δ), X free in φ
and for all P ⊆ Pos(t), t, σ, δ ∪ {X 7→ P} |= φ.
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WSkS: languages

Definition : WSkS-definability

For φ ∈WSkS closed (without free variables) over LΣ,

L(φ) :=
{

t ∈ T (Σ)
∣

∣ t |= φ
}

.

Example :

Σ = {a : 2, b : 2, c : 0}. Language of terms in T (Σ)

◮ containing the pattern a(b(x1, x2), x3):
∃x∃y S1(x, y) ∧ La(x) ∧ Lb(y)

◮ such that every a-labelled node has a b-labelled child.
∀x∃y La(x)⇒

∨2
i=1 Si(x, y) ∧ Lb(y)

◮ such that every a-labelled node has a b-labelled descendant.
∀x∃y La(x)⇒ x < y ∧ Lb(y)
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WSkS: examples

◮ root position:
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WSkS: examples

◮ root position: root(x) ≡ ¬∃y y < x

◮ inclusion:
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WSkS: examples

◮ root position: root(x) ≡ ¬∃y y < x

◮ inclusion: X ⊆ Y ≡ ∀x(x ∈ X ⇒ x ∈ Y )

◮ intersection:
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WSkS: examples

◮ root position: root(x) ≡ ¬∃y y < x

◮ inclusion: X ⊆ Y ≡ ∀x(x ∈ X ⇒ x ∈ Y )

◮ intersection: Z = X ∩ Y ≡ ∀x (x ∈ Z ⇔ (x ∈ X ∧ x ∈ Y ))

◮ emptiness:
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WSkS: examples

◮ root position: root(x) ≡ ¬∃y y < x

◮ inclusion: X ⊆ Y ≡ ∀x(x ∈ X ⇒ x ∈ Y )

◮ intersection: Z = X ∩ Y ≡ ∀x (x ∈ Z ⇔ (x ∈ X ∧ x ∈ Y ))

◮ emptiness: X = ∅ ≡ ∀x x /∈ X

◮ finite union:
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WSkS: examples

◮ root position: root(x) ≡ ¬∃y y < x

◮ inclusion: X ⊆ Y ≡ ∀x(x ∈ X ⇒ x ∈ Y )

◮ intersection: Z = X ∩ Y ≡ ∀x (x ∈ Z ⇔ (x ∈ X ∧ x ∈ Y ))

◮ emptiness: X = ∅ ≡ ∀x x /∈ X

◮ finite union:

X =

n
⋃

i=1

Xi ≡
(

n
∧

i=1

Xi ⊆ X
)

∧ ∀x
(

x ∈ X ⇒
n
∨

i=1

x ∈ Xi

)

◮ partition:
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WSkS: examples

◮ root position: root(x) ≡ ¬∃y y < x

◮ inclusion: X ⊆ Y ≡ ∀x(x ∈ X ⇒ x ∈ Y )

◮ intersection: Z = X ∩ Y ≡ ∀x (x ∈ Z ⇔ (x ∈ X ∧ x ∈ Y ))

◮ emptiness: X = ∅ ≡ ∀x x /∈ X

◮ finite union:

X =

n
⋃

i=1

Xi ≡
(

n
∧

i=1

Xi ⊆ X
)

∧ ∀x
(

x ∈ X ⇒
n
∨

i=1

x ∈ Xi

)

◮ partition:

X1, . . . ,Xn partitionX ≡ X =

n
⋃

i=1

Xi ∧
n−1
∧

i=1

n
∧

j=i+1

Xi ∩Xj = ∅
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WSkS: examples (2)

◮ singleton:
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WSkS: examples (2)

◮ singleton:
sing(X) ≡ X 6= ∅ ∧ ∀Y

(

Y ⊆ X ⇒ (Y = X ∨ Y = ∅)
)

◮ ≤ (without <)
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WSkS: examples (2)

◮ singleton:
sing(X) ≡ X 6= ∅ ∧ ∀Y

(

Y ⊆ X ⇒ (Y = X ∨ Y = ∅)
)

◮ ≤ (without <)

x ≤ y ≡ ∀X





y ∈ X

∧ ∀z ∀z′ (z′ ∈ X ∧
∨

i≤k

Si(z, z
′))⇒ z ∈ X





⇒ x ∈ X

or

x ≤ y ≡ ∃X
(

∀z z ∈ X ⇒ (∃z′
∨

i≤k

Si(z
′, z) ∧ z′ ∈ X) ∨ z = x

)

∧ y ∈ X
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Thatcher & Wright’s Theorem

Theorem : Thatcher and Wright

Languages of WSkS formulae = regular tree languages.

pr.: 2 directions (2 constructions):

◮ TA → WSkS,

◮ WSkS → TA.
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Plan

WSkS: Definition

Automata → Logic

Logic → Automata

Fragments and Extensions of WSkS
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Regular languages → WSkS languages

Let Σ = {a1, . . . , an}.

Theorem :

For all tree automaton A over Σ, there exists φA ∈WSkS such that
L(φA) = L(A).

A = (Σ, Q,Qf ,∆) with Q = {q0, . . . , qm}.
φA: existence of an accepting run of A on t ∈ T (Σ).

φA := ∃Y0 . . . ∃Ym φlab(Y ) ∧ φacc(Y ) ∧ φtr0(Y ) ∧ φtr(Y )
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regular languages → WSkS languages

φlab(Y ): every position is labeled with one state exactely.
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regular languages → WSkS languages

φlab(Y ): every position is labeled with one state exactely.

φlab(Y ) ≡ ∀x
∨

0≤i≤m

x ∈ Yi ∧
∧

0≤i,j≤m

i 6=j

(

x ∈ Yi ⇒ ¬x ∈ Yj
)
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regular languages → WSkS languages

φlab(Y ): every position is labeled with one state exactely.

φlab(Y ) ≡ ∀x
∨

0≤i≤m

x ∈ Yi ∧
∧

0≤i,j≤m

i 6=j

(

x ∈ Yi ⇒ ¬x ∈ Yj
)

φacc(Y ): the root is labeled with a final state
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regular languages → WSkS languages

φlab(Y ): every position is labeled with one state exactely.

φlab(Y ) ≡ ∀x
∨

0≤i≤m

x ∈ Yi ∧
∧

0≤i,j≤m

i 6=j

(

x ∈ Yi ⇒ ¬x ∈ Yj
)

φacc(Y ): the root is labeled with a final state

φacc(Y ) ≡ ∀x0 root(x0)⇒
∨

qi∈Qf

x0 ∈ Yi
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regular languages → WSkS languages

φtr0(Y ): transitions for constants symbols
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regular languages → WSkS languages

φtr0(Y ): transitions for constants symbols

φtr0(Y ) ≡
∧

a∈Σ0

(

∀x La(x)⇒
∨

a→qi∈∆

x ∈ Yi
)
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regular languages → WSkS languages

φtr0(Y ): transitions for constants symbols

φtr0(Y ) ≡
∧

a∈Σ0

(

∀x La(x)⇒
∨

a→qi∈∆

x ∈ Yi
)

φtr(Y ): transitions for non-constant symbols
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regular languages → WSkS languages

φtr0(Y ): transitions for constants symbols

φtr0(Y ) ≡
∧

a∈Σ0

(

∀x La(x)⇒
∨

a→qi∈∆

x ∈ Yi
)

φtr(Y ): transitions for non-constant symbols

φtr(Y ) ≡
∧

f∈Σj ,0<j≤k

∀x∀y1 . . . ∀yj

(

Lf (x) ∧ S1(x, y1) ∧ . . . ∧ Sj(x, yj)
)

⇓
∨

f(qi1 ,...,qij )→qi∈∆

x ∈ Yi ∧ y1 ∈ Yi1 ∧ . . . ∧ yj ∈ Yij
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Plan

WSkS: Definition

Automata → Logic

Logic → Automata

Fragments and Extensions of WSkS
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Theorem Thatcher & Wright

Theorem :

Every WSkS language is regular.

For all formula φ ∈WSkS over Σ (without free variables) there
exists a tree automaton Aφ over Σ, such that L(Aφ) = L(φ).

Corollary :

WSkS is decidable.

pr.: reduction to emptiness decision for Aφ.
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Theorem Thatcher & Wright

Aφ is effectively constructed from φ, by induction.

◮ automata for atoms

⇒ need of automata for formula with free variables.

it will characterize

◮ Boolean closures for Boolean connectors.

◮ ∃ quantifier: projection.
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Theorem Thatcher & Wright

When φ contains free variables, Aφ will characterize both terms
AND valuations satisfying φ: L(Aφ) ≡ {〈t, σ, δ〉 | t, σ, δ |= φ}.
Below we define the product 〈t, σ, δ〉.

X for free second order variables:

t ∈ T (Σ)

δ : {X1, . . . ,Xn} → 2Pos(t) 7→ t× δ ∈ T (Σ × {0, 1}n)

arity of 〈a, b〉 in Σ× {0, 1}n = arity of a in Σ.

for all p ∈ Pos(t), (t× δ)(p) = 〈t(p), b1, . . . , bn〉 where for all
i ≤ n,

◮ bi = 1 if p ∈ δ(Xi),

◮ bi = 0 otherwise.

X free first order variables are interpreted as singletons.
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WSkS0

We consider a simplified language (wlog).

◮ no first order variables,

◮ only second order variables X,Y . . .,

◮ form ::= X ⊆ Y
∣

∣ Y = X · 1
∣

∣ . . .
∣

∣ Y = X · k
∣

∣ X ⊆ La a ∈ Σ
∣

∣ form ∧ form
∣

∣ form ∨ form
∣

∣ ¬form
∣

∣ ∃X form
∣

∣ ∀X form

interpretation Y = X · i: X = {x}, Y = {y} and y = x · i.

ex: singleton
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WSkS0

We consider a simplified language (wlog).

◮ no first order variables,

◮ only second order variables X,Y . . .,

◮ form ::= X ⊆ Y
∣

∣ Y = X · 1
∣

∣ . . .
∣

∣ Y = X · k
∣

∣ X ⊆ La a ∈ Σ
∣

∣ form ∧ form
∣

∣ form ∨ form
∣

∣ ¬form
∣

∣ ∃X form
∣

∣ ∀X form

interpretation Y = X · i: X = {x}, Y = {y} and y = x · i.

ex: singleton
singleton(X) ≡ ∃Y

(

Y ⊆ X ∧ Y 6= X∧
¬∃Z (Z ⊆ X ∧ Z 6= X ∧ Z 6= Y )

)
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WSkS→ WSkS0

Lemma :

For all formula φ(x1, . . . , xm,X1, . . . ,Xn) ∈WSkS,
there exists a formula φ′(X ′

1, . . . ,X
′
m,X1, . . . ,Xn) ∈WSkS0

s.t. t, σ, δ |= φ(x1, . . . , xm,X1, . . . ,Xn)
iff t, σ′∪δ |= φ′(X ′

1, . . . ,X
′
m,X1, . . . ,Xn), with σ

′ : X ′
i 7→ {σ(xi)}.

pr.: several steps of formula rewriting:

1. elimination of <,

2. elimination of Si(x, y) (i ≤ k), La(x) (a ∈ Σ),

elimination of first order variables (use singleton(X)).
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compilation of WSkS0 into automata

notation: Σ[m] := Σ× {0, 1}m.

For all φ(X1, . . . ,Xn) ∈WSkS0 and m ≥ n,
we construct a tree automaton JφKm over Σ[m] recognizing

{

t× δ | δ : {X1, . . . ,Xm} → 2Pos(t), t, δ |= φ(X1, . . . ,Xn)
}
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projection, cylindrification

projection
proj n :

⋃

m≥n T (Σ[m])→ T (Σ[n])

delete components n+ 1, . . . ,m.

Lemma : projection

For all n ≤ m, if L ⊆ T (Σ[m]) is regular then proj n(L) is regular.

cylindrification (m ≥ n)
cyln,m : L ⊆ T (Σ[n]) 7→ {t ∈ T (Σ[m]) | proj n(t) ∈ L}

Lemma : cylindrification

For all n ≤ m, if L ⊆ T (Σ[n]) is regular, then cyln,m(L) is regular.
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compilation: X1 ⊆ X2

Automaton JX1 ⊆ X2K2:

◮ signature Σ[2] = Σ× {0, 1}2.
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compilation: X1 ⊆ X2

Automaton JX1 ⊆ X2K2:

◮ signature Σ[2] = Σ× {0, 1}2.

◮ states: q0

◮ final states: q0

◮ transitions:
〈a, 0, 0〉(q0, . . . , q0) → q0
〈a, 0, 1〉(q0, . . . , q0) → q0
〈a, 1, 1〉(q0, . . . , q0) → q0

For m ≥ 2,

JX1 ⊆ X2Km := cyl2,m
(

JX1 ⊆ X2K2
)
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compilation: X1 = X2 · 1

Automaton JX1 = X2 · 1K2:

◮ signature Σ[2] = Σ× {0, 1}2.
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compilation: X1 = X2 · 1

Automaton JX1 = X2 · 1K2:

◮ signature Σ[2] = Σ× {0, 1}2.

◮ states: q0, q1, q2

◮ final states: q2
◮ transitions:

〈a, 0, 0〉(q0, . . . , q0) → q0
〈a, 1, 0〉(q0, . . . , q0) → q1
〈a, 0, 1〉(q1, q0, . . . , q0) → q2
〈a, 0, 0〉(q0, . . . , q0, q2, q0, . . . , q0) → q2

For m ≥ 2,

JX2 = X1 · 1Km := cyl2,m
(

JX2 = X1 · 1K2
)
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compilation: X1 ⊆ La

Automate JX1 ⊆ LaK1:

◮ signature Σ[2] = Σ× {0, 1}2.
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compilation: X1 ⊆ La

Automate JX1 ⊆ LaK1:

◮ signature Σ[2] = Σ× {0, 1}2.

◮ states: q0

◮ final states: q0

◮ transitions:
〈a, 0〉(q0, . . . , q0) → q0
〈b, 0〉(q0, . . . , q0) → q0 (b 6= a)
〈a, 1〉(q0, . . . , q0) → q0

For m ≥ 1,

JX1 ⊆ LaKm := cyl1,m
(

JX1 ⊆ LaK1
)
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compilation: Boolean connectors

◮ Jφ(X1, . . . ,Xn) ∨ φ(X1, . . . ,Xn′)Km :=
Jφ(X1, . . . ,Xn)Km ∪ Jφ(X1, . . . ,Xn′)Km
with m ≥ max(n, n′)

◮ Jφ(X1, . . . ,Xn) ∧ φ(X1, . . . ,Xn′)Km :=
Jφ(X1, . . . ,Xn)Km ∩ Jφ(X1, . . . ,Xn′)Km
with m ≥ max(n, n′)

◮ J¬φ(X1, . . . ,Xn)Km := T (Σ[m]) \ Jφ(X1, . . . ,Xn)Km
for m ≥ n.
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compilation: quantifiers

◮ J∃Xn+1 φ(X1, . . . ,Xn+1)Kn := proj n
(

Jφ(X1, . . . ,Xn+1)Kn+1

)

◮ NB: this construction does not preserve determinism.

◮ J∃Xn+1 φ(X1, . . . ,Xn+1)Km :=
cyln,m

(

J∃Xn+1 φ(X1, . . . ,Xn+1)Kn
)

for m ≥ n.

◮ ∀ = ¬∃¬
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Theorem Thatcher & Wright

Theorem :

For all formula φ ∈ WSkS0 over Σ without free variables, there
exists a tree automaton Aφ over Σ, such that L(Aφ) = L(φ).

Aφ = JφK0 can be computed explicitely!

Corollary :

For all formula φ ∈WSkS over Σ without free variables there exists
a tree automaton Aφ over Σ, such that L(Aφ) = L(φ).

using translation of WSkS into WSkS0 first.
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Size of Aφ

Theorem : Stockmeyer and Meyer 1973

For all n there exists ∃x1¬∃y1∃x2¬∃y2 . . . ∃xn¬∃yn φ ∈ FOL such
that for every automaton A recognizing the same language

size(A) ≥ 22
...2

size(φ)
}

n
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WSkS: Definition

Automata → Logic

Logic → Automata

Fragments and Extensions of WSkS
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WSkS and FO

Using the 2 directions of the Thatcher & Wright theorem:

WSkS ∋ φ 7→ A 7→ ∃Y1 . . . ∃Yn ψ

with ψ ∈ FOL.

Corollary :

Every WSkS formula is equivalent to a formula
∃Y1 . . . ∃Yn ψ with ψ first order.
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FO ( WSkS

Proposition :

The language L of terms with an even number of nodes labeled by
a is regular (hence WSkS-definable) but not FO-definable.

pr.: with Ehrenfeucht-Fräıssé games.
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Ehrenfeucht-Fräıssé games

goal: prove FO equivalence of finite structures
(wrt finite set of predicates L).

Definition

for two finite L-structures A and B A ≡m B iff for all φ closed, of
quantifier depth m, A |= φ iff B |= φ
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Ehrenfeucht-Fräıssé games

Gm(A,B)

1 Spoiler chooses a1 ∈ dom(A) or b1 ∈ dom(B)

1′ Duplicator chooses b1 ∈ dom(B) or a1 ∈ dom(A)
...

m′ Duplicator chooses bm ∈ dom(B) or am ∈ dom(A)

Duplicator wins if {a1 7→ b1, . . . , am 7→ bm} is an injective partial
function compatible with the relations of A and B (∀P ∈ P,
PA(ai1 , . . . , ain) iff P

B(bi1 , . . . , bin))
= partial isomorphism.
Otherwise Spoiler wins.

Theorem : Ehrenfeucht-Fräıssé

A ≡m B iff Duplicator has a winning strategy for Gm(A,B).
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Ehrenfeucht-Fräıssé Theorem

more generally: equivalence of finite structures + valuation of n
free variables.

for two finite L-structures A and B and
α1, . . . , αn ∈ dom(A), β1, . . . , βn ∈ dom(B), m ≥ 0,

A, α1, . . . , αn ≡m B, β1, . . . , βn

iff for all φ(x1, . . . , xn) of quantifier depth m,

A, σa |= φ(x) iff B, σb |= φ(x)

where σa = {x1 7→ α1, . . . , xn 7→ αn},
σb = {x1 7→ β1, . . . , xn 7→ βn}.

Games: the partial isomorphisms must extend
{α1 7→ β1, . . . , αn 7→ βn}.
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FO ( WSkS
let Σ = {a : 1,⊥ : 0}.

Lemma :

For all m ≥ 3 and all i, j ≥ 2m − 1,
Duplicator has a winning strategy for Gm(ai(⊥), aj(⊥)).

Corollary :

The language L ⊆ T (Σ) of terms with an even number of nodes
labeled by a is not FO-definable.

◮ Star-free languages = FO definable holds for words
[McNaughton Papert] but not for trees.

◮ It is an active field of research to characterize regular tree
languages definable in FO.
e.g. [Benedikt Segoufin 05] ≈ locally threshold testable.
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Restriction to antichains

Definition :

An antichain is a subset P ⊆ Pos(t) s.t. ∀p, p′ ∈ P ,
p 6< p′ and p 6> p′.

antichain-WSkS: second-order quantifications are restricted to
antichains.

Theorem :

If Σ1 = ∅, the classes of antichain-WSkS languages and regular
languages over Σ conincide.

Theorem :

chain-WSkS is strictly weaker than WSkS.
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MSO on Graphs

Weak second-order monadic theory of the grid
Σ finite alphabet,

Lgrid := {=, S→, S↑, La

∣

∣ a ∈ Σ}

Grid G : N× N→ Σ; Interpretation structure:

G := 〈N× N,=, x+ 1, y + 1, LG
a , L

G
b , . . .〉.

Proposition :

The weak monadic second-order theory of the grid is undecidable.

csq: weak MSO of graphs is undecidable.
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MSO on Graphs (remarks)

◮ algebraic framework [Courcelle]:
MSO decidable on graphs generated by a hedge replacement
graph grammar = least solutions of equational systems based
on graph operations: ‖ : 2, exchi,j : 1, forget i : 1, edge : 0,
ver : 0.

◮ related notion: graphs with bounded tree width.

◮ FO-definable sets of graphs of bounded degree = locally
threshold testable graphs (some local neighborhood appears n
times with n < threshold - fixed).
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Undecidable Extensions

Left concatenation: new predicate

S′
1 =

{

〈p, 1 · p〉 | p, 1 · p ∈ Pos(t)
}

Proposition :

WS2S + left concatenation predicate is undecidable.

Predicate of equal length.

Proposition :

WS2S + |x| = |y| is undecidable.

199 / 200



MONA

[Klarlund et al 01]
http://www.brics.dk/mona/

◮ decision procedures for WS1S and WS2S

◮ by translation of formulas into automata

200 / 200

http://www.brics.dk/mona/

	Automata on Finite Ranked Trees
	Terms
	TA: Definitions and Expressiveness
	Determinism and Boolean Closures
	Decision Problems
	Minimization
	Closure under Tree Transformations, Program Verification
	Tree Homomorphisms
	Tree Transducers
	Term Rewriting
	Tree Automata Based Program Verification


	Weak Second Order Monadic Logic with k successors
	WSkS: Definition
	Automata  Logic
	Logic  Automata
	Fragments and Extensions of WSkS


