Tree automata techniques for the verification of infinite state-systems

Summer School VTSA 2011

Florent Jacquemard

INRIA Saclay & LSV (UMR CNRS/ENS Cachan)
 florent.jacquemard@inria.fr
http://www.lsv.ens-cachan.fr/~jacquema

TATA book http://tata.gforge.inria.fr (chapters 1, 3, 7, 8)

Tree Automata Techniques and Applications

HUBERT COMON MAX DAUCHET RÉMI GILLERON FLORENT JACQUEMARD DENIS LUGIEZ CHRISTOF LÖDING SOPHIE TISON MARC TOMMASI

Finite tree automata

- tree recognizers
- generalize NFA from words to trees
- = finite representations of infinite set of labeled trees

are a useful tool for verification procedures

- composition results
 - closure under Boolean operations
 - closure under transformations
- decision results, efficient algorithms
- expressiveness, close relationship with logic

Verification of infinite state systems

regular model checking : static analysis of safety properties for infinite state systems, using symbolic reachability verification techniques.

Concurrent readers/writers

Example from [Clavel et al. LNCS 4350 2007]

1.
$$state(0,0) = state(0,s(0))$$

2. $state(r,0) = state(s(r),0)$
3. $state(r,s(w)) = state(r,w)$
4. $state(s(r),w) = state(r,w)$

- ▶ writers can access the file if nobody else is accessing it (1)
- readers can access the file if no writer is accessing it (2)
- readers and writers can leave the file at any time (3,4)

Properties expected:

- mutual exclusion between readers and writers
- mutual exclusion between writers

1.
$$state(0,0) = state(0,s(0))$$

2. $state(r,0) = state(s(r),0)$
3. $state(r,s(w)) = state(r,w)$
4. $state(s(r),w) = state(r,w)$

Initial configuration:

 $\mathsf{state}(0,0)$

1.
$$state(0,0) = state(0,s(0))$$

2. $state(r,0) = state(s(r),0)$
3. $state(r,s(w)) = state(r,w)$
4. $state(s(r),w) = state(r,w)$

Reachable configura- state(0,0) tions:

Concurrent readers/writers: finite representation

$$\begin{array}{rcl} q_0 & := & 0 \\ q & := & \mathsf{state}(q_0, q_0) \mid \mathsf{state}(q_0, q_1) \mid \mathsf{state}(q_1, q_0) \mid \mathsf{state}(q_2, q_0) \\ q_1 & := & s(q_0) \\ q_2 & := & s(q_1) \mid s(q_2) \end{array}$$

 $1. \hspace{0.1in} \operatorname{state}(0,0) \hspace{0.1in} = \hspace{0.1in} \operatorname{state}(0,s(0))$

2. state
$$(r, 0)$$
 = state $(s(r), 0)$

$$3. \quad \mathsf{state}(r, s(w)) \quad = \quad \mathsf{state}(r, w)$$

$$4. \quad \mathsf{state}(s(r),w) \quad = \quad \mathsf{state}(r,w)$$

$$egin{array}{rcl} q_0 & := & 0 \ q & := & \mathsf{state}(q_0,q_0) \end{array}$$

1. state
$$(0,0)$$
 = state $(0,s(0))$
state $(0,0) \in q \Rightarrow$ state $(0,s(0)) \in q$
2. state $(r,0)$ = state $(s(r),0)$

$$3. \quad \mathsf{state}(r,s(w)) \quad = \quad \mathsf{state}(r,w)$$

4.
$$\operatorname{state}(s(r), w) = \operatorname{state}(r, w)$$

$$egin{array}{rcl} q_0 & := & 0 \ q & := & \mathsf{state}(q_0,q_0) \end{array}$$

1. state
$$(0,0)$$
 = state $(0,s(0))$
state $(0,0) \in q \Rightarrow$ state $(0,s(0)) \in q$
2. state $(r,0)$ = state $(s(r),0)$

$$3. \quad \mathsf{state}(r,s(w)) \quad = \quad \mathsf{state}(r,w)$$

$$4. \quad \mathsf{state}(s(r),w) \quad = \quad \mathsf{state}(r,w)$$

$$egin{array}{rll} q_0 & := & 0 \ q & := & \mathsf{state}(q_0,q_0) \mid \mathsf{state}(q_0,q_1) \ q_1 & := & s(q_0) \end{array}$$

1.
$$state(0,0) = state(0,s(0))$$

2. state
$$(r, 0)$$
 = state $(s(r), 0)$
state $(q_0, 0) \in q \Rightarrow$ state $(s(q_0), 0) \in q$

3.
$$state(r, s(w)) = state(r, w)$$

$$4. \quad \mathsf{state}(s(r),w) \quad = \quad \mathsf{state}(r,w)$$

$$egin{array}{rll} q_0 & := & 0 \ q & := & \mathsf{state}(q_0,q_0) \mid \mathsf{state}(q_0,q_1) \ q_1 & := & s(q_0) \end{array}$$

1.
$$state(0,0) = state(0,s(0))$$

2. state
$$(r, 0)$$
 = state $(s(r), 0)$
state $(q_0, 0) \in q \Rightarrow$ state $(s(q_0), 0) \in q$

3. state(r, s(w)) = state(r, w)

$$4. \quad \mathsf{state}(s(r),w) \quad = \quad \mathsf{state}(r,w)$$

$$egin{array}{rll} q_0 & := & 0 \ q & := & \mathsf{state}(q_0,q_0) \mid \mathsf{state}(q_0,q_1) \mid \mathsf{state}(q_1,q_0) \ q_1 & := & s(q_0) \end{array}$$

1.
$$state(0,0) = state(0,s(0))$$

2. state
$$(r, 0)$$
 = state $(s(r), 0)$
state $(q_1, 0) \in q \Rightarrow$ state $(s(q_1), 0) \in q$

3.
$$state(r, s(w)) = state(r, w)$$

$$4. \quad \mathsf{state}(s(r),w) \quad = \quad \mathsf{state}(r,w)$$

$$egin{array}{rll} q_0 & := & 0 \ q & := & \mathsf{state}(q_0,q_0) \mid \mathsf{state}(q_0,q_1) \mid \mathsf{state}(q_1,q_0) \ q_1 & := & s(q_0) \end{array}$$

1.
$$state(0,0) = state(0,s(0))$$

2. state
$$(r, 0)$$
 = state $(s(r), 0)$
state $(q_1, 0) \in q \Rightarrow$ state $(s(q_1), 0) \in q$

3.
$$state(r, s(w)) = state(r, w)$$

$$4. \quad \mathsf{state}(s(r),w) \quad = \quad \mathsf{state}(r,w)$$

$$\begin{array}{rcl} q_0 & := & 0 \\ q & := & \mathsf{state}(q_0, q_0) \mid \mathsf{state}(q_0, q_1) \mid \mathsf{state}(q_1, q_0) \mid \mathsf{state}(q_2, q_0) \\ q_1 & := & s(q_0) \end{array}$$

1.
$$state(0,0) = state(0,s(0))$$

2. state
$$(r, 0)$$
 = state $(s(r), 0)$
state $(q_2, 0) \in q \Rightarrow$ state $(s(q_2), 0) \in q$

3.
$$state(r, s(w)) = state(r, w)$$

$$4. \quad \mathsf{state}(s(r),w) \quad = \quad \mathsf{state}(r,w)$$

$$\begin{array}{rcl} q_0 & := & 0 \\ q & := & \mathsf{state}(q_0, q_0) \mid \mathsf{state}(q_0, q_1) \mid \mathsf{state}(q_1, q_0) \mid \mathsf{state}(q_2, q_0) \\ q_1 & := & s(q_0) \end{array}$$

$$1. \quad \mathsf{state}(0,0) \qquad = \quad \mathsf{state}(0,s(0))$$

$$2. \quad \mathsf{state}(r,0) \qquad = \quad \mathsf{state}(s(r),0)$$

3. state
$$(r, s(w)) = \text{state}(r, w)$$

state $(q_0, s(q_0)) \in q \Rightarrow \text{state}(q_0, q_0) \in q$

$$4. \quad \mathsf{state}(s(r),w) \quad = \quad \mathsf{state}(r,w)$$

$$\begin{array}{lll} q_0 & := & 0 \\ q & := & \mathsf{state}(q_0, q_0) \mid \mathsf{state}(q_0, q_1) \mid \mathsf{state}(q_1, q_0) \mid \mathsf{state}(q_2, q_0) \\ q_1 & := & s(q_0) \\ q_2 & := & s(q_1) \mid s(q_2) \end{array}$$

- $1. \quad \mathsf{state}(0,0) \qquad = \quad \mathsf{state}(0,s(0))$
- $2. \quad \mathsf{state}(r,0) \qquad = \quad \mathsf{state}(s(r),0)$
- $3. \quad \mathsf{state}(r, s(w)) \quad = \quad \mathsf{state}(r, w)$
- $\begin{array}{rcl} \text{4.} & \mathsf{state}(s(r),w) &=& \mathsf{state}(r,w) \\ & & \mathsf{state}(s(q_0 \mid q_1 \mid q_2),q_0) \in q \Rightarrow \mathsf{state}(q_0 \mid q_1 \mid q_2,q_0) \in q \end{array}$

$$\begin{array}{rcl} q_0 & := & 0 \\ q & := & \mathsf{state}(q_0, q_0) \mid \mathsf{state}(q_0, q_1) \mid \mathsf{state}(q_1, q_0) \mid \mathsf{state}(q_2, q_0) \\ q_1 & := & s(q_0) \\ q_2 & := & s(q_1) \mid s(q_2) \end{array}$$

Concurrent readers/writers: verification

Properties expected:

- 1. mutual exclusion between readers and writers forbidden pattern: state(s(x), s(y))
- 2. mutual exclusion between writers forbidden pattern: state(x, s(s(y)))

The red set: union of

- 1. state $((q_1 | q_2), (q_1 | q_2))$
- 2. state $((q_0 | q_1 | q_2), (q_1 | q_2))$

with $q_0 := 0$, $q_1 := s(q_0)$, $q_2 := s(q_1) \mid s(q_2)$

Verification: The intersection between the set of reachable configurations and the red set is empty.

Functional program

Lists built with constructor symbols cons and nil.

$$\begin{array}{lll} \mathsf{app}(\mathsf{nil},y) &=& y\\ \mathsf{app}\bigl(\mathsf{cons}(x,y),z\bigr) &=& \mathsf{cons}\bigl(x,\mathsf{app}(y,z)\bigr) \end{array}$$

Functional program analysis

set of initial configurations q_{app} : terms of the form $app(\ell_1, \ell_2)$ where ℓ_1 , ℓ_2 are lists of 0 and 1, defined by $q := 0 \mid 1$

$$q_{\ell} := \operatorname{nil} | \operatorname{cons}(q, q_{\ell}) |$$

 q_{app} := $\mathsf{app}(q_\ell, q_\ell)$

set of reachable configurations = the closure according to

$$\begin{array}{rcl} & \operatorname{app}(\operatorname{nil},y) &=& y\\ & \operatorname{app}\bigl(\operatorname{cons}(x,y),z\bigr) &=& \operatorname{cons}\bigl(x,\operatorname{app}(y,z)\bigr) \end{array}$$
 it is
$$\begin{array}{rcl} q &:=& 0 \mid 1\\ & q_\ell &:=& \operatorname{nil} \mid \operatorname{cons}(q,q_\ell)\\ & q_{\operatorname{app}} &:=& \operatorname{app}(q_\ell,q_\ell) \mid \operatorname{cons}(q,q_{\operatorname{app}}) \end{array}$$

Functional program : rev

[Thomas Genet, Valérie Viet Triem Tong, LPAR 01]. Timbuk.

$$\begin{array}{rcl} \operatorname{app}(\operatorname{nil},y) &=& y\\ \operatorname{app}(\operatorname{cons}(x,y),z) &=& \operatorname{cons}(x,\operatorname{app}(y,z))\\ \operatorname{rev}(\operatorname{nil}) &=& \operatorname{nil}\\ \operatorname{rev}(\operatorname{cons}(x,y)) &=& \operatorname{app}(\operatorname{rev}(y),\operatorname{cons}(x,\operatorname{nil})) \end{array}$$

set of initial config.:

$$\begin{array}{rcl} q_0 & := & 0 \\ q_1 & := & 1 \\ q_{\ell_1} & := & \operatorname{nil} \mid \operatorname{cons}(q_1, q_{\ell_1}) \\ q_{\ell_{01}} & := & \operatorname{nil} \mid \operatorname{cons}(q_0, q_{\ell_1}) \mid \operatorname{cons}(q_0, q_{\ell_{01}}) \\ q_{\mathsf{rev}} & := & \operatorname{rev}(q_{\ell_{01}}) \end{array}$$

Functional program : rev

[Thomas Genet, Valérie Viet Triem Tong, LPAR 01]. Timbuk.

$$\begin{array}{rcl} \operatorname{app}(\operatorname{nil},y) &=& y\\ \operatorname{app}(\operatorname{cons}(x,y),z) &=& \operatorname{cons}\big(x,\operatorname{app}(y,z)\big)\\ \operatorname{rev}(\operatorname{nil}) &=& \operatorname{nil}\\ \operatorname{rev}(\operatorname{cons}(x,y)\big) &=& \operatorname{app}\big(\operatorname{rev}(y),\operatorname{cons}(x,\operatorname{nil})\big) \end{array}$$

set of initial config.: $rev(\ell)$ where $\ell \in q_{\ell_{01}}$, list of 0's followed by 1's

$$\begin{array}{rcl} q_0 & := & 0 \\ q_1 & := & 1 \\ q_{\ell_1} & := & \operatorname{nil} \mid \operatorname{cons}(q_1, q_{\ell_1}) \\ q_{\ell_{01}} & := & \operatorname{nil} \mid \operatorname{cons}(q_0, q_{\ell_1}) \mid \operatorname{cons}(q_0, q_{\ell_{01}}) \\ q_{\mathsf{rev}} & := & \operatorname{rev}(q_{\ell_{01}}) \end{array}$$

Functional program cntd

set of reachable configurations: by completion of equations for initial configurations

$$\begin{array}{rcl} q_{0} & := & 0 \\ q_{1} & := & 1 \\ q_{\ell_{1}} & := & \operatorname{nil} \mid \operatorname{cons}(q_{1}, q_{\ell_{1}}) \mid \operatorname{cons}(q_{1}, q_{\operatorname{nil}}) \mid \operatorname{app}(q_{\operatorname{nil}}, q_{\ell_{1}}) \\ q_{\ell_{01}} & := & \operatorname{nil} \mid \operatorname{cons}(q_{0}, q_{\ell_{1}}) \mid \operatorname{cons}(q_{0}, q_{\ell_{01}}) \\ q_{\operatorname{rev}} & := & \operatorname{rev}(q_{\ell_{01}}) \mid \operatorname{nil} \mid \operatorname{app}(q_{\ell_{10}}, q_{\operatorname{nil}}) \\ q_{\ell_{10}} & := & \operatorname{rev}(q_{\ell_{01}}) \mid \operatorname{app}(q_{\ell_{1}}, q_{\ell_{0}}) \\ q_{\operatorname{nil}} & := & \operatorname{nil} \mid \operatorname{rev}(q_{\operatorname{nil}}) \\ q_{\ell_{0}} & := & \operatorname{cons}(q_{0}, q_{\operatorname{nil}}) \mid \operatorname{app}(q_{\operatorname{nil}}, q_{\ell_{0}}) \mid \operatorname{app}(q_{\ell_{0}}, q_{\ell_{0}}) \end{array}$$

property expected: rev(ℓ) not reachable when $\ell \models \exists x, y \ x < y \land 0(x) \land 1(y).$

verification The intersection of $q_{\rm rev}$ and the above set is empty.

Imperative programs

$$p ::= 0 \mid X \mid p \cdot p \mid p \parallel p$$

- 0: null process (termination)
- ► X: program point
- $p \cdot p$: sequential composition
- $p \parallel p$: parallel composition

Transition rules

- ▶ procedure call: $X \to Y \cdot Z$ (Z = return point)
- ▶ procedure call with global state: $Q \cdot X \rightarrow Q' \cdot Y \cdot Z$
- procedure return: $Q \cdot Y \rightarrow Q'$
- global state change: $Q \cdot X \rightarrow Q' \cdot X$
- dynamic thread creation: $X \to Y || Z$
- handshake : $X || Y \to X' || Y'$

Imperative program

[Bouajjani Touili CAV 02]

```
\begin{array}{ccccccc} \text{void X()} \{ & X & \rightarrow & Y \cdot X & (r_1) \\ & \text{while(true)} \{ & Y & \rightarrow & t & (r_2) \\ & \text{if Y()} \{ & Y & \rightarrow & f & (r_3) \\ & \text{thread\_create(\&t1,Z)} & & t \cdot X & \rightarrow & X \parallel Z & (r_4) \\ & \text{} & \text{else } \{ \text{ return } \} & f & \rightarrow & 0 & (r_5) \\ & & \text{} \\ & & \text{} \\ \end{array}
```

The set of reachable configurations is infinite but regular.

Related models of imperative programs

Pushdown systems (sequential programs with procedure calls)

$$X_1 \cdot \ldots \cdot X_n \to Y_1 \cdot \ldots \cdot Y_m$$

Petri nets (multi-threaded programs)

$$X_1 \parallel \ldots \parallel X_n \to Y_1 \parallel \ldots \parallel Y_m$$

PA processes

$$X_1 \to Y_1 \cdot \ldots \cdot Y_m, \quad X_1 \to Y_1 \parallel \ldots \parallel Y_m$$

Process rewrite systems (PRS) [Bouajjani, Touili RTA 05]

$$X_1 \cdot \ldots \cdot X_n \to Y_1 \cdot \ldots \cdot Y_m, \quad X_1 \parallel \ldots \parallel X_n \to Y_1 \parallel \ldots \parallel Y_m$$

Dynamic pushdown networks [Seidl CIAA 09]

Tree languages modulo

In the above model,

- is associative,
- ▶ || is associative and commutative.

The terms of the above algebra correspond to unranked trees,

- ordered (modulo A) and
- unordered (modulo AC).

(models for XML processing)

Overview

Verification of other infinite-states systems.

- configuration = tree (ranked or unranked)
 - process,
 - message exchanged in a protocol,
 - local network with a tree shape,
 - tree data structure in memory, with pointers (e.g. binary search trees)...
- ▶ (infinite) set of configurations = tree language L
- transition relation between configurations
- ▶ safety: transitive $closure(L_{init}) \cap L_{error} = \emptyset$.

Different kinds of trees

- finite ranked trees (terms in first order logic)
- finite unranked ordered trees
- finite unranked unordered trees
- infinite trees...

 \Rightarrow several classes of tree automata.

Overview: properties of automata

- determinism,
- Boolean closures,
- closures under transformations (homomorphismes, transducers, rewrite systems...)
- minimization,
- decision problems, complexity,
 - membership,
 - emptiness,
 - universality,
 - inclusion, equivalence,
 - emptiness of intersection,
 - finiteness...
- pumping and star lemma,
- expressiveness, correspondence with logics.

Organization of the tutorial

- 1. finite ranked tree automata
 - properties
 - algorithms
 - closure under transformation, applications to program verification
- 2. correspondence with the monadic second order logic of the tree (Thatcher and Wright's theorem).
- 3. finite unranked tree automata
 - ordered = Hedge Automata
 - unordered = Presburger automata
 - closure modulo A and AC
 - XML typing and analysis of transformations
- 4. tree automata as Horn clause sets

Part I

Automata on Finite Ranked Trees

Terms in first order logic

Plan

Terms

TA: Definitions and Expressiveness

Determinism and Boolean Closures

Decision Problems

Minimization

Closure under Tree Transformations, Program Verification

Signature

Definition : Signature

A signature Σ is a finite set of function symbols each of them with an arity greater or equal to 0.

We denote Σ_i the set of symbols of arity *i*.

Example :

 $\{+: 2, s: 1, 0: 0\}, \{\wedge: 2, \lor: 2, \neg: 1, \top, \bot: 0\}.$

We also consider a countable set \mathcal{X} of variable symbols.

Terms

Definition : Term

The set of terms over the signature Σ and ${\cal X}$ is the smallest set ${\cal T}(\Sigma,{\cal X})$ such that:

- $\Sigma_0 \subseteq \mathcal{T}(\Sigma, \mathcal{X})$,
- $\mathcal{X} \subseteq \mathcal{T}(\Sigma, \mathcal{X})$,

- if
$$f \in \Sigma_n$$
 and if $t_1, \ldots, t_n \in \mathcal{T}(\Sigma, \mathcal{X})$, then $f(t_1, \ldots, t_n) \in \mathcal{T}(\Sigma, \mathcal{X})$.

The set of ground terms (terms without variables, i.e. $\mathcal{T}(\Sigma, \emptyset)$) is denoted $\mathcal{T}(\Sigma)$.

Example :

$$x$$
, $\neg(x)$, $\land (\lor(x, \neg(y)), \neg(x))$.

A term where each variable appears at most once is called linear. A term without variable is called ground.

Depth
$$h(t)$$
:
 $h(a) = h(x) = 0 \text{ if } a \in \Sigma_0, x \in \mathcal{X},$
 $h(f(t_1, ..., t_n)) = \max\{h(t_1), ..., h(t_n)\} + 1.$

Positions

A term $t \in \mathcal{T}(\Sigma, \mathcal{X})$ can also be seen as a function from the set of its positions $\mathcal{P}os(t)$ into $\Sigma \cup \mathcal{X}$.

The empty position (root) is denoted ε .

 $\mathcal{P}os(t)$ is a subset of \mathbb{N}^* satisfying the following properties:

- $\mathcal{P}os(t)$ is closed under prefix,
- ▶ for all $p \in \mathcal{P}os(t)$ such that $t(p) \in \Sigma_n$ $(n \ge 1)$, $\{pj \in \mathcal{P}os(t) \mid j \in \mathbb{N}\} = \{p1, ..., pn\},\$
- every $p \in \mathcal{P}os(t)$ such that $t(p) \in \Sigma_0 \cup \mathcal{X}$ is maximal in $\mathcal{P}os(t)$ for the prefix ordering.

The size of t is defined by $||t|| = |\mathcal{P}os(t)|$.

Subterm $t|_p$ at position $p \in \mathcal{P}os(t)$:

$$t|_{\varepsilon} = t,$$

$$f(t_1, \dots, t_n)|_{ip} = t_i|_p.$$

The replacement in t of $t|_p$ by s is denoted $t[s]_p$.

Positions (example)

Example :

$$\begin{split} t &= \wedge (\wedge (x, \vee (x, \neg (y))), \neg (x)), \\ t|_{11} &= x, \ t|_{12} = \vee (x, \neg (y)), \ t|_{2} = \neg (x), \\ t[\neg (y)]_{11} &= \wedge (\wedge (\neg (y), \vee (x, \neg (y))), \neg (x)). \end{split}$$

Contexts

Definition : Contexte

A context is a linear term.

The application of a context $C \in \mathcal{T}(\Sigma, \{x_1, \ldots, x_n\})$ to n terms t_1, \ldots, t_n , denoted $C[t_1, \ldots, t_n]$, is obtained by the replacement of each x_i by t_i , for $1 \le i \le n$.

Plan

Terms

TA: Definitions and Expressiveness

Determinism and Boolean Closures

Decision Problems

Minimization

Closure under Tree Transformations, Program Verification

Bottom-up Finite Tree Automata

 $(a+b\,a^*b)^*$

word. run on $aabba: q_0 \xrightarrow{a} q_0 \xrightarrow{a} q_0 \xrightarrow{b} q_1 \xrightarrow{b} q_0 \xrightarrow{a} q_0.$

tree. run on $a(a(b(b(a(\varepsilon)))))$: $q_0 \rightarrow a(q_0) \rightarrow a(a(q_0)) \rightarrow a(a(b(q_1))) \rightarrow a(a(b(b(q_0)))) \rightarrow a(a(b(b(a(q_0))))) \rightarrow a(a(b(b(a(\varepsilon))))))$ with $q_0 := \varepsilon$, $q_0 := a(q_0)$, $q_1 := a(q_1)$, $q_1 := b(q_0)$, $q_0 := b(q_1)$.

Bottom-up Finite Tree Automata

 $(a+b\,a^*b)^*$

word. run on $aabba: q_0 \xrightarrow{a} q_0 \xrightarrow{a} q_0 \xrightarrow{b} q_1 \xrightarrow{b} q_0 \xrightarrow{a} q_0.$

tree. run on $a(a(b(b(a(\varepsilon))))):$ $a(a(b(b(a(\varepsilon))))) \rightarrow a(a(b(b(a(q_0))))) \rightarrow a(a(b(b(q_0)))) \rightarrow a(a(b(b(q_0))))) \rightarrow a(a(q_0)) \rightarrow q_0$ with $\varepsilon \rightarrow q_0$, $a(q_0) \rightarrow q_0$, $a(q_1) \rightarrow q_1$, $b(q_0) \rightarrow q_1$, $b(q_1) \rightarrow q_0$.

Bottom-up Finite Tree Automata

Definition : Tree Automata

A tree automaton (TA) over a signature Σ is a tuple $\mathcal{A} = (\Sigma, Q, Q^{\mathrm{f}}, \Delta)$ where Q is a finite set of states, $Q^{\mathrm{f}} \subseteq Q$ is the subset of final states and Δ is a set of transition rules of the form: $f(q_1, \ldots, q_n) \to q$ with $f \in \Sigma_n$ $(n \ge 0)$ and $q_1, \ldots, q_n, q \in Q$.

The state q is called the head of the rule. The language of A in state q is recursively defined by

$$L(\mathcal{A},q) = \left\{ a \in \Sigma_0 \mid a \to q \in \Delta \right\}$$
$$\cup \bigcup_{f(q_1,\dots,q_n) \to q \in \Delta} f(L(\mathcal{A},q_1),\dots,L(\mathcal{A},q_n))$$

with $f(L_1, ..., L_n) := \{ f(t_1, ..., t_n) \mid t_1 \in L_1, ..., t_n \in L_n \}.$

We say that $t \in L(\mathcal{A}, q)$ is accepted, or recognized, by \mathcal{A} in state q.

The language of \mathcal{A} is $L(\mathcal{A}) := \bigcup_{q^{f} \in Q^{f}} L(\mathcal{A}, q^{f})$ (regular language).

Recognized Languages: Operational Definition

Rewrite Relation

The rewrite relation associated to Δ is the smallest binary relation, denoted $\xrightarrow{}$, containing Δ and closed under application of contexts.

The reflexive and transitive closure of $\xrightarrow{}$ is denoted $\xrightarrow{*}$.

For $\mathcal{A}=(\Sigma,Q,Q^{\mathsf{f}},\Delta)\text{, it holds that}$

$$L(\mathcal{A},q) = \left\{ t \in \mathcal{T}(\Sigma) \mid t \xrightarrow{*}{\Delta} q \right\}$$

and hence

$$L(\mathcal{A}) = \left\{ t \in \mathcal{T}(\Sigma) \mid t \xrightarrow{*} q \in Q^{\mathsf{f}} \right\}$$

Tree Automata: example 1

$$\begin{split} & \underbrace{\mathsf{Example}:}{\Sigma = \{ \land : 2, \lor : 2, \neg : 1, \top, \bot : 0 \},} \\ & \mathcal{A} = \left(\sum_{\{q_0, q_1\}, \{q_1\}, \{q_1\}, \{q_1\}, \{q_1, q_1\}, \{q_1, q_2, q_2, q_1\}, \{q_1, q_2, q_2, q_1\}, \{q_1, q_2, q_2, q_1\}, \{q_1, q_2, q_2, q_2\}, \{q_2, q_1, q_2, q_2\}, \{q_1, q_2, q_2, q_3\}, \{q_2, q_1, q_2\}, \{q_3, q_4, q_4\}, \{q_4, q_4, q_4, q_4, q_4\}, \{q_4, q_4, q_4, q_4\}, \{q_4, q_4\}, \{q_4,$$

$$\begin{array}{c} \wedge (\wedge (\top, \vee (\top, \neg (\bot))), \neg (\top)) \xrightarrow{\mathcal{A}} \wedge (\wedge (\top, \vee (\top, \neg (\bot))), \neg (q_1)) \\ \xrightarrow{\mathcal{A}} & \wedge (\wedge (q_1, \vee (q_1, \neg (q_0))), \neg (q_1)) \xrightarrow{\mathcal{A}} \wedge (\wedge (q_1, \vee (q_1, \neg (q_0))), q_0) \\ \xrightarrow{\mathcal{A}} & \wedge (\wedge (q_1, \vee (q_1, q_1)), q_0) \xrightarrow{\mathcal{A}} \wedge (\wedge (q_1, q_1), q_0) \xrightarrow{\mathcal{A}} \wedge (q_1, q_0) \xrightarrow{\mathcal{A}} q_0 \end{array}$$

Tree Automata: example 2

Example :

$$\Sigma = \{ \land : 2, \lor : 2, \neg : 1, \top, \bot : 0 \},$$

TA recognizing the ground instances of $\neg(\neg(x))$:

$$\mathcal{A} = \left(\Sigma, \{q, q_{\neg}, q_{\mathsf{f}}\}, \{q_{\mathsf{f}}\}, \left\{q_{\mathsf{f}}\}, \left\{q_{\mathsf{f}}\right\}, \left\{q_{\mathsf{f}}$$

Example :

Ground terms embedding the pattern $\neg(\neg(x))$: $\mathcal{A} \cup \{\neg(q_f) \rightarrow q_f, \lor(q_f, q_*) \rightarrow q_f, \lor(q_*, q_f) \rightarrow q_f, \ldots\}$ (propagation of q_f).

Linear Pattern Matching

Proposition :

Given a linear term $t \in \mathcal{T}(\Sigma, \mathcal{X})$, there exists a TA \mathcal{A} recognizing the set of ground instances of t: $L(\mathcal{A}) = \{ t\sigma \mid \sigma : \mathcal{X} \to \mathcal{T}(\Sigma) \}.$

e.g. in regular tree model checking, definition of error configurations by forbidden patterns.

Runs

Definition : Run

A run of a TA $(\Sigma, Q, Q^{f}, \Delta)$ on a term $t \in \mathcal{T}(\Sigma)$ is a function $r : \mathcal{P}os(t) \to Q$ such that for all $p \in \mathcal{P}os(t)$, if $t(p) = f \in \Sigma_n$, r(p) = q and $r(pi) = q_i$ for all $1 \le i \le n$, then $f(q_1, \ldots, q_n) \to q \in \Delta$.

The run r is accepting if $r(\varepsilon) \in Q^{t}$. $L(\mathcal{A})$ is the set of ground terms of $\mathcal{T}(\Sigma)$ for which there exists an accepting run.

Pumping Lemma

Lemma : Pumping Lemma

Let $\mathcal{A} = (\Sigma, Q, Q^{f}, \Delta)$. $L(\mathcal{A}) \neq \emptyset$ iff there exists $t \in L(\mathcal{A})$ such that $h(t) \leq |Q|$.

Lemma : Iteration Lemma

For all TA \mathcal{A} , there exists k > 0 such that for all term $t \in L(\mathcal{A})$ with h(t) > k, there exists 2 contexts $C, D \in \mathcal{T}(\Sigma, \{x_1\})$ with $D \neq x_1$ and a term $u \in \mathcal{T}(\Sigma)$ such that t = C[D[u]] and for all $n \ge 0$, $C[D^n[u]] \in L(\mathcal{A})$.

usage: to show that a language is not regular.

Non Regular Languages

We show with the pumping and iteration lemmatas that the following tree languages are not regular:

•
$$\{f(t,t) \mid t \in \mathcal{T}(\Sigma)\},\$$

•
$$\{f(g^n(a), h^n(a)) \mid n \ge 0\},\$$

•
$$\{t \in \mathcal{T}(\Sigma) \mid |\mathcal{P}os(t)| \text{ is prime}\}.$$

Epsilon-transitions

We extend the class TA into TA ε with the addition of another type of transition rules of the form $q \xrightarrow{\varepsilon} q'$ (ε -transition). with the same expressiveness as TA.

Proposition : Suppression of ε -transitions

For all TA $\varepsilon \ A_{\varepsilon}$, there exists a TA (without ε -transition) A' such that $L(A) = L(A_{\varepsilon})$. The size of A is polynomial in the size of A_{ε} .

pr.: We start with $\mathcal{A}_{\varepsilon}$ and we add $f(q_1, \ldots, q_n) \to q'$ if there exists $f(q_1, \ldots, q_n) \to q$ and $q \xrightarrow{\varepsilon} q'$.

Top-Down Tree Automata

Definition : Top-Down Tree Automata

A top-down tree automaton over a signature Σ is a tuple $\mathcal{A} = (\Sigma, Q, Q^{\text{init}}, \Delta)$ where Q is a finite set of *states*, $Q^{\text{init}} \subseteq Q$ is the subset of initial states and Δ is a set of transition rules of the form: $q \to f(q_1, \ldots, q_n)$ with $f \in \Sigma_n$ $(n \ge 0)$ and $q_1, \ldots, q_n, q \in Q$.

A ground term $t \in \mathcal{T}(\Sigma)$ is accepted by \mathcal{A} in the state q iff $q \xrightarrow{*}{\Lambda} t$.

The language of \mathcal{A} starting from the state q is $L(\mathcal{A}, q) := \{t \in \mathcal{T}(\Sigma) \mid q \xrightarrow{*}{\Delta} t\}.$

The language of $\mathcal A$ is $L(\mathcal A):=\bigcup_{q^{\mathbf i}\in Q^{\mathsf{init}}}L(Q,q^{\mathbf i}).$

Top-Down Tree Automata (expressiveness)

Proposition : Expressiveness

The set of top-down tree automata languages is exactly the set of regular tree languages.

Remark: Notations

In the next slides

TA = Bottom-Up Tree Automata

Plan

Terms

TA: Definitions and Expressiveness

Determinism and Boolean Closures

Decision Problems

Minimization

Closure under Tree Transformations, Program Verification

Determinism

Definition : Determinism

A TA \mathcal{A} is *deterministic* if for all $f \in \Sigma_n$, for all states q_1, \ldots, q_n of \mathcal{A} , there is at most one state q of \mathcal{A} such that \mathcal{A} contains a transition $f(q_1, \ldots, q_n) \to q$.

If \mathcal{A} is deterministic, then for all $t \in \mathcal{T}(\Sigma)$, there exists at most one state q of \mathcal{A} such that $t \in L(\mathcal{A}, q)$. It is denoted $\mathcal{A}(t)$ or $\Delta(t)$.

Completeness

Definition : Completeness

A TA \mathcal{A} is *complete* if for all $f \in \Sigma_n$, for all states q_1, \ldots, q_n of \mathcal{A} , there is at least one state q of \mathcal{A} such that \mathcal{A} contains a transition $f(q_1, \ldots, q_n) \to q$.

If \mathcal{A} is complete, then for all $t \in \mathcal{T}(\Sigma)$, there exists at least one state q of \mathcal{A} such that $t \in L(\mathcal{A}, q)$.

Completion

Proposition : Completion

For all TA \mathcal{A} , there exists a complete TA \mathcal{A}_c such that $L(\mathcal{A}_c) = L(\mathcal{A})$. Moreover, if \mathcal{A} is deterministic, then \mathcal{A}_c is deterministic. The size of \mathcal{A}_c is polynomial in the size of \mathcal{A} , its construction is PTIME.

Completion

Proposition : Completion

For all TA \mathcal{A} , there exists a complete TA \mathcal{A}_c such that $L(\mathcal{A}_c) = L(\mathcal{A})$. Moreover, if \mathcal{A} is deterministic, then \mathcal{A}_c is deterministic. The size of \mathcal{A}_c is polynomial in the size of \mathcal{A} , its construction is PTIME.

pr.: add a trash state q_{\perp} .

Determinization

Proposition : Determinization

For all TA \mathcal{A} , there exists a deterministic TA \mathcal{A}_{det} such that $L(\mathcal{A}_{det}) = L(\mathcal{A})$. Moreover, if \mathcal{A} is complete, then \mathcal{A}_{det} is complete. The size of \mathcal{A}_{det} is exponential in the size of \mathcal{A} , its construction is EXPTIME.

pr.: subset construction. Transitions:

$$f(S_1,\ldots,S_n) \to \{q \mid \exists q_1 \in S_1 \ldots \exists q_n \in S_n \ f(q_1,\ldots,q_n \to q \in \Delta\}$$

for all $S_1, \ldots, S_n \subseteq Q$.

Determinization (example)

Exercice :

Determinise and complete the previous TA (pattern matching of $\neg(\neg(x))$):

$$\mathcal{A} = \left(\Sigma, \{q, q_{\neg}, q_{\mathsf{f}}\}, \{q_{\mathsf{f}}\}, \left\{ \begin{array}{cccc} \bot & \rightarrow & q & \top & \rightarrow & q \\ \neg(q) & \rightarrow & q & \neg(q) & \rightarrow & q_{\neg} \\ \neg(q_{\neg}) & \rightarrow & q_{\mathsf{f}} & \neg(q_{\mathsf{f}}) & \rightarrow & q_{\mathsf{f}} \\ \vee(q, q) & \rightarrow & q & \wedge(q, q) & \rightarrow & q \\ \vee(q_{\mathsf{f}}, q_{*}) & \rightarrow & q_{\mathsf{f}} & \vee(q_{*}, q_{\mathsf{f}}) & \rightarrow & q_{\mathsf{f}} \end{array} \right) \right)$$

Top-Down Tree Automata and Determinism

Definition : Determinism

A top-down tree automaton $(\Sigma, Q, Q^{\text{init}}, \Delta)$ is *deterministic* if $|Q^{\text{init}}| = 1$ and for all state $q \in Q$ and $f \in \Sigma$, Δ contains at most one rule with left member q and symbol f.

The top-down tree automata are in general not determinizable . Proposition :

There exists a regular tree language which is not recognizable by a deterministic top-down tree automaton.

Top-Down Tree Automata and Determinism

Definition : Determinism

A top-down tree automaton $(\Sigma, Q, Q^{\text{init}}, \Delta)$ is *deterministic* if $|Q^{\text{init}}| = 1$ and for all state $q \in Q$ and $f \in \Sigma$, Δ contains at most one rule with left member q and symbol f.

The top-down tree automata are in general not determinizable . Proposition :

There exists a regular tree language which is not recognizable by a deterministic top-down tree automaton.

pr.: $L = \{f(a, b), f(b, a)\}.$

Proposition : Closure

The class of regular tree languages is closed under union, intersection and complementation.

op.	technique	computation time and size of automata
U	disjoint \cup	
\cap	Cartesian product	
	determinization, completion,	
	invert final / non-final states	(lower bound)

Remark :

Proposition : Closure

The class of regular tree languages is closed under union, intersection and complementation.

op.	technique	computation time
		and size of automata
U	disjoint \cup	linear
\cap	Cartesian product	
	determinization, completion,	
	invert final / non-final states	(lower bound)

Remark :

Proposition : Closure

The class of regular tree languages is closed under union, intersection and complementation.

op.	technique	computation time and size of automata
U	disjoint \cup	linear
\cap	Cartesian product	quadratic
	determinization, completion,	
	invert final / non-final states	(lower bound)

Remark :

Proposition : Closure

The class of regular tree languages is closed under union, intersection and complementation.

op.	technique	computation time and size of automata
U	disjoint \cup	linear
\cap	Cartesian product	quadratic
	determinization, completion,	exponential
	invert final / non-final states	(lower bound)

Remark :

Plan

Terms

TA: Definitions and Expressiveness

Determinism and Boolean Closures

Decision Problems

Minimization

Closure under Tree Transformations, Program Verification

Cleaning

Definition : Clean

A state q of a TA A is called *inhabited* if there exists at least one $t \in L(A,q)$. A TA is called *clean* if all its states are inhabited.

Proposition : Cleaning

For all TA \mathcal{A} , there exists a clean TA \mathcal{A}_{clean} such that $L(\mathcal{A}_{clean}) = L(\mathcal{A})$. The size of \mathcal{A}_{clean} is smaller than the size of \mathcal{A} , its construction is PTIME.

pr.: state marking algorithm, running time $O(|Q| \times ||\Delta||)$.

State Marking Algorithm

We construct $M \subseteq Q$ containing all the inhabited states.

• start with $M = \emptyset$

• for all
$$f \in \Sigma$$
, of arity $n \ge 0$, and
all $q_1, \ldots, q_n \in M$ st there exists $f(q_1, \ldots, q_n) \to q$ in Δ ,
add q to M (if it was not already).

We iterate the last step until a fixpoint M_* is reached.

Lemma :

 $q \in M_*$ iff $\exists t \in L(\mathcal{A}, q)$.

Membership Problem

Definition : Membership

Proposition : Membership

The membership problem is decidable in polynomial time.

Exact complexity:

- non-deterministic bottom-up: LOGCFL-complete
- deterministic bottom-up: unknown (LOGDCFL)
- deterministic top-down: LOGSPACE-complete.

Emptiness Problem

Definition : Emptiness

Proposition : Emptiness

The emptiness problem is decidable in linear time.

Emptiness Problem

Definition : Emptiness

Proposition : Emptiness

The emptiness problem is decidable in linear time.

pr.:

quadratic: clean, check if the clean automaton contains a final state.

linear: reduction to propositional HORN-SAT.

linear bis: optimization of the data structures for the cleaning (exo).

Remark :

The problem of the emptiness is PTIME-complete.

Instance-Membership Problem

Definition : Instance-Membership (IM)

Proposition : Instance-Membership

- 1. The problem IM is decidable in polynomial time when t is linear.
- 2. The problem IM is NP-complet when \mathcal{A} is deterministic.
- 3. The problem IM is EXPTIME-complete in general.

Problem of the Emptiness of Intersection

Definition : Emptiness of Intersection

INPUT: *n* TA A_1, \ldots, A_n over Σ . QUESTION: $L(A_1) \cap \ldots \cap L(A_n) = \emptyset$?

Proposition : Emptiness of Intersection

The problem of the emptiness of intersection is EXPTIME-complete.

Problem of the Emptiness of Intersection

Definition : Emptiness of Intersection

INPUT: *n* TA A_1, \ldots, A_n over Σ . QUESTION: $L(A_1) \cap \ldots \cap L(A_n) = \emptyset$?

Proposition : Emptiness of Intersection

The problem of the emptiness of intersection is EXPTIME-complete.

pr.: EXPTIME: n applications of the closure under \cap and emptiness decision.

EXPTIME-hardness: APSPACE = EXPTIME reduction of the problem of the existence of a successful run (starting from an initial configuration) of an alternating Turing machine (ATM) $M = (\Gamma, S, s_0, S_f, \delta)$. [Seidl 94], [Veanes 97] Let $M = (\Gamma, S, s_0, S_f, \delta)$ be a Turing Machine (Γ : input alphabet, S: state set, s_0 initial state, S_f final states, δ : transition relation). First some notations.

- ► a configuration of M is a word of Γ^{*}Γ_SΓ^{*} where Γ_S = {a^s | a ∈ Γ, s ∈ S}. In this word, the letter of Γ_S indicates both the current state and the current position of the head of M.
- a final configuration of M is a word of $\Gamma^*\Gamma_{S_{\mathbf{f}}}\Gamma^*$.
- an *initial configuration* of M is a word of $\Gamma_{s_0}\Gamma^*$.
- ▶ a *transition* of M (following δ) between two configurations v and v' is denoted $v \triangleright v'$

The initial configuration v_0 is accepting iff there exists a final configuration v_f and a finite sequence of transitions $v_0 \triangleright \ldots \triangleright v_f$? This problem whether v_0 is accepting is undecidable in general. If the tape is polynomially bounded (we are restricted to configurations of length $n = |v_0|^c$, for some fixed $c \in \mathbb{N}$), the problem is PSPACE complete.

M alternating: $S = S_{\exists} \uplus S_{\forall}$.

Definition accepting configurations:

- every final configuration (whose state is in S_{f}) is accepting
- ► a configuration c whose state is in S_∃ is accepting if it has at least one successor accepting
- ► a configuration c whose state is in S_∀ is accepting if all its successors are accepting

Theorem (Chandra, Kozen, Stockmeyer 81) APSPACE = EXPTIME

In order to show EXPTIME-hardness, we reduce the problem of deciding whether v_0 is accepting for ${\cal M}$ alternating and polynomially bounded.

Hypotheses (non restrictive):

- $\blacktriangleright \ s_0 \in S_\exists \text{ or } s_0 \in S_\forall \cap S_\mathsf{f}$
- s_0 is non reentering (it only occurs in v_0)
- every configuration with state in S_{\forall} has 0 or 2 successors
- Final configurations are restricted to b_{S_f}b^{*} where b ∈ Γ is the blank symbol.

► S_f is a singleton.

2 technical definitions: for $k \leq n$,

$$\begin{aligned} \mathsf{view}(v,k) &= v[k]v[k+1] & \text{if } k = 1 \\ v[k-1]v[k] & \text{if } k = n \\ v[k-1]v[k]v[k+1] & \text{otherwise} \end{aligned}$$

 $\mathsf{view}(v, v_1, v_2, k) = \langle \mathsf{view}(v, k), \mathsf{view}(v_1, k), \mathsf{view}(v_2, k) \rangle$ $v \triangleright_k \langle v_1, v_2 \rangle \text{ iff}$

1. if
$$v[k] \in \Gamma_S$$
, then $\exists w \triangleright w_1, w_2$ s.t.
view $(v, v_1, v_2, k) =$ view (w, w_1, w_2, k)
2. if $v[k] = a \in \Gamma$, then $v_1[k] \in \{a\} \cup a_S$ and $v_2 = \varepsilon$ or

$$v_2[k] \in \{a\} \cup a_S.$$

first item: around position k, we have two correct transitions of M. This can be tested by the membership of $view(v, v_1, v_2, k)$ to a given set which only depends on M.

Lemma

 $v \rhd v_1, v_2 \text{ iff } \forall k \le n \ v \rhd_k \langle v_1, v_2 \rangle.$

Term representations of runs:

rem. a run of M is not a sequence of configurations but a tree of configurations (because of alternation).

Signature Σ : Ø: constant, Γ : unary, S: unaires, p binary. Notation: if $v = a_1 \dots a_n$, v(x) denotes $a_n(a_{n-1}(\dots a_1(x)))$. Term representations of runs:

- $v_{\mathbf{f}}(p(\emptyset, \emptyset))$ with $v_{\mathbf{f}}$ final configuration,
- ▶ $v(p(t_1, t_2))$ with $v \forall$ -configuration, $t_1 = v'_1(p(t_{1,1}, t_{1,2}))$, $t_2 = v'_2(p(t_{2,1}, t_{2,2}))$ are two term representations of runs, and $v_1 \rhd v'_1, v_2 \rhd v'_2$
- ▶ $v(p(t_1, \emptyset))$ with $v \exists$ -configuration, $t_1 = v'_1(p(t_{1,1}, t_{1,2}))$ term representations of run, and $v_1 \triangleright v'_1$.

notations for $t_1 = v'_1(p(t_{1,1}, t_{1,2}))$:

- head $(t_1) = v_1$
- $\operatorname{left}(t_1) = t_{1,1}$
- $right(t_1) = t_{1,2}$.

This recursive definition suggest the construction of a TA recognizing term representations of successful runs. The difficulty

is the conditions $v_1 \rhd v_1', \, v_2 \rhd v_2',$ for which we use the above lemma.

We build 2n deterministic automata :

for all 1 < k < n, \mathcal{A}_k recognizes

- ▶ $v_{\rm f}(p(\emptyset, \emptyset))$ (recall there is only 1 final configuration by hyp.)
- $v(p(t_1, t_2))$ such that $t_1 \neq \emptyset$ and
 - $v \triangleright_k \langle \mathsf{head}(t_1), \mathsf{head}(t_2) \rangle$
 - left $(t_1) \in L(\mathcal{A}_k)$, right $(t_1) \in L(\mathcal{A}_k) \cup \{\emptyset\}$,
 - ▶ $t_2 = \emptyset$ or left $(t_2) \in L(\mathcal{A}_k)$, right $(t_2) \in L(\mathcal{A}_k) \cup \{\emptyset\}$

idea: A_k memorizes view(head(t_1), k) and view(head(t_2), k) and compare with view(v, k).

for all 1 < k < n, \mathcal{A}'_k recognizes the terms $v_0(p(t_1, t_2))$ with $t_1 = t_2 = \emptyset$ (if s_0 universal and final) or $t_2 = \emptyset$ (if s_0 existential, not final) and $t_1, t_2 \in T$, minimal set of terms without s_0 containing

- ► Ø
- $v(p(t_1, t_2))$ such that $t_1 \neq \emptyset$ and
 - $v \triangleright_k \langle \mathsf{head}(t_1), \mathsf{head}(t_2) \rangle$
 - $\operatorname{left}(t_1) \in T$, $\operatorname{right}(t_1) \in T$,

•
$$t_2 = \emptyset$$
 or $\mathsf{left}(t_2) \in T$, $\mathsf{right}(t_2) \in T$

representations of successful runs
$$= \bigcap_{k=1}^{n} L(\mathcal{A}_k) \cap L(\mathcal{A}'_k).$$

Problem of Universality

Definition : Universality

Proposition : Universality

The problem of universality is EXPTIME-complete.

Problem of Universality

Definition : Universality

Proposition : Universality

The problem of universality is EXPTIME-complete.

pr.: EXPTIME: Boolean closure and emptiness decision.

EXPTIME-hardness: again APSPACE = EXPTIME.

Remark :

The problem of universality is decidable in polynomial time for the deterministic (bottom-up) TA.

pr.: completion and cleaning.

Problems of Inclusion an Equivalence

Definition : Inclusion

Definition : Equivalence

Proposition : Inclusion, Equivalence

The problems of inclusion and equivalence are EXPTIME-complete.

Problems of Inclusion an Equivalence

Definition : Inclusion

Definition : Equivalence

Proposition : Inclusion, Equivalence

The problems of inclusion and equivalence are EXPTIME-complete.

pr.: $L(\mathcal{A}_1) \subseteq L(\mathcal{A}_2)$ iff $L(\mathcal{A}_1) \cap \overline{L(\mathcal{A}_2)} = \emptyset$.

Problems of Inclusion an Equivalence

Definition : Inclusion

Definition : Equivalence

INPUT: two TA A_1 and A_2 over Σ . QUESTION: $L(A_1) = L(A_2)$

Proposition : Inclusion, Equivalence

The problems of inclusion and equivalence are EXPTIME-complete.

pr.: $L(\mathcal{A}_1) \subseteq L(\mathcal{A}_2)$ iff $L(\mathcal{A}_1) \cap \overline{L(\mathcal{A}_2)} = \emptyset$. EXPTIME-hardness: universality is $\mathcal{T}(\Sigma) = L(\mathcal{A}_2)$?

Remark :

If \mathcal{A}_1 and \mathcal{A}_2 are deterministic, it is $O(\|\mathcal{A}_1\| \times \|\mathcal{A}_2\|)$.

Problem of Finiteness

Definition : Finiteness

Proposition : Finiteness

The problem of finiteness is decidable in polynomial time.

Plan

Terms

TA: Definitions and Expressiveness

Determinism and Boolean Closures

Decision Problems

Minimization

Closure under Tree Transformations, Program Verification

Theorem of Myhill-Nerode

Definition :

A congruence \equiv on $\mathcal{T}(\Sigma)$ is an equivalence relation such that for all $f \in \Sigma_n$, if $s_1 \equiv t_1, \ldots, s_n \equiv t_n$, then $f(s_1, \ldots, s_n) \equiv f(t_1, \ldots, t_n)$.

Given $L \subseteq \mathcal{T}(\Sigma)$, the congruence \equiv_L is defined by:

 $s \equiv_L t$ if for all context $C \in \mathcal{T}(\Sigma, \{x\})$, $C[s] \in L$ iff $C[t] \in L$.

Theorem : Myhill-Nerode

The three following propositions are equivalent:

- 1. L is regular
- 2. L is a union of equivalence classes for a congruence \equiv of finite index
- 3. \equiv_L is a congruence of finite index

Proof Theorem of Myhill-Nerode

 $1 \Rightarrow 2$. \mathcal{A} deterministic, def. $s \equiv_{\mathcal{A}} t$ iff $\mathcal{A}(s) = \mathcal{A}(t)$. $2 \Rightarrow 3$. we show that if $s \equiv t$ then $s \equiv_L t$, hence the index of $\equiv_L \leq$ index of \equiv (since we have $\equiv \subseteq \equiv_L$). If $s \equiv t$ then $C[s] \equiv C[t]$ for all C[] (induction on C), hence $C[s] \in L$ iff $C[t] \in L$, i.e. $s \equiv_L t$. $3 \Rightarrow 1$. we construct $\mathcal{A}_{\min} = (Q_{\min}, Q_{\min}^{f}, \Delta_{\min})$, • $Q_{\min} = \text{equivalence classes of } \equiv_L$ ▶ $Q_{\min}^{f} = \{[s] \mid s \in L\},\$ $\Delta_{\min} = \{ f([s_1], \dots, [s_n]) \to [f(s_1, \dots, s_n)] \}$ Clearly, \mathcal{A}_{\min} is deterministic, and for all $s \in \mathcal{T}(\Sigma)$, $\mathcal{A}_{\min}(s) = [s]_L$, i.e. $s \in L(\mathcal{A}_{\min})$ iff $s \in L$.

Minimization

Corollary :

For all DTA $\mathcal{A} = (\Sigma, Q, Q^{f}, \Delta)$, there exists a unique DTA \mathcal{A}_{\min} whose number of states is the index of $\equiv_{L(\mathcal{A})}$ and such that $L(\mathcal{A}_{\min}) = L(\mathcal{A})$.

Minimization

Let $\mathcal{A} = (\Sigma, Q, Q^{\mathsf{f}}, \Delta)$ be a DTA, we build a deterministic minimal automaton \mathcal{A}_{\min} as in the proof of $3 \Rightarrow 1$ of the previous theorem for $L(\mathcal{A})$ (i.e. Q_{\min} is the set of equivalence classes for $\equiv_{L(\mathcal{A})}$).

We build first an equivalence \approx on the states of Q:

▶
$$q \approx_0 q'$$
 iff $q, q' \in Q^{\mathsf{f}}$ ou $q, q' \in Q \setminus Q^{\mathsf{f}}$.
▶ $q \approx_{k+1} q'$ iff $q \approx_k q'$ et $\forall f \in \Sigma_n$,
 $\forall q_1, \dots, q_{i-1}, q_{i+1}, \dots, q_n \in Q \ (1 \le i \le n)$,

$$\Delta\big(f(q_1,\ldots,q_{i-1},q,q_{i+1},\ldots,q_n)\big)\approx_k \Delta\big(f(q_1,\ldots,q_{i-1},q',q_{i+1},\ldots,q_n)\big)$$

Let \approx be the fixpoint of this construction, \approx is $\equiv_{L(\mathcal{A})}$, hence $\mathcal{A}_{\min} = (\Sigma, Q_{\min}, Q_{\min}^{f}, \Delta_{\min})$ with :

►
$$Q_{\min} = \{[q]_{\approx} \mid q \in Q\},$$

► $Q_{\min}^{f} = \{[q^{f}]_{\approx} \mid q^{f} \in Q^{f}\},$
► $\Delta_{\min} = \{f([q_{1}]_{\approx}, \dots, [q_{n}]_{\approx}) \rightarrow [f(q_{1}, \dots, q_{n})]_{\approx}\}.$
recognizes $L(\mathcal{A})$. and it is smaller than \mathcal{A} .

Algebraic Characterization of Regular Languages

Corollary :

A set $L \subseteq \mathcal{T}(\Sigma)$ is regular iff there exists

- a Σ -algebra \mathcal{Q} of finite domain Q,
- an homomorphism $h: \mathcal{T}(\Sigma) \to \mathcal{A}$,
- ▶ a subset $Q^{\mathsf{f}} \subseteq Q$ such that $L = h^{-1}(Q^{\mathsf{f}})$.

operations of \mathcal{Q} : for each $f \in \Sigma_n$, there is a function $f^{\mathcal{Q}} : Q^n \to Q$.

Terms

TA: Definitions and Expressiveness

Determinism and Boolean Closures

Decision Problems

Minimization

Closure under Tree Transformations, Program Verification Tree Homomorphisms Tree Transducers Term Rewriting Tree Automata Based Program Verification

Tree Transformations, Verification

- formalisms for the transformation of terms (languages): rewrite systems, tree homomorphisms, transducers...
 - = transitions in an infinite states system,
 - = evaluation of programs,
 - = transformation of XML documents, updates...
- problem of the type checking:

given:

- $L_{\mathsf{in}} \subseteq \mathcal{T}(\Sigma)$, (regular) input language
- h transformation $\mathcal{T}(\Sigma) \to \mathcal{T}(\Sigma')$
- $L_{\mathsf{out}} \subseteq \mathcal{T}(\Sigma')$ (regular) output language

question: do we have $h(L_{in}) \subseteq L_{out}$?

Tree Homomorphisms

Tree Homomorphisms

Definition :

$$h: \mathcal{T}(\Sigma) \to \mathcal{T}(\Sigma')$$

$$h(f(t_1, \dots, t_n)) := t_f \{ x_1 \leftarrow h(t_1), \dots, x_n \leftarrow h(t_n) \}$$

for $f \in \Sigma_n$, with $t_f \in \mathcal{T}(\Sigma', \{x_1, \dots, x_n\}).$

h is called

- *linear* if for all $f \in \Sigma$, t_f is linear,
- complete if for all $f \in \Sigma_n$, $vars(t_f) = \{x_1, \dots, x_n\}$,
- symbol-to-symbol if for all $f \in \Sigma_n$, $height(t_f) = 1$.

Homomorphisms: examples

Example : ternary trees \rightarrow binary trees

Let $\Sigma=\{a:0,b:0,g:3\},\ \Sigma'=\{a:0,b:0,f:2\}$ and $h:\mathcal{T}(\Sigma)\to\mathcal{T}(\Sigma')$ defined by

•
$$t_a = a$$
,

$$\blacktriangleright t_b = b$$

►
$$t_g = f(x_1, f(x_2, x_3)).$$

h(g(a, g(b, b, b), a)) = f(a, f(f(b, f(b, b))), a))

Example : Elimination of the \wedge

Let $\Sigma = \{0:0,1:0,\neg:1,\lor:2,\land:2\}$, $\Sigma' = \{0:0,1:0,\neg:1,\lor:2\}$ and $h:\mathcal{T}(\Sigma) \to \mathcal{T}(\Sigma')$ with $t_{\wedge} = \neg(\lor(\neg(x_1),\neg(x_2)))$.

Theorem :

If L is regular and h is a linear homomorphism, then h(L) is regular.

Theorem :

If L is regular and h is a linear homomorphism, then h(L) is regular.

let $\mathcal{A} = (Q, Q^{\mathsf{f}}, \Delta)$ be clean, we build $\mathcal{A}' = (Q', Q'_{\mathsf{f}}, \Delta')$. For each $r = f(q_1, \ldots, q_n) \rightarrow q \in \Delta$, with $t_f \in \mathcal{T}(\Sigma', \mathcal{X}_n)$ (linear), let $Q^r = \{q_p^r \mid p \in \mathcal{P}os(t_f)\}$, and Δ_r defined as follows: for all $p \in \mathcal{P}os(t_f)$:

- if $t_f(p) = g \in \Sigma'_m$, then $g(q^r_{p_1}, \ldots, q^r_{p_m}) \to q^r_p \in \Delta_r$,
- if $t_f(p) = x_i$, then $q_i \xrightarrow{\varepsilon} q_p^r \in \Delta_r$,

$$\blacktriangleright q_{\varepsilon}^r \xrightarrow{\varepsilon} q \in \Delta_r.$$

$$\begin{split} &Q' = Q \cup \bigcup_{r \in \Delta} Q^r, \\ &Q'_{\mathsf{f}} = Q_{\mathsf{f}}, \\ &\Delta' = \bigcup_{r \in \Delta} \Delta_r. \end{split}$$

It holds that $h(L(\mathcal{A})) = L(\mathcal{A}')$.

This is not true in general for the non-linear homomorphisms.

This is not true in general for the non-linear homomorphisms.

Example : Non-linear homomorphisms $\Sigma = \{a: 0, g: 1, f: 1\}, \Sigma' = \{a: 0, g: 1, f': 2\},$

$$\begin{array}{l} h: \mathcal{T}(\Sigma) \to \mathcal{T}(\Sigma') \text{ with } t_a = a, \ t_g = g(x_1), \ t_f = f'(x_1, x_1) \\ \text{Let } L = \left\{ f\left(g^n(a)\right) \mid n \ge 0 \right\}, \\ h(L) = \left\{ f'\left(g^n(a), g^n(a)\right) \mid n \ge 0 \right\} \text{ is not regular.} \end{array}$$

Theorem :

ŀ

For all regular languages L and all homomorphisms $h, \ h^{-1}(L)$ is regular.

 $\begin{aligned} \mathcal{A}' &= (Q',Q_{\mathsf{f}}',\Delta') \text{ complete deterministic such that } L(\mathcal{A}') = L. \\ \text{We construct } \mathcal{A} &= (Q,Q_{\mathsf{f}},\Delta) \text{ with } Q = Q' \uplus \{q_\forall\} \ Q_f = Q_{\mathsf{f}}' \text{ and } \Delta \\ \text{ is defined by:} \end{aligned}$

- for $a \in \Sigma_0$, if $t_a \xrightarrow{*}{\mathcal{A}'} q$ then $a \to q \in \Delta$;
- ▶ for all $f \in \Sigma_n$ with n > 0, for $p_1, \ldots, p_n \in Q$, if $t_f \{x_1 \mapsto p_1, \ldots, x_n \mapsto p_n\} \xrightarrow{*}{\mathcal{A}'} q$ then $f(q_1, \ldots, q_n) \to q \in \Delta$ where $q_i = p_i$ if x_i occurs in t_f and $q_i = q_\forall$ otherwise;

▶ for
$$a \in \Sigma_0$$
, $a \to q_\forall \in \Delta$;
▶ for $f \in \Sigma_n$ where $n > 0$, $f(q_\forall, \dots, q_\forall) \to q_\forall \in \Delta$.
t holds that $t \xrightarrow{*}{\mathcal{A}} q$ iff $h(t) \xrightarrow{*}{\mathcal{A}'} q$ for all $q \in Q'$.

Closure under Homomorphisms

Theorem :

The class of regular tree languages is the smallest non trivial class of sets of trees closed under linear homomorphisms and inverse homomorphisms.

A problem whose decidability has been open for 35 years:

INPUT: a TA A, an homomorphism hQUESTION: is h(L(A)) regular?

Tree Transducers

Tree Transducers

Definition : Bottom-up Tree Transducers

A bottom-up tree transducer (TT) is a tuple $U = (\Sigma, \Sigma', Q, Q^{\rm f}, \Delta)$ where

- Σ , Σ' are the input, resp. output, signatures,
- Q is a finite set of states,
- $Q^{\mathsf{f}} \subseteq Q$ is the subset of final states
- Δ is a set of transduction (rewrite) rules of the form:
 - ► $f(p_1(x_1), \ldots, p_n(x_n)) \rightarrow p(u)$ with $f \in \Sigma_n$ $(n \ge 0)$, $p_1, \ldots, p_n, p \in Q, x_1, \ldots, x_n$ pairwise distinct and $u \in \mathcal{T}(\Sigma', \{x_1, \ldots, x_n\})$, or
 - $p(x_1) \rightarrow p'(u)$ with $q, q' \in Q$, $u \in \mathcal{T}(\Sigma', \{x_1\})$.

A TT is *linear* if all the u in transduction rules are linear.

The transduction relation of U is the binary relation:

$$L(U) = \left\{ \langle t, t' \rangle \mid t \xrightarrow{*}{U} q(t'), t \in \mathcal{T}(\Sigma), t' \in \mathcal{T}(\Sigma'), q \in Q^{\mathsf{f}} \right\}$$

Example 1

$$U_{1} = \left(\{f: 1, a: 0\}, \{g: 2, f, f': 1, a: 0\}, \{q, q'\}, \{q'\}, \Delta_{1}\right),$$
$$\Delta_{1} = \left\{\begin{array}{cc} a \to q(a) \\ f(q(x_{1})) \to q(f(x_{1})) \mid q(f'(x_{1})) \mid q'(g(x_{1}, x_{1}))\end{array}\right\}$$

Example 2

$$\Sigma_{in} = \{f : 2, g : 1, a : 0\},\$$

$$U_2 = (\Sigma_{in}, \Sigma_{in} \cup \{f' : 1\}, \{q, q', q_f\}, \{q_f\}, \Delta_2),\$$

$$\Delta_2 = \begin{cases} a \rightarrow q(a) \mid q'(a) \\ g(q(x_1)) \rightarrow q(g(x_1)) \\ g(q'(x_1)) \rightarrow q'(g(x_1)) \\ f(q'(x_1), q'(x_2)) \rightarrow q'(f(x_1, x_2)) \\ f(q'(x_1), q'(x_2)) \rightarrow q_f(f'(x_1)) \end{cases}$$

 $L(U_2) = \left\{ \langle f(t_1, t_2), f'(t_1) \mid t_2 = g^m(a), m \ge 0 \right\}$

Tree Transducers, example

Token tree protocol [Abdulla et al CAV02]

$$\begin{array}{rcl} \underline{\mathbf{n}} & \to & q_0(\underline{\mathbf{n}'}) \\ \underline{\mathbf{t}} & \to & q_1(\underline{\mathbf{n}'}) \\ \mathbf{n}(q_0(x_1), q_0(x_2)) & \to & q_0(\mathbf{n}(x_1, x_2)) \\ \mathbf{t}(q_0(x_1), q_0(x_2)) & \to & q_1(\mathbf{n}(x_1, x_2)) \\ \mathbf{n}(q_1(x_1), q_0(x_2)) & \to & q_2(\mathbf{t}(x_1, x_2)) \\ \mathbf{n}(q_0(x_1), q_1(x_2)) & \to & q_2(\mathbf{t}(x_1, x_2)) \\ \mathbf{n}(q_2(x_1), q_0(x_2)) & \to & q_2(\mathbf{n}(x_1, x_2)) \\ \mathbf{n}(q_0(x_1), q_2(x_2)) & \to & q_2(\mathbf{n}(x_1, x_2)) \end{array}$$

property: mutual exclusion (for every network) initial: terms of $\mathcal{T}(\{t, n, \underline{t}, \underline{n}\})$, containing exactly one token. verification: the intersection of his closure with the set $\{q_2(t) \mid t \in \mathcal{T}(\{t, n, \underline{t}, \underline{n}\}), t \text{ contains at least } 2 \text{ tokens}\}$ (regular) is empty.

- Linear bottom-up TT are closed under composition.
- Deterministic bottom-up TT are closed under composition.

Theorem :

- The domain of a TT is a regular tree language.
- The image of a regular tree language by a linear TT is a regular tree language.

Transducers and Homomorphisms

An homomorphism is called *delabeling* if it is linear, complete, symbol-to-symbol.

Definition : Bimorphisms

A bimorphism is a triple B = (h, h', L) where h, h' are homomorphisms and L is a regular tree language.

$$L(B) = \left\{ \langle h(t), h'(t) \rangle \mid t \in L \right\}$$

Theorem :

 $\mathsf{TT} \equiv \mathsf{bimorphisms}\ (h, h', L)$ where h delabeling.

Term Rewriting Systems

Term Rewriting

Definition : Substitution

A substitution is a function of finite domain from \mathcal{X} into $\mathcal{T}(\Sigma, \mathcal{X})$. We extend the definition to $\mathcal{T}(\Sigma, \mathcal{X}) \to \mathcal{T}(\Sigma, \mathcal{X})$ by:

$$f(t_1,\ldots,t_n)\sigma = f(t_1\sigma,\ldots,t_n\sigma) \quad (n \ge 0)$$

The application $C[t_1, \ldots, t_n]$ of a context $C \in \mathcal{T}(\Sigma, \{x_1, \ldots, x_n\})$ to *n* terms t_1, \ldots, t_n , is $C\sigma$ with $\sigma = \{x_1 \mapsto t_1, \ldots, x_n \mapsto t_n\}$.

Term Rewriting

A rewrite system \mathcal{R} is a finite set of rewrite rules of the form $\ell \to r$ with $\ell, r \in \mathcal{T}(\Sigma, \mathcal{X})$.

The relation $\xrightarrow{\mathcal{R}}$ is the smallest binary relation containing \mathcal{R} , and closed under application of contexts and substitutions. i.e. $s \xrightarrow{\mathcal{R}} t$ iff $\exists p \in \mathcal{P}os(s), \ell \to r \in \mathcal{R}, \sigma, s|_p = \ell \sigma$ and $t = s[r\sigma]_p$.

We note $\frac{*}{\mathcal{R}}$ the reflexive and transitive closure of $\xrightarrow{}\mathcal{R}$.

Example :

$$\mathcal{R} = \{+(0,x) \rightarrow x, +(s(x),y) \rightarrow s(+(x,y))\}.$$

$$+ (s(s(0)), +(0, s(0))) \xrightarrow{\mathcal{R}} + (s(s(0)), s(0)) \\ \xrightarrow{\mathcal{R}} s(+(s(0), s(0))) \\ \xrightarrow{\mathcal{R}} s(s(+(0, s(0)))) \\ \xrightarrow{\mathcal{R}} s(s(s(0)))$$

TRS Preserving Regularity

For a TRS \mathcal{R} over Σ and $L \subseteq \mathcal{T}(\Sigma)$,

$$\mathcal{R}^*(L) = \{ t \in \mathcal{T}(\Sigma) \mid \exists s \in L, s \xrightarrow{*}{\mathcal{R}} t \}$$

Regularity Preservation

Identify a class C of TRS such that for all $\mathcal{R} \in C$, $\mathcal{R}^*(L)$ is regular if L is regular.

Theorem : [Gilleron STACS 91]

It is undecidable in general whether a given TRS is preserving regularity.

Ground TRS

Theorem : [Brainerd 69]

Ground TRS are preserving regularity.

Given: TA \mathcal{A}_{in} and ground TRS $\mathcal{R}.$ We start with

$$\mathcal{A}_{\mathsf{in}} \cup (\Sigma, Q_{\mathcal{R}}, \emptyset, \{ f(q_{r_1}, \dots, q_{r_n}) \to q_r \mid r = f(r_1, \dots r_n) \in Q_{\mathcal{R}} \})$$

where $Q_{\mathcal{R}} = strict \ subterms(rhs(\mathcal{R}))$, and add transitions according to the schema:

$$lhs(\mathcal{R}) \ni \ell \longrightarrow q$$

$$\downarrow \mathcal{R} \qquad \qquad \downarrow \mathcal{A} \qquad \qquad \downarrow \mathcal{A}$$

$$f(r_1, \dots, r_n) \longrightarrow f(q_{r_1}, \dots, q_{r_n})$$

no states are added \rightarrow termination. The TA obtained recognizes $\mathcal{R}^*(L(\mathcal{A}_{in}))$.

Ground TRS (examples)

Linear and right-shallow TRS

right-shallow: variables at depth at most 1 in rhs of rules.

Theorem : [Salomaa 88]

Linear and right-shallow TRS preserve regularity.

Given: TA A_{in} and linear and right-shallow TRS \mathcal{R} . The construction is similar to the ground TRS case: We start with

$$\mathcal{A}_{\mathsf{in}} \cup (\Sigma, Q_{\mathcal{R}}, \emptyset, \{ f(q_{r_1}, \dots, q_{r_n}) \to q_r \mid r = f(r_1, \dots, r_n) \in Q_{\mathcal{R}} \})$$

where $Q_{\mathcal{R}} = strict \ subterms(rhs(\mathcal{R})) \setminus \mathcal{X}$, and add transitions according to the schema:

where $\ell \in lhs(\mathcal{R})$, substitution $\sigma : vars(\ell) \to Q$, for all $i \leq n$, if $r_i \notin \mathcal{X}$ then $q_i = q_{r_i}$ and $q_i = r_i \sigma$ otherwise.

Linear and right-shallow TRS (examples)

where $\ell \in lhs(\mathcal{R})$, substitution $\sigma : vars(\ell) \to Q$, for all $i \leq n$, if $r_i \notin \mathcal{X}$ then $q_i = q_{r_i}$ and $q_i = r_i \sigma$ otherwise.

$$\begin{array}{c|c} s(x) - s(y) \to x - y & s(x) \to s(0) + x \\ \hline s(q_1) - s(q_2) \xrightarrow{\bullet} q'_1 - q'_2 \xrightarrow{\bullet} q & s(q_1) \xrightarrow{\bullet} q \\ \downarrow \mathcal{R} & \downarrow \mathcal{A} & \downarrow \mathcal{A} \\ q_1 - q_2 & s(0) + q_1 \xrightarrow{\bullet} q_{s(0)} + q_1 \end{array}$$

Linear and right-shallow TRS: extensions

Other classes of TRS preserving regularity

- [Coquide et al 94] semi-monadic or inverse-growing TRS: for all ℓ → r ∈ R, vars(r) ∩ vars(ℓ) at depth at most 1 in r.
- [Nagaya Toyama RTA 02] right-linear and right-shallow TRS. NOT left-linear.
- [Gyenizse Vagvolgyi GSMTRS 98] linear and generalized semi-monadic TRS
- [Takai Kaji Seki RTA 00] right-linear finite path overlapping TRS

Right-Linearity and Right-Shallowness Conditions

Relaxing these conditions generaly breaks regularity preservation.

Example : Right-Linearity

let $\mathcal{R} = \{f(x) \to g(x, x)\}$ (flat and left-linear), $L_{in} = \{f(\dots f(c))\}$. $\mathcal{R}^*(L_{in}) \cap \mathcal{T}(\{g, c\})$ is the set of balanced binary trees of $\mathcal{T}(\{g, c\})$, which is not regular.

Example : Right-Shallowness

With rewrite rules whose left and right hand-side have height at most two, it is possible simulate Turing machine computations, even in the case of words (symbols of arity 0 or 1).

Exceptions (for the right-shallowness)

- ▶ [Rety LPAR 99] constructor based (with restrictions on L_{in}). ex: app(nil, y) → y, app(cons(x, y), z) → cons(x, app(y, z)).
- [Seki et al RTA 02] Layered Transducing TRS

Linear I/O Separated Layered Transducing TRS

[Seki et al RTA 02]

This class corresponds to linear tree transducers.

over $\Sigma = \Sigma_i \uplus \Sigma_o \uplus Q$, rewrite rules of the form

$$\begin{array}{rccc} f_i(p_1(x_1),...,p_n(x_n)) & \to & p(t) \\ p_1'(x_1) & \to & p'(t') \end{array}$$

where $f_i \in \Sigma_i$, $p_1, \ldots, p_n, p, p'_1, p' \in Q \ x_1, \ldots, x_n$ are disjoint variables, $t, t' \in \mathcal{T}(\Sigma_o, \mathcal{X})$ such that $vars(t) \subseteq \{x_1, \ldots, x_n\}$ and $vars(t') \subseteq \{x_1\}$.

To know more

Further results closure of tree automata languages:

- closure of extended tree automata languages, modulo [Gallagher Rosendahl 08], [JRV JLAP 08], [JKV LATA 09], [JKV IC 11]
- rewrite strategies (bottom-up, context-sensitive, innermost, outermost...) [Durand et al RTA 07,10,11], [Kojima Sakai RTA 08], [Rety Vuotto JSC 05], [GGJ WRS 08]
- constrained/controlled rewriting [Sénizergues French Spring School of TCS 93], [JKS FroCoS 11]
- unranked tree rewriting (XML updates) [JR RTA 08], [JR PPDP 10]

Tree Automata Based Program Verification Some Techniques and Tools Program Analysis with Tree Automata / Grammars

(very partial list) focus on 3 approaches

- [Reynolds IP 68] LISP programs \rightarrow Ifp solutions of equations
- ▶ [Jones Muchnick POPL 79] LISP programs \rightarrow tree grammars
- [Jones 87] lazy higher-order functional programs
- [Heintze Jaffar 90] logic programs \rightarrow set constraints
- [Lugiez Schnoebelen CONCUR 98], [Bouajjani Touili 03+] imperative programs w. prefix rewriting: PA-processes, PAD systems, PRS...
- ▶ [Genet et al 98+]

functional programs, security protocols, Java Bytecode

► [Jones Andersen TCS 07] functional programs

Timbuk

[Genet et al] (IRISA) http://www.irisa.fr/celtique/genet/timbuk

Computation of rewrite closure by tree automata completion, with over-approximations. User defined or infered accelerations.

- analysis of security protocols
 SmartRight, Copy Protection Technology for DVB, Thomson
- analysis of Java Bytecode with Copster

Timbuk library, used in other tools like

- TA4SP, one of the proof back-ends of the AVISPA tool for security protocol verification
- SPADE

[Tayssir Touili et al CAV 07] (LIAFA).

http://www.liafa.jussieu.fr/~touili/spade.html

Reachability analysis for multithreaded dynamic and recursive programs.

(PAD) Systems [Touili VISSAS 05]

$$X_1 \cdot \ldots \cdot X_n \to Y_1 \cdot \ldots \cdot Y_m, \quad X_1 \to Y_1 \parallel \ldots \parallel Y_m$$

Case studies

- Windows Bluetooth driver
- multithreaded program based on the class java.util.Vector from the Java Standard Collection Framework
- concurrent insertions on a binary search tree

Approximations of Collecting Semantics [Jones Andersen TCS 07]

collecting semantics [Cousot²] (roughly): mapping associating to each program point p the set of configurations reachable at p.

[Kochems Ong RTA 11] finer approximation using indexed linear tree grammars (instead of regular grammars).

Regular Tree Grammars

Definition : Regular Tree Grammars

A is a tuple $\mathcal{G} = \langle \mathcal{N}, S, \Sigma, P \rangle$ where \mathcal{N} is a finite set of nullary *nonterminal* symbols, $S \in \mathcal{N}$ (axiom of \mathcal{G}), Σ is a signature disjoint from \mathcal{N} and P is a set of *production rules* of the form X := r with $r \in \mathcal{T}(\Sigma \cup \mathcal{N})$.

Example :

$$\Sigma = \{ \land : 2, \lor : 2, \neg : 1, \top, \bot : 0 \}, \ \mathcal{G} = (\{X_0, X_1\}, X_1, \Sigma, P).$$

$$P = \begin{cases} X_0 := \bot & X_1 := \top \\ X_1 := \neg(X_0) & X_0 := \neg(X_1) \\ X_0 := \lor(X_0, X_0) & X_1 := \lor(X_0, X_1) \\ X_1 := \lor(X_1, X_0) & X_1 := \lor(X_1, X_1) \\ X_0 := \land(X_0, X_0) & X_0 := \land(X_0, X_1) \\ X_0 := \land(X_1, X_0) & X_1 := \land(X_1, X_1) \end{cases}$$

Approximations of Collecting Semantics: Example

Concurrent readers/writers: reachable configurations

$$\begin{array}{rclcrc} \mathcal{R} = & R_1: & \mathsf{state}(0,0) & \to & \mathsf{state}(0,s(0)) \\ & R_2: & \mathsf{state}(X_2,0) & \to & \mathsf{state}(s(X_2),0) \\ & R_3: & \mathsf{state}(X_3,s(Y_3)) & \to & \mathsf{state}(X_3,Y_3) \\ & R_4: & \mathsf{state}(s(X_4),Y_4) & \to & \mathsf{state}(X_4,Y_4) \end{array}$$

$R_2:$ stat	$\begin{array}{rcl} \operatorname{ate}(0,0) & \to & \operatorname{state}(0,s(0)) \\ \operatorname{e}(X_2,0) & \to & \operatorname{state}(s(X_2),0) \end{array}$
	$(s, s(Y_3)) \rightarrow \text{state}(X_3, Y_3)$
$R_4: \operatorname{state}(s(X_4),Y_4) \rightarrow \operatorname{state}(X_4,Y_4)$	
$R_0 := state(0,0)$	
$R_0 := R_1$	$state(0,0) = \mathit{lhs}(R_1)$
$R_1 := \operatorname{state}(0, s(0))$	
$R_0 := R_2$	$state(0,0) = state(X_2,0)\{X_2 \mapsto 0\}$
$R_2 := \operatorname{state}(s(X_2), 0)$	
$X_2 := 0$	
$X_2 := s(X_2)$	$state(s(X_2), 0) =$
	$state(X_2,0)\{X_2\mapsto s(X_2)\}$
$R_1 := R_3$	state(0, s(0)) =
$R_3 := \operatorname{state}(X_3, Y_3)$	$state(X_3, s(Y_3)) \{ X_3 \mapsto 0, Y_3 \mapsto 0 \}$
$X_3 := 0, \ Y_3 := 0$	
$R_2 := R_4$	$state(s(X_2), 0)) =$
$R_4 := \operatorname{state}(s(X_4), Y_4)$	$state(s(X_4), Y_4)\{X_4 \mapsto X_2, Y_4 \mapsto 0\}$
$X_4 := X_2, \ Y_4 := 0$	135 / 200

Approximations of Collecting Semantics: Example

-

-

$$\begin{array}{rcl} \mathcal{R} = & R_{1}: & \operatorname{state}(0,0) \rightarrow & \operatorname{state}(0,s(0)) \\ & R_{2}: & \operatorname{state}(X_{2},0) \rightarrow & \operatorname{state}(s(X_{2}),0) \\ & R_{3}: & \operatorname{state}(X_{3},s(Y_{3})) \rightarrow & \operatorname{state}(X_{3},Y_{3}) \\ & R_{4}: & \operatorname{state}(s(X_{4}),Y_{4}) \rightarrow & \operatorname{state}(X_{4},Y_{4}) \end{array} \\ \hline \begin{array}{rcl} R_{0} & := & \operatorname{state}(0,0) \\ \hline R_{0} & := & R_{1} \\ \hline R_{1} & := & \operatorname{state}(0,s(0)) \\ \hline R_{0} & := & R_{2} \\ R_{2} & := & \operatorname{state}(s(X_{2}),0) \\ \hline X_{2} & := & 0 \\ \hline X_{2} & := & s(X_{2}) \\ \hline R_{1} & := & R_{3} \\ \hline R_{3} & := & \operatorname{state}(X_{3},Y_{3}) \\ \hline X_{3} & := & 0, & Y_{3} & := & 0 \\ \hline R_{2} & := & R_{4} \\ \hline R_{4} & := & \operatorname{state}(s(X_{4}),Y_{4}) \\ \hline X_{4} & := & X_{2}, & Y_{4} & := & 0 \end{array}$$

Approximations of Collecting Semantics: Example 2 [Jones Andersen TCS 07]

```
let rec first |1||_2 =
  match I1, I2 with
   [], \_ \rightarrow []
   1::m, x::xs \rightarrow x::(first m xs);
                               first(nil, X_s) \rightarrow nil
 R_2:
 R_3: first(cons(1, M), cons(X, X_s)) \rightarrow cons(X, first(M, X_s))
let rec sequence y =
 y::(sequence (1::y));
 R_4: sequence(Y) \rightarrow cons(Y, sequence(cons(1, Y)))
let g n =
 first n (sequence []);
 R_1: g(N) \rightarrow \text{first}(N, \text{sequence}(\text{nil}))
```

Part II

Weak Second Order Monadic Logic with k successors

Logic and Automata

logic for expressing properties of labeled binary trees
 = specification of tree languages,

Logic and Automata

logic for expressing properties of labeled binary trees
 = specification of tree languages, example:

$$t \models \forall x \; a(x) \Rightarrow \exists y \; y > x \land b(y)$$

- compilation of formulae into automata
 - = decision algorithms.
- equivalence between both formalisms

[Thatcher & Wright's theorem].

WSkS: Definition

 $\mathsf{Automata} \to \mathsf{Logic}$

 $\mathsf{Logic} \to \mathsf{Automata}$

Fragments and Extensions of WSkS

Interpretation Structures

 $\mathcal{L} :=$ set of predicate symbols $P_1, \ldots P_n$ with arity.

A structure $\mathcal M$ over $\mathcal L$ is a tuple

$$\mathcal{M} := \left\langle \mathcal{D}, P_1^{\mathcal{M}}, \dots, P_n^{\mathcal{M}} \right\rangle$$

where

- \mathcal{D} is the domain of \mathcal{M} ,
- ► every P^M_i (interpretation of P_i) is a subset of D^{arity(P_i)} (relation).

Term as structure

 Σ signature, $k = \max$ arity.

$$\mathcal{L}_{\Sigma} := \{=, <, S_1, \dots, S_k, L_a \mid a \in \Sigma\}.$$

to $t \in \mathcal{T}(\Sigma)$, we associate a structure \underline{t} over \mathcal{L}_{Σ}

$$\underline{t} := \left\langle \mathcal{P}os(t), =, <, S_1, \dots, S_k, L_{\underline{a}}^t, L_{\underline{b}}^t, \dots \right\rangle$$

where

- domain = positions of t ($\mathcal{P}os(t) \subset \{1, \ldots, k\}^*$)
- = equality over $\mathcal{P}os(t)$,
- < prefix ordering over $\mathcal{P}os(t)$,

►
$$S_i = \{ \langle p, p \cdot i \rangle \mid p, p \cdot i \in \mathcal{P}os(t) \}$$
 (*i*th successor position),

$$\blacktriangleright L_a^{\underline{t}} = \{ p \in \mathcal{P}os(t) \mid t(p) = a \}.$$

FOL with k successors

• first order variables x, y...

Notation: $\phi(x_1, \ldots, x_m)$, where x_1, \ldots, x_m are the free variables of ϕ .

WSkS: syntax

- ▶ first order variables x, y...
- second order variables X, Y...

Notation: $\phi(x_1, \ldots, x_m, X_1, \ldots, X_n)$, where x_1, \ldots, x_m , X_1, \ldots, X_n are the free variables of ϕ .

WSkS: semantics

• $t \in \mathcal{T}(\Sigma)$,

- valuation σ of first order variables into $\mathcal{P}os(t)$,
- valuation δ of second order variables into subsets of $\mathcal{P}os(t)$,
- $\underline{t}, \sigma, \delta \models x = y$ iff $\sigma(x) = \sigma(y)$,

$$\blacktriangleright \ \underline{t}, \sigma, \delta \models x < y \text{ iff } \sigma(x) <_{\textit{prefix}} \sigma(y),$$

- $\underline{t}, \sigma, \delta \models x \in X$ iff $\sigma(x) \in \delta(X)$,
- $\underline{t}, \sigma, \delta \models S_i(x, y)$ iff $\sigma(y) = \sigma(x) \cdot i$,
- $\underline{t}, \sigma, \delta \models L_a(x)$ iff $t(\sigma(x)) = a$ i.e. $\sigma(x) \in L_a^{\underline{t}}$,
- $\blacktriangleright \ \underline{t}, \sigma, \delta \models \phi_1 \land \phi_2 \text{ iff } \underline{t}, \sigma, \delta \models \phi_1 \text{ and } \underline{t}, \sigma, \delta \models \phi_2,$
- $\blacktriangleright \underline{t}, \sigma, \delta \models \phi_1 \lor \phi_2 \text{ iff } \underline{t}, \sigma, \delta \models \phi_1 \text{ or } \underline{t}, \sigma, \delta \models \phi_2,$
- $\underline{t}, \sigma, \delta \models \neg \phi$ iff $\underline{t}, \sigma, \delta \not\models \phi$,

WSkS: semantics (quantifiers)

- ▶ $\underline{t}, \sigma, \delta \models \exists x \phi \text{ iff } x \notin dom(\sigma), x \text{ free in } \phi$ and exists $p \in \mathcal{P}os(t) \text{ s.t. } \underline{t}, \sigma \cup \{x \mapsto p\}, \delta \models \phi$,
- ► $\underline{t}, \sigma, \delta \models \forall x \phi \text{ iff } x \notin dom(\sigma), x \text{ free in } \phi$ and for all $p \in \mathcal{P}os(t), \underline{t}, \sigma \cup \{x \mapsto p\}, \delta \models \phi$,
- ▶ $\underline{t}, \sigma, \delta \models \exists X \phi \text{ iff } X \notin dom(\delta), X \text{ free in } \phi$ and exists $P \subseteq \mathcal{P}os(t) \text{ s.t. } \underline{t}, \sigma, \delta \cup \{X \mapsto P\} \models \phi$,
- ▶ $\underline{t}, \sigma, \delta \models \forall X \phi \text{ iff } X \notin dom(\delta), X \text{ free in } \phi$ and for all $P \subseteq \mathcal{P}os(t), \underline{t}, \sigma, \delta \cup \{X \mapsto P\} \models \phi$.

WSkS: languages

Definition : WSkS-definability

For $\phi \in \mathsf{WS}k\mathsf{S}$ closed (without free variables) over \mathcal{L}_Σ ,

$$L(\phi) := \{ t \in \mathcal{T}(\Sigma) \mid \underline{t} \models \phi \}.$$

Example :

 $\Sigma = \{a: 2, b: 2, c: 0\}.$ Language of terms in $\mathcal{T}(\Sigma)$

- containing the pattern $a(b(x_1, x_2), x_3)$: $\exists x \exists y \ S_1(x, y) \land L_a(x) \land L_b(y)$
- ▶ such that every *a*-labelled node has a *b*-labelled child. $\forall x \exists y \ L_a(x) \Rightarrow \bigvee_{i=1}^2 S_i(x, y) \land L_b(y)$
- ▶ such that every *a*-labelled node has a *b*-labelled descendant. $\forall x \exists y \ L_a(x) \Rightarrow x < y \land L_b(y)$

root position:

- root position: $root(x) \equiv \neg \exists y \ y < x$
- inclusion:

- root position: $\operatorname{root}(x) \equiv \neg \exists y \ y < x$
- inclusion: $X \subseteq Y \equiv \forall x (x \in X \Rightarrow x \in Y)$
- intersection:

- root position: $root(x) \equiv \neg \exists y \ y < x$
- inclusion: $X \subseteq Y \equiv \forall x (x \in X \Rightarrow x \in Y)$
- intersection: $Z = X \cap Y \equiv \forall x \ (x \in Z \Leftrightarrow (x \in X \land x \in Y))$
- emptiness:

- root position: $root(x) \equiv \neg \exists y \ y < x$
- inclusion: $X \subseteq Y \equiv \forall x (x \in X \Rightarrow x \in Y)$
- intersection: $Z = X \cap Y \equiv \forall x \ (x \in Z \Leftrightarrow (x \in X \land x \in Y))$
- emptiness: $X = \emptyset \equiv \forall x \ x \notin X$
- finite union:

- ▶ root position: $root(x) \equiv \neg \exists y \ y < x$
- inclusion: $X \subseteq Y \equiv \forall x (x \in X \Rightarrow x \in Y)$
- intersection: $Z = X \cap Y \equiv \forall x \ (x \in Z \Leftrightarrow (x \in X \land x \in Y))$
- emptiness: $X = \emptyset \equiv \forall x \ x \notin X$
- Finite union: $X = \bigcup_{i=1}^{n} X_{i} \equiv \left(\bigwedge_{i=1}^{n} X_{i} \subseteq X\right) \land \forall x \ \left(x \in X \Rightarrow \bigvee_{i=1}^{n} x \in X_{i}\right)$

partition:

- ▶ root position: $root(x) \equiv \neg \exists y \ y < x$
- inclusion: $X \subseteq Y \equiv \forall x (x \in X \Rightarrow x \in Y)$
- intersection: $Z = X \cap Y \equiv \forall x \ (x \in Z \Leftrightarrow (x \in X \land x \in Y))$
- emptiness: $X = \emptyset \equiv \forall x \ x \notin X$
- Finite union: $X = \bigcup_{i=1}^{n} X_i \equiv \left(\bigwedge_{i=1}^{n} X_i \subseteq X\right) \land \forall x \ \left(x \in X \Rightarrow \bigvee_{i=1}^{n} x \in X_i\right)$

partition:

$$X_1, \dots, X_n$$
 partition $X \equiv X = \bigcup_{i=1}^n X_i \wedge \bigwedge_{i=1}^{n-1} \bigwedge_{j=i+1}^n X_i \cap X_j = \emptyset$

WSkS: examples (2)

singleton:

WSkS: examples (2)

singleton:

 $\operatorname{sing}(X) \equiv X \neq \emptyset \land \forall Y \ \big(Y \subseteq X \Rightarrow (Y = X \lor Y = \emptyset)\big)$

•
$$\leq$$
 (without <)

WSkS: examples (2)

$$x \le y \equiv \forall X \left(\begin{array}{c} y \in X \\ \land \forall z \ \forall z' \ (z' \in X \land \bigvee_{i \le k} S_i(z, z')) \Rightarrow z \in X \end{array} \right)$$
$$\Rightarrow x \in X$$

or

$$x \le y \equiv \exists X (\forall z \ z \in X \Rightarrow (\exists z' \bigvee_{i \le k} S_i(z', z) \land z' \in X) \lor z = x)$$
$$\land y \in X$$

Thatcher & Wright's Theorem

Theorem : Thatcher and Wright

Languages of WSkS formulae = regular tree languages.

pr.: 2 directions (2 constructions):

- ► TA \rightarrow WSkS,
- ► $WSkS \rightarrow TA$.

WSkS: Definition

 $\mathsf{Automata} \to \mathsf{Logic}$

 $\mathsf{Logic} \to \mathsf{Automata}$

Fragments and Extensions of WSkS

Let
$$\Sigma = \{a_1, \ldots, a_n\}.$$

Theorem :

For all tree automaton \mathcal{A} over Σ , there exists $\phi_{\mathcal{A}} \in \mathsf{WS}k\mathsf{S}$ such that $L(\phi_A) = L(\mathcal{A}).$

$$\mathcal{A} = (\Sigma, Q, Q^{\mathsf{f}}, \Delta)$$
 with $Q = \{q_0, \dots, q_m\}$.
 $\phi_{\mathcal{A}}$: existence of an accepting run of \mathcal{A} on $t \in \mathcal{T}(\Sigma)$

$$\phi_{\mathcal{A}} := \exists Y_0 \dots \exists Y_m \ \phi_{\mathsf{lab}}(\overline{Y}) \land \phi_{\mathsf{acc}}(\overline{Y}) \land \phi_{\mathsf{tr}_0}(\overline{Y}) \land \phi_{\mathsf{tr}}(\overline{Y})$$

 $\phi_{\mathsf{lab}}(\overline{Y})$: every position is labeled with one state exactely.

 $\phi_{\mathsf{lab}}(\overline{Y})$: every position is labeled with one state exactely.

$$\phi_{\mathsf{lab}}(\overline{Y}) \equiv \forall x \quad \bigvee_{\substack{0 \le i \le m \\ i \le j}} x \in Y_i \land \bigwedge_{\substack{0 \le i, j \le m \\ i \ne j}} \left(x \in Y_i \Rightarrow \neg x \in Y_j \right)$$

 $\phi_{\mathsf{lab}}(\overline{Y})$: every position is labeled with one state exactely.

$$\phi_{\mathsf{lab}}(\overline{Y}) \equiv \forall x \quad \bigvee_{\substack{0 \le i \le m \\ i \le j}} x \in Y_i \land \bigwedge_{\substack{0 \le i, j \le m \\ i \ne j}} \left(x \in Y_i \Rightarrow \neg x \in Y_j \right)$$

 $\phi_{\sf acc}(\overline{Y})$: the root is labeled with a final state

 $\phi_{\mathsf{lab}}(\overline{Y})$: every position is labeled with one state exactely.

$$\phi_{\mathsf{lab}}(\overline{Y}) \equiv \forall x \quad \bigvee_{\substack{0 \le i \le m \\ i \le j}} x \in Y_i \land \bigwedge_{\substack{0 \le i, j \le m \\ i \ne j}} \left(x \in Y_i \Rightarrow \neg x \in Y_j \right)$$

 $\phi_{\sf acc}(\overline{Y})$: the root is labeled with a final state

$$\phi_{\mathsf{acc}}(\overline{Y}) \equiv \forall x_0 \operatorname{root}(x_0) \Rightarrow \bigvee_{q_i \in Q^{\mathsf{f}}} x_0 \in Y_i$$

 $\phi_{\mathrm{tr}_0}(\overline{Y}):$ transitions for constants symbols

 $\phi_{\mathrm{tr}_0}(\overline{Y}):$ transitions for constants symbols

$$\phi_{\mathsf{tr}_0}(\overline{Y}) \equiv \bigwedge_{a \in \Sigma_0} \Big(\forall x \ L_a(x) \Rightarrow \bigvee_{a \to q_i \in \Delta} x \in Y_i \Big)$$

 $\phi_{\mathrm{tr}_0}(\overline{Y}):$ transitions for constants symbols

$$\phi_{\mathsf{tr}_0}(\overline{Y}) \equiv \bigwedge_{a \in \Sigma_0} \Big(\forall x \ L_a(x) \Rightarrow \bigvee_{a \to q_i \in \Delta} x \in Y_i \Big)$$

 $\phi_{\rm tr}(\overline{Y}):$ transitions for non-constant symbols

 $\phi_{\mathrm{tr}_0}(\overline{Y})$: transitions for constants symbols

$$\phi_{\mathsf{tr}_0}(\overline{Y}) \equiv \bigwedge_{a \in \Sigma_0} \Big(\forall x \ L_a(x) \Rightarrow \bigvee_{a \to q_i \in \Delta} x \in Y_i \Big)$$

 $\phi_{\rm tr}(\overline{Y}):$ transitions for non-constant symbols

$$\begin{aligned} \phi_{\mathsf{tr}}(\overline{Y}) &\equiv \bigwedge_{\substack{f \in \Sigma_j, 0 < j \le k \\ \left(L_f(x) \land S_1(x, y_1) \land \ldots \land S_j(x, y_j)\right) \\ \Downarrow} \\ \bigvee_{\substack{f(q_{i_1}, \dots, q_{i_j}) \to q_i \in \Delta}} x \in Y_i \land y_1 \in Y_{i_1} \land \ldots \land y_j \in Y_{i_j} \end{aligned}$$

WSkS: Definition

 $\mathsf{Automata} \to \mathsf{Logic}$

 $\mathsf{Logic} \to \mathsf{Automata}$

Fragments and Extensions of WSkS

Theorem Thatcher & Wright

Theorem :

Every WSkS language is regular.

For all formula $\phi \in WSkS$ over Σ (without free variables) there exists a tree automaton \mathcal{A}_{ϕ} over Σ , such that $L(\mathcal{A}_{\phi}) = L(\phi)$.

Corollary :

WSkS is decidable.

pr.: reduction to emptiness decision for \mathcal{A}_{ϕ} .

Theorem Thatcher & Wright

 \mathcal{A}_{ϕ} is effectively constructed from ϕ , by induction.

automata for atoms

 \Rightarrow need of automata for formula with free variables. it will characterize

- Boolean closures for Boolean connectors.
- \blacktriangleright \exists quantifier: projection.

Theorem Thatcher & Wright

When ϕ contains free variables, \mathcal{A}_{ϕ} will characterize both terms AND valuations satisfying ϕ : $L(\mathcal{A}_{\phi}) \equiv \{ \langle t, \sigma, \delta \rangle \mid \underline{t}, \sigma, \delta \models \phi \}$. Below we define the product $\langle t, \sigma, \delta \rangle$.

✓ for free second order variables:

 $\begin{array}{ccc} t \in \mathcal{T}(\Sigma) \\ \delta : \{X_1, \dots, X_n\} \to 2^{\mathcal{P}os(t)} & \mapsto & t \times \delta \in \mathcal{T}(\Sigma \times \{0, 1\}^n) \end{array}$

arity of $\langle a, \overline{b}
angle$ in $\Sigma imes \{0, 1\}^n$ = arity of a in Σ .

for all $p \in \mathcal{P}os(t)$, $(t \times \delta)(p) = \langle t(p), b_1, \dots, b_n \rangle$ where for all $i \leq n$,

- ► $b_i = 1$ if $p \in \delta(X_i)$,
- $b_i = 0$ otherwise.

 \checkmark free first order variables are interpreted as singletons.

$WSkS_0$

We consider a simplified language (wlog).

- no first order variables,
- only second order variables $X, Y \dots$,

interpretation $Y = X \cdot i$: $X = \{x\}$, $Y = \{y\}$ and $y = x \cdot i$.

ex: singleton

$WSkS_0$

We consider a simplified language (wlog).

- no first order variables,
- only second order variables $X, Y \dots$,

interpretation $Y = X \cdot i$: $X = \{x\}$, $Y = \{y\}$ and $y = x \cdot i$.

ex: singleton singleton $(X) \equiv \exists Y \quad (Y \subseteq X \land Y \neq X \land \neg \exists Z \ (Z \subseteq X \land Z \neq X \land Z \neq Y))$

$WSkS \rightarrow WSkS_0$

Lemma :

For all formula
$$\phi(x_1, \ldots, x_m, X_1, \ldots, X_n) \in \mathsf{WS}k\mathsf{S}$$
,
there exists a formula $\phi'(X'_1, \ldots, X'_m, X_1, \ldots, X_n) \in \mathsf{WS}k\mathsf{S}_0$
s.t. $\underline{t}, \sigma, \delta \models \phi(x_1, \ldots, x_m, X_1, \ldots, X_n)$
iff $\underline{t}, \sigma' \cup \delta \models \phi'(X'_1, \ldots, X'_m, X_1, \ldots, X_n)$, with $\sigma' : X'_i \mapsto \{\sigma(x_i)\}$.

pr.: several steps of formula rewriting:

- 1. elimination of <,
- 2. elimination of $S_i(x, y)$ $(i \le k)$, $L_a(x)$ $(a \in \Sigma)$, elimination of first order variables (use singleton(X)).

compilation of $WSkS_0$ into automata

notation: $\Sigma_{[m]} := \Sigma \times \{0,1\}^m$.

For all $\phi(X_1, \ldots, X_n) \in \mathsf{WS}k\mathsf{S}_0$ and $m \ge n$, we construct a tree automaton $\llbracket \phi \rrbracket_m$ over $\Sigma_{[m]}$ recognizing

$$\{t \times \delta \mid \delta : \{X_1, \dots, X_m\} \to 2^{\mathcal{P}os(t)}, \underline{t}, \delta \models \phi(X_1, \dots, X_n)\}$$

projection, cylindrification

$$\begin{array}{ll} \operatorname{projection} \\ \operatorname{proj}_n: & \bigcup_{m \geq n} \mathcal{T}(\Sigma_{[m]}) \to \mathcal{T}(\Sigma_{[n]}) \\ & \text{delete components } n+1, \dots, m. \end{array}$$

Lemma : projection

For all $n \leq m$, if $L \subseteq \mathcal{T}(\Sigma_{[m]})$ is regular then $proj_n(L)$ is regular.

cylindrification $(m \ge n)$ $cyl_{n,m} : L \subseteq \mathcal{T}(\Sigma_{[n]}) \mapsto \{t \in \mathcal{T}(\Sigma_{[m]}) \mid proj_n(t) \in L\}$

Lemma : cylindrification

For all $n \leq m$, if $L \subseteq \mathcal{T}(\Sigma_{[n]})$ is regular, then $cyl_{n,m}(L)$ is regular.

compilation: $X_1 \subseteq X_2$

Automaton $\llbracket X_1 \subseteq X_2 \rrbracket_2$:

• signature
$$\Sigma_{[2]} = \Sigma \times \{0, 1\}^2$$
.

compilation: $X_1 \subseteq X_2$

Automaton $\llbracket X_1 \subseteq X_2 \rrbracket_2$:

- signature $\Sigma_{[2]} = \Sigma \times \{0, 1\}^2$.
- ▶ states: q₀
- ▶ final states: q₀
- transitions:

For $m \geq 2$,

$$\llbracket X_1 \subseteq X_2 \rrbracket_m := cyl_{2,m} \bigl(\llbracket X_1 \subseteq X_2 \rrbracket_2 \bigr)$$

compilation: $X_1 = X_2 \cdot 1$

Automaton
$$\llbracket X_1 = X_2 \cdot 1 \rrbracket_2$$
:
• signature $\Sigma_{[2]} = \Sigma \times \{0, 1\}^2$.

compilation: $X_1 = X_2 \cdot 1$

Automaton $\llbracket X_1 = X_2 \cdot 1 \rrbracket_2$:

• signature
$$\Sigma_{[2]} = \Sigma \times \{0, 1\}^2$$
.

- states: q_0, q_1, q_2
- \blacktriangleright final states: q_2
- transitions:

$$\begin{array}{ll} \langle a, 0, 0 \rangle (q_0, \dots, q_0) & \longrightarrow & q_0 \\ \langle a, 1, 0 \rangle (q_0, \dots, q_0) & \longrightarrow & q_1 \\ \langle a, 0, 1 \rangle (q_1, q_0, \dots, q_0) & \longrightarrow & q_n \end{array}$$

$$\langle a, 0, 1 \rangle (q_1, q_0, \dots, q_0) \quad \xrightarrow{\rightarrow} \quad q_2 \\ \langle a, 0, 0 \rangle (q_0, \dots, q_0, q_2, q_0, \dots, q_0) \quad \xrightarrow{\rightarrow} \quad q_2$$

For $m \geq 2$,

$$[X_2 = X_1 \cdot 1]_m := cyl_{2,m} ([X_2 = X_1 \cdot 1]_2)$$

compilation: $X_1 \subseteq L_a$

Automate $\llbracket X_1 \subseteq L_a \rrbracket_1$:

• signature
$$\Sigma_{[2]} = \Sigma \times \{0, 1\}^2$$
.

compilation: $X_1 \subseteq L_a$

Automate $\llbracket X_1 \subseteq L_a \rrbracket_1$:

- signature $\Sigma_{[2]} = \Sigma \times \{0, 1\}^2$.
- ► states: q₀
- ▶ final states: q₀
- transitions:

$$\begin{array}{rcl} \langle a, 0 \rangle (q_0, \dots, q_0) & \to & q_0 \\ \langle b, 0 \rangle (q_0, \dots, q_0) & \to & q_0 \\ \langle a, 1 \rangle (q_0, \dots, q_0) & \to & q_0 \end{array} (b \neq a)$$

For $m \ge 1$,

$$\llbracket X_1 \subseteq L_a \rrbracket_m := cyl_{1,m} \bigl(\llbracket X_1 \subseteq L_a \rrbracket_1 \bigr)$$

compilation: Boolean connectors

- $$\begin{split} & \llbracket \phi(X_1, \dots, X_n) \lor \phi(X_1, \dots, X_{n'}) \rrbracket_m := \\ & \llbracket \phi(X_1, \dots, X_n) \rrbracket_m \cup \llbracket \phi(X_1, \dots, X_{n'}) \rrbracket_m \\ & \text{with } m \ge \max(n, n') \end{split}$$
- $$\begin{split} & \bullet \quad \llbracket \phi(X_1, \dots, X_n) \land \phi(X_1, \dots, X_{n'}) \rrbracket_m := \\ \llbracket \phi(X_1, \dots, X_n) \rrbracket_m \cap \llbracket \phi(X_1, \dots, X_{n'}) \rrbracket_m \\ & \text{with} \ m \ge \max(n, n') \end{split}$$
- $\llbracket \neg \phi(X_1, \ldots, X_n) \rrbracket_m := \mathcal{T}(\Sigma_{[m]}) \setminus \llbracket \phi(X_1, \ldots, X_n) \rrbracket_m$ for $m \ge n$.

compilation: quantifiers

- $[\![\exists X_{n+1} \phi(X_1, \dots, X_{n+1})]\!]_n := proj_n([\![\phi(X_1, \dots, X_{n+1})]\!]_{n+1})$
- ▶ NB: this construction does not preserve determinism.

$$[\exists X_{n+1} \phi(X_1, \dots, X_{n+1})]_m := cyl_{n,m} ([\exists X_{n+1} \phi(X_1, \dots, X_{n+1})]_n) \text{ for } m \ge n.$$

$$\forall = \neg \exists \neg$$

Theorem Thatcher & Wright

Theorem :

For all formula $\phi \in WSkS_0$ over Σ without free variables, there exists a tree automaton \mathcal{A}_{ϕ} over Σ , such that $L(\mathcal{A}_{\phi}) = L(\phi)$.

 $\mathcal{A}_{\phi} = \llbracket \phi \rrbracket_0$ can be computed explicitely!

Corollary :

For all formula $\phi \in WSkS$ over Σ without free variables there exists a tree automaton \mathcal{A}_{ϕ} over Σ , such that $L(\mathcal{A}_{\phi}) = L(\phi)$.

using translation of WSkS into WSkS₀ first.

Size of \mathcal{A}_{ϕ}

Theorem : Stockmeyer and Meyer 1973

For all *n* there exists $\exists x_1 \neg \exists y_1 \exists x_2 \neg \exists y_2 \dots \exists x_n \neg \exists y_n \phi \in FOL$ such that for every automaton \mathcal{A} recognizing the same language

$$\operatorname{size}(\mathcal{A}) \ge 2^{2^{\dots^{2^{\operatorname{size}}(\phi)}}} \Big\} n$$

WSkS: Definition

 $\mathsf{Automata} \to \mathsf{Logic}$

 $\mathsf{Logic} \to \mathsf{Automata}$

Fragments and Extensions of WSkS

WSkS and FO

Using the 2 directions of the Thatcher & Wright theorem:

$$\mathsf{WS}k\mathsf{S} \ni \phi \mapsto \mathcal{A} \mapsto \exists Y_1 \dots \exists Y_n \psi$$

with $\psi \in FOL$.

Corollary : Every WSkS formula is equivalent to a formula $\exists Y_1 \dots \exists Y_n \psi$ with ψ first order.

$\mathsf{FO} \subsetneq \mathsf{WS}k\mathsf{S}$

Proposition :

The language L of terms with an even number of nodes labeled by a is regular (hence WSkS-definable) but not FO-definable.

pr.: with Ehrenfeucht-Fraïssé games.

goal: prove FO equivalence of finite structures (wrt finite set of predicates \mathcal{L}).

Definition

for two finite \mathcal{L} -structures \mathfrak{A} and \mathfrak{B} $\mathfrak{A} \equiv_m \mathfrak{B}$ iff for all ϕ closed, of quantifier depth m, $\mathfrak{A} \models \phi$ iff $\mathfrak{B} \models \phi$

Ehrenfeucht-Fraïssé games

 $\begin{array}{l} \mathcal{G}_m(\mathfrak{A},\mathfrak{B})\\ 1 \quad \text{Spoiler chooses } a_1 \in dom(\mathfrak{A}) \text{ or } b_1 \in dom(\mathfrak{B})\\ 1' \quad \text{Duplicator chooses } b_1 \in dom(\mathfrak{B}) \text{ or } a_1 \in dom(\mathfrak{A})\\ \vdots\\ m' \quad \text{Duplicator chooses } b_m \in dom(\mathfrak{B}) \text{ or } a_m \in dom(\mathfrak{A}) \end{array}$

Duplicator wins if $\{a_1 \mapsto b_1, \ldots, a_m \mapsto b_m\}$ is an injective partial function compatible with the relations of \mathfrak{A} and \mathfrak{B} ($\forall P \in \mathcal{P}$, $P^{\mathfrak{A}}(a_{i_1}, \ldots, a_{i_n})$ iff $P^{\mathfrak{B}}(b_{i_1}, \ldots, b_{i_n})$) = partial isomorphism. Otherwise Spoiler wins.

Theorem : Ehrenfeucht-Fraïssé $\mathfrak{A} \equiv_m \mathfrak{B}$ iff Duplicator has a winning strategy for $\mathcal{G}_m(\mathfrak{A}, \mathfrak{B})$.

Ehrenfeucht-Fraïssé Theorem

more generally: equivalence of finite structures + valuation of \boldsymbol{n} free variables.

for two finite \mathcal{L} -structures \mathfrak{A} and \mathfrak{B} and $\alpha_1, \ldots, \alpha_n \in dom(\mathfrak{A}), \ \beta_1, \ldots, \beta_n \in dom(\mathfrak{B}), \ m \geq 0,$ $\mathfrak{A}, \alpha_1, \ldots, \alpha_n \equiv_m \mathfrak{B}, \beta_1, \ldots, \beta_n$ iff for all $\phi(x_1,\ldots,x_n)$ of quantifier depth m, $\mathfrak{A}, \sigma_a \models \phi(\overline{x}) \text{ iff } \mathfrak{B}, \sigma_b \models \phi(\overline{x})$ where $\sigma_a = \{x_1 \mapsto \alpha_1, \dots, x_n \mapsto \alpha_n\},\$ $\sigma_h = \{x_1 \mapsto \beta_1, \dots, x_n \mapsto \beta_n\}.$

Games: the partial isomorphisms must extend $\{\alpha_1 \mapsto \beta_1, \dots, \alpha_n \mapsto \beta_n\}.$

$\mathsf{FO} \subsetneq \mathsf{WS}k\mathsf{S}$ $\mathsf{let}\ \Sigma = \{a: 1, \bot: 0\}.$

Lemma :

For all $m \ge 3$ and all $i, j \ge 2^m - 1$, Duplicator has a winning strategy for $\mathcal{G}_m(a^i(\bot), a^j(\bot))$.

Corollary :

The language $L \subseteq \mathcal{T}(\Sigma)$ of terms with an even number of nodes labeled by a is not FO-definable.

- Star-free languages = FO definable holds for words [McNaughton Papert] but not for trees.
- It is an active field of research to characterize regular tree languages definable in FO.

e.g. [Benedikt Segoufin 05] \approx locally threshold testable.

Restriction to antichains

Definition :

```
An antichain is a subset P \subseteq \mathcal{P}os(t) s.t. \forall p, p' \in P, p \not\leq p' and p \not\geq p'.
```

antichain-WSkS: second-order quantifications are restricted to antichains.

Theorem :

If $\Sigma_1 = \emptyset$, the classes of antichain-WSkS languages and regular languages over Σ conincide.

Theorem :

chain-WSkS is strictly weaker than WSkS.

MSO on Graphs

Weak second-order monadic theory of the grid Σ finite alphabet,

$$\mathcal{L}_{\mathsf{grid}} := \{=, S_{\rightarrow}, S_{\uparrow}, L_a \mid a \in \Sigma\}$$

Grid $G: \mathbb{N} \times \mathbb{N} \to \Sigma$; Interpretation structure:

$$\underline{G} := \langle \mathbb{N} \times \mathbb{N}, =, x+1, y+1, L_{\overline{a}}^{\underline{G}}, L_{\overline{b}}^{\underline{G}}, \ldots \rangle.$$

Proposition :

The weak monadic second-order theory of the grid is undecidable.

csq: weak MSO of graphs is undecidable.

MSO on Graphs (remarks)

- algebraic framework [Courcelle]: MSO decidable on graphs generated by a hedge replacement graph grammar = least solutions of equational systems based on graph operations: || : 2, exch_{i,j} : 1, forget_i : 1, edge : 0, ver : 0.
- related notion: graphs with bounded tree width.
- ► FO-definable sets of graphs of bounded degree = locally threshold testable graphs (some local neighborhood appears n times with n < threshold - fixed).</p>

Undecidable Extensions

Left concatenation: new predicate

$$S_1' = \left\{ \langle p, 1 \cdot p \rangle \mid p, 1 \cdot p \in \mathcal{P}os(t) \right\}$$

Proposition :

 $\mathsf{WS2S} + \mathsf{left} \ \mathsf{concatenation} \ \mathsf{predicate} \ \mathsf{is} \ \mathsf{undecidable}.$

Predicate of equal length. Proposition : WS2S + |x| = |y| is undecidable.

MONA

[Klarlund et al 01]

http://www.brics.dk/mona/

- decision procedures for WS1S and WS2S
- by translation of formulas into automata