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Probabilities help

I When analysing system performance and dependability
I to quantify arrivals, waiting times, time between failure, QoS, ...

I When modelling unreliable and unpredictable system behavior
I to quantify message loss, processor failure
I to quantify unpredictable delays, express soft deadlines, ...

I When building protocols for networked embedded systems
I randomized algorithms

I When problems are undecidable deterministically
I repeated reachability of lossy channel systems, . . .
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Illustrative example: Security

Security: Crowds protocol [Reiter & Rubin, 1998]

I A protocol for anonymous web browsing (variants: mCrowds,
BT-Crowds)

I Hide user’s communication by random routing within a crowd
I sender selects a crowd member randomly using a uniform distribution
I selected router flips a biased coin:

I with probability 1− p: direct delivery to final destination
I otherwise: select a next router randomly (uniformly)

I once a routing path has been established, use it until crowd changes
I Rebuild routing paths on crowd changes
I Property: Crowds protocol ensures “probable innocence”:

I probability real sender is discovered < 1
2 if N > p

p− 1
2
·(c+1)

I where N is crowd’s size and c is number of corrupt crowd members
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Illustrative example: Leader election

Distributed system: Leader election [Itai & Rodeh, 1990]

I A round-based protocol in a synchronous ring of N > 2 nodes
I the nodes proceed in a lock-step fashion
I each slot = 1 message is read + 1 state change + 1 message is sent
⇒ this synchronous computation yields a discrete-time Markov chain

I Each round starts by each node choosing a uniform id ∈ { 1, . . . ,K }
I Nodes pass their selected id around the ring
I If there is a unique id, the node with the maximum unique id is leader
I If not, start another round and try again . . .
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Properties of leader election

Almost surely eventually a leader will be elected

P=1 (♦leader elected)

With probability at least 0.8, a leader is elected within k steps

P>0.8
(
♦6k leader elected

)
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Probability to elect a leader within L rounds

P6q
(
♦6(N+1)·L leader elected

)
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What is probabilistic model checking?
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Probabilistic models

Nondeterminism Nondeterminism
no yes

Discrete time discrete-time Markov decision
Markov chain (DTMC) process (MDP)

Continuous time CTMC CTMDP

Other models: probabilistic variants of (priced) timed automata, or hybrid
automata
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Probability theory is simple, isn’t it?

In no other branch of mathematics
is it so easy to make mistakes

as in probability theory
Henk Tijms, “Understanding Probability” (2004)
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Geometric distribution
Geometric distribution
Let X be a discrete random variable, natural k > 0 and 0 < p 6 1. The
mass function of a geometric distribution is given by:

Pr{X = k } = (1− p)k−1·p

We have E [X ] = 1
p and Var[X ] = 1−p

p2 and cdf Pr{X 6 k } = 1− (1−p)k .

Geometric distributions and their cdf’s
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Memoryless property

Theorem

1. For any random variable X with a geometric distribution:

Pr{X = k + m | X > m} = Pr{X = k} for any m ∈ T , k > 1

This is called the memoryless property, and X is a memoryless r.v..
2. Any discrete random variable which is memoryless is geometrically

distributed.
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Joint distribution function
Joint distribution function
The joint distribution function of stochastic process X = {Xt | t ∈ T } is
given for n, t1, . . . , tn ∈ T and d1, . . . , dn by:

FX (d1, . . . , dn; t1, . . . , tn) = Pr{X (t1) 6 d1, . . . ,X (tn) 6 dn }

The shape of FX depends on the stochastic dependency between X (ti ).

Stochastic independence
Random variables Xi on probability space P are independent if:

FX (d1, . . . , dn; t1, . . . , tn) =
n∏

i=1
FX (di ; ti ) =

n∏
i=1

Pr{X (ti ) 6 di }.

The next state of the stochastic process only depends on the current state, and
not on states assumed previously. This is the Markov property.
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Markov property

Markov process
A discrete-time stochastic process {X (t) | t ∈ T } over state space
{ d0, d1, . . . } is a Markov process if for any t0 < t1 < . . . < tn < tn+1 :

Pr{X (tn+1) = dn+1 | X (t0) = d0,X (t1) = d1, . . . ,X (tn) = dn }
=

Pr{X (tn+1) = dn+1 | X (tn) = dn }

The distribution of X (tn+1), given the values X (t0) through X (tn), only
depends on the current state X (tn).

The conditional probability distribution of future states of a Markov process only
depends on the current state and not on its further history.
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Invariance to time-shifts

Time homogeneity
Markov process {X (t) | t ∈ T } is time-homogeneous iff for any t ′ < t:

Pr{X (t) = d | X (t ′) = d ′ } = Pr{X (t − t ′) = d | X (0) = d ′ }.

A time-homogeneous stochastic process is invariant to time shifts.

Discrete-time Markov chain
A discrete-time Markov chain (DTMC) is a time-homogeneous Markov
process with discrete parameter T and discrete state space.
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Discrete-time Markov chain

Discrete-time Markov chain
A discrete-time Markov chain (DTMC) is a time-homogeneous Markov
process with discrete parameter T and discrete state space S.

Transition probabilities
The (one-step) transition probability from s ∈ S to s ′ ∈ S at epoch n ∈ N
is given by:

p(n)(s, s ′) = Pr{Xn+1 = s ′ | Xn = s } = Pr{X1 = s ′ | X0 = s }

where the last equality is due to time-homogeneity.
Since p(n)(·) = p(k)(·), the superscript (n) is omitted, and we write p(·).
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Transition probability matrix
Discrete-time Markov chain
A discrete-time Markov chain (DTMC) is a time-homogeneous Markov
process with discrete parameter T and discrete state space S.

Transition probability matrix
Let P be a function with P(si , sj) = p(si , sj). For finite state space S,
function P is called the transition probability matrix of the DTMC with
state space S.

Properties

1. P is a (right) stochastic matrix, i.e., it is a square matrix, all its
elements are in [0, 1], and each row sum equals one.

2. P has an eigenvalue of one, and all its eigenvalues are at most one.
3. For all n ∈ N, Pn is a stochastic matrix.
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DTMCs — A transition system perspective
Discrete-time Markov chain
A DTMC D is a tuple (S,P, ιinit,AP, L) with:
I S is a countable nonempty set of states
I P : S×S → [0, 1], transition probability function s.t.

∑
s′ P(s, s ′) = 1

I ιinit : S → [0, 1], the initial distribution with
∑
s∈S

ιinit(s) = 1

I AP is a set of atomic propositions.
I L : S → 2AP, the labeling function, assigning to state s, the set L(s)

of atomic propositions that are valid in s.

Initial states
I ιinit(s) is the probability that DTMC D starts in state s
I the set { s ∈ S | ιinit(s) > 0 } are the possible initial states.
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Simulating a die by a fair coin [Knuth & Yao]

Heads = “go left”; tails = “go right”. Does this DTMC adequately model a fair
six-sided die?
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Craps
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Craps

I Roll two dice and bet

I Come-out roll (“pass line” wager):
I outcome 7 or 11: win
I outcome 2, 3, or 12: lose (“craps”)
I any other outcome: roll again (outcome is “point”)

I Repeat until 7 or the “point” is thrown:
I outcome 7: lose (“seven-out”)
I outcome the point: win
I any other outcome: roll again
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A DTMC model of Craps

I Come-out roll:
I 7 or 11: win
I 2, 3, or 12:

lose
I else: roll

again

I Next roll(s):
I 7: lose
I point: win
I else: roll

again
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State residence time distribution

Let Ts be the number of epochs of DTMC D to stay in state s:

Pr{Ts = 1 } = 1− P(s, s)

Pr{Ts = 2 } = P(s, s) · (1− P(s, s))

. . . . . . . . . . . . . . .

Pr{Ts = n } = P(s, s)n−1 · (1− P(s, s))

So, the state residence times in a DTMC obey a geometric distribution.
The expected number of time steps to stay in state s equals E [Ts ] = 1

1−P(s,s) .
The variance of the residence time distribution is Var[Ts ] = P(s,s)

(1−P(s,s))2 .

Recall that the geometric distribution is the only discrete probability distribution
that possesses the memoryless property.
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Determining n-step transition probabilities
n-step transition probabilities
The probability to move from s to s ′ in n ∈ N steps is inductively defined:

ps,s′(0) = 1 if s = s ′, and 0 otherwise,

ps,s′(1) = P(s, s ′), and for n > 1 by the Chapman-Kolmogorov equation:

ps,s′(n) =
∑
s′′

ps,s′′(l) · ps′′,s′(n−l) for all 0 < l < n

For l = 1 and n > 0 we obtain: ps,s′(n) =
∑
s′′

ps,s′′(1) · ps′′,s′(n−1)

P(n) = P(1) · P(n−1) = P · P(n−1) is the n-step transition probability matrix

Repeating this scheme: P(n) = P · P(n−1) = . . . = Pn−1 · P(1) = Pn.
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Transient probability distribution
Transient distribution
Pn(s, t) equals the probability of being in state t after n steps given that
the computation starts in s.
The probability of DTMC D being in state t after exactly n transitions is:

ΘDn (t) =
∑
s∈S

ιinit(s) · Pn(s, t)

ΘDn (t) is called the transient state probability at epoch n for state t. The
function ΘDn is the transient state distribution at epoch n of DTMC D.
When considering ΘDn as vector (ΘDn )t∈S we have:

ΘDn = ιinit · P · P · . . . · P︸ ︷︷ ︸
n times

= ιinit · Pn.
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Paths in a DTMC
State graph
The state graph of DTMC D is a digraph G = (V ,E ) with V are the
states of D, and (s, s ′) ∈ E iff P(s, s ′) > 0.

Paths
Paths in D are maximal (i.e., infinite) paths in its state graph. Thus, a
path is an infinite sequence of states s0s1s2 . . . . . . with P(si , si+1) > 0 for
all i .
Let Paths(D) denote the set of paths in D, and Paths∗(D) the set of finite
prefixes thereof.

Direct successors and predecessors
Post(s) = { s ′ ∈ S | P(s, s ′) > 0 } and Pre(s) = { s ′ ∈ S | P(s ′, s) > 0 }
are the set of direct successors and predecessors of s respectively. Post∗(s)
and Pre∗(s) are the reflexive and transitive closure of Post and Pre.
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Measurable space
Sample space
A sample space Ω of a chance experiment is a set of elements that have a 1-to-1
relationship to the possible outcomes of the experiment.

σ-algebra
A σ-algebra is a pair (Ω,F) with Ω 6= ∅ and F ⊆ 2Ω a collection of subsets of
sample space Ω such that:

1. Ω ∈ F

2. A ∈ F ⇒ Ω− A ∈ F complement

3. (∀i > 0. Ai ∈ F) ⇒
⋃

i>0 Ai ∈ F countable union

The elements in F of a σ-algebra (Ω,F) are called events.
The pair (Ω,F) is called a measurable space.

Let Ω be a set. F = {∅,Ω } yields the smallest σ-algebra; F = 2Ω yields the
largest one.
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Probabilities
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Probability space

Probability space
A probability space P is a structure (Ω,F ,Pr) with:
I (Ω,F) is a σ-algebra, and
I Pr : F → [0, 1] is a probability measure, i.e.:

1. Pr(Ω) = 1, i.e., Ω is the certain event

2. Pr
(⋃

i∈I
Ai

)
=
∑
i∈I

Pr(Ai ) for any Ai ∈ F with Ai ∩ Aj = ∅ for i 6=j ,

where {Ai }i∈I is finite or countably infinite.
The elements in F of a probability space (Ω,F ,Pr) are called measurable
events.
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Paths and probabilities

To reason quantitatively about the behavior of a DTMC, we need to define
a probability space over its paths.

Intuition
For a given state s in DTMC D:
I Sample space := set of all infinite paths starting in s

I Events := sets of infinite paths starting in s

I Basic events := cylinder sets

I Cylinder set of finite path π̂ := set of all infinite continuations of π̂
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Probability measure on DTMCs

Cylinder set
The cylinder set of finite path π̂ = s0 s1 . . . sn ∈ Paths∗(D) is defined by:

Cyl(π̂) =
{
π ∈ Paths(D) | π̂ is a prefix of π

}
The cylinder set spanned by finite path π̂ thus consists of all infinite paths
that have prefix π̂. Cylinder sets serve as basic events of the smallest
σ-algebra on Paths(D).

σ-algebra of a DTMC
The σ-algebra associated with DTMC D is the smallest σ-algebra that
contains all cylinder sets Cyl(π̂) where π̂ ranges over all finite path
fragments in D.
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Probability measure on DTMCs

Cylinder set
The cylinder set of finite path π̂ = s0 s1 . . . sn ∈ Paths∗(D) is defined by:

Cyl(π̂) =
{
π ∈ Paths(D) | π̂ is a prefix of π

}

Probability measure
Pr is the unique probability measure on the σ-algebra on Paths(D) defined
by:

Pr
(
Cyl(s0 . . . sn)

)
= ιinit(s0) · P(s0 s1 . . . sn)

where P(s0 s1 . . . sn) =
∏

06i<n
P(si , si+1) for n > 0 and P(s0) = 1.
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Some events of interest
Let DTMC D with (possibly infinite) state space S.

(Simple) reachability

Eventually reach a state in G ⊆ S. Formally:

♦G = {π ∈ Paths(D) | ∃i ∈ N. π[i ] ∈ G }

Invariance, i.e., always stay in state in G :

�G = {π ∈ Paths(D) | ∀i ∈ N. π[i ] ∈ G } = ♦G .

Constrained reachability
Or “reach-avoid” properties where states in F ⊆ S are forbidden:

F UG = {π ∈ Paths(D) | ∃i ∈ N. π[i ] ∈ G ∧ ∀j < i . π[j] 6∈ F }
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More events of interest

Repeated reachability
Repeatedly visit a state in G ; formally:

�♦G = {π ∈ Paths(D) | ∀i ∈ N. ∃j > i . π[j] ∈ G }

Persistence
Eventually reach in a state in G and always stay there; formally:

♦�G = {π ∈ Paths(D) | ∃i ∈ N. ∀j > i . π[j] ∈ G }
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Measurability

Measurability theorem
Events ♦G , �G , F UG , �♦G and ♦�G are measurable on any DTMC.

Proof:
To show this, every event will be expressed as allowed operations (complement
and/or countable unions) of the events — our cylinder sets!— in the σ-algebra on
infinite paths in a DTMC.

Note that �G = ♦G and ♦�G = �♦G .
It remains to prove the measurability for the remaining three cases.
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Proof for ♦G
Which event (in our σ-algebra) does ♦G formally mean?

the union of all cylinders Cyl(s0 . . . sn) where

s0 . . . sn is a finite path in D with s0, . . . , sn−1 /∈ G and sn ∈ G , i.e.,

♦G =
⋃

s0...sn∈Paths∗(D)∩(S\G)∗G

Cyl(s0 . . . sn)

Thus ♦G is measurable.
As all cylinder sets are pairwise disjoint, its probability is defined by:

Pr(♦G) =
∑

s0...sn∈Paths∗(D)∩(S\G)∗G

Pr
(
Cyl(s0 . . . sn)

)
=

∑
s0...sn∈Paths∗(D)∩(S\G)∗G

ιinit(s0) · P(s0 . . . sn)

A similar proof strategy applies to the case F UG .
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Reachability probabilities: Knuth’s die

I Consider the event ♦4
I Using the previous theorem we obtain:

Pr(♦4) =
∑

s0...sn∈(S\4∗)4

P(s0 . . . sn)

I This yields:
P(s0s2s54) + P(s0s2s6s2s54) + . . . . . .

I Or:
∞∑

k=0
P(s0s2(s6s2)ks54)

I Or: 18

∞∑
k=0

(1
4
)k

I Geometric series: 18 ·
1

1− 1
4

=
1
8 ·

4
3 =

1
6

There is however an simpler way to obtain reachability probabilities!
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Reachability probabilities in finite DTMCs
Problem statement
Let D be a DTMC with finite state space S, s ∈ S and G ⊆ S.
Aim: determine Pr(s |= ♦G) = Prs(♦G) = Prs{π ∈ Paths(s) | π |= ♦G }
where Prs is the probability measure in D with single initial state s.

Characterisation of reachability probabilities

I Let variable xs = Pr(s |= ♦G) for any state s
I if G is not reachable from s, then xs = 0
I if s ∈ G then xs = 1

I For any state s ∈ Pre∗(G) \ G :

xs =
∑

t∈S\G
P(s, t) · xt

︸ ︷︷ ︸
reach G via t ∈ S \ G

+
∑
u∈G

P(s, u)︸ ︷︷ ︸
reach G in one step
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Reachability probabilities: Knuth’s die

I Consider the event ♦4
I Using the previous characterisation we

obtain:

x1 = x2 = x3 = x5 = x6 = 0 and x4 = 1

xs1 = xs3 = xs4 = 0

xs0 = 1
2xs1 + 1

2xs2

xs2 = 1
2xs5 + 1

2xs6

xs5 = 1
2x5 + 1

2x4
xs6 = 1

2xs2 + 1
2x6

I Gaussian elimination yields:

xs5 = 1
2 , xs2 = 1

3 , xs6 = 1
6 , and xs0 = 1

6
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Linear equation system

Reachability probabilities as linear equation system

I Let S? = Pre∗(G) \ G , the states that can reach G by > 0 steps
I A =

(
P(s, t)

)
s,t∈S?

, the transition probabilities in S?

I b =
(
bs
)

s∈S?
, the probs to reach G in 1 step, i.e., bs =

∑
u∈G

P(s, u)

Then: x = (xs)s∈S?
with xs = Pr(s |= ♦G) is the unique solution of:

x = A·x + b or (I− A)·x = b

where I is the identity matrix of cardinality |S?| × |S?|.
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Reachability probabilities: Knuth’s die

I Consider the event ♦4
I S? = { s0, s2, s5, s6 } 1 − 1

2 0 0
0 1 − 1

2 − 1
2

0 0 1 0
0 − 1

2 0 1

·
 xs0

xs2
xs5
xs6

 =

 0
0
1
2
0


I Gaussian elimination yields:

xs5 = 1
2 , xs2 = 1

3 , xs6 = 1
6 , and xs0 = 1

6
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Constrained reachability probabilities
Problem statement
Let D be a DTMC with finite state space S, s ∈ S and F ,G ⊆ S.
Aim: Pr(s |= F UG) = Prs(F UG) = Prs{π ∈ Paths(s) | π |= F UG }
where Prs is the probability measure in D with single initial state s.

Characterisation of constrained reachability probabilities

I Let variable xs = Pr(s |= F UG) for any state s
I if G is not reachable from s via F , then xs = 0
I if s ∈ G then xs = 1

I For any state s ∈ (Pre∗(G) ∩ F ) \ G :

xs =
∑

t∈S\G
P(s, t) · xt +

∑
u∈G

P(s, u)
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Iteratively computing reachability probabilities
Theorem
The vector x =

(
Pr(s |= F UG)

)
s∈S?

is the unique solution of:

y = A·y + b

with A and b as defined before.
Furthermore, let:

x(0) = 0 and x(i+1) = A·x(i) + b for 0 6 i .

Then:
1. x(n)(s) = Pr(s |= F U6n G) for s ∈ S?

2. x(0) 6 x(1) 6 x(2) 6 . . . 6 x
3. x = limn→∞ x(n)

where F U6nG contains those paths that reach G via F within n steps.
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Remark

Iterative algorithms to compute x
There are various algorithms to compute x = limn→∞ x(n) where:

x(0) = 0 and x(i+1) = A·x(i) + b for 0 6 i .

The Power method computes vectors x(0), x(1), x(2), . . . and aborts if:

max
s∈S?

| x (n+1)
s − x (n)

s | < ε for some small tolerance ε

This technique guarantees convergence.
Alternative iterative techniques: e.g., Jacobi or Gauss-Seidel, successive
overrelaxation (SOR).
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Example: Knuth’s die

I Let G = { 1, 2, 3, 4, 5, 6 }
I Then Pr(s0 |= ♦G) = 1
I And Pr(s0 |= ♦6kG)

for k ∈ IN is given by:
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Reachability probability = transient probabilities
Aim
Compute Pr(♦6nG) in DTMC D. Observe that once a path π reaches G ,
then the remaining behaviour along π is not important. This suggests to
make all states in G absorbing.

Let DTMC D = (S,P, ιinit,AP, L) and G ⊆ S. The DTMC D[G ] = (S,PG ,
ιinit,AP, L) with PG(s, t) = P(s, t) if s /∈ G and PG(s, s) = 1 if s ∈ G .
All outgoing transitions of s ∈ G are replaced by a single self-loop at s.

Lemma

Pr(♦6nG)︸ ︷︷ ︸
reachability in D

= Pr(♦=nG)︸ ︷︷ ︸
reachability in D[G ]

= ιinit · Pn
G︸ ︷︷ ︸

in D[G ]

= ΘD[G]
n
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Constrained reachability = transient probabilities

Aim
Compute Pr(F U6n G) in DTMC D. Observe (as before) that once a path
π reaches G via F , then the remaining behaviour along π is not important.
Now also observe that once s ∈ F \ G is reached, then the remaining
behaviour along π is not important. This suggests to make all states in G
and F \ G absorbing.

Lemma

Pr(F U6n G)︸ ︷︷ ︸
reachability in D

= Pr(♦=nG)︸ ︷︷ ︸
reachability in D[F ∪ G ]

= ιinit · Pn
F∪G︸ ︷︷ ︸

in D[F ∪ G ]

= ΘD[F∪G]
n
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Qualitative properties
Quantitative properties
Comparing the probability of an event such as �G , ♦�G and �♦G with a
threshold ∼ p with p ∈ (0, 1) and ∼ a binary comparison operator
(=,<,6,>,>) yields a quantitative property.

Example quantitative properties
Pr(s |= ♦�G) > 1

2 or Pr(s |= ♦6n G) 6 π
5

Qualitative properties
Comparing the probability of an event such as �G , ♦�G and �♦G with a
threshold > 0 or = 1 yields a qualitative property. Any event E with
Pr(E ) = 1 is called almost surely.

Example qualitative properties
Pr(s |= ♦�G) > 0 or Pr(s |= ♦6n G) = 1
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Verifying qualitative properties

Remark
In the following we will concentrate on almost sure events, i.e., events E
with Pr(E ) = 1. This suffices, as Pr(E ) > 0 if and only if not Pr(E ) = 1.
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Graph notions

Let D = (S,P, ιinit,AP, L) be a (possibly infinite) DTMC.

Strongly connected component

I T ⊆ S is strongly connected if for any s, t ∈ T , states s and t ∈ T
are mutually reachable via edges in T .

I T is a strongly connected component (SCC) of D if it is strongly
connected and no proper superset of T is strongly connected.

I SCC T is a bottom SCC (BSCC) if no state outside T is reachable
from T , i.e., for any state s ∈ T , P(s,T ) =

∑
t∈T P(s, t) = 1.

I Let BSCC(D) denote the set of BSCCs of DTMC D.
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Evolution of an example DTMC

Which states have a probability > 0 when repeating this on the long run?
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On the long run

The probability mass on the long run is only left in BSCCs.
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Measurability
Lemma
For any state s in (possibly infinite) DTMC D:

{π ∈ Paths(s) | inf(π) ∈ BSCC(D) } is measurable

where inf(π) is the set of states that are visited infinitely often along π.

Proof:

1. For BSCC T , {π ∈ Paths(s) | inf(π) = T } is measurable as:

{π ∈ Paths(s) | inf(π) = T } =
⋂

t∈T
�♦t ∩ ♦�T .

2. As BSCC(D) is countable, we have:

{π ∈ Paths(s) | inf(π) ∈ BSCC(D) } =
⋃

TS∈BSCC(D)

⋂
t∈T
�♦t ∧ ♦�T .
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Fundamental result

Long-run theorem
For each state s of a finite Markov chain D:

Prs
{
π ∈ Paths(s) | inf(π) ∈ BSCC(M)

}
= 1.

Intuition
Almost surely any finite DTMC eventually reaches a BSCC and visits all
its states infinitely often.
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Almost sure reachability

Recall: an absorbing state in a DTMC is a state with a self-loop with
probability one.

Almost sure reachability theorem
For finite DTMC with state space S, s ∈ S and G ⊆ S a set of absorbing
states:

Pr(s |= ♦G) = 1 iff s ∈ S \ Pre∗
(
S \ Pre∗(G)

)
.

Note: S \ Pre∗
(
S \ Pre∗(G)

)
are states that cannot reach states from which G

cannot be reached.

Proof:
Show that both sides of the equivalence are equivalent to
Post∗(t) ∩ G 6= ∅ for each state t ∈ Post∗(s). Rather straightforward.
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Computing almost sure reachability properties

Aim:
For finite DTMC D and G ⊆ S, determine { s ∈ S | Pr(s |= ♦G) = 1 }.

Algorithm

1. Make all states in G absorbing yielding D[G ].
2. Determine S \ Pre∗

(
S \ Pre∗(G)

)
by a graph analysis:

2.1 do a backward search from G in D[G ] to determine Pre∗(G).
2.2 followed by a backward search from S \ Pre∗(G) in D[G ].

This yields a time complexity which is linear in the size of the DTMC D.
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Repeated reachability

Almost sure repeated reachability theorem
For finite DTMC with state space S, G ⊆ S, and s ∈ S:
Pr(s |= �♦G) = 1 iff for each BSCC T ⊆ Post∗(s).T ∩ G 6= ∅.

Proof:
Immediate consequence of the long-run theorem.
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Almost sure repeated reachability
Almost sure repeated reachability theorem
For finite DTMC with state space S, G ⊆ S, and s ∈ S:
Pr(s |= �♦G) = 1 iff for each BSCC T ⊆ Post∗(s).T ∩ G 6= ∅.
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Almost sure persistence
Almost sure persistence theorem
For finite DTMC with state space S, G ⊆ S, and s ∈ S:
Pr(s |= ♦�G) = 1 if and only if T ⊆ G for any BSCC T ⊆ Post∗(s)
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A remark on infinite Markov chains
Graph analysis for infinite DTMCs does not suffice!
Consider the following infinitely countable DTMC, known as random walk:

The value of rational probability p does affect qualitative properties:

Pr(s |= ♦ s0) =

{
1 if p 6 1

2

< 1 if p > 1
2

and

Pr(s |= �♦ s0) =

{
1 if p 6 1

2

0 if p > 1
2

Joost-Pieter Katoen Verifying Continuous-Time Markov Chains 64/135



Verifying Continuous-Time Markov Chains Qualitative reachability and all that

Quantitative properties
Quantitative repeated reachability theorem
For finite DTMC with state space S, G ⊆ S, and s ∈ S:
Pr(s |= �♦G) = Pr(s |= ♦U)

where U is the union of all BSCCs T with T ∩ G 6= ∅.

Quantitative repeated reachability theorem
For finite DTMC with state space S, G ⊆ S, and s ∈ S:
Pr(s |= ♦�G) = Pr(s |= ♦U)

where U is the union of all BSCCs T with T ⊆ G .

Remark
Thus probabilities for �♦G and �♦G are reduced to reachability
probabilities. These can be computed by solving a linear equation system.
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Summary

I Executions of a DTMC are strongly fair with respect to all
probabilistic choices.

I A finite DTMC almost surely ends up in a BSCC on the long run.
I Almost sure reachability = double backward search.
I Almost sure �♦G and ♦�G properties can be checked by BSCC

analysis and reachability.
I Probabilities for �♦G and ♦�G reduce to reachability probabilities.

Take-home message
For finite DTMCs, qualitative properties do only depend on their state
graph and not on the transition probabilities! For infinite DTMCs, this
does not hold.
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Probabilistic Computation Tree Logic

I PCTL is a language for formally specifying properties over DTMCs.
I It is a branching-time temporal logic based on CTL.
I Formula interpretation is Boolean, i.e., a state satisfies a formula or

not.
I The main operator is PJ(ϕ)

I where ϕ constrains the set of paths and J is a threshold on the
probability.

I it is the probabilistic counterpart of ∃ and ∀ path-quantifiers in CTL.
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PCTL syntax [Hansson & Jonsson, 1994]

Probabilistic Computation Tree Logic: Syntax
PCTL consists of state- and path-formulas.
I PCTL state formulas over the set AP obey the grammar:

Φ ::= true
∣∣∣ a

∣∣∣ Φ1 ∧ Φ2
∣∣∣ ¬Φ

∣∣∣ PJ(ϕ)

where a ∈ AP, ϕ is a path formula and J ⊆ [0, 1], J 6= ∅ is a
non-empty interval.

I PCTL path formulae are formed according to the following grammar:

ϕ ::= ©Φ
∣∣∣ Φ1 UΦ2

∣∣∣ Φ1 U6n Φ2

where Φ, Φ1, and Φ2 are state formulae and n ∈ IN.
Abbreviate P[0,0.5](ϕ) by P60.5(ϕ) and P]0,1](ϕ) by P>0(ϕ).
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Probabilistic Computation Tree Logic

I PCTL state formulas over the set AP obey the grammar:

Φ ::= true
∣∣∣ a

∣∣∣ Φ1 ∧ Φ2
∣∣∣ ¬Φ

∣∣∣ PJ(ϕ)

where a ∈ AP, ϕ is a path formula and J ⊆ [0, 1], J 6= ∅ is a
non-empty interval.

I PCTL path formulae are formed according to the following grammar:

ϕ ::= ©Φ
∣∣∣ Φ1 UΦ2

∣∣∣ Φ1 U6n Φ2 where n ∈ IN.

Intuitive semantics
I s0s1s2 . . . |= ΦU6n Ψ if Φ holds until Ψ holds within n steps.
I s |= PJ(ϕ) if probability that paths starting in s fulfill ϕ lies in J .

Joost-Pieter Katoen Verifying Continuous-Time Markov Chains 70/135

Verifying Continuous-Time Markov Chains Verifying probabilistic CTL

Semantics of P-operator

I s |= PJ(ϕ) if:
I the probability of all paths starting in s fulfilling ϕ lies in J .

I Example: s |= P> 1
2
(♦a) if

I the probability to reach an a-labeled state from s exceeds 1
2 .

I Formally:
I s |= PJ (ϕ) if and only if Prs{π ∈ Paths(s) | π |= ϕ } ∈ J .
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Derived operators

♦Φ = trueUΦ

♦6nΦ = trueU6nΦ

P6p(�Φ) = P>1−p(♦¬Φ)

P(p,q)(�6nΦ) = P[1−q,1−p](♦
6n¬Φ)
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Correctness of Knuth’s die

Correctness of Knuth’s die
P= 1

6
(♦1) ∧ P= 1

6
(♦2) ∧ P= 1

6
(♦3) ∧ P= 1

6
(♦4) ∧ P= 1

6
(♦5) ∧ P= 1

6
(♦6)
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Measurability

PCTL measurability
For any PCTL path formula ϕ and state s of DTMC D,
the set {π ∈ Paths(s) | π |= ϕ } is measurable.

Proof (sketch):

Three cases:
1. ©Φ:

I cylinder sets constructed from paths of length one.
2. ΦU6n Ψ:

I (finite number of) cylinder sets from paths of length at most n.
3. ΦUΨ:

I countable union of paths satisfying ΦU6n Ψ for all n > 0.
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PCTL model checking
PCTL model checking problem

Input: a finite DTMC D = (S,P, ιinit,AP, L), state s ∈ S, and
PCTL state formula Φ

Output: yes, if s |= Φ; no, otherwise.

Basic algorithm
In order to check whether s |= Φ do:
1. Compute the satisfaction set Sat(Φ) = { s ∈ S | s |= Φ }.
2. This is done recursively by a bottom-up traversal of Φ’s parse tree.

I The nodes of the parse tree represent the subformulae of Φ.
I For each node, i.e., for each subformula Ψ of Φ, determine Sat(Ψ).
I Determine Sat(Ψ) as function of the satisfaction sets of its children:

e.g., Sat(Ψ1 ∧Ψ2) = Sat(Ψ1) ∩ Sat(Ψ2) and Sat(¬Ψ) = S \ Sat(Ψ).

3. Check whether state s belongs to Sat(Φ).
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Core model checking algorithm

Probabilistic operator P

In order to determine whether s ∈ Sat(PJ(ϕ)), the probability Pr(s |= ϕ)
for the event specified by ϕ needs to be established. Then

Sat(PJ(ϕ)) =
{
s ∈ S | Pr(s |= ϕ) ∈ J

}
.

Let us consider the computation of Pr(s |= ϕ) for all possible ϕ.
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The next-step operator

Recall that: s |= PJ(©Φ) if and only if Pr(s |=©Φ) ∈ J .

Lemma
Pr(s |=©Φ) =

∑
s′∈Sat(Φ) P(s, s ′).

Algorithm
Considering the above equation for all states simultaneously yields:(

Pr(s |=©Φ)
)

s∈S = P · bΦ

with bΦ the characteristic vector of Sat(Φ), i.e., bΦ(s) = 1 iff s ∈ Sat(Φ).

Checking the next-step operator reduces to a single matrix-vector multiplication.
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Example

Consider DTMC:
and PCTL-formula:

P>0.9 (© (¬try ∨ succ))

1. Sat(¬try ∨ succ) = (S \ Sat(try)) ∪ Sat(succ) = { s0, s2, s3 }
2. We know:

(
Pr(s |=©Φ)

)
s∈S = P · bΦ where Φ = ¬try ∨ succ

3. Applying that to this example yields:

(
Pr(s |=©Φ)

)
s∈S

=

 0 1 0 0
0 0.01 0.01 0.98
1 0 0 0
0 0 0 1

 ·
 1

0
1
1

 =

 0
0.99
1
1


4. Thus: Sat(P>0.9(© (¬try ∨ succ)) = { s1, s2, s3 }.
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Time complexity

Let |Φ| be the size of Φ, i.e., the number of logical and temporal operators in Φ.

Time complexity of PCTL model checking
For finite DTMC D and PCTL state-formula Φ, the PCTL model-checking
problem can be solved in time

O
(
poly(size(D)) · nmax · |Φ|

)
where nmax = max{ n | Ψ1 U6nΨ2 occurs in Φ } with and nmax = 1 if Φ
does not contain a bounded until-operator.
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Time complexity
Time complexity of PCTL model checking
For finite DTMC D and PCTL state-formula Φ, the PCTL model-checking
problem can be solved in time

O
(
poly(size(D)) · nmax · |Φ|

)
.

Proof (sketch)

1. For each node in the parse tree, a model-checking is performed; this
yields a linear complexity in |Φ|.

2. The worst-case operator is (unbounded) until.
2.1 Determining S=0 and S=1 can be done in linear time.
2.2 Direct methods to solve linear equation systems are in Θ(|S?|3).

3. Strictly speaking, U6n could be more expensive for large n.
But it remains polynomial, and n is small in practice.
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Some practical verification times
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10
6

3.
5⋅
10
6100

101

102

103

104

105

Crowds protocol (DTMC)

Randomised mutex (DTMC)

verification time (in ms)

state space size

I command-line tool MRMC ran on a Pentium 4, 2.66 GHz, 1 GB RAM laptop.
I PCTL formula P6p(♦obs) where obs holds when the sender’s id is detected.
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Summary

I PCTL is a variant of CTL with operator PJ(ϕ).
I Sets of paths fulfilling PCTL path-formula ϕ are measurable.
I PCTL model checking is performed by a recursive descent over Φ.
I The next operator amounts to a single matrix-vector multiplication.
I The bounded-until operator U6n amounts to n matrix-vector

multiplications.
I The until-operator amounts to solving a linear equation system.
I The worst-case time complexity is polynomial in the size of the

DTMC and linear in the size of the formula.
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Qualitative PCTL
Qualitative PCTL
State formulae in the qualitative fragment of PCTL (over AP):

Φ ::= true
∣∣∣ a

∣∣∣ Φ1 ∧ Φ2
∣∣∣ ¬Φ

∣∣∣ P>0(ϕ)
∣∣∣ P=1(ϕ)

where a ∈ AP, and ϕ is a path formula formed according to the grammar:

ϕ ::=©Φ
∣∣∣ Φ1 UΦ2.

Remark
The probability bounds = 0 and < 1 can be derived:

P=0(ϕ) ≡ ¬P>0(ϕ) and P<1(ϕ) ≡ ¬P=1(ϕ)

So, in qualitative PCTL, there is no bounded until, and only > 0, = 0, > 1
and = 1 thresholds.
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Qualitative PCTL

Qualitative PCTL
State formulae in the qualitative fragment of PCTL (over AP):

Φ ::= true
∣∣∣ a

∣∣∣ Φ1 ∧ Φ2
∣∣∣ ¬Φ

∣∣∣ P>0(ϕ)
∣∣∣ P=1(ϕ)

where a ∈ AP, and ϕ is a path formula formed according to the grammar:

ϕ ::=©Φ
∣∣∣ Φ1 UΦ2.

Examples
P=1(♦P>0(© a)) and P<1(P>0(♦a)U b) are qualitative PCTL formulas.
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CTL versus qualitative PCTL
Equivalence of PCTL and CTL Formulae
The PCTL formula Φ is equivalent to the CTL formula Ψ, denoted
Φ ≡ Ψ, if Sat(Φ) = Sat(Ψ) for each DTMC D.

Example
The simplest such cases are path formulae involving the next-step operator:

P=1(© a) ≡ ∀© a
P>0(© a) ≡ ∃© a

And for ∃♦ and ∀� we have:

P>0(♦a) ≡ ∃♦a
P=1(�a) ≡ ∀�a.
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CTL versus qualitative PCTL

(1) P>0(♦a) ≡ ∃♦a and (2) P=1(�a) ≡ ∀�a.

Proof:
(1) Consider the first statement.
⇒ Assume s |= P>0(♦a). By the PCTL semantics, Pr(s |= ♦a) > 0.

Thus, {π ∈ Paths(s) | π |= ♦a } 6= ∅, and hence, s |= ∃♦a.
⇐ Assume s |= ∃♦a, i.e., there is a finite path π̂ = s0 s1 . . . sn with

s0 = s and sn |= a. It follows that all paths in the cylinder set Cyl(π̂)
fulfill ♦a. Thus:

Pr(s |= ♦a) > Prs(Cyl(s0 s1 . . . sn)) = P(s0s1 . . . sn) > 0.

So, s |= P>0(♦a).
(2) The second statement follows by duality.
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CTL versus qualitative PCTL

(1) P>0(♦a) ≡ ∃♦a and (2) P=1(�a) ≡ ∀�a.

(3) P>0(�a) 6≡ ∃�a and (4) P=1(♦a) 6≡ ∀♦a.

Example
Consider the second statement (4). Let s be a state in a (possibly infinite)
DTMC. Then: s |= ∀♦a implies s |= P=1(♦a). The reverse direction,
however, does not hold. Consider the example DTMC:

s |= P=1(♦a) as the probability of
path sω is zero. However, the path
sω is possible and violates ♦a. Thus,
s 6|= ∀♦a.
Statement (3) follows by duality.
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Almost-sure-reachability not in CTL
Almost-sure-reachability not in CTL

1. There is no CTL formula that is equivalent to P=1(♦a).
2. There is no CTL formula that is equivalent to P>0(�a).

Proof:
We provide the proof of 1.; 2. follows by duality: P=1(♦a) ≡ ¬P>0(�¬a). By
contraposition. Assume Φ ≡ P=1(♦a). Consider the infinite DTMC Dp:

The value of p does affect reachability: Pr(s |= ♦ s0) =

{
1 if p 6 1

2

< 1 if p > 1
2
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Almost-sure-reachability not in CTL

There is no CTL formula that is equivalent to P=1(♦a).

Proof:

We have: Pr(s |= ♦ s0) =

{
1 if p 6 1

2

< 1 if p > 1
2

Thus, in D 1
4
we have s |= P=1(♦s0) for all states s, while in D 3

4
, e.g.,

s1 6|= P=1(♦s0). Hence: s1 ∈ SatD 1
4

( P=1(♦s0) ) but s1 /∈ SatD 3
4

( P=1(♦s0) ).

For CTL-formula Φ —by assumption Φ ≡ P=1(♦s0)— we have:

SatD 1
4

(Φ) = SatD 3
4

(Φ).

Hence, state s1 either fulfills the CTL formula Φ in both DTMCs or in none of
them. This, however, contradicts Φ ≡ P=1(♦s0).
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∀♦ is not expressible in qualitative PCTL

1. There is no qualitative PCTL formula that is equivalent to ∀♦a.
2. There is no qualitative PCTL formula that is equivalent to ∃�a.
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Fair CTL
Fair paths
In fair CTL, path formulas are interpreted over fair infinite paths, i.e.,
paths π that satisfy

fair =
∧
s∈S

∧
t ∈ Post(s)

(�♦s → �♦t).

A path π such that π |= fair is called fair. Let Pathsfair (s) be the set of
fair paths starting in s.

Fair CTL semantics
The fair semantics of CTL is defined by the satisfaction |=fair which is
defined as |= for the CTL semantics, except that:

s |=fair ∃ϕ iff there exists π ∈ Pathsfair (s). π |=fair ϕ

s |=fair ∀ϕ iff for all π ∈ Pathsfair (s). π |=fair ϕ.
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Fairness theorem

Qualitative PCTL versus fair CTL theorem
Let s be an arbitrary state in a finite DTMC. Then:

s |= P=1(♦a) iff s |=fair ∀♦a
s |= P>0(�a) iff s |=fair ∃�a
s |= P=1(aU b) iff s |=fair ∀(aU b)

s |= P>0(aU b) iff s |=fair ∃(aU b)

Comparable expressiveness
Qualitative PCTL and fair CTL are equally expressive.
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Almost sure repeated reachability

Almost sure repeated reachability is PCTL-definable
For finite DTMC D, state s ∈ S and G ⊆ S:

s |= P=1 (�P=1(♦G) ) iff Prs{π ∈ Paths(s) | π |= �♦G } = 1.

We abbreviate P=1 (�P=1(♦G)) by P=1 (�♦G).

Remark:
For CTL, universal repeated reachability properties can be formalized by the
combination of the modalities ∀� and ∀♦:

s |= ∀�∀♦G iff π |= �♦G for all π ∈ Paths(s).
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Repeated reachability probabilities

Repeated reachability probabilities are PCTL-definable
For finite DTMC D, state s ∈ S, G ⊆ S and interval J ⊆ [0, 1] we have:

s |= PJ(♦P=1(�P=1(♦G))︸ ︷︷ ︸
=PJ (�♦G)

if and only if Pr(s |= �♦G) ∈ J .

Remark:
By the above theorem, P>0(�♦G) is PCTL definable. Note that ∃�♦G is not
CTL-definable (but definable in a combination of CTL and LTL, called CTL∗).
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Almost sure persistence

Almost sure persistence is PCTL-definable
For finite DTMC D, state s ∈ S and G ⊆ S:

s |= P=1 (♦P=1(�G) ) iff Prs{π ∈ Paths(s) | π |= ♦�G } = 1.

We abbreviate P=1 (♦P=1(�G)) by P=1 (♦�G).

Remark:
Note that ∀♦�G is not CTL-definable. ♦�G is a well-known example formula in
LTL that cannot be expressed in CTL. But by the above theorem it can be
expressed in PCTL.
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Persistence probabilities

Persistence probabilities are PCTL-definable
For finite DTMC D, state s ∈ S, G ⊆ S and interval J ⊆ [0, 1] we have:

s |= PJ(♦P=1(�G))︸ ︷︷ ︸
=PJ (♦�G)

if and only if Pr(s |= ♦�G) ∈ J .

Proof:
Left as an exercise. Hint: use the long run theorem.
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Summary

I Qualitative PCTL only allow the probability bounds > 0 and = 1.
I There is no CTL formula that is equivalent to P=1(♦a).
I There is no PCTL formula that is equivalent to ∀�a.
I These results do not apply to finite DTMCs.
I P=1(♦a) and ∀�a are equivalent under fairness.
I Repeated reachability probabilities are PCTL definable.

Take-home messages
Qualitative PCTL and CTL have incomparable expressiveness. Qualitative
and fair CTL are equally expressive. Repeated reachability and persistence
probabilities are PCTL definable. Their qualitative counterparts are not
expressible in CTL.
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Overview
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Probabilistic bisimulation: intuition

Intuition
I Strong bisimulation is used to compare labeled transition systems.
I Strongly bisimilar states exhibit the same step-wise behaviour.
I Our aim: adapt bisimulation to discrete-time Markov chains.
I This yields a probabilistic variant of strong bisimulation.

I When do two DTMC states exhibit the same step-wise behaviour?
I Key: if their transition probability for each equivalence class coincides.
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Probabilistic bisimulation
Probabilistic bisimulation [Larsen & Skou, 1989]

Let D = (S,P, ιinit,AP, L) be a DTMC and R ⊆ S × S an equivalence.
Then: R is a probabilistic bisimulation on S if for any (s, t) ∈ R:
1. L(s) = L(t), and
2. P(s,C) = P(t,C) for all equivalence classes C ∈ S/R

where P(s,C) =
∑

s′∈C P(s, s ′).

For states in R, the probability of moving by a single transition to some
equivalence class is equal.

Probabilistic bisimilarity
Let D be a DTMC and s, t states in D. Then: s is probabilistically
bisimilar to t, denoted s ∼p t, if there exists a probabilistic bisimulation R
with (s, t) ∈ R.
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Probabilistic bisimulation

Probabilistic bisimulation
Let D = (S,P, ιinit,AP, L) be a DTMC and R ⊆ S × S an equivalence.
Then: R is a probabilistic bisimulation on S if for any (s, t) ∈ R:
1. L(s) = L(t), and
2. P(s,C) = P(t,C) for all equivalence classes C ∈ S/R.

Remarks
As opposed to bisimulation on states in transition systems, any probabilistic
bisimulation is an equivalence.
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Example
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Quotient under ∼p
Quotient DTM under ∼p

For D = (S,P, ιinit,AP, L) and probabilistic bisimulation ∼p ⊆ S × S let

D/∼p = (S ′,P′, ι′init,AP, L′), the quotient of D under ∼p

where
I S ′ = S/∼p= { [s]∼p | s ∈ S } with [s]∼p = { s ′ ∈ S | s ∼p s ′ }
I P′([s]∼p , [s ′]∼p ) = P(s, [s ′]∼p )

I ι′init([s]∼p ) =
∑

s′∈[s]∼p
ιinit(s)

I L′([s]∼p ) = L(s).

Remarks
The transition probability from [s]∼p to [t]∼p equals P(s, [t]∼p ). This is
well-defined as P(s,C) = P(s ′,C) for all s ∼p s ′ and all bisimulation equivalence
classes C .
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Craps

I Come-out roll:
I 7 or 11: win
I 2, 3, or 12:

lose
I else: roll

again

I Next roll(s):
I 7: lose
I point: win
I else: roll

again
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Quotient DTMC of Craps under ∼p
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Preservation of PCTL-formulas
Bisimulation preserves PCTL
Let D be a DTMC and s, t states in D. Then:

s ∼p t if and only if s and t are PCTL-equivalent.

Remarks
s ∼p t implies that
1. transient probabilities, reachability probabilities,
2. repeated reachability, persistence probabilities
3. all qualitative PCTL formulas

for s and t are equal.
If for PCTL-formula Φ we have s |= Φ but t 6|= Φ, then it follows s 6∼p t.
A single PCTL-formula suffices!
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PCTL∗ syntax

Probabilistic Computation Tree Logic: Syntax
PCTL∗ consists of state- and path-formulas.
I PCTL∗ state formulas over the set AP obey the grammar:

Φ ::= true
∣∣∣ a

∣∣∣ Φ1 ∧ Φ2
∣∣∣ ¬Φ

∣∣∣ PJ(ϕ)

where a ∈ AP, ϕ is a path formula and J ⊆ [0, 1], J 6= ∅ is a
non-empty interval.

I PCTL∗ path formulae are formed according to the following grammar:

ϕ ::= Φ
∣∣∣ ¬ϕ ∣∣∣ ϕ1 ∧ ϕ2

∣∣∣ © ϕ
∣∣∣ ϕ1 Uϕ2

where Φ is a state formula and ϕ, ϕ1, and ϕ2 are path formulae.
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Bounded until in PCTL∗

Bounded until
Bounded until can be defined using the other operators:

ϕ1 U6n ϕ2 =
∨

06i6n
ψi where ψ0 = ϕ2 and ψi+1 = ϕ1 ∧©ψi for i > 0.

Examples in PCTL∗ but not in PCTL
P> 1

4
(© aU © b) and P=1(P> 1

2
(�♦a) ∨ P6 1

3
(♦�b)).
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Preservation of PCTL∗-formulas

Bisimulation preserves PCTL∗

Let D be a DTMC and s, t states in D. Then:

s ∼p t if and only if s and t are PCTL∗-equivalent.

Remarks

1. Bisimulation thus preserves not only all PCTL but also all PCTL∗ formulas.
2. By the last two results it follows that PCTL- and PCTL∗-equivalence

coincide. Thus any two states that satisfy the same PCTL formulas, satisfy
the same PCTL∗ formulas.
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PCTL− syntax
Simple Probabilistic Computation Tree Logic: Syntax
PCTL− only consists of state-formulas. These formulas over the set AP
obey the grammar:

Φ ::= a
∣∣∣ Φ1 ∧ Φ2

∣∣∣ P6p(©Φ)

where a ∈ AP and p is a probability in [0, 1].

Remarks
This is a truly simple logic. It does not contain the until-operator. Negation is not
present and cannot be expressed. Only upper bounds on probabilities.

The next theorem shows that PCTL-, PCTL∗- and PCTL−-equivalence
coincide.
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Preservation of PCTL
PCTL/PCTL∗ and Bisimulation Equivalence

Let D be a DTMC and s1, s2 states in D. Then, the following statements
are equivalent:
(a) s1 ∼p s2.
(b) s1 and s2 are PCTL∗-equivalent, i.e., fulfill the same PCTL∗ formulas
(c) s1 and s2 are PCTL-equivalent, i.e., fulfill the same PCTL formulas
(d) s1 and s2 are PCTL−-equivalent, i.e., fulfill the same PCTL− formulas

Proof:

1. (a) =⇒ (b): by structural induction on PCTL∗ formulas.

2. (b) =⇒ (c): trivial as PCTL is a sublogic of PCTL∗.

3. (c) =⇒ (d): trivial as PCTL− is a sublogic of PCTL.

4. (d) =⇒ (a): involved. First finite DTMCs, then for arbitrary DTMCs.
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IEEE 802.11 group communication protocol

original DTMC quotient DTMC red. factor
OD states transitions ver. time blocks total time states time
4 1125 5369 122 71 13 15.9 9.00

12 37349 236313 7180 1821 642 20.5 11.2
20 231525 1590329 50133 10627 5431 21.8 9.2
28 804837 5750873 195086 35961 24716 22.4 7.9
36 2076773 15187833 5103900 91391 77694 22.7 6.6
40 3101445 22871849 7725041 135752 127489 22.9 6.1
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Summary

I Bisimilar states have equal transition probabilities to all equivalence
classes.

I ∼p is the coarsest probabilistic bisimulation.
I In a quotient DTMC all states are equivalence classes under ∼p.
I Bisimulation, i.e., ∼p, and PCTL-equivalence coincide.
I PCTL, PCTL∗ and PCTL−-equivalence coincide.
I To show s 6∼p t, show s |= Φ and t 6|= Φ for Φ ∈ PCTL−.
I Bisimulation may yield up to exponential savings in state space.

Take-home message
Probabilistic bisimulation coincides with a notion from the sixties, named
(ordinary) lumpability.
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Paths and traces

Paths
A path in DTMC D is an infinite sequence of states s0s1s2 . . . . . . with
P(si , si+1) > 0 for all i .
Let Paths(D) denote the set of paths in D, and Paths∗(D) the set of finite
prefixes thereof.

Trace
The trace of path π = s0 s1 s2 . . . is trace(π) = L(s0) L(s1) L(s2) . . .. The
trace of finite path π̂ = s0 s1 . . . sn is trace(π̂) = L(s0) L(s1) . . . L(sn).
The set of traces of a set Π of paths: trace(Π) = { trace(π) | π ∈ Π }.
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LT properties
Linear-time property
A linear-time property (LT property) over AP is a subset of

(
2AP)ω. An

LT-property is thus a set of infinite traces over 2AP.

Intuition
An LT-property gives the admissible behaviours of the DTMC at hand.

Probability of LT properties
The probability for DTMC D to exhibit a trace in P (over AP) is:

PrD(P) = PrD{π ∈ Paths(D) | trace(π) ∈ P }.

For state s in D, let Pr(s |= P) = Prs{π ∈ Paths(s) | trace(π) ∈ P }.
We will later identify a rich set P of LT-properties—those that include all LTL
formulas—for which {π ∈ Paths(D) | trace(π) ∈ P } is measurable.
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Safety properties

Safety property
LT property Psafe over AP is a safety property if for all σ ∈

(
2AP)ω \ Psafe

there exists a finite prefix σ̂ of σ such that:

Psafe ∩
{
σ′ ∈

(
2AP)ω | σ̂ is a prefix of σ′

}
︸ ︷︷ ︸

all possible extensions of σ̂

= ∅.

Any such finite word σ̂ is called a bad prefix for Psafe .

Regular safety property
A safety property is regular if its set of bad prefixes constitutes a regular
language (over the alphabet 2AP). Thus, the bad prefixes of a regular
safety property can be represented by a finite-state automaton.
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Probability of a regular safety property
Let A = (Q, 2AP, δ, q0,F ) be a deterministic finite-state automaton (DFA)
for the bad prefixes of regular safety property Psafe :

Psafe = {A0 A1 A2 . . . ∈
(
2AP)ω | ∀n > 0.A0 A1 . . .An 6∈ L(A) }.

Assume δ to be total, i.e., δ(q,A) is defined for each A ⊆ AP and each
state q ∈ Q. Furthermore, let D = (S,P, ιinit,AP, L) be a finite DTMC.
Our interest is to compute the probability

PrD(Psafe) = 1 −
∑
s∈S

ιinit(s) · Pr(s |= A) where

Pr(s |= A) = PrDs {π ∈ Paths(s) | trace(π) /∈ Psafe }.

These probabilities can be obtained by considering a product of DTMC D with
DFA A.
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Product Markov chain
Product Markov chain
Let D = (S,P, ιinit,AP, L) be a DTMC and A = (Q, 2AP, δ, q0,F ) be a
DFA. The product D ⊗A is the DTMC:

D ⊗A = (S × Q,P′, ι′init, { accept }, L′)

where L′(〈s, q〉) = { accept } if q ∈ F and L′(〈s, q〉) = ∅ otherwise, and

ι′init(〈s, q〉) =

{
ιinit(s) if q = δ(q0, L(s))

0 otherwise.

The transition probabilities in D ⊗A are given by:

P′(〈s, q〉, 〈s ′, q′〉) =

{
P(s, s ′) if q′ = δ(q, L(s ′))

0 otherwise.
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Product Markov chain

Remarks
I For each path π = s0 s1 s2 . . . in DTMC D there exists a unique run

q0 q1 q2 . . . in DFA A for trace(π) = L(s0) L(s1) L(s2) . . . and
π+ = 〈s0, q1〉 〈s1, q2〉 〈s2, q3〉 . . . is a path in D ⊗A.

I The DFA A does not affect the probabilities, i.e., for each measurable
set Π of paths in D and state s:

PrDs (Π) = PrD⊗A〈s,δ(q0,L(s))〉 {π
+ | π ∈ Π }︸ ︷︷ ︸

Π+

I For Π =
{
π ∈ PathsD(s) | trace(π) /∈ Psafe

}
, the set Π+ is given by:

Π+ =
{
π+ ∈ PathsD⊗A(〈s, δ(q0, L(s))〉) | π+ |= ♦accept

}
.
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Quantitative analysis of regular safety properties
Theorem for analysing regular safety properties
Let Psafe be a regular safety property, A a DFA for the set of bad prefixes
of Psafe , D a DTMC, and s a state in D. Then:

PrD(s |= Psafe) = PrD⊗A(〈s, qs〉 6|= ♦accept)
= 1− PrD⊗A(〈s, qs〉 |= ♦accept)

where qs = δ(q0, L(s)).

Remarks

1. For finite DTMCs, PrD(s |= Psafe) can thus be computed by determining
reachability probabilities of accept states in D ⊗A. This amounts to solving
a linear equation system.

2. For qualitative regular safety properties, i.e., PrD(s |= Psafe) > 0 and
PrD(s |= Psafe) = 1, a graph analysis of D ⊗A suffices.
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ω-regular languages

Infinite repetition of languages
Let Σ be a finite alphabet. For language L ⊆ Σ∗, let Lω be the set of words in
Σ∗ ∪ Σω that arise from the infinite concatenation of (arbitrary) words in Σ, i.e.,

Lω =
{
w1w2w3 . . . | wi ∈ L, i > 1

}
.

The result is an ω-language, i.e., L ⊆ Σ∗, provided that L ⊆ Σ+, i.e., ε 6∈ L.

ω-regular expression
An ω-regular expression G over the Σ has the form: G = E1.Fω1 + . . .+ En.Fωn
where n > 1 and E1, . . . , En, F1, . . . , Fn are regular expressions over Σ such that
ε /∈ L(Fi ), for all 1 6 i 6 n.
The semantics of G is defined by Lω(G) = L(E1).L(F1)ω ∪ . . . ∪ L(En).L(Fn)ω

where L(E) ⊆ Σ∗ denotes the language (of finite words) induced by the regular
expression E.
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ω-regular expressions

ω-regular expression
An ω-regular expression G over the Σ has the form: G = E1.Fω1 + . . .+ En.Fωn
where n > 1 and E1, . . . , En, F1, . . . , Fn are regular expressions over Σ such that
ε /∈ L(Fi ), for all 1 6 i 6 n.
The semantics of G is defined by Lω(G) = L(E1).L(F1)ω ∪ . . . ∪ L(En).L(Fn)ω

where L(E) ⊆ Σ∗ denotes the language (of finite words) induced by the regular
expression E.

Example
Examples for ω-regular expressions over the alphabet Σ = {A,B,C } are

(A + B)∗A(AAB + C)ω or A(B + C)∗Aω + B(A + C)ω.
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ω-regular properties

ω-regular property
LT property P over AP is called ω-regular if P = Lω(G) for some
ω-regular expression G over the alphabet 2AP.

Example
Let AP = { a, b }. Then some ω-regular properties over AP are:
I always a, i.e., ({ a }+ { a, b })ω.

I eventuallty a, i.e., (∅ + { b })∗.({ a }+ { a, b }).(2AP)ω.
I infinitely often a, i.e., ((∅ + { b })∗.({ a }+ { a, b }))ω.

I from some moment on, always a, i.e., (2AP)∗.({ a }+ { a, b })ω.
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Deterministic Rabin automata

Deterministic Rabin automaton
A deterministic Rabin automaton (DRA) A = (Q,Σ, δ, q0,F) with
I Q, q0 ∈ Q0, Σ is an alphabet, and δ : Q × Σ→ Q as before
I F = { (Li ,Ki ) | 0 < i 6 k } with Li ,Ki ⊆ Q, is a set of accept pairs

A run for σ = A0A1A2 . . . ∈ Σω denotes an infinite sequence q0 q1 q2 . . . of
states in A such that q0 ∈ Q0 and qi

Ai−−→ qi+1 for i > 0.
Run q0 q1 q2 . . . is accepting if for some pair (Li ,Ki ), the states in Li are
visited finitely often and the states in Ki infinitely often. That is, an
accepting run should satisfy∨

0<i6k
(♦�¬Li ∧�♦Ki ).
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Deterministic Rabin automata

DRA and ω-regular languages
The class of languages accepted by DRAs agrees with the class of
ω-regular languages.

Thus, the language of any DRA A is ω-regular. Vice versa, for any ω-regular
language L, a DRA A exists such that Lω(A) = L.

The proof of this theorem is outside the scope of this lecture.
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Verifying DRA properties
Product of a Markov chain and a DRA
The product of DTMC D and DRA A is defined as the product of a Markov
chain and a DFA, except that the labeling is defined differently.

Let the acceptance condition of A is F = { (L1,K1), . . . , (Lk ,Kk) }. Then the
sets Li , Ki serve as atomic propositions in D ⊗A. The labeling function L′ in
D ⊗A is the obvious one: if H ∈ { L1, . . . , Lk ,K1, . . . ,Kk }, then H ∈ L′(〈s, q〉) if
and only if q ∈ H.

Accepting BSCC
A BSCC T in D ⊗A is accepting if and only if there exists some index
i ∈ { 1, . . . , k } such that:

T ∩ (S × Li ) = ∅ and T ∩ (S × Ki ) 6= ∅.

Thus, once such an accepting BSCC T is reached in D ⊗A, the acceptance
criterion for the DRA A is fulfilled almost surely.
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Verifying DRA objectives

Verifying DRA objectives theorem
Let D be a finite DTMC, s a state in D, A a DRA, and let U be the union
of all accepting BSCCs in D ⊗A. Then:

PrD(s |= A) = PrD⊗A
(
〈s, qs〉 |= ♦U

)
whereqs = δ(q0, L(s)).

Thus: PrD(A) =
∑

s∈S ιinit(s) · PrD⊗A(〈s, δ(q0, L(s))〉 |= ♦U). The
computation of probabilities for satisfying ω-regular properties boils down to
computing the reachability probabilities for certain BSCCs in D ⊗A. Again, a
graph analysis and solving systems of linear equations suffice. The time
complexity is polynomial in the size of D and A.
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Measurability

Measurability theorem for ω-regular properties [Vardi 1985]

For any DTMC D and ω-regular LT property P, the set

{π ∈ Paths(D) | trace(π) ∈ P }

is measurable.

Proof (sketch)

Represent P by a DRA A with accept sets { (L1,K1), . . . , (Lk ,Kk) }. Let
ϕi = ♦�¬Li ∧ �♦Ki and Πi the set of paths satisfying ϕi . Then
Π = Π1 ∪ . . . ∪ Πk . In addition, Πi = Π♦�i ∩ Π�♦i where Π♦�i is the set of paths
π in D such that π+ |= ♦�¬Li , and Π�♦i is the set of paths π in D such that
π+ |= �♦Ki . It remains to show that Π♦�i and Π�♦i are measurable. This goes
along the same lines as proving that ♦�G and �♦G are measurable.
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Linear temporal logic

Linear Temporal Logic: Syntax [Pnueli 1977]

LTL formulas over the set AP obey the grammar:

ϕ ::= a
∣∣∣ ¬ϕ ∣∣∣ ϕ1 ∧ ϕ2

∣∣∣ © ϕ
∣∣∣ ϕ1 Uϕ2

where a ∈ AP and ϕ, ϕ1, and ϕ2 are LTL formulas.
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LTL semantics
LTL semantics
The LT-property induced by LTL formula ϕ over AP is:

Words(ϕ) =
{
σ ∈

(
2AP

)ω
| σ |= ϕ

}
,where |= is the smallest relation s.t.:

σ |= true
σ |= a iff a ∈ A0 (i.e., A0 |= a)

σ |= ϕ1 ∧ ϕ2 iff σ |= ϕ1 and σ |= ϕ2

σ |= ¬ϕ iff σ 6|= ϕ

σ |= ©ϕ iff σ1 = A1A2A3 . . . |= ϕ

σ |= ϕ1 Uϕ2 iff ∃j > 0. σj |= ϕ2 and σi |= ϕ1, 0 6 i < j

for σ = A0A1A2 . . . we have σi = AiAi+1Ai+2 . . . is the suffix of σ from index i on.
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Some facts about LTL

LTL is ω-regular
For any LTL formula ϕ, the set Words(ϕ) is an ω-regular language.

LTL are DRA-definable
For any LTL formula ϕ, there exists a DRA A such that Lω = Words(ϕ)

where the number of states in A lies in 22|ϕ| .
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Verifying a DTMC against LTL formulas

Complexity of LTL model checking [Vardi 1985]

The qualitative model-checking problem for finite DTMCs against LTL
formula ϕ is PSPACE-complete, i.e., verifying whether Pr(s |= ϕ) > 0 or
Pr(s |= ϕ) = 1 is PSPACE-complete.

Recall that the LTL model-checking problem for finite transition systems is also
PSPACE-complete.
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Summary
Summary

I Verifying a DTMC D against a DFA A, i.e., determining Pr(D |= A),
amounts to computing reachability probabilities of accept states in D ⊗A.

I For DBA objectives, the probability of infinitely often visiting an accept state
in D ⊗A.

I DBA are strictly less powerful than ω-regular languages.
I Deterministic Rabin automata are as expressive as ω-regular languages.
I Verifying DTMC D agains DRA A amounts to computing reachability

probabilities of accepting BSCCs in D ⊗A.

Take-home message
Model checking a DTMC against various automata models reduces to computing
reachability probabilities in a product.
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