Tree automata techniques
 for the verification of infinite state-systems

Summer School VTSA 2011

Florent Jacquemard

INRIA Saclay \& LSV (UMR CNRS/ENS Cachan)
florent.jacquemard@inria.fr
http://www.lsv.ens-cachan.fr/~jacquema

TATA book http://tata.gforge.inria.fr

> (chapters 1, 3, 7, 8)

Tree
 Automata
 Techniques and Applications

Hubert Comon
Florent Jacquemard

Max Dauchet Rémi Gilleron

Sophie Tison Marc Tommasi

Finite tree automata

- tree recognizers
- generalize NFA from words to trees
$=$ finite representations of infinite set of labeled trees
are a useful tool for verification procedures
- composition results
- closure under Boolean operations
- closure under transformations
- decision results, efficient algorithms
- expressiveness, close relationship with logic

Verification of infinite state systems

regular model checking : static analysis of safety properties for infinite state systems, using symbolic reachability verification techniques.

Concurrent readers/writers

Example from [Clavel et al. LNCS 4350 2007]

| 1. \quad state $(0,0)$ | $=\operatorname{state}(0, s(0))$ |
| :--- | ---: | :--- |
| 2. $\quad \operatorname{state}(r, 0)$ | $=\operatorname{state}(s(r), 0)$ |
| 3. \quad state $(r, s(w))$ | $=\operatorname{state}(r, w)$ |
| 4. \quad state $(s(r), w)$ | $=\operatorname{state}(r, w)$ |

- writers can access the file if nobody else is accessing it (1)
- readers can access the file if no writer is accessing it (2)
- readers and writers can leave the file at any time $(3,4)$

Properties expected:

- mutual exclusion between readers and writers
- mutual exclusion between writers

Concurrent readers/writers: reachable configurations

$$
\begin{aligned}
\text { 1. } \quad \text { state }(0,0) & =\operatorname{state}(0, s(0)) \\
\text { 2. } \quad \operatorname{state}(r, 0) & =\operatorname{state}(s(r), 0) \\
3 . & \operatorname{state}(r, s(w)) \\
\text { 4. } & \operatorname{state}(s(r), w)
\end{aligned}=\operatorname{state}(r, w)
$$

Initial configuration: state $(0,0)$

Concurrent readers/writers: reachable configurations

$$
\begin{aligned}
\text { 1. } \quad \text { state }(0,0) & =\operatorname{state}(0, s(0)) \\
2 . & \operatorname{state}(r, 0)
\end{aligned}=\operatorname{state}(s(r), 0)
$$

Reachable configura- state $(0,0)$ tions:

Concurrent readers/writers: reachable configurations

$$
\begin{array}{lrl}
\text { 1. } & \text { state }(0,0) & =\operatorname{state}(0, s(0)) \\
2 . & \operatorname{state}(r, 0) & =\operatorname{state}(s(r), 0) \\
3 . & \text { state }(r, s(w)) & =\operatorname{state}(r, w) \\
4 . & \operatorname{state}(s(r), w) & =\operatorname{state}(r, w)
\end{array}
$$

Reachable configurations:

Concurrent readers/writers: reachable configurations

$$
\begin{array}{lrl}
1 . & \operatorname{state}(0,0) & =\operatorname{state}(0, s(0)) \\
2 . & \operatorname{state}(r, 0) & =\operatorname{state}(s(r), 0) \\
3 . & \text { state }(r, s(w)) & =\operatorname{state}(r, w) \\
4 . & \text { state }(s(r), w) & =\operatorname{state}(r, w)
\end{array}
$$

Reachable configurations:

Concurrent readers/writers: finite representation

$$
\begin{aligned}
q_{0} & :=0 \\
q & :=\operatorname{state}\left(q_{0}, q_{0}\right)\left|\operatorname{state}\left(q_{0}, q_{1}\right)\right| \operatorname{state}\left(q_{1}, q_{0}\right) \mid \operatorname{state}\left(q_{2}, q_{0}\right) \\
q_{1} & :=s\left(q_{0}\right) \\
q_{2} & :=s\left(q_{1}\right) \mid s\left(q_{2}\right)
\end{aligned}
$$

Concurrent readers/writers: automata construction

$$
\begin{aligned}
& \text { 1. } \operatorname{state}(0,0)=\operatorname{state}(0, s(0)) \\
& \text { 2. } \operatorname{state}(r, 0)=\operatorname{state}(s(r), 0) \\
& \text { 3. } \operatorname{state}(r, s(w))=\operatorname{state}(r, w) \\
& \text { 4. } \operatorname{state}(s(r), w)=\operatorname{state}(r, w) \\
& q_{0}:=0 \\
& q:=\operatorname{state}\left(q_{0}, q_{0}\right)
\end{aligned}
$$

Concurrent readers/writers: automata construction

$$
\begin{aligned}
& \text { 1. } \operatorname{state}(0,0)=\operatorname{state}(0, s(0)) \\
& \text { state }(0,0) \in q \Rightarrow \operatorname{state}(0, s(0)) \in q \\
& \text { 2. } \operatorname{state}(r, 0) \quad=\operatorname{state}(s(r), 0) \\
& \text { 3. } \quad \operatorname{state}(r, s(w))=\operatorname{state}(r, w) \\
& \text { 4. } \operatorname{state}(s(r), w)=\operatorname{state}(r, w) \\
& q_{0}:=0 \\
& q:=\operatorname{state}\left(q_{0}, q_{0}\right)
\end{aligned}
$$

Concurrent readers/writers: automata construction

$$
\begin{aligned}
& \text { 1. } \operatorname{state}(0,0)=\operatorname{state}(0, s(0)) \\
& \operatorname{state}(0,0) \in q \Rightarrow \operatorname{state}(0, s(0)) \in q \\
& \text { 2. } \operatorname{state}(r, 0)=\operatorname{state}(s(r), 0) \\
& \text { 3. } \quad \text { state }(r, s(w))=\operatorname{state}(r, w) \\
& \text { 4. } \operatorname{state}(s(r), w)=\operatorname{state}(r, w) \\
& q_{0}:=0 \\
& q:=\operatorname{state}\left(q_{0}, q_{0}\right) \mid \operatorname{state}\left(q_{0}, q_{1}\right) \\
& q_{1}:=s\left(q_{0}\right)
\end{aligned}
$$

Concurrent readers/writers: automata construction

$$
\begin{aligned}
& \text { 1. } \operatorname{state}(0,0)=\operatorname{state}(0, s(0)) \\
& \text { 2. } \operatorname{state}(r, 0)=\operatorname{state}(s(r), 0) \\
& \operatorname{state}\left(q_{0}, 0\right) \in q \Rightarrow \operatorname{state}\left(s\left(q_{0}\right), 0\right) \in q \\
& \text { 3. } \quad \operatorname{state}(r, s(w))=\operatorname{state}(r, w) \\
& \text { 4. } \quad \operatorname{state}(s(r), w)=\operatorname{state}(r, w) \\
& q_{0}:=0 \\
& q:=\operatorname{state}\left(q_{0}, q_{0}\right) \mid \operatorname{state}\left(q_{0}, q_{1}\right) \\
& q_{1}:=s\left(q_{0}\right)
\end{aligned}
$$

Concurrent readers/writers: automata construction

$$
\begin{aligned}
& \text { 1. } \operatorname{state}(0,0)=\operatorname{state}(0, s(0)) \\
& \text { 2. } \operatorname{state}(r, 0)=\operatorname{state}(s(r), 0) \\
& \operatorname{state}\left(q_{0}, 0\right) \in q \Rightarrow \operatorname{state}\left(s\left(q_{0}\right), 0\right) \in q \\
& \text { 3. } \quad \operatorname{state}(r, s(w))=\operatorname{state}(r, w) \\
& \text { 4. } \operatorname{state}(s(r), w)=\operatorname{state}(r, w) \\
& q_{0}:=0 \\
& q:=\operatorname{state}\left(q_{0}, q_{0}\right)\left|\operatorname{state}\left(q_{0}, q_{1}\right)\right| \operatorname{state}\left(q_{1}, q_{0}\right) \\
& q_{1}:=s\left(q_{0}\right)
\end{aligned}
$$

Concurrent readers/writers: automata construction

$$
\begin{aligned}
& \text { 1. } \operatorname{state}(0,0)=\operatorname{state}(0, s(0)) \\
& \text { 2. } \operatorname{state}(r, 0)=\operatorname{state}(s(r), 0) \\
& \operatorname{state}\left(q_{1}, 0\right) \in q \Rightarrow \operatorname{state}\left(s\left(q_{1}\right), 0\right) \in q \\
& \text { 3. } \quad \operatorname{state}(r, s(w))=\operatorname{state}(r, w) \\
& \text { 4. } \operatorname{state}(s(r), w)=\operatorname{state}(r, w) \\
& q_{0}:=0 \\
& q:=\operatorname{state}\left(q_{0}, q_{0}\right)\left|\operatorname{state}\left(q_{0}, q_{1}\right)\right| \operatorname{state}\left(q_{1}, q_{0}\right) \\
& q_{1}:=s\left(q_{0}\right)
\end{aligned}
$$

Concurrent readers/writers: automata construction

$$
\begin{aligned}
& \text { 1. } \operatorname{state}(0,0)=\operatorname{state}(0, s(0)) \\
& \text { 2. } \operatorname{state}(r, 0)=\operatorname{state}(s(r), 0) \\
& \operatorname{state}\left(q_{1}, 0\right) \in q \Rightarrow \operatorname{state}\left(s\left(q_{1}\right), 0\right) \in q \\
& \text { 3. } \operatorname{state}(r, s(w))=\operatorname{state}(r, w) \\
& \text { 4. } \operatorname{state}(s(r), w)=\operatorname{state}(r, w) \\
& q_{0}:=0 \\
& q:=\operatorname{state}\left(q_{0}, q_{0}\right)\left|\operatorname{state}\left(q_{0}, q_{1}\right)\right| \operatorname{state}\left(q_{1}, q_{0}\right) \mid \operatorname{state}\left(q_{2}, q_{0}\right) \\
& q_{1}:=s\left(q_{0}\right)
\end{aligned}
$$

System Timbuk [Thomas Genet]. Automated construction, with guess of accelaration $q_{2}:=s\left(q_{2}\right)$ by user assistance.

Concurrent readers/writers: automata construction

$$
\begin{aligned}
& \text { 1. } \operatorname{state}(0,0)=\operatorname{state}(0, s(0)) \\
& \text { 2. } \operatorname{state}(r, 0)=\operatorname{state}(s(r), 0) \\
& \operatorname{state}\left(q_{2}, 0\right) \in q \Rightarrow \operatorname{state}\left(s\left(q_{2}\right), 0\right) \in q \\
& \text { 3. } \operatorname{state}(r, s(w))=\operatorname{state}(r, w) \\
& \text { 4. } \operatorname{state}(s(r), w)=\operatorname{state}(r, w) \\
& q_{0}:=0 \\
& q:=\operatorname{state}\left(q_{0}, q_{0}\right)\left|\operatorname{state}\left(q_{0}, q_{1}\right)\right| \operatorname{state}\left(q_{1}, q_{0}\right) \mid \operatorname{state}\left(q_{2}, q_{0}\right) \\
& q_{1}:=s\left(q_{0}\right)
\end{aligned}
$$

System Timbuk [Thomas Genet]. Automated construction, with guess of accelaration $q_{2}:=s\left(q_{2}\right)$ by user assistance.

Concurrent readers/writers: automata construction

$$
\left.\begin{array}{rl}
& \text { 1. } \operatorname{state}(0,0)=\operatorname{state}(0, s(0)) \\
& \\
& \text { 2. } \operatorname{state}(r, 0)=\operatorname{state}(s(r), 0) \\
& \\
& \\
& \\
& \\
& \\
& \operatorname{state}(r, s(w))=\operatorname{state}\left(q_{0}, s\left(q_{0}\right)\right) \in q \Rightarrow \operatorname{state}(s(r), w)=\operatorname{state}(r, w)
\end{array}\right)
$$

System Timbuk [Thomas Genet]. Automated construction, with guess of accelaration $q_{2}:=s\left(q_{2}\right)$ by user assistance.

Concurrent readers/writers: automata construction

1. $\operatorname{state}(0,0)=\operatorname{state}(0, s(0))$
2. $\operatorname{state}(r, 0)=\operatorname{state}(s(r), 0)$
3. $\quad \operatorname{state}(r, s(w))=\operatorname{state}(r, w)$
4. $\quad \operatorname{state}(s(r), w)=\operatorname{state}(r, w)$ $\operatorname{state}\left(s\left(q_{0}\left|q_{1}\right| q_{2}\right), q_{0}\right) \in q \Rightarrow \operatorname{state}\left(q_{0}\left|q_{1}\right| q_{2}, q_{0}\right) \in q$

$$
\begin{aligned}
q_{0} & :=0 \\
q & :=\operatorname{state}\left(q_{0}, q_{0}\right)\left|\operatorname{state}\left(q_{0}, q_{1}\right)\right| \operatorname{state}\left(q_{1}, q_{0}\right) \mid \operatorname{state}\left(q_{2}, q_{0}\right) \\
q_{1} & :=s\left(q_{0}\right) \\
q_{2} & :=s\left(q_{1}\right) \mid s\left(q_{2}\right)
\end{aligned}
$$

System Timbuk [Thomas Genet]. Automated construction, with guess of accelaration $q_{2}:=s\left(q_{2}\right)$ by user assistance.

Concurrent readers/writers: verification

Properties expected:

1. mutual exclusion between readers and writers forbidden pattern: state $(s(x), s(y))$
2. mutual exclusion between writers forbidden pattern: state $(x, s(s(y)))$

The red set: union of

1. state $\left(\left(q_{1} \mid q_{2}\right),\left(q_{1} \mid q_{2}\right)\right)$
2. $\operatorname{state}\left(\left(q_{0}\left|q_{1}\right| q_{2}\right),\left(q_{1} \mid q_{2}\right)\right)$
with $q_{0}:=0, q_{1}:=s\left(q_{0}\right), q_{2}:=s\left(q_{1}\right) \mid s\left(q_{2}\right)$
Verification: The intersection between the set of reachable configurations and the red set is empty.

Functional program

Lists built with constructor symbols cons and nil.

$$
\begin{aligned}
\operatorname{app}(\mathrm{nil}, y) & =y \\
\operatorname{app}(\operatorname{cons}(x, y), z) & =\operatorname{cons}(x, \operatorname{app}(y, z))
\end{aligned}
$$

Functional program analysis

set of initial configurations $q_{\text {app }}$: terms of the form $\operatorname{app}\left(\ell_{1}, \ell_{2}\right)$ where ℓ_{1}, ℓ_{2} are lists of 0 and 1 , defined by

$$
\begin{aligned}
q & :=0 \mid 1 \\
q_{\ell} & :=\operatorname{nil} \mid \operatorname{cons}\left(q, q_{\ell}\right) \\
q_{\text {app }} & :=\operatorname{app}\left(q_{\ell}, q_{\ell}\right)
\end{aligned}
$$

set of reachable configurations $=$ the closure according to

$$
\begin{aligned}
\operatorname{app}(\text { nil }, y) & =y \\
\operatorname{app}(\operatorname{cons}(x, y), z) & =\operatorname{cons}(x, \operatorname{app}(y, z))
\end{aligned}
$$

it is

$$
\begin{aligned}
q & :=0 \mid 1 \\
q_{\ell} & :=\operatorname{nil} \mid \operatorname{cons}\left(q, q_{\ell}\right) \\
q_{\text {app }} & :=\operatorname{app}\left(q_{\ell}, q_{\ell}\right) \mid \operatorname{cons}\left(q, q_{\text {app }}\right)
\end{aligned}
$$

Functional program : rev

[Thomas Genet, Valérie Viet Triem Tong, LPAR 01]. Timbuk.

$$
\begin{aligned}
\operatorname{app}(\operatorname{nil}, y) & =y \\
\operatorname{app}(\operatorname{cons}(x, y), z) & =\operatorname{cons}(x, \operatorname{app}(y, z)) \\
\operatorname{rev}(\operatorname{nil}) & =\operatorname{nil} \\
\operatorname{rev}(\operatorname{cons}(x, y)) & =\operatorname{app}(\operatorname{rev}(y), \operatorname{cons}(x, \operatorname{nil}))
\end{aligned}
$$

set of initial config.:

$$
\begin{aligned}
q_{0} & :=0 \\
q_{1} & :=1 \\
q_{\ell_{1}} & :=\mathrm{nil} \mid \operatorname{cons}\left(q_{1}, q_{\ell_{1}}\right) \\
q_{\ell_{01}} & :=\operatorname{nil}\left|\operatorname{cons}\left(q_{0}, q_{\ell_{1}}\right)\right| \operatorname{cons}\left(q_{0}, q_{\ell_{01}}\right) \\
q_{\mathrm{rev}} & :=\operatorname{rev}\left(q_{\ell_{01}}\right)
\end{aligned}
$$

Functional program : rev

[Thomas Genet, Valérie Viet Triem Tong, LPAR 01]. Timbuk.

$$
\begin{aligned}
\operatorname{app}(\operatorname{nil}, y) & =y \\
\operatorname{app}(\operatorname{cons}(x, y), z) & =\operatorname{cons}(x, \operatorname{app}(y, z)) \\
\operatorname{rev}(\operatorname{nil}) & =\operatorname{nil} \\
\operatorname{rev}(\operatorname{cons}(x, y)) & =\operatorname{app}(\operatorname{rev}(y), \operatorname{cons}(x, \operatorname{nil}))
\end{aligned}
$$

set of initial config.: rev (ℓ) where $\ell \in q_{\ell_{01}}$, list of 0 's followed by 1 's

$$
\begin{aligned}
q_{0} & :=0 \\
q_{1} & :=1 \\
q_{\ell_{1}} & :=\text { nil } \mid \operatorname{cons}\left(q_{1}, q_{\ell_{1}}\right) \\
q_{\ell_{01}} & :=\operatorname{nil}\left|\operatorname{cons}\left(q_{0}, q_{\ell_{1}}\right)\right| \operatorname{cons}\left(q_{0}, q_{\ell_{01}}\right) \\
q_{\mathrm{rev}} & :=\operatorname{rev}\left(q_{\ell_{01}}\right)
\end{aligned}
$$

Functional program cntd

set of reachable configurations: by completion of equations for initial configurations

$$
\begin{aligned}
q_{0} & :=0 \\
q_{1} & :=1 \\
q_{\ell_{1}} & :=\operatorname{nil}\left|\operatorname{cons}\left(q_{1}, q_{\ell_{1}}\right)\right| \operatorname{cons}\left(q_{1}, q_{\text {nil }}\right) \mid \operatorname{app}\left(q_{\text {nil }}, q_{\ell_{1}}\right) \\
q_{\ell_{01}} & :=\operatorname{nil}\left|\operatorname{cons}\left(q_{0}, q_{\ell_{1}}\right)\right| \operatorname{cons}\left(q_{0}, q_{\ell_{01}}\right) \\
q_{\text {rev }} & :=\operatorname{rev}\left(q_{\ell_{01}}\right)|\operatorname{nil}| \operatorname{app}\left(q_{\ell_{10}}, q_{\text {nil }}\right) \\
q_{\ell_{10}} & :=\operatorname{rev}\left(q_{\ell_{01}}\right) \mid \operatorname{app}\left(q_{\ell_{1}}, q_{\ell_{0}}\right) \\
q_{\text {nil }} & :=\operatorname{nil} \mid \operatorname{rev}\left(q_{\text {nil }}\right) \\
q_{\ell_{0}} & :=\operatorname{cons}\left(q_{0}, q_{\text {nil }}\right)\left|\operatorname{app}\left(q_{\text {nil }}, q_{\ell_{0}}\right)\right| \operatorname{app}\left(q_{\ell_{0}}, q_{\ell_{0}}\right)
\end{aligned}
$$

property expected: $\operatorname{rev}(\ell)$ not reachable when $\ell \models \exists x, y x<y \wedge 0(x) \wedge 1(y)$.
verification The intersection of $q_{\text {rev }}$ and the above set is empty.

Imperative programs

$$
p::=0|X| p \cdot p \mid p \| p
$$

- 0: null process (termination)
- X : program point
- $p \cdot p$: sequential composition
- $p \| p$: parallel composition

Transition rules

- procedure call: $X \rightarrow Y \cdot Z \quad(Z=$ return point $)$
- procedure call with global state: $Q \cdot X \rightarrow Q^{\prime} \cdot Y \cdot Z$
- procedure return: $Q \cdot Y \rightarrow Q^{\prime}$
- global state change: $Q \cdot X \rightarrow Q^{\prime} \cdot X$
- dynamic thread creation: $X \rightarrow Y \| Z$
- handshake : $X\left\|Y \rightarrow X^{\prime}\right\| Y^{\prime}$

Imperative program

[Bouajjani Touili CAV 02]

```
void X() {
    while(true) {
        if Y() {
        thread_create(&t1,Z)
        } else { return }
        }
    }
```

X	$\rightarrow \mathrm{Y} \cdot \mathrm{X}$	$\left(r_{1}\right)$	
Y	$\rightarrow \mathrm{t}$	$\left(r_{2}\right)$	
Y	$\rightarrow \mathrm{f}$	$\left(r_{3}\right)$	
$\mathrm{t} \cdot \mathrm{X}$	$\rightarrow \mathrm{X} \\| \mathrm{Z}$	$\left(r_{4}\right)$	
f	$\rightarrow 0$	$\left(r_{5}\right)$	

The set of reachable configurations is infinite but regular.

Related models of imperative programs

- Pushdown systems (sequential programs with procedure calls)

$$
X_{1} \cdot \ldots \cdot X_{n} \rightarrow Y_{1} \cdot \ldots \cdot Y_{m}
$$

- Petri nets (multi-threaded programs)

$$
X_{1}\|\ldots\| X_{n} \rightarrow Y_{1}\|\ldots\| Y_{m}
$$

- PA processes

$$
X_{1} \rightarrow Y_{1} \cdot \ldots \cdot Y_{m}, \quad X_{1} \rightarrow Y_{1}\|\ldots\| Y_{m}
$$

- Process rewrite systems (PRS) [Bouajjani, Touili RTA 05]

$$
X_{1} \cdot \ldots \cdot X_{n} \rightarrow Y_{1} \cdot \ldots \cdot Y_{m}, \quad X_{1}\|\ldots\| X_{n} \rightarrow Y_{1}\|\ldots\| Y_{m}
$$

- Dynamic pushdown networks [Seidl CIAA 09]

Tree languages modulo

In the above model,

- . is associative,
- \| is associative and commutative.

The terms of the above algebra correspond to unranked trees,

- ordered (modulo A) and
- unordered (modulo AC).
(models for XML processing)

Overview

Verification of other infinite-states systems.

- configuration $=$ tree (ranked or unranked)
- process,
- message exchanged in a protocol,
- local network with a tree shape,
- tree data structure in memory, with pointers (e.g. binary search trees)...
- (infinite) set of configurations $=$ tree language L
- transition relation between configurations
- safety: transitive closure $\left(L_{\text {init }}\right) \cap L_{\text {error }}=\emptyset$.

Different kinds of trees

- finite ranked trees (terms in first order logic)
- finite unranked ordered trees
- finite unranked unordered trees
- infinite trees...
\Rightarrow several classes of tree automata.

Overview: properties of automata

- determinism,
- Boolean closures,
- closures under transformations (homomorphismes, transducers, rewrite systems...)
- minimization,
- decision problems, complexity,
- membership,
- emptiness,
- universality,
- inclusion, equivalence,
- emptiness of intersection,
- finiteness...
- pumping and star lemma,
- expressiveness, correspondence with logics.

Organization of the tutorial

1. finite ranked tree automata

- properties
- algorithms
- closure under transformation, applications to program verification

2. correspondence with the monadic second order logic of the tree (Thatcher and Wright's theorem).
3. finite unranked tree automata

- ordered = Hedge Automata
- unordered $=$ Presburger automata
- closure modulo A and AC
- XML typing and analysis of transformations

4. tree automata as Horn clause sets

Part I

Automata on Finite Ranked Trees

Terms in first order logic

Plan

Terms
TA: Definitions and Expressiveness
Determinism and Boolean Closures
Decision Problems
Minimization

Closure under Tree Transformations, Program Verification

Signature

Definition: Signature

A signature Σ is a finite set of function symbols each of them with an arity greater or equal to 0 .
We denote Σ_{i} the set of symbols of arity i.
Example:
$\{+: 2, s: 1,0: 0\},\{\wedge: 2, \vee: 2, \neg: 1, \top, \perp: 0\}$.
We also consider a countable set \mathcal{X} of variable symbols.

Terms

Definition : Term

The set of terms over the signature Σ and \mathcal{X} is the smallest set $\mathcal{T}(\Sigma, \mathcal{X})$ such that:

- $\Sigma_{0} \subseteq \mathcal{T}(\Sigma, \mathcal{X})$,
- $\mathcal{X} \subseteq \mathcal{T}(\Sigma, \mathcal{X})$,
- if $f \in \Sigma_{n}$ and if $t_{1}, \ldots, t_{n} \in \mathcal{T}(\Sigma, \mathcal{X})$, then $f\left(t_{1}, \ldots, t_{n}\right) \in \mathcal{T}(\Sigma, \mathcal{X})$.

The set of ground terms (terms without variables, i.e. $\mathcal{T}(\Sigma, \emptyset)$) is denoted $\mathcal{T}(\Sigma)$.

Example :

$x, \neg(x), \wedge(\vee(x, \neg(y)), \neg(x))$.

Terms (2)

A term where each variable appears at most once is called linear. A term without variable is called ground.

Depth $\mathrm{h}(t)$:

- $\mathrm{h}(a)=\mathrm{h}(x)=0$ if $a \in \Sigma_{0}, x \in \mathcal{X}$,
- $\mathrm{h}\left(f\left(t_{1}, \ldots, t_{n}\right)\right)=\max \left\{\mathrm{h}\left(t_{1}\right), \ldots, \mathrm{h}\left(t_{n}\right)\right\}+1$.

Positions

A term $t \in \mathcal{T}(\Sigma, \mathcal{X})$ can also be seen as a function from the set of its positions $\mathcal{P o s}(t)$ into $\Sigma \cup \mathcal{X}$.
The empty position (root) is denoted ε.
$\mathcal{P o s}(t)$ is a subset of \mathbb{N}^{*} satisfying the following properties:

- $\mathcal{P o s}(t)$ is closed under prefix,
- for all $p \in \mathcal{P o s}(t)$ such that $t(p) \in \Sigma_{n}(n \geq 1)$, $\{p j \in \mathcal{P o s}(t) \mid j \in \mathbb{N}\}=\{p 1, \ldots, p n\}$,
- every $p \in \mathcal{P}$ os (t) such that $t(p) \in \Sigma_{0} \cup \mathcal{X}$ is maximal in $\mathcal{P o s}(t)$ for the prefix ordering.
The size of t is defined by $\|t\|=|\mathcal{P o s}(t)|$.
Subterm $\left.t\right|_{p}$ at position $p \in \mathcal{P o s}(t)$:
- $\left.t\right|_{\varepsilon}=t$,
- $\left.f\left(t_{1}, \ldots, t_{n}\right)\right|_{i p}=\left.t_{i}\right|_{p}$.

The replacement in t of $\left.t\right|_{p}$ by s is denoted $t[s]_{p}$.

Positions (example)

Example :

$$
\begin{aligned}
& t=\wedge(\wedge(x, \vee(x, \neg(y))), \neg(x)), \\
& \left.t\right|_{11}=x,\left.t\right|_{12}=\vee(x, \neg(y)),\left.t\right|_{2}=\neg(x), \\
& t[\neg(y)]_{11}=\wedge(\wedge(\neg(y), \vee(x, \neg(y))), \neg(x)) .
\end{aligned}
$$

Contexts

Definition : Contexte

A context is a linear term.

The application of a context $C \in \mathcal{T}\left(\Sigma,\left\{x_{1}, \ldots, x_{n}\right\}\right)$ to n terms t_{1}, \ldots, t_{n}, denoted $C\left[t_{1}, \ldots, t_{n}\right]$, is obtained by the replacement of each x_{i} by t_{i}, for $1 \leq i \leq n$.

Plan

Terms
TA: Definitions and Expressiveness
Determinism and Boolean Closures
Decision Problems
Minimization
Closure under Tree Transformations, Program Verification

Bottom-up Finite Tree Automata

$\left(a+b a^{*} b\right)^{*}$

word. run on aabba: $q_{0} \xrightarrow{a} q_{0} \xrightarrow{a} q_{0} \xrightarrow{b} q_{1} \xrightarrow{b} q_{0} \xrightarrow{a} q_{0}$.
tree. run on $a(a(b(b(a(\varepsilon)))))$:
$q_{0} \rightarrow a\left(q_{0}\right) \rightarrow a\left(a\left(q_{0}\right)\right) \rightarrow a\left(a\left(b\left(q_{1}\right)\right)\right) \rightarrow a\left(a\left(b\left(b\left(q_{0}\right)\right)\right)\right) \rightarrow$ $a\left(a\left(b\left(b\left(a\left(q_{0}\right)\right)\right)\right)\right) \rightarrow a(a(b(b(a(\varepsilon)))))$
with $q_{0}:=\varepsilon, q_{0}:=a\left(q_{0}\right), q_{1}:=a\left(q_{1}\right), q_{1}:=b\left(q_{0}\right), q_{0}:=b\left(q_{1}\right)$.

Bottom-up Finite Tree Automata

$\left(a+b a^{*} b\right)^{*}$

word. run on aabba: $q_{0} \xrightarrow{a} q_{0} \xrightarrow{a} q_{0} \xrightarrow{b} q_{1} \xrightarrow{b} q_{0} \xrightarrow{a} q_{0}$.
tree. run on $a(a(b(b(a(\varepsilon)))))$:
$a(a(b(b(a(\varepsilon))))) \rightarrow a\left(a\left(b\left(b\left(a\left(q_{0}\right)\right)\right)\right)\right) \rightarrow a\left(a\left(b\left(b\left(q_{0}\right)\right)\right)\right) \rightarrow$ $a\left(a\left(b\left(q_{1}\right)\right)\right) \rightarrow a\left(a\left(q_{0}\right)\right) \rightarrow a\left(q_{0}\right) \rightarrow q_{0}$
with $\varepsilon \rightarrow q_{0}, a\left(q_{0}\right) \rightarrow q_{0}, a\left(q_{1}\right) \rightarrow q_{1}, b\left(q_{0}\right) \rightarrow q_{1}, b\left(q_{1}\right) \rightarrow q_{0}$.

Bottom-up Finite Tree Automata

Definition : Tree Automata

A tree automaton (TA) over a signature Σ is a tuple $\mathcal{A}=$ $\left(\Sigma, Q, Q^{\mathrm{f}}, \Delta\right)$ where Q is a finite set of states, $Q^{\mathrm{f}} \subseteq Q$ is the subset of final states and Δ is a set of transition rules of the form: $f\left(q_{1}, \ldots, q_{n}\right) \rightarrow q$ with $f \in \Sigma_{n}(n \geq 0)$ and $q_{1}, \ldots, q_{n}, q \in Q$.
The state q is called the head of the rule.
The language of \mathcal{A} in state q is recursively defined by

$$
\begin{aligned}
L(\mathcal{A}, q) & =\left\{a \in \Sigma_{0} \mid a \rightarrow q \in \Delta\right\} \\
& \cup \bigcup_{f\left(q_{1}, \ldots, q_{n}\right) \rightarrow q \in \Delta} f\left(L\left(\mathcal{A}, q_{1}\right), \ldots, L\left(\mathcal{A}, q_{n}\right)\right)
\end{aligned}
$$

with $f\left(L_{1}, \ldots, L_{n}\right):=\left\{f\left(t_{1}, \ldots, t_{n}\right) \mid t_{1} \in L_{1}, \ldots, t_{n} \in L_{n}\right\}$.
We say that $t \in L(\mathcal{A}, q)$ is accepted, or recognized, by \mathcal{A} in state q.
The language of \mathcal{A} is $L(\mathcal{A}):=\bigcup_{q^{\mathrm{f}} \in Q^{\mathrm{f}}} L\left(\mathcal{A}, q^{\mathrm{f}}\right)$ (regular language).

Recognized Languages: Operational Definition

Rewrite Relation

The rewrite relation associated to Δ is the smallest binary relation, denoted $\xrightarrow[\Delta]{ }$, containing Δ and closed under application of contexts.
The reflexive and transitive closure of $\xrightarrow[\Delta]{\longrightarrow}$ is denoted $\stackrel{*}{\Delta}$.
For $\mathcal{A}=\left(\Sigma, Q, Q^{\mathrm{f}}, \Delta\right)$, it holds that

$$
L(\mathcal{A}, q)=\{t \in \mathcal{T}(\Sigma) \mid t \xrightarrow[\Delta]{\stackrel{*}{\longrightarrow}} q\}
$$

and hence

$$
L(\mathcal{A})=\left\{t \in \mathcal{T}(\Sigma) \mid t \xrightarrow[\Delta]{*} q \in Q^{\mathrm{f}}\right\}
$$

Tree Automata: example 1

Example :

$$
\Sigma=\{\wedge: 2, \vee: 2, \neg: 1, \top, \perp: 0\}
$$

$$
\begin{aligned}
& \wedge(\wedge(\top, \vee(\top, \neg(\perp))), \neg(\top)) \overrightarrow{\mathcal{A}} \wedge\left(\wedge(\top, \vee(\top, \neg(\perp))), \neg\left(q_{1}\right)\right) \\
\overrightarrow{\mathcal{A}} & \wedge\left(\wedge\left(q_{1}, \vee\left(q_{1}, \neg\left(q_{0}\right)\right)\right), \neg\left(q_{1}\right)\right) \underset{\mathcal{A}}{\rightarrow} \wedge\left(\wedge\left(q_{1}, \vee\left(q_{1}, \neg\left(q_{0}\right)\right)\right), q_{0}\right) \\
\underset{\mathcal{A}}{ } & \wedge\left(\wedge\left(q_{1}, \vee\left(q_{1}, q_{1}\right)\right), q_{0}\right) \underset{\mathcal{A}}{ } \wedge\left(\wedge\left(q_{1}, q_{1}\right), q_{0}\right) \underset{\mathcal{A}}{ } \wedge\left(q_{1}, q_{0}\right) \underset{\mathcal{A}}{ } q_{0}
\end{aligned}
$$

Tree Automata: example 2

Example:

$\Sigma=\{\wedge: 2, \vee: 2, \neg: 1, \top, \perp: 0\}$,
TA recognizing the ground instances of $\neg(\neg(x))$:

$$
\mathcal{A}=\left(\Sigma,\left\{q, q_{\neg}, q_{\mathrm{f}}\right\},\left\{q_{\mathrm{f}}\right\},\left\{\begin{array}{rllll}
\perp & \rightarrow q & \mathrm{~T} & \rightarrow q^{\prime} \\
\neg(q) & \rightarrow & q & \neg(q) & \rightarrow q_{\urcorner} \\
\neg\left(q_{\urcorner}\right) & \rightarrow & q_{\mathrm{f}} & \wedge(q, q) & \rightarrow \\
\vee(q, q) & \rightarrow & q & \wedge(, q) & \rightarrow
\end{array}\right\}\right)
$$

Example :

Ground terms embedding the pattern $\neg(\neg(x))$: $\mathcal{A} \cup\left\{\neg\left(q_{\mathrm{f}}\right) \rightarrow\right.$ $\left.q_{\mathrm{f}}, \vee\left(q_{\mathrm{f}}, q_{*}\right) \rightarrow q_{\mathrm{f}}, \vee\left(q_{*}, q_{\mathrm{f}}\right) \rightarrow q_{\mathrm{f}}, \ldots\right\}$ (propagation of q_{f}).

Linear Pattern Matching

Proposition:

Given a linear term $t \in \mathcal{T}(\Sigma, \mathcal{X})$, there exists a TA \mathcal{A} recognizing the set of ground instances of $t: L(\mathcal{A})=\{t \sigma \mid \sigma: \mathcal{X} \rightarrow \mathcal{T}(\Sigma)\}$.
e.g. in regular tree model checking, definition of error configurations by forbidden patterns.

Runs

Definition : Run

A run of a TA $\left(\Sigma, Q, Q^{f}, \Delta\right)$ on a term $t \in \mathcal{T}(\Sigma)$ is a function $r: \mathcal{P o s}(t) \rightarrow Q$ such that for all $p \in \mathcal{P o s}(t)$, if $t(p)=f \in \Sigma_{n}, r(p)=q$ and $r(p i)=q_{i}$ for all $1 \leq i \leq n$, then $f\left(q_{1}, \ldots, q_{n}\right) \rightarrow q \in \Delta$.

The run r is accepting if $r(\varepsilon) \in Q^{f}$. $L(\mathcal{A})$ is the set of ground terms of $\mathcal{T}(\Sigma)$ for which there exists an accepting run.

Pumping Lemma

Lemma : Pumping Lemma

Let $\mathcal{A}=\left(\Sigma, Q, Q^{\mathrm{f}}, \Delta\right)$.
$L(\mathcal{A}) \neq \emptyset$ iff there exists $t \in L(\mathcal{A})$ such that $h(t) \leq|Q|$.

Lemma : Iteration Lemma

For all TA \mathcal{A}, there exists $k>0$ such that for all term $t \in L(\mathcal{A})$ with $h(t)>k$, there exists 2 contexts $C, D \in \mathcal{T}\left(\Sigma,\left\{x_{1}\right\}\right)$ with $D \neq x_{1}$ and a term $u \in \mathcal{T}(\Sigma)$ such that $t=C[D[u]]$ and for all $n \geq 0$, $C\left[D^{n}[u]\right] \in L(\mathcal{A})$.
usage: to show that a language is not regular.

Non Regular Languages

We show with the pumping and iteration lemmatas that the following tree languages are not regular:

- $\{f(t, t) \mid t \in \mathcal{T}(\Sigma)\}$,
- $\left\{f\left(g^{n}(a), h^{n}(a)\right) \mid n \geq 0\right\}$,
- $\{t \in \mathcal{T}(\Sigma)||\mathcal{P o s}(t)|$ is prime $\}$.

Epsilon-transitions

We extend the class TA into TA ε with the addition of another type of transition rules of the form $q \xrightarrow{\varepsilon} q^{\prime}$ (ε-transition). with the same expressiveness as TA.

Proposition : Suppression of ε-transitions
For all TA $\varepsilon \mathcal{A}_{\varepsilon}$, there exists a TA (without ε-transition) \mathcal{A}^{\prime} such that $L(\mathcal{A})=L\left(\mathcal{A}_{\varepsilon}\right)$. The size of \mathcal{A} is polynomial in the size of $\mathcal{A}_{\varepsilon}$. pr.: We start with $\mathcal{A}_{\varepsilon}$ and we add $f\left(q_{1}, \ldots, q_{n}\right) \rightarrow q^{\prime}$ if there exists $f\left(q_{1}, \ldots, q_{n}\right) \rightarrow q$ and $q \xrightarrow{\varepsilon} q^{\prime}$.

Top-Down Tree Automata

Definition: Top-Down Tree Automata

A top-down tree automaton over a signature Σ is a tuple $\mathcal{A}=$ $\left(\Sigma, Q, Q^{\text {init }}, \Delta\right)$ where Q is a finite set of states, $Q^{\text {init }} \subseteq Q$ is the subset of initial states and Δ is a set of transition rules of the form: $q \rightarrow f\left(q_{1}, \ldots, q_{n}\right)$ with $f \in \Sigma_{n}(n \geq 0)$ and $q_{1}, \ldots, q_{n}, q \in Q$.

A ground term $t \in \mathcal{T}(\Sigma)$ is accepted by \mathcal{A} in the state q iff $q \underset{\Delta}{*} t$.
The language of \mathcal{A} starting from the state q is $L(\mathcal{A}, q):=\{t \in \mathcal{T}(\Sigma) \mid q \xrightarrow[\Delta]{\stackrel{*}{\Delta}} t\}$.

The language of \mathcal{A} is $L(\mathcal{A}):=\bigcup_{q^{\mathrm{i}} \in Q^{\text {init }}} L\left(Q, q^{\mathrm{i}}\right)$.

Top-Down Tree Automata (expressiveness)

Proposition: Expressiveness

The set of top-down tree automata languages is exactly the set of regular tree languages.

Remark: Notations

In the next slides

$$
\text { TA }=\text { Bottom-Up Tree Automata }
$$

Plan

Terms
TA: Definitions and Expressiveness
Determinism and Boolean Closures
Decision Problems
MinimizationClosure under Tree Transformations, Program Verification

Determinism

Definition: Determinism

A TA \mathcal{A} is deterministic if for all $f \in \Sigma_{n}$, for all states q_{1}, \ldots, q_{n} of \mathcal{A}, there is at most one state q of \mathcal{A} such that \mathcal{A} contains a transition $f\left(q_{1}, \ldots, q_{n}\right) \rightarrow q$.

If \mathcal{A} is deterministic, then for all $t \in \mathcal{T}(\Sigma)$, there exists at most one state q of \mathcal{A} such that $t \in L(\mathcal{A}, q)$. It is denoted $\mathcal{A}(t)$ or $\Delta(t)$.

Completeness

Definition: Completeness

A TA \mathcal{A} is complete if for all $f \in \Sigma_{n}$, for all states q_{1}, \ldots, q_{n} of \mathcal{A}, there is at least one state q of \mathcal{A} such that \mathcal{A} contains a transition $f\left(q_{1}, \ldots, q_{n}\right) \rightarrow q$.

If \mathcal{A} is complete, then for all $t \in \mathcal{T}(\Sigma)$, there exists at least one state q of \mathcal{A} such that $t \in L(\mathcal{A}, q)$.

Completion

Proposition: Completion

For all TA \mathcal{A}, there exists a complete TA \mathcal{A}_{c} such that $L\left(\mathcal{A}_{c}\right)=$ $L(\mathcal{A})$. Moreover, if \mathcal{A} is deterministic, then \mathcal{A}_{c} is deterministic. The size of \mathcal{A}_{c} is polynomial in the size of \mathcal{A}, its construction is PTIME.

Completion

Proposition: Completion

For all TA \mathcal{A}, there exists a complete TA \mathcal{A}_{c} such that $L\left(\mathcal{A}_{c}\right)=$ $L(\mathcal{A})$. Moreover, if \mathcal{A} is deterministic, then \mathcal{A}_{c} is deterministic. The size of \mathcal{A}_{c} is polynomial in the size of \mathcal{A}, its construction is PTIME.
pr.: add a trash state q_{\perp}.

Determinization

Proposition: Determinization
For all TA \mathcal{A}, there exists a deterministic TA $\mathcal{A}_{\text {det }}$ such that $L\left(\mathcal{A}_{\text {det }}\right)=L(\mathcal{A})$. Moreover, if \mathcal{A} is complete, then $\mathcal{A}_{\text {det }}$ is complete. The size of $\mathcal{A}_{\text {det }}$ is exponential in the size of \mathcal{A}, its construction is EXPTIME.
pr.: subset construction. Transitions:
$f\left(S_{1}, \ldots, S_{n}\right) \rightarrow\left\{q \mid \exists q_{1} \in S_{1} \ldots \exists q_{n} \in S_{n} f\left(q_{1}, \ldots, q_{n} \rightarrow q \in \Delta\right\}\right.$ for all $S_{1}, \ldots, S_{n} \subseteq Q$.

Determinization (example)

Exercice :

Determinise and complete the previous TA (pattern matching of $\neg(\neg(x)))$:

Top-Down Tree Automata and Determinism

Definition : Determinism

A top-down tree automaton $\left(\Sigma, Q, Q^{\text {init }}, \Delta\right)$ is deterministic if $\left|Q^{\text {init }}\right|=1$ and for all state $q \in Q$ and $f \in \Sigma, \Delta$ contains at most one rule with left member q and symbol f.

The top-down tree automata are in general not determinizable .

Proposition :

There exists a regular tree language which is not recognizable by a deterministic top-down tree automaton.

Top-Down Tree Automata and Determinism

Definition: Determinism

A top-down tree automaton $\left(\Sigma, Q, Q^{\text {init }}, \Delta\right)$ is deterministic if $\left|Q^{\text {init }}\right|=1$ and for all state $q \in Q$ and $f \in \Sigma, \Delta$ contains at most one rule with left member q and symbol f.

The top-down tree automata are in general not determinizable .

Proposition :

There exists a regular tree language which is not recognizable by a deterministic top-down tree automaton.

$$
\text { pr.: } L=\{f(a, b), f(b, a)\} .
$$

Boolean Closure of Regular tree Languages

Proposition: Closure

The class of regular tree languages is closed under union, intersection and complementation.

op.	technique	computation time and size of automata
\cup	disjoint \cup	
\cap	Cartesian product	
\neg	determinization, completion, invert final / non-final states	(lower bound)

Remark :

For the deterministic TA, the construction for the complementation is polynomial.

Boolean Closure of Regular tree Languages

Proposition: Closure

The class of regular tree languages is closed under union, intersection and complementation.

op.	technique	computation time and size of automata
\cup	disjoint \cup	linear
\cap	Cartesian product	
\neg	determinization, completion, invert final / non-final states	(lower bound)

Remark :

For the deterministic TA, the construction for the complementation is polynomial.

Boolean Closure of Regular tree Languages

Proposition: Closure

The class of regular tree languages is closed under union, intersection and complementation.

op.	technique	computation time and size of automata
\cup	disjoint \cup	linear
\cap	Cartesian product	quadratic
\neg	determinization, completion, invert final / non-final states	(lower bound)

Remark :

For the deterministic TA, the construction for the complementation is polynomial.

Boolean Closure of Regular tree Languages

Proposition: Closure

The class of regular tree languages is closed under union, intersection and complementation.

op.	technique	computation time and size of automata
\cup	disjoint \cup	linear
\cap	Cartesian product	quadratic
\neg	determinization, completion, invert final / non-final states	exponential (lower bound)

Remark

For the deterministic TA, the construction for the complementation is polynomial.

Plan

```
Terms
TA: Definitions and Expressiveness
Determinism and Boolean Closures
Decision Problems
```

Minimization

```
Closure under Tree Transformations, Program Verification
```


Cleaning

Definition: Clean

A state q of a TA \mathcal{A} is called inhabited if there exists at least one $t \in L(\mathcal{A}, q)$. A TA is called clean if all its states are inhabited.

Proposition : Cleaning

For all TA \mathcal{A}, there exists a clean TA $\mathcal{A}_{\text {clean }}$ such that $L\left(\mathcal{A}_{\text {clean }}\right)=$ $L(\mathcal{A})$. The size of $\mathcal{A}_{\text {clean }}$ is smaller than the size of \mathcal{A}, its construction is PTIME.
pr.: state marking algorithm, running time $O(|Q| \times\|\Delta\|)$.

State Marking Algorithm

We construct $M \subseteq Q$ containing all the inhabited states.

- start with $M=\emptyset$
- for all $f \in \Sigma$, of arity $n \geq 0$, and all $q_{1}, \ldots, q_{n} \in M$ st there exists $f\left(q_{1}, \ldots, q_{n}\right) \rightarrow q$ in Δ, add q to M (if it was not already).
We iterate the last step until a fixpoint M_{*} is reached.
Lemma :
$q \in M_{*}$ iff $\exists t \in L(\mathcal{A}, q)$.

Membership Problem

Definition: Membership

INPUT: a TA \mathcal{A} over Σ, a term $t \in \mathcal{T}(\Sigma)$.
 QUESTION: $\quad t \in L(\mathcal{A})$?

Proposition : Membership

The membership problem is decidable in polynomial time.
Exact complexity:

- non-deterministic bottom-up: LOGCFL-complete
- deterministic bottom-up: unknown (LOGDCFL)
- deterministic top-down: LOGSPACE-complete.

Emptiness Problem

Definition : Emptiness

INPUT: a TA \mathcal{A} over Σ.
QUESTION: $\quad L(\mathcal{A})=\emptyset$?

Proposition : Emptiness

The emptiness problem is decidable in linear time.

Emptiness Problem

Definition: Emptiness

$$
\begin{aligned}
\text { INPUT: } & \text { a TA } \mathcal{A} \text { over } \Sigma . \\
\text { QUESTION: } & L(\mathcal{A})=\emptyset ?
\end{aligned}
$$

Proposition : Emptiness

The emptiness problem is decidable in linear time.
pr.:
quadratic: clean, check if the clean automaton contains a final state.
linear: reduction to propositional HORN-SAT.
linear bis: optimization of the data structures for the cleaning (exo).

Remark:

The problem of the emptiness is PTIME-complete.

Instance-Membership Problem

Definition: Instance-Membership (IM)

$$
\begin{aligned}
\text { INPUT: } & \text { a TA } \mathcal{A} \text { over } \Sigma \text {, a term } t \in \mathcal{T}(\Sigma, \mathcal{X}) . \\
\text { QUESTION: } & \text { does there exists } \sigma: \operatorname{vars}(t) \rightarrow \mathcal{T}(\Sigma) \text { s.t. } t \sigma \in L(\mathcal{A}) ?
\end{aligned}
$$

Proposition: Instance-Membership

1. The problem IM is decidable in polynomial time when t is linear.
2. The problem IM is NP-complet when \mathcal{A} is deterministic.
3. The problem IM is EXPTIME-complete in general.

Problem of the Emptiness of Intersection

Definition: Emptiness of Intersection

$$
\begin{aligned}
\text { INPUT: } & n \text { TA } \mathcal{A}_{1}, \ldots, \mathcal{A}_{n} \text { over } \Sigma . \\
\text { QUESTION: } & L\left(\mathcal{A}_{1}\right) \cap \ldots \cap L\left(\mathcal{A}_{n}\right)=\emptyset ?
\end{aligned}
$$

Proposition : Emptiness of Intersection

The problem of the emptiness of intersection is EXPTIME-complete.

Problem of the Emptiness of Intersection

Definition : Emptiness of Intersection

$$
\begin{aligned}
\text { INPUT: } & n \text { TA } \mathcal{A}_{1}, \ldots, \mathcal{A}_{n} \text { over } \Sigma . \\
\text { QUESTION: } & L\left(\mathcal{A}_{1}\right) \cap \ldots \cap L\left(\mathcal{A}_{n}\right)=\emptyset ?
\end{aligned}
$$

Proposition : Emptiness of Intersection

The problem of the emptiness of intersection is EXPTIME-complete.
pr.: EXPTIME: n applications of the closure under \cap and emptiness decision.

EXPTIME-hardness: APSPACE = EXPTIME reduction of the problem of the existence of a successful run (starting from an initial configuration) of an alternating Turing machine (ATM) $M=\left(\Gamma, S, s_{0}, S_{\mathrm{f}}, \delta\right)$.
[Seidl 94], [Veanes 97]

Let $M=\left(\Gamma, S, s_{0}, S_{\mathrm{f}}, \delta\right)$ be a Turing Machine (Γ : input alphabet, S : state set, s_{0} initial state, S_{f} final states, δ : transition relation).
First some notations.

- a configuration of M is a word of $\Gamma^{*} \Gamma_{S} \Gamma^{*}$ where $\Gamma_{S}=\left\{a^{s} \mid a \in \Gamma, s \in S\right\}$. In this word, the letter of Γ_{S} indicates both the current state and the current position of the head of M.
- a final configuration of M is a word of $\Gamma^{*} \Gamma_{S_{\mathrm{f}}} \Gamma^{*}$.
- an initial configuration of M is a word of $\Gamma_{s_{0}} \Gamma^{*}$.
- a transition of M (following δ) between two configurations v and v^{\prime} is denoted $v \triangleright v^{\prime}$
The initial configuration v_{0} is accepting iff there exists a final configuration v_{f} and a finite sequence of transitions $v_{0} \triangleright \ldots \triangleright v_{\mathrm{f}}$? This problem whether v_{0} is accepting is undecidable in general. If the tape is polynomially bounded (we are restricted to configurations of length $n=\left|v_{0}\right|^{c}$, for some fixed $c \in \mathbb{N}$), the problem is PSPACE complete. M alternating: $S=S_{\exists} \uplus S_{\forall}$.
Definition accepting configurations:
- every final configuration (whose state is in S_{f}) is accepting
- a configuration c whose state is in S_{\exists} is accepting if it has at least one successor accepting
- a configuration c whose state is in S_{\forall} is accepting if all its successors are accepting

Theorem (Chandra, Kozen, Stockmeyer 81)

APSPACE $=E X P T I M E$
In order to show EXPTIME-hardness, we reduce the problem of deciding whether v_{0} is accepting for M alternating and polynomially bounded.
Hypotheses (non restrictive):

- $s_{0} \in S_{\exists}$ or $s_{0} \in S_{\forall} \cap S_{\mathrm{f}}$
- s_{0} is non reentering (it only occurs in v_{0})
- every configuration with state in S_{\forall} has 0 or 2 successors
- final configurations are restricted to $b_{S_{\mathrm{f}}} b^{*}$ where $b \in \Gamma$ is the blank symbol.
- S_{f} is a singleton.

2 technical definitions: for $k \leq n$,

$$
\begin{aligned}
\operatorname{view}(v, k)= & v[k] v[k+1] & & \text { if } k=1 \\
& v[k-1] v[k] & & \text { if } k=n \\
& v[k-1] v[k] v[k+1] & & \text { otherwise }
\end{aligned}
$$

$$
\operatorname{view}\left(v, v_{1}, v_{2}, k\right)=\left\langle\operatorname{view}(v, k), \operatorname{view}\left(v_{1}, k\right), \operatorname{view}\left(v_{2}, k\right)\right\rangle
$$

$v \triangleright_{k}\left\langle v_{1}, v_{2}\right\rangle$ iff

1. if $v[k] \in \Gamma_{S}$, then $\exists w \triangleright w_{1}, w_{2}$ s.t.

$$
\operatorname{view}\left(v, v_{1}, v_{2}, k\right)=\operatorname{view}\left(w, w_{1}, w_{2}, k\right)
$$

2. if $v[k]=a \in \Gamma$, then $v_{1}[k] \in\{a\} \cup a_{S}$ and $v_{2}=\varepsilon$ or $v_{2}[k] \in\{a\} \cup a_{S}$.
first item: around position k, we have two correct transitions of M. This can be tested by the membership of $\operatorname{view}\left(v, v_{1}, v_{2}, k\right)$ to a given set which only depends on M.

Lemma
$v \triangleright v_{1}, v_{2}$ iff $\forall k \leq n v \triangleright_{k}\left\langle v_{1}, v_{2}\right\rangle$.

Term representations of runs:
rem. a run of M is not a sequence of configurations but a tree of configurations (because of alternation).
Signature Σ : \emptyset : constant, Γ : unary, S : unaires, p binary.
Notation: if $v=a_{1} \ldots a_{n}, v(x)$ denotes $a_{n}\left(a_{n-1}\left(\ldots a_{1}(x)\right)\right)$.
Term representations of runs:

- $v_{\mathrm{f}}(p(\emptyset, \emptyset))$ with v_{f} final configuration,
- $v\left(p\left(t_{1}, t_{2}\right)\right)$ with $v \forall$-configuration, $t_{1}=v_{1}^{\prime}\left(p\left(t_{1,1}, t_{1,2}\right)\right)$, $t_{2}=v_{2}^{\prime}\left(p\left(t_{2,1}, t_{2,2}\right)\right)$ are two term representations of runs, and $v_{1} \triangleright v_{1}^{\prime}, v_{2} \triangleright v_{2}^{\prime}$
- $v\left(p\left(t_{1}, \emptyset\right)\right)$ with $v \exists$-configuration, $t_{1}=v_{1}^{\prime}\left(p\left(t_{1,1}, t_{1,2}\right)\right)$ term representations of run, and $v_{1} \triangleright v_{1}^{\prime}$.
notations for $t_{1}=v_{1}^{\prime}\left(p\left(t_{1,1}, t_{1,2}\right)\right)$:
- head $\left(t_{1}\right)=v_{1}$
- $\operatorname{left}\left(t_{1}\right)=t_{1,1}$
- $\operatorname{right}\left(t_{1}\right)=t_{1,2}$.

This recursive definition suggest the construction of a TA recognizing term representations of successful runs. The difficulty
is the conditions $v_{1} \triangleright v_{1}^{\prime}, v_{2} \triangleright v_{2}^{\prime}$, for which we use the above lemma.
We build $2 n$ deterministic automata :
for all $1<k<n, \mathcal{A}_{k}$ recognizes

- $v_{\mathrm{f}}(p(\emptyset, \emptyset))$ (recall there is only 1 final configuration by hyp.)
- $v\left(p\left(t_{1}, t_{2}\right)\right)$ such that $t_{1} \neq \emptyset$ and
- $v \triangleright_{k}\left\langle\right.$ head $\left.\left(t_{1}\right), \operatorname{head}\left(t_{2}\right)\right\rangle$
- $\operatorname{left}\left(t_{1}\right) \in L\left(\mathcal{A}_{k}\right), \operatorname{right}\left(t_{1}\right) \in L\left(\mathcal{A}_{k}\right) \cup\{\emptyset\}$,
- $t_{2}=\emptyset$ or $\operatorname{left}\left(t_{2}\right) \in L\left(\mathcal{A}_{k}\right), \operatorname{right}\left(t_{2}\right) \in L\left(\mathcal{A}_{k}\right) \cup\{\emptyset\}$
idea: \mathcal{A}_{k} memorizes view $\left(\right.$ head $\left.\left(t_{1}\right), k\right)$ and $\operatorname{view}\left(h e a d\left(t_{2}\right), k\right)$ and compare with $\operatorname{view}(v, k)$.
for all $1<k<n, \mathcal{A}_{k}^{\prime}$ recognizes the terms $v_{0}\left(p\left(t_{1}, t_{2}\right)\right)$ with $t_{1}=t_{2}=\emptyset$ (if s_{0} universal and final) or $t_{2}=\emptyset$ (if s_{0} existential, not final) and $t_{1}, t_{2} \in T$, minimal set of terms without s_{0} containing
- \emptyset
- $v\left(p\left(t_{1}, t_{2}\right)\right)$ such that $t_{1} \neq \emptyset$ and
- $v \triangleright_{k}\left\langle\right.$ head $\left.\left(t_{1}\right), \operatorname{head}\left(t_{2}\right)\right\rangle$
- $\operatorname{left}\left(t_{1}\right) \in T$, $\operatorname{right}\left(t_{1}\right) \in T$,
- $t_{2}=\emptyset$ or left $\left(t_{2}\right) \in T, \operatorname{right}\left(t_{2}\right) \in T$
representations of successful runs $=\bigcap_{k=1}^{n} L\left(\mathcal{A}_{k}\right) \cap L\left(\mathcal{A}_{k}^{\prime}\right)$.

Problem of Universality

Definition: Universality

$$
\begin{aligned}
\text { INPUT: } & \text { a TA } \mathcal{A} \text { over } \Sigma . \\
\text { QUESTION: } & L(\mathcal{A})=\mathcal{T}(\Sigma)
\end{aligned}
$$

Proposition: Universality

The problem of universality is EXPTIME-complete.

Problem of Universality

Definition: Universality

INPUT: a TA \mathcal{A} over Σ.
QUESTION: $\quad L(\mathcal{A})=\mathcal{T}(\Sigma)$

Proposition: Universality

The problem of universality is EXPTIME-complete.
pr.: EXPTIME: Boolean closure and emptiness decision.
EXPTIME-hardness: again APSPACE $=$ EXPTIME.

Remark:

The problem of universality is decidable in polynomial time for the deterministic (bottom-up) TA.
pr.: completion and cleaning.

Problems of Inclusion an Equivalence

Definition: Inclusion

INPUT: two TA \mathcal{A}_{1} and \mathcal{A}_{2} over Σ. QUESTION: $\quad L\left(\mathcal{A}_{1}\right) \subseteq L\left(\mathcal{A}_{2}\right)$

Definition: Equivalence

INPUT: two TA \mathcal{A}_{1} and \mathcal{A}_{2} over Σ.
QUESTION: $\quad L\left(\mathcal{A}_{1}\right)=L\left(\mathcal{A}_{2}\right)$
Proposition : Inclusion, Equivalence
The problems of inclusion and equivalence are EXPTIME-complete.

Problems of Inclusion an Equivalence

Definition: Inclusion

INPUT: two TA \mathcal{A}_{1} and \mathcal{A}_{2} over Σ. QUESTION: $\quad L\left(\mathcal{A}_{1}\right) \subseteq L\left(\mathcal{A}_{2}\right)$

Definition: Equivalence

INPUT: two TA \mathcal{A}_{1} and \mathcal{A}_{2} over Σ.
QUESTION: $\quad L\left(\mathcal{A}_{1}\right)=L\left(\mathcal{A}_{2}\right)$

Proposition : Inclusion, Equivalence

The problems of inclusion and equivalence are EXPTIME-complete. pr.: $L\left(\mathcal{A}_{1}\right) \subseteq L\left(\mathcal{A}_{2}\right)$ iff $L\left(\mathcal{A}_{1}\right) \cap \overline{L\left(\mathcal{A}_{2}\right)}=\emptyset$.

Problems of Inclusion an Equivalence

Definition : Inclusion

INPUT: two TA \mathcal{A}_{1} and \mathcal{A}_{2} over Σ.
QUESTION: $\quad L\left(\mathcal{A}_{1}\right) \subseteq L\left(\mathcal{A}_{2}\right)$

Definition: Equivalence

INPUT: two TA \mathcal{A}_{1} and \mathcal{A}_{2} over Σ.
QUESTION: $\quad L\left(\mathcal{A}_{1}\right)=L\left(\mathcal{A}_{2}\right)$

Proposition: Inclusion, Equivalence

The problems of inclusion and equivalence are EXPTIME-complete. pr.: $L\left(\mathcal{A}_{1}\right) \subseteq L\left(\mathcal{A}_{2}\right)$ iff $L\left(\mathcal{A}_{1}\right) \cap \overline{L\left(\mathcal{A}_{2}\right)}=\emptyset$.
EXPTIME-hardness: universality is $\mathcal{T}(\Sigma)=L\left(\mathcal{A}_{2}\right)$?

Remark:

If \mathcal{A}_{1} and \mathcal{A}_{2} are deterministic, it is $O\left(\left\|\mathcal{A}_{1}\right\| \times\left\|\mathcal{A}_{2}\right\|\right)$.

Problem of Finiteness

Definition: Finiteness

INPUT: a TA \mathcal{A}
 QUESTION: is $L(\mathcal{A})$ finite?

Proposition: Finiteness

The problem of finiteness is decidable in polynomial time.

Plan

Terms
TA: Definitions and Expressiveness
Determinism and Boolean Closures
Decision Problems

Minimization

Closure under Tree Transformations, Program Verification

Theorem of Myhill-Nerode

Definition :

A congruence \equiv on $\mathcal{T}(\Sigma)$ is an equivalence relation such that for all $f \in \Sigma_{n}$, if $s_{1} \equiv t_{1}, \ldots, s_{n} \equiv t_{n}$, then $f\left(s_{1}, \ldots, s_{n}\right) \equiv$ $f\left(t_{1}, \ldots, t_{n}\right)$.
Given $L \subseteq \mathcal{T}(\Sigma)$, the congruence \equiv_{L} is defined by:
$s \equiv_{L} t$ if for all context $C \in \mathcal{T}(\Sigma,\{x\}), C[s] \in L$ iff $C[t] \in L$.

Theorem: Myhill-Nerode

The three following propositions are equivalent:

1. L is regular
2. L is a union of equivalence classes for a congruence \equiv of finite index
3. \equiv_{L} is a congruence of finite index

Proof Theorem of Myhill-Nerode

$1 \Rightarrow 2$. \mathcal{A} deterministic, def. $s \equiv_{\mathcal{A}} t$ iff $\mathcal{A}(s)=\mathcal{A}(t)$.
$2 \Rightarrow 3$. we show that if $s \equiv t$ then $s \equiv_{L} t$, hence the index of $\equiv_{L} \leq$ index of \equiv (since we have $\equiv \subseteq \equiv_{L}$). If $s \equiv t$ then $C[s] \equiv C[t]$ for all $C[]$ (induction on
C), hence $C[s] \in L$ iff $C[t] \in L$, i.e. $s \equiv_{L} t$.
$3 \Rightarrow 1$. we construct $\mathcal{A}_{\text {min }}=\left(Q_{\text {min }}, Q_{\text {min }}^{f}, \Delta_{\text {min }}\right)$,

- $Q_{\text {min }}=$ equivalence classes of \equiv_{L},
- $Q_{\text {min }}^{f}=\{[s] \mid s \in L\}$,
- $\Delta_{\text {min }}=\left\{f\left(\left[s_{1}\right], \ldots,\left[s_{n}\right]\right) \rightarrow\left[f\left(s_{1}, \ldots, s_{n}\right)\right]\right\}$

Clearly, $\mathcal{A}_{\text {min }}$ is deterministic, and for all $s \in \mathcal{T}(\Sigma)$, $\mathcal{A}_{\text {min }}(s)=[s]_{L}$, i.e. $s \in L\left(\mathcal{A}_{\text {min }}\right)$ iff $s \in L$.

Minimization

Corollary :

For all DTA $\mathcal{A}=\left(\Sigma, Q, Q^{\mathrm{f}}, \Delta\right)$, there exists a unique DTA $\mathcal{A}_{\text {min }}$ whose number of states is the index of $\equiv_{L(\mathcal{A})}$ and such that $L\left(\mathcal{A}_{\text {min }}\right)=L(\mathcal{A})$.

Minimization

Let $\mathcal{A}=\left(\Sigma, Q, Q^{\mathrm{f}}, \Delta\right)$ be a DTA, we build a deterministic minimal automaton $\mathcal{A}_{\text {min }}$ as in the proof of $3 \Rightarrow 1$ of the previous theorem for $L(\mathcal{A})$ (i.e. $Q_{\min }$ is the set of equivalence classes for $\equiv_{L(\mathcal{A})}$).
We build first an equivalence \approx on the states of Q :

- $q \approx_{0} q^{\prime}$ iff $q, q^{\prime} \in Q^{\mathrm{f}}$ ou $q, q^{\prime} \in Q \backslash Q^{\mathrm{f}}$.
- $q \approx_{k+1} q^{\prime}$ iff $q \approx_{k} q^{\prime}$ et $\forall f \in \Sigma_{n}$,

$$
\forall q_{1}, \ldots, q_{i-1}, q_{i+1}, \ldots, q_{n} \in Q(1 \leq i \leq n)
$$

$$
\Delta\left(f\left(q_{1}, \ldots, q_{i-1}, q, q_{i+1}, \ldots, q_{n}\right)\right) \approx_{k} \Delta\left(f \left(q_{1}, \ldots, q_{i-1}, q^{\prime}, q_{i+1}, \ldots\right.\right.
$$

Let \approx be the fixpoint of this construction, \approx is $\equiv_{L(\mathcal{A})}$, hence $\mathcal{A}_{\text {min }}=\left(\Sigma, Q_{\text {min }}, Q_{\text {min }}^{f}, \Delta_{\text {min }}\right)$ with :

- $Q_{\text {min }}=\{[q] \approx \mid q \in Q\}$,
- $Q_{\text {min }}^{\mathrm{f}}=\left\{\left[q^{\mathrm{f}}\right]_{\approx} \mid q^{\mathrm{f}} \in Q^{\mathrm{f}}\right\}$,
- $\Delta_{\text {min }}=\left\{f\left(\left[q_{1}\right]_{\approx}, \ldots,\left[q_{n}\right]_{\approx}\right) \rightarrow\left[f\left(q_{1}, \ldots, q_{n}\right)\right]_{\approx}\right\}$.
recognizes $L(\mathcal{A})$. and it is smaller than \mathcal{A}.

Algebraic Characterization of Regular Languages

Corollary :
A set $L \subseteq \mathcal{T}(\Sigma)$ is regular iff there exists

- a Σ-algebra \mathcal{Q} of finite domain Q,
- an homomorphism $h: \mathcal{T}(\Sigma) \rightarrow \mathcal{A}$,
- a subset $Q^{\mathrm{f}} \subseteq Q$ such that $L=h^{-1}\left(Q^{\mathrm{f}}\right)$.
operations of \mathcal{Q} :
for each $f \in \Sigma_{n}$, there is a function $f^{\mathcal{Q}}: Q^{n} \rightarrow Q$.

Plan

> Terms

> TA: Definitions and Expressiveness

> Determinism and Boolean Closures

Decision Problems

Minimization

Closure under Tree Transformations, Program Verification
Tree Homomorphisms
Tree Transducers
Term Rewriting
Tree Automata Based Program Verification

Tree Transformations, Verification

- formalisms for the transformation of terms (languages): rewrite systems, tree homomorphisms, transducers...
$=$ transitions in an infinite states system,
$=$ evaluation of programs,
$=$ transformation of XML documents, updates...
- problem of the type checking:
given:
- $L_{\text {in }} \subseteq \mathcal{T}(\Sigma)$, (regular) input language
- h transformation $\mathcal{T}(\Sigma) \rightarrow \mathcal{T}\left(\Sigma^{\prime}\right)$
- $L_{\text {out }} \subseteq \mathcal{T}\left(\Sigma^{\prime}\right)$ (regular) output language
question: do we have $h\left(L_{\text {in }}\right) \subseteq L_{\text {out }}$?

Tree Homomorphisms

Tree Homomorphisms

Definition :

$$
\begin{aligned}
& h: \mathcal{T}(\Sigma) \rightarrow \mathcal{T}\left(\Sigma^{\prime}\right) \\
& h\left(f\left(t_{1}, \ldots, t_{n}\right)\right):=t_{f}\left\{x_{1} \leftarrow h\left(t_{1}\right), \ldots, x_{n} \leftarrow h\left(t_{n}\right)\right\} \\
& \text { for } f \in \Sigma_{n}, \text { with } t_{f} \in \mathcal{T}\left(\Sigma^{\prime},\left\{x_{1}, \ldots, x_{n}\right\}\right) .
\end{aligned}
$$

h is called

- linear if for all $f \in \Sigma, t_{f}$ is linear,
- complete if for all $f \in \Sigma_{n}, \operatorname{vars}\left(t_{f}\right)=\left\{x_{1}, \ldots, x_{n}\right\}$,
- symbol-to-symbol if for all $f \in \Sigma_{n}$, height $\left(t_{f}\right)=1$.

Homomorphisms: examples

Example : ternary trees \rightarrow binary trees

Let $\Sigma=\{a: 0, b: 0, g: 3\}, \Sigma^{\prime}=\{a: 0, b: 0, f: 2\}$ and $h: \mathcal{T}(\Sigma) \rightarrow \mathcal{T}\left(\Sigma^{\prime}\right)$ defined by

- $t_{a}=a$,
- $t_{b}=b$,
- $t_{g}=f\left(x_{1}, f\left(x_{2}, x_{3}\right)\right)$.
$h(g(a, g(b, b, b), a))=f(a, f(f(f(b, f(b, b))), a))$

Example: Elimination of the \wedge

Let $\Sigma=\{0: 0,1: 0, \neg: 1, \vee: 2, \wedge: 2\}, \Sigma^{\prime}=\{0: 0,1: 0, \neg: 1, \vee:$ $2\}$ and $h: \mathcal{T}(\Sigma) \rightarrow \mathcal{T}\left(\Sigma^{\prime}\right)$ with $t_{\wedge}=\neg\left(\vee\left(\neg\left(x_{1}\right), \neg\left(x_{2}\right)\right)\right)$.

Closure of Regular Languages under Linear Homomorphisms

Theorem :
If L is regular and h is a linear homomorphism, then $h(L)$ is regular.

Closure of Regular Languages under Linear Homomorphisms

Theorem :

If L is regular and h is a linear homomorphism, then $h(L)$ is regular. let $\mathcal{A}=\left(Q, Q^{f}, \Delta\right)$ be clean, we build $\mathcal{A}^{\prime}=\left(Q^{\prime}, Q_{f}^{\prime}, \Delta^{\prime}\right)$. For each $r=f\left(q_{1}, \ldots, q_{n}\right) \rightarrow q \in \Delta$, with $t_{f} \in \mathcal{T}\left(\Sigma^{\prime}, \mathcal{X}_{n}\right)$ (linear), let $Q^{r}=\left\{q_{p}^{r} \mid p \in \mathcal{P} o s\left(t_{f}\right)\right\}$, and Δ_{r} defined as follows: for all $p \in \mathcal{P o s}\left(t_{f}\right)$:

- if $t_{f}(p)=g \in \Sigma_{m}^{\prime}$, then $g\left(q_{p_{1}}^{r}, \ldots, q_{p_{m}}^{r}\right) \rightarrow q_{p}^{r} \in \Delta_{r}$,
- if $t_{f}(p)=x_{i}$, then $q_{i} \xrightarrow{\varepsilon} q_{p}^{r} \in \Delta_{r}$,
- $q_{\varepsilon}^{r} \xrightarrow{\varepsilon} q \in \Delta_{r}$.

$$
\begin{aligned}
& Q^{\prime}=Q \cup \bigcup_{r \in \Delta} Q^{r}, \\
& Q_{\mathrm{f}}^{\prime}=Q_{\mathrm{f}}, \\
& \Delta^{\prime}=\bigcup_{r \in \Delta} \Delta_{r} .
\end{aligned}
$$

It holds that $h(L(\mathcal{A}))=L\left(\mathcal{A}^{\prime}\right)$.

Closure of Regular Languages under Linear Homomorphisms

This is not true in general for the non-linear homomorphisms.

Closure of Regular Languages under Linear Homomorphisms

This is not true in general for the non-linear homomorphisms.

Example: Non-linear homomorphisms

$\Sigma=\{a: 0, g: 1, f: 1\}, \Sigma^{\prime}=\left\{a: 0, g: 1, f^{\prime}: 2\right\}$,
$h: \mathcal{T}(\Sigma) \rightarrow \mathcal{T}\left(\Sigma^{\prime}\right)$ with $t_{a}=a, t_{g}=g\left(x_{1}\right), t_{f}=f^{\prime}\left(x_{1}, x_{1}\right)$.
Let $L=\left\{f\left(g^{n}(a)\right) \mid n \geq 0\right\}$,
$h(L)=\left\{f^{\prime}\left(g^{n}(a), g^{n}(a)\right) \mid n \geq 0\right\}$ is not regular.

Closure of Regular Languages under Inverse Homomorphisms

Theorem :

For all regular languages L and all homomorphisms h, $h^{-1}(L)$ is regular.
$\mathcal{A}^{\prime}=\left(Q^{\prime}, Q_{\mathrm{f}}^{\prime}, \Delta^{\prime}\right)$ complete deterministic such that $L\left(\mathcal{A}^{\prime}\right)=L$.
We construct $\mathcal{A}=\left(Q, Q_{\mathrm{f}}, \Delta\right)$ with $Q=Q^{\prime} \uplus\left\{q_{\forall}\right\} Q_{f}=Q_{\mathrm{f}}^{\prime}$ and Δ is defined by:

- for $a \in \Sigma_{0}$, if $t_{a} \xrightarrow[\mathcal{A}^{\prime}]{*} q$ then $a \rightarrow q \in \Delta$;
- for all $f \in \Sigma_{n}$ with $n>0$, for $p_{1}, \ldots, p_{n} \in Q$, if $t_{f}\left\{x_{1} \mapsto p_{1}, \ldots, x_{n} \mapsto p_{n}\right\} \stackrel{*}{\mathcal{A}^{\prime}} q$ then $f\left(q_{1}, \ldots, q_{n}\right) \rightarrow q \in \Delta$ where $q_{i}=p_{i}$ if x_{i} occurs in t_{f} and $q_{i}=q_{\forall}$ otherwise;
- for $a \in \Sigma_{0}, a \rightarrow q_{\forall} \in \Delta$;
- for $f \in \Sigma_{n}$ where $n>0, f\left(q_{\forall}, \ldots, q_{\forall}\right) \rightarrow q_{\forall} \in \Delta$.

It holds that $t \xrightarrow[\mathcal{A}]{*} q$ iff $h(t) \xrightarrow[\mathcal{A}^{\prime}]{*} q$ for all $q \in Q^{\prime}$.

Closure under Homomorphisms

Theorem :

The class of regular tree languages is the smallest non trivial class of sets of trees closed under linear homomorphisms and inverse homomorphisms.

A problem whose decidability has been open for 35 years:
INPUT: a TA \mathcal{A}, an homomorphism h
QUESTION: is $h(L(\mathcal{A}))$ regular?

Tree Transducers

Tree Transducers

Definition: Bottom-up Tree Transducers

A bottom-up tree transducer (TT) is a tuple $U=\left(\Sigma, \Sigma^{\prime}, Q, Q^{\mathrm{f}}, \Delta\right)$ where

- Σ, Σ^{\prime} are the input, resp. output, signatures,
- Q is a finite set of states,
- $Q^{\mathrm{f}} \subseteq Q$ is the subset of final states
- Δ is a set of transduction (rewrite) rules of the form:
- $f\left(p_{1}\left(x_{1}\right), \ldots, p_{n}\left(x_{n}\right)\right) \rightarrow p(u)$ with $f \in \Sigma_{n}(n \geq 0)$, $p_{1}, \ldots, p_{n}, p \in Q, x_{1}, \ldots, x_{n}$ pairwise distinct and $u \in \mathcal{T}\left(\Sigma^{\prime},\left\{x_{1}, \ldots, x_{n}\right\}\right)$, or
- $p\left(x_{1}\right) \rightarrow p^{\prime}(u)$ with $q, q^{\prime} \in Q, u \in \mathcal{T}\left(\Sigma^{\prime},\left\{x_{1}\right\}\right)$.

A TT is linear if all the u in transduction rules are linear.
The transduction relation of U is the binary relation:

$$
L(U)=\left\{\left\langle t, t^{\prime}\right\rangle \mid t \xrightarrow[U]{*} q\left(t^{\prime}\right), t \in \mathcal{T}(\Sigma), t^{\prime} \in \mathcal{T}\left(\Sigma^{\prime}\right), q \in Q^{\mathrm{f}}\right\}
$$

Example 1

$$
\begin{aligned}
& U_{1}=\left(\{f: 1, a: 0\},\left\{g: 2, f, f^{\prime}: 1, a: 0\right\},\left\{q, q^{\prime}\right\},\left\{q^{\prime}\right\}, \Delta_{1}\right), \\
& \Delta_{1}=\left\{\begin{aligned}
a & \rightarrow q(a) \\
f\left(q\left(x_{1}\right)\right) & \rightarrow q\left(f\left(x_{1}\right)\right)\left|q\left(f^{\prime}\left(x_{1}\right)\right)\right| q^{\prime}\left(g\left(x_{1}, x_{1}\right)\right)
\end{aligned}\right\}
\end{aligned}
$$

Example 2

$$
\begin{aligned}
& \Sigma_{i n}=\{f: 2, g: 1, a: 0\}, \\
& U_{2}=\left(\Sigma_{i n}, \Sigma_{i n} \cup\left\{f^{\prime}: 1\right\},\left\{q, q^{\prime}, q_{\mathrm{f}}\right\},\left\{q_{\mathrm{f}}\right\}, \Delta_{2}\right), \\
& \Delta_{2}=\left\{\begin{array}{rll}
a & \rightarrow & q(a) \mid q^{\prime}(a) \\
g\left(q\left(x_{1}\right)\right) & \rightarrow & q\left(g\left(x_{1}\right)\right) \\
g\left(q^{\prime}\left(x_{1}\right)\right) & \rightarrow q^{\prime}\left(g\left(x_{1}\right)\right) \\
f\left(q^{\prime}\left(x_{1}\right), q^{\prime}\left(x_{2}\right)\right) & \rightarrow q^{\prime}\left(f\left(x_{1}, x_{2}\right)\right) \\
f\left(q^{\prime}\left(x_{1}\right), q^{\prime}\left(x_{2}\right)\right) & \rightarrow & q_{\mathrm{f}}\left(f^{\prime}\left(x_{1}\right)\right)
\end{array}\right\} \\
& L\left(U_{2}\right)=\left\{\left\langle f\left(t_{1}, t_{2}\right), f^{\prime}\left(t_{1}\right)\right| t_{2}=g^{m}(a), m \geq 0\right\}
\end{aligned}
$$

Tree Transducers, example

Token tree protocol [Abdulla et al CAV02]

$$
\begin{aligned}
\underline{\underline{\mathrm{n}}} & \rightarrow q_{0}\left(\underline{\mathrm{n}^{\prime}}\right) \\
\underline{\mathrm{t}} & \rightarrow q_{1}\left(\underline{\mathrm{n}^{\prime}}\right) \\
\mathrm{n}\left(q_{0}\left(x_{1}\right), q_{0}\left(x_{2}\right)\right) & \rightarrow q_{0}\left(\mathrm{n}\left(x_{1}, x_{2}\right)\right) \\
\mathrm{t}\left(q_{0}\left(x_{1}\right), q_{0}\left(x_{2}\right)\right) & \rightarrow q_{1}\left(\mathrm{n}\left(x_{1}, x_{2}\right)\right) \\
\mathrm{n}\left(q_{1}\left(x_{1}\right), q_{0}\left(x_{2}\right)\right) & \rightarrow q_{2}\left(\mathrm{t}\left(x_{1}, x_{2}\right)\right) \\
\mathrm{n}\left(q_{0}\left(x_{1}\right), q_{1}\left(x_{2}\right)\right) & \rightarrow q_{2}\left(\mathrm{t}\left(x_{1}, x_{2}\right)\right) \\
\mathrm{n}\left(q_{2}\left(x_{1}\right), q_{0}\left(x_{2}\right)\right) & \rightarrow q_{2}\left(\mathrm{n}\left(x_{1}, x_{2}\right)\right) \\
\mathrm{n}\left(q_{0}\left(x_{1}\right), q_{2}\left(x_{2}\right)\right) & \rightarrow q_{2}\left(\mathrm{n}\left(x_{1}, x_{2}\right)\right)
\end{aligned}
$$

property: mutual exclusion (for every network)
initial: terms of $\mathcal{T}(\{\mathrm{t}, \mathrm{n}, \underline{\mathrm{t}}, \underline{\mathrm{n}}\})$, containing exactly one token.
verification: the intersection of his closure with the set $\left\{q_{2}(t) \mid t \in \mathcal{T}(\{\mathbf{t}, \mathrm{n}, \underline{\mathrm{t}}, \underline{\mathrm{n}}\}), t\right.$ contains at least 2 tokens $\}$ (regular) is empty.

Languages

- Linear bottom-up TT are closed under composition.
- Deterministic bottom-up TT are closed under composition.

Theorem :

- The domain of a TT is a regular tree language.
- The image of a regular tree language by a linear TT is a regular tree language.

Transducers and Homomorphisms

An homomorphism is called delabeling if it is linear, complete, symbol-to-symbol.

Definition : Bimorphisms

A bimorphism is a triple $B=\left(h, h^{\prime}, L\right)$ where h, h^{\prime} are homomorphisms and L is a regular tree language.

$$
L(B)=\left\{\left\langle h(t), h^{\prime}(t)\right\rangle \mid t \in L\right\}
$$

Theorem:
TT \equiv bimorphisms $\left(h, h^{\prime}, L\right)$ where h delabeling.

Term Rewriting Systems

Term Rewriting

Definition: Substitution

A substitution is a function of finite domain from \mathcal{X} into $\mathcal{T}(\Sigma, \mathcal{X})$. We extend the definition to $\mathcal{T}(\Sigma, \mathcal{X}) \rightarrow \mathcal{T}(\Sigma, \mathcal{X})$ by:

$$
f\left(t_{1}, \ldots, t_{n}\right) \sigma=f\left(t_{1} \sigma, \ldots, t_{n} \sigma\right) \quad(n \geq 0)
$$

The application $C\left[t_{1}, \ldots, t_{n}\right]$ of a context $C \in \mathcal{T}\left(\Sigma,\left\{x_{1}, \ldots, x_{n}\right\}\right)$ to n terms t_{1}, \ldots, t_{n}, is $C \sigma$ with $\sigma=\left\{x_{1} \mapsto t_{1}, \ldots, x_{n} \mapsto t_{n}\right\}$.

Term Rewriting

A rewrite system \mathcal{R} is a finite set of rewrite rules of the form $\ell \rightarrow r$ with $\ell, r \in \mathcal{T}(\Sigma, \mathcal{X})$.

The relation $\overrightarrow{\mathcal{R}}$ is the smallest binary relation containing \mathcal{R}, and closed under application of contexts and substitutions.
i.e. $s \underset{\mathcal{R}}{ } t$ iff $\exists p \in \mathcal{P} o s(s), \ell \rightarrow r \in \mathcal{R}, \sigma,\left.s\right|_{p}=\ell \sigma$ and $t=s[r \sigma]_{p}$.

We note $\stackrel{*}{\mathcal{R}}$ the reflexive and transitive closure of $\overrightarrow{\mathcal{R}}$.

Example :

$$
\begin{aligned}
& \mathcal{R}=\{+(0, x) \rightarrow x,+(s(x), y) \rightarrow s(+(x, y))\} . \\
&+(s(s(0)),+(0, s(0))) \xrightarrow{\boldsymbol{\mathcal { R }}}+(s(s(0)), s(0)) \\
& \xrightarrow[\mathcal{R}]{ } \quad s(+(+(0), s(0))) \\
& \xrightarrow[\mathcal{R}]{ } \quad s(s(+(0, s(0)))) \\
& \xrightarrow[\mathcal{R}]{ } s(s(s(0)))
\end{aligned}
$$

TRS Preserving Regularity

For a TRS \mathcal{R} over Σ and $L \subseteq \mathcal{T}(\Sigma)$,

$$
\mathcal{R}^{*}(L)=\{t \in \mathcal{T}(\Sigma) \mid \exists s \in L, s \xrightarrow[\mathcal{R}]{*} t\}
$$

Regularity Preservation

Identify a class \mathcal{C} of TRS such that for all $\mathcal{R} \in \mathcal{C}, \mathcal{R}^{*}(L)$ is regular if L is regular.

Theorem : [Gilleron STACS 91]
It is undecidable in general whether a given TRS is preserving regularity.

Ground TRS

Theorem : [Brainerd 69]

Ground TRS are preserving regularity.
Given: TA $\mathcal{A}_{\text {in }}$ and ground TRS \mathcal{R}. We start with

$$
\mathcal{A}_{\text {in }} \cup\left(\Sigma, Q_{\mathcal{R}}, \emptyset,\left\{f\left(q_{r_{1}}, \ldots, q_{r_{n}}\right) \rightarrow q_{r} \mid r=f\left(r_{1}, \ldots r_{n}\right) \in Q_{\mathcal{R}}\right\}\right)
$$

where $Q_{\mathcal{R}}=$ strict subterms $(\operatorname{rhs}(\mathcal{R}))$, and add transitions according to the schema:

no states are added \rightarrow termination.
The TA obtained recognizes $\mathcal{R}^{*}\left(L\left(\mathcal{A}_{\text {in }}\right)\right)$.

Ground TRS (examples)

$$
\begin{aligned}
& \begin{array}{cl}
\operatorname{lhs}(\mathcal{R}) \ni \ell \longrightarrow \mathcal{A} & q \\
\forall \mathcal{R} & \\
& \\
& \\
&
\end{array} \\
& f\left(r_{1}, \ldots, r_{n}\right) \longrightarrow \underset{\mathcal{A}}{ } f\left(q_{r_{1}}, \ldots, q_{r_{n}}\right)
\end{aligned}
$$

$s(s(0)) \rightarrow 0$	$\perp+1 \rightarrow s(\perp)$

Linear and right-shallow TRS

right-shallow: variables at depth at most 1 in rhs of rules.

Theorem : [Salomaa 88]

Linear and right-shallow TRS preserve regularity.
Given: TA $\mathcal{A}_{\text {in }}$ and linear and right-shallow TRS \mathcal{R}.
The construction is similar to the ground TRS case: We start with

$$
\mathcal{A}_{\text {in }} \cup\left(\Sigma, Q_{\mathcal{R}}, \emptyset,\left\{f\left(q_{r_{1}}, \ldots, q_{r_{n}}\right) \rightarrow q_{r} \mid r=f\left(r_{1}, \ldots r_{n}\right) \in Q_{\mathcal{R}}\right\}\right)
$$

where $Q_{\mathcal{R}}=$ strict subterms $(\operatorname{rhs}(\mathcal{R})) \backslash \mathcal{X}$, and add transitions according to the schema:

where $\ell \in l h s(\mathcal{R})$, substitution $\sigma: \operatorname{vars}(\ell) \rightarrow Q$, for all $i \leq n$, if $r_{i} \notin \mathcal{X}$ then $q_{i}=q_{r_{i}}$ and $q_{i}=r_{i} \sigma$ otherwise.

Linear and right-shallow TRS (examples)

where $\ell \in \operatorname{lhs}(\mathcal{R})$, substitution $\sigma: \operatorname{vars}(\ell) \rightarrow Q$, for all $i \leq n$, if $r_{i} \notin \mathcal{X}$ then $q_{i}=q_{r_{i}}$ and $q_{i}=r_{i} \sigma$ otherwise.

Linear and right-shallow TRS: extensions

Other classes of TRS preserving regularity

- [Coquide et al 94] semi-monadic or inverse-growing TRS: for all $\ell \rightarrow r \in \mathcal{R}, \operatorname{vars}(r) \cap \operatorname{vars}(\ell)$ at depth at most 1 in r.
- [Nagaya Toyama RTA 02] right-linear and right-shallow TRS. NOT left-linear.
- [Gyenizse Vagvolgyi GSMTRS 98] linear and generalized semi-monadic TRS
- [Takai Kaji Seki RTA 00] right-linear finite path overlapping TRS

Right-Linearity and Right-Shallowness Conditions

Relaxing these conditions generaly breaks regularity preservation.

Example: Right-Linearity

let $\mathcal{R}=\{f(x) \rightarrow g(x, x)\}$ (flat and left-linear), $L_{\text {in }}=\{f(\ldots f(c))\}$. $\mathcal{R}^{*}\left(L_{\text {in }}\right) \cap \mathcal{T}(\{g, c\})$ is the set of balanced binary trees of $\mathcal{T}(\{g, c\})$, which is not regular.

Example: Right-Shallowness

With rewrite rules whose left and right hand-side have height at most two, it is possible simulate Turing machine computations, even in the case of words (symbols of arity 0 or 1).
Exceptions (for the right-shallowness)

- [Rety LPAR 99] constructor based (with restrictions on $L_{\text {in }}$). ex: $\operatorname{app}(\operatorname{nil}, y) \rightarrow y, \operatorname{app}(\operatorname{cons}(x, y), z) \rightarrow \operatorname{cons}(x, \operatorname{app}(y, z))$.
- [Seki et al RTA 02] Layered Transducing TRS

Linear I/O Separated Layered Transducing TRS

[Seki et al RTA 02]
This class corresponds to linear tree transducers.
over $\Sigma=\Sigma_{i} \uplus \Sigma_{o} \uplus Q$, rewrite rules of the form

$$
\begin{aligned}
f_{i}\left(p_{1}\left(x_{1}\right), \ldots, p_{n}\left(x_{n}\right)\right) & \rightarrow p(t) \\
p_{1}^{\prime}\left(x_{1}\right) & \rightarrow p^{\prime}\left(t^{\prime}\right)
\end{aligned}
$$

where $f_{i} \in \Sigma_{i}, p_{1}, \ldots, p_{n}, p, p_{1}^{\prime}, p^{\prime} \in Q x_{1}, \ldots, x_{n}$ are disjoint variables, $t, t^{\prime} \in \mathcal{T}\left(\Sigma_{o}, \mathcal{X}\right)$ such that $\operatorname{vars}(t) \subseteq\left\{x_{1}, \ldots, x_{n}\right\}$ and $\operatorname{vars}\left(t^{\prime}\right) \subseteq\left\{x_{1}\right\}$.

To know more

Further results closure of tree automata languages:

- closure of extended tree automata languages, modulo [Gallagher Rosendahl 08], [JRV JLAP 08], [JKV LATA 09], [JKV IC 11]
- rewrite strategies (bottom-up, context-sensitive, innermost, outermost...) [Durand et al RTA 07,10,11], [Kojima Sakai RTA 08], [Rety Vuotto JSC 05], [GGJ WRS 08]
- constrained/controlled rewriting
[Sénizergues French Spring School of TCS 93], [JKS FroCoS 11]
- unranked tree rewriting (XML updates)
[JR RTA 08], [JR PPDP 10]

Tree Automata Based Program Verification Some Techniques and Tools

Program Analysis with Tree Automata / Grammars

(very partial list) focus on 3 approaches

- [Reynolds IP 68] LISP programs \rightarrow Ifp solutions of equations
- [Jones Muchnick POPL 79] LISP programs \rightarrow tree grammars
- [Jones 87] lazy higher-order functional programs
- [Heintze Jaffar 90] logic programs \rightarrow set constraints
- [Lugiez Schnoebelen CONCUR 98], [Bouajjani Touili 03+] imperative programs w. prefix rewriting: PA-processes, PAD systems, PRS...
- [Genet et al 98+]
functional programs, security protocols, Java Bytecode
- [Jones Andersen TCS 07] functional programs

Timbuk

[Genet et al] (IRISA)
http://www.irisa.fr/celtique/genet/timbuk
Computation of rewrite closure by tree automata completion, with over-approximations. User defined or infered accelerations.

- analysis of security protocols SmartRight, Copy Protection Technology for DVB, Thomson
- analysis of Java Bytecode with Copster

Timbuk library, used in other tools like

- TA4SP, one of the proof back-ends of the AVISPA tool for security protocol verification
- SPADE

SPADE ©

[Tayssir Touili et al CAV 07] (LIAFA).
http://www.liafa.jussieu.fr/~touili/spade.html
Reachability analysis for multithreaded dynamic and recursive programs.

- (PAD) Systems [Touili VISSAS 05]

$$
X_{1} \cdot \ldots \cdot X_{n} \rightarrow Y_{1} \cdot \ldots \cdot Y_{m}, \quad X_{1} \rightarrow Y_{1}\|\ldots\| Y_{m}
$$

Case studies

- Windows Bluetooth driver
- multithreaded program based on the class java.util.Vector from the Java Standard Collection Framework
- concurrent insertions on a binary search tree

Approximations of Collecting Semantics

[Jones Andersen TCS 07]

collecting semantics [Cousot ${ }^{2}$] (roughly): mapping associating to each program point p the set of configurations reachable at p.
[Kochems Ong RTA 11] finer approximation using indexed linear tree grammars (instead of regular grammars).

Regular Tree Grammars

Definition: Regular Tree Grammars

A is a tuple $\mathcal{G}=\langle\mathcal{N}, S, \Sigma, P\rangle$ where \mathcal{N} is a finite set of nullary nonterminal symbols, $S \in \mathcal{N}$ (axiom of \mathcal{G}), Σ is a signature disjoint from \mathcal{N} and P is a set of production rules of the form $X:=r$ with $r \in \mathcal{T}(\Sigma \cup \mathcal{N})$.

Example:

$$
\Sigma=\{\wedge: 2, \vee: 2, \neg: 1, \top, \perp: 0\}, \mathcal{G}=\left(\left\{X_{0}, X_{1}\right\}, X_{1}, \Sigma, P\right)
$$

$$
P=\left\{\begin{array}{lll}
X_{0} & :=\perp & X_{1} \\
X_{1} & :=\neg\left(X_{0}\right) & X_{0} \\
:=\neg\left(X_{1}\right) \\
X_{0} & :=\vee\left(X_{0}, X_{0}\right) & X_{1} \\
:=\vee\left(X_{0}, X_{1}\right) \\
X_{1} & :=\vee\left(X_{1}, X_{0}\right) & X_{1} \\
:=\vee\left(X_{1}, X_{1}\right) \\
X_{0} & :=\wedge\left(X_{0}, X_{0}\right) & X_{0} \\
:=\wedge\left(X_{0}, X_{1}\right) \\
X_{0} & :=\wedge\left(X_{1}, X_{0}\right) & X_{1} \\
:=\wedge\left(X_{1}, X_{1}\right)
\end{array}\right\}
$$

Approximations of Collecting Semantics: Example

Concurrent readers/writers: reachable configurations

$$
\begin{aligned}
\mathcal{R}= & R_{1}:
\end{aligned} \quad \operatorname{state}(0,0) \quad \rightarrow \quad \operatorname{state}(0, s(0))
$$

Approximations of Collecting Semantics: Example

$$
\begin{array}{rrll}
\mathcal{R}= & R_{1}: & \operatorname{state}(0,0) & \rightarrow \\
\text { state }(0, s(0)) \\
R_{2}: & \operatorname{state}\left(X_{2}, 0\right) & \rightarrow & \operatorname{state}\left(s\left(X_{2}\right), 0\right) \\
R_{3}: & \operatorname{state}\left(X_{3}, s\left(Y_{3}\right)\right) & \rightarrow & \operatorname{state}\left(X_{3}, Y_{3}\right) \\
R_{4}: & \operatorname{state}\left(s\left(X_{4}\right), Y_{4}\right) & \rightarrow & \operatorname{state}\left(X_{4}, Y_{4}\right)
\end{array}
$$

$R_{0}:=\operatorname{state}(0,0)$	state $(0,0)=\operatorname{lh} s\left(R_{1}\right)$	
$R_{0}:=R_{1}$		
$R_{1}:=\operatorname{state}(0, s(0))$	state $(0,0)=\operatorname{state}\left(X_{2}, 0\right)\left\{X_{2} \mapsto 0\right\}$	
$R_{0}:=R_{2}$		
$R_{2}:=\operatorname{state}\left(s\left(X_{2}\right), 0\right)$		
$X_{2}:=0$	$\operatorname{state}\left(s\left(X_{2}\right), 0\right)=$	
$X_{2}:=s\left(X_{2}\right)$	$\operatorname{state}\left(X_{2}, 0\right)\left\{X_{2} \mapsto s\left(X_{2}\right)\right\}$	
		state $(0, s(0))=$
$R_{1}:=R_{3}$	$\operatorname{state}\left(X_{3}, s\left(Y_{3}\right)\right)\left\{X_{3} \mapsto 0, Y_{3} \mapsto 0\right\}$	
$R_{3}:=\operatorname{state}\left(X_{3}, Y_{3}\right)$		
$X_{3}:=0, Y_{3}:=0$	$\left.\operatorname{state}\left(s\left(X_{2}\right), 0\right)\right)=$	
$R_{2}:=R_{4}$	$\operatorname{state}\left(s\left(X_{4}\right), Y_{4}\right)\left\{X_{4} \mapsto X_{2}, Y_{4} \mapsto 0\right\}$	
$R_{4}:=\operatorname{state}\left(s\left(X_{4}\right), Y_{4}\right)$		
$X_{4}:=X_{2}, Y_{4}:=0$		

Approximations of Collecting Semantics: Example

$\begin{array}{rlll} \mathcal{R}= & R_{1}: & \operatorname{state}(0,0) & \rightarrow \operatorname{state}(0, s(0)) \\ & R_{2}: & \operatorname{stata}\left(X_{2}, 0\right) & \rightarrow \operatorname{state}\left(s\left(X_{2}\right), 0\right. \\ & R_{3}: & \operatorname{state}\left(X_{3}, s\left(Y_{3}\right)\right) & \rightarrow \operatorname{state}\left(X_{3}, Y_{3}\right) \\ & R_{4}: & \operatorname{state}\left(s\left(X_{4}\right), Y_{4}\right) & \rightarrow \\ \operatorname{state}\left(X_{4}, Y_{4}\right) \end{array}$		
$\begin{aligned} & R_{0}:=\operatorname{state}(0,0) \\ & R_{0}:=R_{1} \\ & R_{1}:=\operatorname{state}(0, s(0)) \end{aligned}$	$\begin{aligned} & \operatorname{state}(0,0) \xrightarrow{\longrightarrow} \text { state }(0, s(0)), \\ & 2 \nmid)_{4} \\ & \operatorname{state}(s(0), 0) \\ & 2()_{4} \\ & \operatorname{state}(s(s(0)), 0) \end{aligned}$	
$\begin{aligned} & R_{0}:=R_{2} \\ & R_{2}:=\operatorname{state}\left(s\left(X_{2}\right), 0\right) \\ & X_{2}:=0 \end{aligned}$		
$X_{2}:=s\left(X_{2}\right)$		
$\begin{aligned} & R_{1}:=R_{3} \\ & R_{3}:=\text { state }\left(X_{3}, Y_{3}\right) \\ & X_{3}:=0, Y_{3}:=0 \end{aligned}$		
$\begin{aligned} & R_{2}:=R_{4} \\ & R_{4}:=\operatorname{state}\left(s\left(X_{4}\right), Y_{4}\right) \\ & X_{4}:=X_{2}, Y_{4}:=0 \end{aligned}$		

Approximations of Collecting Semantics: Example 2

[Jones Andersen TCS 07]
let rec first I1 I2 = match I1, I2 with
[], \rightarrow []
$\mathrm{I}:: \mathrm{m}, \mathrm{x}:: \mathrm{xs} \rightarrow \mathrm{x}::($ first $\mathrm{m} \times \mathrm{x})$;

```
\(R_{2}: \quad\) first \(\left(\right.\) nil,\(\left.X_{s}\right) \quad \rightarrow \quad\) nil
\(R_{3}: \operatorname{first}\left(\operatorname{cons}(1, M), \operatorname{cons}\left(X, X_{s}\right)\right) \rightarrow \operatorname{cons}\left(X, \operatorname{first}\left(M, X_{s}\right)\right)\)
```

let rec sequence $\mathrm{y}=$
$y::($ sequence ($1:: y$));
$R_{4}:$ sequence $(Y) \rightarrow \operatorname{cons}(Y$, sequence $(\operatorname{cons}(1, Y)))$
let $\mathrm{g} \mathrm{n} \mathrm{=}$
first n (sequence []);
$R_{1}: \mathrm{g}(N) \rightarrow$ first $(N$, sequence $($ nil $))$

Part II

Weak Second Order Monadic Logic with k successors

Logic and Automata

- logic for expressing properties of labeled binary trees $=$ specification of tree languages,

Logic and Automata

- logic for expressing properties of labeled binary trees $=$ specification of tree languages, example:

$$
t \models \forall x a(x) \Rightarrow \exists y y>x \wedge b(y)
$$

- compilation of formulae into automata
$=$ decision algorithms.
- equivalence between both formalisms
[Thatcher \& Wright's theorem].

Plan

WSkS: Definition

Automata \rightarrow Logic

Logic \rightarrow Automata

Fragments and Extensions of WSkS

Interpretation Structures

$\mathcal{L}:=$ set of predicate symbols $P_{1}, \ldots P_{n}$ with arity.
A structure \mathcal{M} over \mathcal{L} is a tuple

$$
\mathcal{M}:=\left\langle\mathcal{D}, P_{1}^{\mathcal{M}}, \ldots, P_{n}^{\mathcal{M}}\right\rangle
$$

where

- \mathcal{D} is the domain of \mathcal{M},
- every $P_{i}^{\mathcal{M}}$ (interpretation of P_{i}) is a subset of $\mathcal{D}^{\operatorname{arity}\left(P_{i}\right)}$ (relation).

Term as structure

Σ signature, $k=$ maximal arity.

$$
\mathcal{L}_{\Sigma}:=\left\{=,<, S_{1}, \ldots, S_{k}, L_{a} \mid a \in \Sigma\right\}
$$

to $t \in \mathcal{T}(\Sigma)$, we associate a structure \underline{t} over \mathcal{L}_{Σ}

$$
\underline{t}:=\left\langle\mathcal{P} o s(t),=,<, S_{1}, \ldots, S_{k}, L_{\bar{a}}^{t}, L_{b}^{\underline{t}}, \cdots\right\rangle
$$

where

- domain $=$ positions of $t \quad\left(\mathcal{P o s}(t) \subset\{1, \ldots, k\}^{*}\right)$
- = equality over $\mathcal{P o s}(t)$,
- < prefix ordering over $\operatorname{Pos}(t)$,
- $S_{i}=\{\langle p, p \cdot i\rangle \mid p, p \cdot i \in \mathcal{P} o s(t)\}$ ($i^{\text {th }}$ successor position),
- $L^{\underline{t}}=\{p \in \mathcal{P}$ os $(t) \mid t(p)=a\}$.

FOL with k successors

- first order variables $x, y \ldots$
- form $::=x=y \mid x<y$

$$
\begin{aligned}
& S_{1}(x, y)|\ldots| S_{k}(x, y) \mid L_{a}(x) \quad a \in \Sigma \\
& \text { form } \wedge \text { form } \mid \text { form } \vee \text { form } \mid \neg \text { form } \\
& \exists x \text { form } \mid \forall x \text { form }
\end{aligned}
$$

Notation: $\phi\left(x_{1}, \ldots, x_{m}\right)$,
where x_{1}, \ldots, x_{m} are the free variables of ϕ.

WSkS: syntax

- first order variables $x, y \ldots$
- second order variables $X, Y \ldots$
- form $::=x=y|x<y| x \in X$

$$
\begin{aligned}
& \left\lvert\, \begin{array}{l}
S_{1}(x, y)|\ldots| S_{k}(x, y) \mid L_{a}(x) \quad a \in \Sigma \\
\text { form } \wedge \text { form } \mid \text { form } \vee \text { form } \mid \neg \text { form } \\
\exists x \text { form } \mid \exists X \text { form } \mid \forall x \text { form } \mid \forall X \text { form }
\end{array}\right. \\
& \left.\left|\begin{array}{ll}
\end{array}\right| \begin{array}{ll}
\end{array}\right)
\end{aligned}
$$

Notation: $\phi\left(x_{1}, \ldots, x_{m}, X_{1}, \ldots, X_{n}\right)$, where $x_{1}, \ldots, x_{m}, X_{1}, \ldots, X_{n}$ are the free variables of ϕ.

WSkS: semantics

- $t \in \mathcal{T}(\Sigma)$,
- valuation σ of first order variables into $\mathcal{P} o s(t)$,
- valuation δ of second order variables into subsets of \mathcal{P} os (t),
- $\underline{t}, \sigma, \delta \models x=y$ iff $\sigma(x)=\sigma(y)$,
- $\underline{t}, \sigma, \delta \models x<y$ iff $\sigma(x)<_{\text {prefix }} \sigma(y)$,
- $\underline{t}, \sigma, \delta \models x \in X$ iff $\sigma(x) \in \delta(X)$,
- $\underline{t}, \sigma, \delta \models S_{i}(x, y)$ iff $\sigma(y)=\sigma(x) \cdot i$,
- $\underline{t}, \sigma, \delta \models L_{a}(x)$ iff $t(\sigma(x))=a$ i.e. $\sigma(x) \in L^{\underline{t}}$,
- $\underline{t}, \sigma, \delta \models \phi_{1} \wedge \phi_{2}$ iff $\underline{t}, \sigma, \delta \models \phi_{1}$ and $\underline{t}, \sigma, \delta \models \phi_{2}$,
- $\underline{t}, \sigma, \delta \models \phi_{1} \vee \phi_{2}$ iff $\underline{t}, \sigma, \delta \models \phi_{1}$ or $\underline{t}, \sigma, \delta \models \phi_{2}$,
- $\underline{t}, \sigma, \delta \models \neg \phi$ iff $\underline{t}, \sigma, \delta \not \models \phi$,

WSkS: semantics (quantifiers)

- $\underline{t}, \sigma, \delta \models \exists x \phi$ iff $x \notin \operatorname{dom}(\sigma), x$ free in ϕ and exists $p \in \mathcal{P o s}(t)$ s.t. $\underline{t}, \sigma \cup\{x \mapsto p\}, \delta \models \phi$,
- $\underline{t}, \sigma, \delta \models \forall x \phi$ iff $x \notin \operatorname{dom}(\sigma), x$ free in ϕ and for all $p \in \mathcal{P o s}(t), \underline{t}, \sigma \cup\{x \mapsto p\}, \delta \models \phi$,
- $\underline{t}, \sigma, \delta \models \exists X \phi$ iff $X \notin \operatorname{dom}(\delta), X$ free in ϕ and exists $P \subseteq \mathcal{P} o s(t)$ s.t. $\underline{t}, \sigma, \delta \cup\{X \mapsto P\} \models \phi$,
- $\underline{t}, \sigma, \delta \models \forall X \phi$ iff $X \notin \operatorname{dom}(\delta), X$ free in ϕ and for all $P \subseteq \mathcal{P} o s(t), \underline{t}, \sigma, \delta \cup\{X \mapsto P\} \models \phi$.

WSkS: languages

Definition: WSkS-definability

For $\phi \in \mathrm{WS} k$ S closed (without free variables) over \mathcal{L}_{Σ},

$$
L(\phi):=\{t \in \mathcal{T}(\Sigma) \mid \underline{t} \models \phi\} .
$$

Example :

$$
\Sigma=\{a: 2, b: 2, c: 0\} . \text { Language of terms in } \mathcal{T}(\Sigma)
$$

- containing the pattern $a\left(b\left(x_{1}, x_{2}\right), x_{3}\right)$:

$$
\exists x \exists y S_{1}(x, y) \wedge L_{a}(x) \wedge L_{b}(y)
$$

- such that every a-labelled node has a b-labelled child.

$$
\forall x \exists y L_{a}(x) \Rightarrow \bigvee_{i=1}^{2} S_{i}(x, y) \wedge L_{b}(y)
$$

- such that every a-labelled node has a b-labelled descendant. $\forall x \exists y L_{a}(x) \Rightarrow x<y \wedge L_{b}(y)$

WSkS: examples

- root position:

WSkS: examples

- root position: $\operatorname{root}(x) \equiv \neg \exists y y<x$
- inclusion:

WSkS: examples

- root position: $\operatorname{root}(x) \equiv \neg \exists y y<x$
- inclusion: $X \subseteq Y \equiv \forall x(x \in X \Rightarrow x \in Y)$
- intersection:

WSkS: examples

- root position: $\operatorname{root}(x) \equiv \neg \exists y y<x$
- inclusion: $X \subseteq Y \equiv \forall x(x \in X \Rightarrow x \in Y)$
- intersection: $Z=X \cap Y \equiv \forall x(x \in Z \Leftrightarrow(x \in X \wedge x \in Y))$
- emptiness:

WSkS: examples

- root position: $\operatorname{root}(x) \equiv \neg \exists y y<x$
- inclusion: $X \subseteq Y \equiv \forall x(x \in X \Rightarrow x \in Y)$
- intersection: $Z=X \cap Y \equiv \forall x(x \in Z \Leftrightarrow(x \in X \wedge x \in Y))$
- emptiness: $X=\emptyset \equiv \forall x x \notin X$
- finite union:

WSkS: examples

- root position: $\operatorname{root}(x) \equiv \neg \exists y y<x$
- inclusion: $X \subseteq Y \equiv \forall x(x \in X \Rightarrow x \in Y)$
- intersection: $Z=X \cap Y \equiv \forall x(x \in Z \Leftrightarrow(x \in X \wedge x \in Y))$
- emptiness: $X=\emptyset \equiv \forall x x \notin X$
- finite union:

$$
X=\bigcup_{i=1}^{n} X_{i} \equiv\left(\bigwedge_{i=1}^{n} X_{i} \subseteq X\right) \wedge \forall x\left(x \in X \Rightarrow \bigvee_{i=1}^{n} x \in X_{i}\right)
$$

- partition:

WSkS: examples

- root position: $\operatorname{root}(x) \equiv \neg \exists y y<x$
- inclusion: $X \subseteq Y \equiv \forall x(x \in X \Rightarrow x \in Y)$
- intersection: $Z=X \cap Y \equiv \forall x(x \in Z \Leftrightarrow(x \in X \wedge x \in Y))$
- emptiness: $X=\emptyset \equiv \forall x x \notin X$
- finite union:

$$
X=\bigcup_{i=1}^{n} X_{i} \equiv\left(\bigwedge_{i=1}^{n} X_{i} \subseteq X\right) \wedge \forall x\left(x \in X \Rightarrow \bigvee_{i=1}^{n} x \in X_{i}\right)
$$

- partition:

$$
X_{1}, \ldots, X_{n} \text { partition } X \equiv X=\bigcup_{i=1}^{n} X_{i} \wedge \bigwedge_{i=1}^{n-1} \bigwedge_{j=i+1}^{n} X_{i} \cap X_{j}=\emptyset
$$

WSkS: examples (2)

- singleton:

WSkS: examples (2)

- singleton:

$$
\operatorname{sing}(X) \equiv X \neq \emptyset \wedge \forall Y(Y \subseteq X \Rightarrow(Y=X \vee Y=\emptyset))
$$

$-\leq($ without $<)$

WSkS: examples (2)

- singleton:

$$
\operatorname{sing}(X) \equiv X \neq \emptyset \wedge \forall Y(Y \subseteq X \Rightarrow(Y=X \vee Y=\emptyset))
$$

- \leq (without $<$)

$$
\begin{aligned}
x \leq y \equiv & \forall X\binom{y \in X}{\wedge \forall z \forall z^{\prime}\left(z^{\prime} \in X \wedge \bigvee_{i \leq k} S_{i}\left(z, z^{\prime}\right)\right) \Rightarrow z \in X} \\
& \Rightarrow x \in X
\end{aligned}
$$

or

$$
\begin{aligned}
x \leq y \equiv & \exists X\left(\forall z z \in X \Rightarrow\left(\exists z^{\prime} \bigvee_{i \leq k} S_{i}\left(z^{\prime}, z\right) \wedge z^{\prime} \in X\right) \vee z=x\right) \\
& \wedge y \in X
\end{aligned}
$$

Thatcher \& Wright's Theorem

Theorem : Thatcher and Wright
Languages of WS k S formulae $=$ regular tree languages.
pr.: 2 directions (2 constructions):

- TA \rightarrow WSkS,
- WSkS \rightarrow TA.

Plan

WSkS: Definition

Automata \rightarrow Logic

Logic \rightarrow Automata

Fragments and Extensions of WSkS

Regular languages \rightarrow WSkS languages

$$
\text { Let } \Sigma=\left\{a_{1}, \ldots, a_{n}\right\} .
$$

Theorem:

For all tree automaton \mathcal{A} over Σ, there exists $\phi_{\mathcal{A}} \in \mathrm{WS} k S$ such that $L\left(\phi_{A}\right)=L(\mathcal{A})$.
$\mathcal{A}=\left(\Sigma, Q, Q^{\mathrm{f}}, \Delta\right)$ with $Q=\left\{q_{0}, \ldots, q_{m}\right\}$.
$\phi_{\mathcal{A}}$: existence of an accepting run of \mathcal{A} on $t \in \mathcal{T}(\Sigma)$.

$$
\phi_{\mathcal{A}}:=\exists Y_{0} \ldots \exists Y_{m} \phi_{\mathrm{lab}}(\bar{Y}) \wedge \phi_{\mathrm{acc}}(\bar{Y}) \wedge \phi_{\mathrm{tr} 0_{0}}(\bar{Y}) \wedge \phi_{\mathrm{tr}}(\bar{Y})
$$

regular languages \rightarrow WSkS languages

$\phi_{\text {lab }}(\bar{Y})$: every position is labeled with one state exactely.

regular languages \rightarrow WSkS languages

$\phi_{\text {lab }}(\bar{Y})$: every position is labeled with one state exactely.

$$
\phi_{\mathrm{lab}}(\bar{Y}) \equiv \forall x \quad \bigvee_{\substack{0 \leq i \leq m}} x \in Y_{i} \wedge \bigwedge_{\substack{0 \leq i, j \leq m \\ i \neq j}}\left(x \in Y_{i} \Rightarrow \neg x \in Y_{j}\right)
$$

regular languages \rightarrow WS k S languages

$\phi_{\text {lab }}(\bar{Y})$: every position is labeled with one state exactely.

$$
\phi_{\text {lab }}(\bar{Y}) \equiv \forall x \quad \bigvee_{\substack{0 \leq i \leq m}} x \in Y_{i} \wedge \bigwedge_{\substack{0 \leq i, j \leq m \\ i \neq j}}\left(x \in Y_{i} \Rightarrow \neg x \in Y_{j}\right)
$$

$\phi_{\text {acc }}(\bar{Y})$: the root is labeled with a final state

regular languages \rightarrow WS k S languages

$\phi_{\text {lab }}(\bar{Y})$: every position is labeled with one state exactely.

$$
\phi_{\mathrm{lab}}(\bar{Y}) \equiv \forall x \quad \bigvee_{0 \leq i \leq m} x \in Y_{i} \wedge \bigwedge_{\substack{0 \leq i, j \leq m \\ i \neq j}}\left(x \in Y_{i} \Rightarrow \neg x \in Y_{j}\right)
$$

$\phi_{\mathrm{acc}}(\bar{Y})$: the root is labeled with a final state

$$
\phi_{\mathrm{acc}}(\bar{Y}) \equiv \forall x_{0} \operatorname{root}\left(x_{0}\right) \Rightarrow \bigvee_{q_{i} \in Q^{f}} x_{0} \in Y_{i}
$$

regular languages \rightarrow WSkS languages

$\phi_{\text {tr }_{0}}(\bar{Y})$: transitions for constants symbols

regular languages \rightarrow WS k S languages

$\phi_{\text {tro }_{0}}(\bar{Y})$: transitions for constants symbols

$$
\phi_{\operatorname{tr}_{0}}(\bar{Y}) \equiv \bigwedge_{a \in \Sigma_{0}}\left(\forall x L_{a}(x) \Rightarrow \bigvee_{a \rightarrow q_{i} \in \Delta} x \in Y_{i}\right)
$$

regular languages \rightarrow WS k S languages

$\phi_{\text {tr }_{0}}(\bar{Y})$: transitions for constants symbols

$$
\phi_{\operatorname{tr}_{0}}(\bar{Y}) \equiv \bigwedge_{a \in \Sigma_{0}}\left(\forall x L_{a}(x) \Rightarrow \bigvee_{a \rightarrow q_{i} \in \Delta} x \in Y_{i}\right)
$$

$\phi_{\text {tr }}(\bar{Y})$: transitions for non-constant symbols

regular languages \rightarrow WS k S languages

$\phi_{\text {tr }_{0}}(\bar{Y})$: transitions for constants symbols

$$
\phi_{\operatorname{tr}_{0}}(\bar{Y}) \equiv \bigwedge_{a \in \Sigma_{0}}\left(\forall x L_{a}(x) \Rightarrow \bigvee_{a \rightarrow q_{i} \in \Delta} x \in Y_{i}\right)
$$

$\phi_{\text {tr }}(\bar{Y})$: transitions for non-constant symbols

$$
\begin{aligned}
& \phi_{\mathrm{tr}}(\bar{Y}) \equiv\left.\bigwedge_{\substack{f \in \Sigma_{j}, 0<j \leq k \\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
f\left(q_{i_{1}}, \ldots, q_{i_{j}}\right) \rightarrow q_{i} \in \Delta}}^{\Downarrow} \forall x \forall y_{1} \ldots \forall y_{j}\left(x, y_{1}\right) \wedge \ldots \wedge S_{j}\left(x, y_{j}\right)\right) \\
& \bigvee_{i} \wedge y_{1} \in Y_{i_{1}} \wedge \ldots \wedge y_{j} \in Y_{i_{j}}
\end{aligned}
$$

Plan

WSkS: Definition

Automata \rightarrow Logic

Logic \rightarrow Automata

Fragments and Extensions of WSkS

Theorem Thatcher \& Wright

Theorem :
Every WS $k S$ language is regular.
For all formula $\phi \in \mathrm{WS} k \mathrm{~S}$ over Σ (without free variables) there exists a tree automaton \mathcal{A}_{ϕ} over Σ, such that $L\left(\mathcal{A}_{\phi}\right)=L(\phi)$.

Corollary :
WS $k S$ is decidable.
pr.: reduction to emptiness decision for \mathcal{A}_{ϕ}.

Theorem Thatcher \& Wright

\mathcal{A}_{ϕ} is effectively constructed from ϕ, by induction.

- automata for atoms
\Rightarrow need of automata for formula with free variables.
it will characterize
- Boolean closures for Boolean connectors.
- \exists quantifier: projection.

Theorem Thatcher \& Wright

When ϕ contains free variables, \mathcal{A}_{ϕ} will characterize both terms AND valuations satisfying $\phi: L\left(\mathcal{A}_{\phi}\right) \equiv\{\langle t, \sigma, \delta\rangle \mid \underline{t}, \sigma, \delta \models \phi\}$. Below we define the product $\langle t, \sigma, \delta\rangle$.
\checkmark for free second order variables:

$t \in \mathcal{T}(\Sigma)$
$\delta:\left\{X_{1}, \ldots, X_{n}\right\} \rightarrow 2^{\mathcal{P o s}(t)}$

arity of $\langle a, \bar{b}\rangle$ in $\Sigma \times\{0,1\}^{n}=$ arity of a in Σ.
for all $p \in \mathcal{P o s}(t),(t \times \delta)(p)=\left\langle t(p), b_{1}, \ldots, b_{n}\right\rangle$ where for all $i \leq n$,

- $b_{i}=1$ if $p \in \delta\left(X_{i}\right)$,
- $b_{i}=0$ otherwise.
\checkmark free first order variables are interpreted as singletons.

We consider a simplified language (wlog).

- no first order variables,
- only second order variables $X, Y \ldots$,
- form $::=\quad X \subseteq Y|Y=X \cdot 1| \ldots \mid Y=X \cdot k$

$$
\left\lvert\, \begin{aligned}
& X \subseteq L_{a} \quad a \in \Sigma \\
& \text { form } \wedge \text { form } \mid \text { form } \\
& \exists X \text { form } \mid \forall X \text { form }
\end{aligned}\right.
$$

interpretation $Y=X \cdot i: X=\{x\}, Y=\{y\}$ and $y=x \cdot i$.
ex: singleton

$\mathrm{WS}_{k} \mathrm{~S}_{0}$

We consider a simplified language (wlog).

- no first order variables,
- only second order variables $X, Y \ldots$,
- form $::=\quad X \subseteq Y|Y=X \cdot 1| \ldots \mid Y=X \cdot k$

$$
\left\lvert\, \begin{aligned}
& X \subseteq L_{a} \quad a \in \Sigma \\
& \text { form } \wedge \text { form } \mid \text { form } \vee \text { form } \mid \neg \text { form } \\
& \exists X \text { form } \mid \forall X \text { form }
\end{aligned}\right.
$$

interpretation $Y=X \cdot i: X=\{x\}, Y=\{y\}$ and $y=x \cdot i$.
ex: singleton
singleton $(X) \equiv \exists Y \quad(Y \subseteq X \wedge Y \neq X \wedge$

$$
\neg \exists Z(Z \subseteq X \wedge Z \neq X \wedge Z \neq Y))
$$

$\mathrm{WS} k \mathrm{~S} \rightarrow \mathrm{WS} k \mathrm{~S}_{0}$

Lemma :

For all formula $\phi\left(x_{1}, \ldots, x_{m}, X_{1}, \ldots, X_{n}\right) \in \mathrm{WS} k \mathrm{~S}$, there exists a formula $\phi^{\prime}\left(X_{1}^{\prime}, \ldots, X_{m}^{\prime}, X_{1}, \ldots, X_{n}\right) \in \mathrm{WS}_{\mathrm{S}} \mathrm{S}_{0}$
s.t. $\underline{t}, \sigma, \delta \models \phi\left(x_{1}, \ldots, x_{m}, X_{1}, \ldots, X_{n}\right)$
iff $\underline{t}, \sigma^{\prime} \cup \delta \models \phi^{\prime}\left(X_{1}^{\prime}, \ldots, X_{m}^{\prime}, X_{1}, \ldots, X_{n}\right)$, with $\sigma^{\prime}: X_{i}^{\prime} \mapsto\left\{\sigma\left(x_{i}\right)\right\}$.
pr.: several steps of formula rewriting:

1. elimination of $<$,
2. elimination of $S_{i}(x, y)(i \leq k), L_{a}(x)(a \in \Sigma)$, elimination of first order variables (use singleton (X)).

compilation of $\mathrm{WS}_{\mathrm{S}} \mathrm{S}_{0}$ into automata

notation: $\Sigma_{[m]}:=\Sigma \times\{0,1\}^{m}$.
For all $\phi\left(X_{1}, \ldots, X_{n}\right) \in \mathrm{WS} k \mathrm{~S}_{0}$ and $m \geq n$, we construct a tree automaton $\llbracket \phi \rrbracket_{m}$ over $\Sigma_{[m]}$ recognizing

$$
\left\{t \times \delta \mid \delta:\left\{X_{1}, \ldots, X_{m}\right\} \rightarrow 2^{\operatorname{Pos}(t)}, \underline{t}, \delta \models \phi\left(X_{1}, \ldots, X_{n}\right)\right\}
$$

projection, cylindrification

projection

$$
\operatorname{proj}_{n}: \quad \bigcup_{m \geq n} \mathcal{T}\left(\Sigma_{[m]}\right) \rightarrow \mathcal{T}\left(\Sigma_{[n]}\right)
$$

$$
\text { delete components } n+1, \ldots, m \text {. }
$$

Lemma : projection
For all $n \leq m$, if $L \subseteq \mathcal{T}\left(\Sigma_{[m]}\right)$ is regular then $\operatorname{proj}_{n}(L)$ is regular.
cylindrification ($m \geq n$)
$\operatorname{cyl}_{n, m}: L \subseteq \mathcal{T}\left(\Sigma_{[n]}\right) \mapsto\left\{t \in \mathcal{T}\left(\Sigma_{[m]}\right) \mid \operatorname{proj}_{n}(t) \in L\right\}$
Lemma : cylindrification
For all $n \leq m$, if $L \subseteq \mathcal{T}\left(\Sigma_{[n]}\right)$ is regular, then $\operatorname{cyl}_{n, m}(L)$ is regular.

compilation: $X_{1} \subseteq X_{2}$

Automaton $\llbracket X_{1} \subseteq X_{2} \rrbracket_{2}$:

- signature $\Sigma_{[2]}=\Sigma \times\{0,1\}^{2}$.

compilation: $X_{1} \subseteq X_{2}$

Automaton $\llbracket X_{1} \subseteq X_{2} \rrbracket_{2}$:

- signature $\Sigma_{[2]}=\Sigma \times\{0,1\}^{2}$.
- states: q_{0}
- final states: q_{0}
- transitions:

$$
\begin{array}{lll}
\langle a, 0,0\rangle\left(q_{0}, \ldots, q_{0}\right) & \rightarrow & q_{0} \\
\langle a, 0,1\rangle\left(q_{0}, \ldots, q_{0}\right) & \rightarrow & q_{0} \\
\langle a, 1,1\rangle\left(q_{0}, \ldots, q_{0}\right) & \rightarrow & q_{0}
\end{array}
$$

For $m \geq 2$,

$$
\llbracket X_{1} \subseteq X_{2} \rrbracket_{m}:=\operatorname{cyl}_{2, m}\left(\llbracket X_{1} \subseteq X_{2} \rrbracket_{2}\right)
$$

compilation: $X_{1}=X_{2} \cdot 1$

Automaton $\llbracket X_{1}=X_{2} \cdot 1 \rrbracket_{2}$:

- signature $\Sigma_{[2]}=\Sigma \times\{0,1\}^{2}$.

compilation: $X_{1}=X_{2} \cdot 1$

Automaton $\llbracket X_{1}=X_{2} \cdot 1 \rrbracket_{2}$:

- signature $\Sigma_{[2]}=\Sigma \times\{0,1\}^{2}$.
- states: q_{0}, q_{1}, q_{2}
- final states: q_{2}
- transitions:

$$
\begin{array}{lll}
\langle a, 0,0\rangle\left(q_{0}, \ldots, q_{0}\right) & \rightarrow & q_{0} \\
\langle a, 1,0\rangle\left(q_{0}, \ldots, q_{0}\right) & \rightarrow & q_{1} \\
\langle a, 0,1\rangle\left(q_{1}, q_{0}, \ldots, q_{0}\right) & \rightarrow & q_{2} \\
\langle a, 0,0\rangle\left(q_{0}, \ldots, q_{0}, q_{2}, q_{0}, \ldots, q_{0}\right) & \rightarrow & q_{2}
\end{array}
$$

For $m \geq 2$,

$$
\llbracket X_{2}=X_{1} \cdot 1 \rrbracket_{m}:=\operatorname{cyl}_{2, m}\left(\llbracket X_{2}=X_{1} \cdot 1 \rrbracket_{2}\right)
$$

compilation: $X_{1} \subseteq L_{a}$

Automate $\llbracket X_{1} \subseteq L_{a} \rrbracket_{1}$:

- signature $\Sigma_{[2]}=\Sigma \times\{0,1\}^{2}$.

compilation: $X_{1} \subseteq L_{a}$

Automate $\llbracket X_{1} \subseteq L_{a} \rrbracket_{1}$:

- signature $\Sigma_{[2]}=\Sigma \times\{0,1\}^{2}$.
- states: q_{0}
- final states: q_{0}
- transitions:

$$
\begin{aligned}
&\langle a, 0\rangle\left(q_{0}, \ldots, q_{0}\right) \rightarrow \\
& q_{0} \\
&\langle b, 0\rangle\left(q_{0}, \ldots, q_{0}\right) \rightarrow
\end{aligned} q_{0} \quad(b \neq a)
$$

For $m \geq 1$,

$$
\llbracket X_{1} \subseteq L_{a} \rrbracket_{m}:=\operatorname{cyl}_{1, m}\left(\llbracket X_{1} \subseteq L_{a} \rrbracket_{1}\right)
$$

compilation: Boolean connectors

- $\llbracket \phi\left(X_{1}, \ldots, X_{n}\right) \vee \phi\left(X_{1}, \ldots, X_{n^{\prime}}\right) \rrbracket_{m}:=$ $\llbracket \phi\left(X_{1}, \ldots, X_{n}\right) \rrbracket_{m} \cup \llbracket \phi\left(X_{1}, \ldots, X_{n^{\prime}}\right) \rrbracket_{m}$ with $m \geq \max \left(n, n^{\prime}\right)$
- $\llbracket \phi\left(X_{1}, \ldots, X_{n}\right) \wedge \phi\left(X_{1}, \ldots, X_{n^{\prime}}\right) \rrbracket_{m}:=$ $\llbracket \phi\left(X_{1}, \ldots, X_{n}\right) \rrbracket_{m} \cap \llbracket \phi\left(X_{1}, \ldots, X_{n^{\prime}}\right) \rrbracket_{m}$ with $m \geq \max \left(n, n^{\prime}\right)$
- $\llbracket \neg \phi\left(X_{1}, \ldots, X_{n}\right) \rrbracket_{m}:=\mathcal{T}\left(\Sigma_{[m]}\right) \backslash \llbracket \phi\left(X_{1}, \ldots, X_{n}\right) \rrbracket_{m}$ for $m \geq n$.

compilation: quantifiers

- $\llbracket \exists X_{n+1} \phi\left(X_{1}, \ldots, X_{n+1}\right) \rrbracket_{n}:=\operatorname{proj}_{n}\left(\llbracket \phi\left(X_{1}, \ldots, X_{n+1}\right) \rrbracket_{n+1}\right)$
- NB: this construction does not preserve determinism.
- $\llbracket \exists X_{n+1} \phi\left(X_{1}, \ldots, X_{n+1}\right) \rrbracket_{m}:=$ $c y l_{n, m}\left(\llbracket \exists X_{n+1} \phi\left(X_{1}, \ldots, X_{n+1}\right) \rrbracket_{n}\right)$ for $m \geq n$.
- $\forall=\neg \exists \neg$

Theorem Thatcher \& Wright

Theorem :

For all formula $\phi \in \mathrm{WS}_{\mathrm{S}} \mathrm{S}_{0}$ over Σ without free variables, there exists a tree automaton \mathcal{A}_{ϕ} over Σ, such that $L\left(\mathcal{A}_{\phi}\right)=L(\phi)$.
$\mathcal{A}_{\phi}=\llbracket \phi \rrbracket_{0}$ can be computed explicitely!

Corollary

For all formula $\phi \in \mathrm{WS} k$ S over Σ without free variables there exists a tree automaton \mathcal{A}_{ϕ} over Σ, such that $L\left(\mathcal{A}_{\phi}\right)=L(\phi)$. using translation of $\mathrm{WS} k \mathrm{~S}$ into $\mathrm{WS} k \mathrm{~S}_{0}$ first.

Size of \mathcal{A}_{ϕ}

Theorem : Stockmeyer and Meyer 1973
For all n there exists $\exists x_{1} \neg \exists y_{1} \exists x_{2} \neg \exists y_{2} \ldots \exists x_{n} \neg \exists y_{n} \phi \in$ FOL such that for every automaton \mathcal{A} recognizing the same language

$$
\left.\operatorname{size}(\mathcal{A}) \geq 2^{2 \ldots^{\operatorname{size}(\phi)}}\right\} n
$$

Plan

WSkS: Definition

Automata \rightarrow Logic

Logic \rightarrow Automata

Fragments and Extensions of WSkS

WSkS and FO

Using the 2 directions of the Thatcher \& Wright theorem:

$$
\mathrm{WS} k \mathrm{~S} \ni \phi \mapsto \mathcal{A} \mapsto \exists Y_{1} \ldots \exists Y_{n} \psi
$$

with $\psi \in$ FOL.

Corollary :
Every WSkS formula is equivalent to a formula $\exists Y_{1} \ldots \exists Y_{n} \psi$ with ψ first order.

FO $\subsetneq W S k S$

Proposition :

The language L of terms with an even number of nodes labeled by a is regular (hence WS $k S$-definable) but not FO-definable. pr.: with Ehrenfeucht-Fraïssé games.

Ehrenfeucht-Fraïssé games

goal: prove FO equivalence of finite structures
(wrt finite set of predicates \mathcal{L}).

Definition
for two finite \mathcal{L}-structures \mathfrak{A} and $\mathfrak{B} \mathfrak{A} \equiv{ }_{m} \mathfrak{B}$ iff for all ϕ closed, of quantifier depth $m, \mathfrak{A} \models \phi$ iff $\mathfrak{B} \models \phi$

Ehrenfeucht-Fraïssé games

$\mathcal{G}_{m}(\mathfrak{A}, \mathfrak{B})$
1 Spoiler chooses $a_{1} \in \operatorname{dom}(\mathfrak{A})$ or $b_{1} \in \operatorname{dom}(\mathfrak{B})$
1^{\prime} Duplicator chooses $b_{1} \in \operatorname{dom}(\mathfrak{B})$ or $a_{1} \in \operatorname{dom}(\mathfrak{A})$
m^{\prime} Duplicator chooses $b_{m} \in \operatorname{dom}(\mathfrak{B})$ or $a_{m} \in \operatorname{dom}(\mathfrak{A})$
Duplicator wins if $\left\{a_{1} \mapsto b_{1}, \ldots, a_{m} \mapsto b_{m}\right\}$ is an injective partial function compatible with the relations of \mathfrak{A} and $\mathfrak{B}(\forall P \in \mathcal{P}$,
$P^{\mathfrak{A}}\left(a_{i_{1}}, \ldots, a_{i_{n}}\right)$ iff $\left.P^{\mathfrak{B}}\left(b_{i_{1}}, \ldots, b_{i_{n}}\right)\right)$
$=$ partial isomorphism.
Otherwise Spoiler wins.
Theorem : Ehrenfeucht-Fraïssé
$\mathfrak{A} \equiv_{m} \mathfrak{B}$ iff Duplicator has a winning strategy for $\mathcal{G}_{m}(\mathfrak{A}, \mathfrak{B})$.

Ehrenfeucht-Fraïssé Theorem

more generally: equivalence of finite structures + valuation of n free variables.
for two finite \mathcal{L}-structures \mathfrak{A} and \mathfrak{B} and
$\alpha_{1}, \ldots, \alpha_{n} \in \operatorname{dom}(\mathfrak{A}), \beta_{1}, \ldots, \beta_{n} \in \operatorname{dom}(\mathfrak{B}), m \geq 0$,

$$
\mathfrak{A}, \alpha_{1}, \ldots, \alpha_{n} \equiv_{m} \mathfrak{B}, \beta_{1}, \ldots, \beta_{n}
$$

iff for all $\phi\left(x_{1}, \ldots, x_{n}\right)$ of quantifier depth m,

$$
\mathfrak{A}, \sigma_{a} \models \phi(\bar{x}) \text { iff } \mathfrak{B}, \sigma_{b} \models \phi(\bar{x})
$$

where $\sigma_{a}=\left\{x_{1} \mapsto \alpha_{1}, \ldots, x_{n} \mapsto \alpha_{n}\right\}$,

$$
\sigma_{b}=\left\{x_{1} \mapsto \beta_{1}, \ldots, x_{n} \mapsto \beta_{n}\right\} .
$$

Games: the partial isomorphisms must extend $\left\{\alpha_{1} \mapsto \beta_{1}, \ldots, \alpha_{n} \mapsto \beta_{n}\right\}$.

$$
\text { let } \Sigma=\{a: 1, \perp: 0\} \text {. }
$$

Lemma :

For all $m \geq 3$ and all $i, j \geq 2^{m}-1$,
Duplicator has a winning strategy for $\mathcal{G}_{m}\left(a^{i}(\perp), a^{j}(\perp)\right)$.

Corollary

The language $L \subseteq \mathcal{T}(\Sigma)$ of terms with an even number of nodes labeled by a is not FO-definable.

- Star-free languages $=$ FO definable holds for words [McNaughton Papert] but not for trees.
- It is an active field of research to characterize regular tree languages definable in FO. e.g. [Benedikt Segoufin 05] \approx locally threshold testable.

Restriction to antichains

Definition :

An antichain is a subset $P \subseteq \mathcal{P} o s(t)$ s.t. $\forall p, p^{\prime} \in P$, $p \nless p^{\prime}$ and $p \ngtr p^{\prime}$.
antichain-WS k S: second-order quantifications are restricted to antichains.

Theorem :

If $\Sigma_{1}=\emptyset$, the classes of antichain-WS $k S$ languages and regular languages over Σ conincide.

Theorem:

 chain-WSkS is strictly weaker than WSkS.
MSO on Graphs

Weak second-order monadic theory of the grid
Σ finite alphabet,

$$
\mathcal{L}_{\text {grid }}:=\left\{=, S_{\rightarrow}, S_{\uparrow}, L_{a} \mid a \in \Sigma\right\}
$$

Grid $G: \mathbb{N} \times \mathbb{N} \rightarrow \Sigma$; Interpretation structure:

$$
\underline{G}:=\left\langle\mathbb{N} \times \mathbb{N},=, x+1, y+1, L \frac{G}{a}, L \frac{G}{b}, \ldots\right\rangle .
$$

Proposition :

The weak monadic second-order theory of the grid is undecidable.
csq: weak MSO of graphs is undecidable.

MSO on Graphs (remarks)

- algebraic framework [Courcelle]:

MSO decidable on graphs generated by a hedge replacement graph grammar $=$ least solutions of equational systems based on graph operations: $\|: 2$, $\operatorname{exch}_{i, j}: 1$, forget $_{i}: 1$, edge $: 0$, ver: 0 .

- related notion: graphs with bounded tree width.
- FO-definable sets of graphs of bounded degree = locally threshold testable graphs (some local neighborhood appears n times with $n<$ threshold - fixed).

Undecidable Extensions

Left concatenation: new predicate

$$
S_{1}^{\prime}=\{\langle p, 1 \cdot p\rangle \mid p, 1 \cdot p \in \mathcal{P} o s(t)\}
$$

Proposition :
WS2S + left concatenation predicate is undecidable.

Predicate of equal length.
Proposition :
WS2S $+|x|=|y|$ is undecidable.

MONA

[Klarlund et al 01]
http://www.brics.dk/mona/

- decision procedures for WS1S and WS2S
- by translation of formulas into automata

