
Lecture 1:

Verification of Concurrent Programs
Part 1: Decidability and Complexity Results

Ahmed Bouajjani

LIAFA, University Paris Diderot – Paris 7

VTSA, MPI-Saarbrücken, September 2012

A. Bouajjani (LIAFA, UP7) Lecture 1: Concurrent Programs I September 2012 1 / 28



Outline of the lectures

Lecture 1: Concurrent programs: Decidability and complexity Results

I Basic models
I Limits of the decidability of the reachability problem
I Classes of programs/models with a decidable state reachability problem

Lecture 2: Concurrent programs: Under-approximate analysis

I Bounded analysis for concurrent programs
I Decidability and complexity issues
I Compositional reduction to state reachability in sequential programs

Lecture 3: Weak memory models: State reachability problem

I Weaker models than Sequential Consistency
I (Un)Decidability and complexity of the state reachability problem
I Efficient under-approximate analysis: Reduction to SC state reachability

Lecture 4: Weak memory models: Robustness against a WMM

I Check that all behaviors are still sequentially consistent
I Decidability and complexity
I Reduction to SC state reachability

A. Bouajjani (LIAFA, UP7) Lecture 1: Concurrent Programs I September 2012 2 / 28



Concurrent Programs

Parallel threads (with/without procedure calls)

Static/Dynamic number of threads

Communication

I Shared memory

F Notion of action atomicity
F Actions by a same threads are executed in the same order

(Sequential Consistency)
F Actions by different threads are interleaved non-deterministically

I Message passing

F Channels (queues)
F Unordered/FIFO ...
F Perfect/Lossy

We assume finite data domain (e.g., booleans).

A. Bouajjani (LIAFA, UP7) Lecture 1: Concurrent Programs I September 2012 3 / 28



Finite number of threads + Shared variables

Fixed number of threads

Iterative processes (no recursive procedure calls)

Finite number of variables

A variable has a finite number of possible values

⇒ Finite product of finite-state systems (threads + variables)

⇒ Decidable

Product grows exponentially in # threads and # variables.

Reachability is decidable, and PSPACE-complete.
[Kozen, FOCS’77]

A. Bouajjani (LIAFA, UP7) Lecture 1: Concurrent Programs I September 2012 4 / 28



Finite number of threads + Shared variables

Fixed number of threads

Iterative processes (no recursive procedure calls)

Finite number of variables

A variable has a finite number of possible values

⇒ Finite product of finite-state systems (threads + variables)

⇒ Decidable

Product grows exponentially in # threads and # variables.

Reachability is decidable, and PSPACE-complete.
[Kozen, FOCS’77]

A. Bouajjani (LIAFA, UP7) Lecture 1: Concurrent Programs I September 2012 4 / 28



Finite number of threads + Shared variables

Fixed number of threads

Iterative processes (no recursive procedure calls)

Finite number of variables

A variable has a finite number of possible values

⇒ Finite product of finite-state systems (threads + variables)

⇒ Decidable

Product grows exponentially in # threads and # variables.

Reachability is decidable, and PSPACE-complete.
[Kozen, FOCS’77]

A. Bouajjani (LIAFA, UP7) Lecture 1: Concurrent Programs I September 2012 4 / 28



Finite number of threads + bounded queues

Fixed number of threads

Iterative processes (no recursive procedure calls)

Bounded channels

⇒ Finite number of possible channel contents

⇒ Finite product of finite-state systems (threads + channels)

⇒ Decidable

Product grows exponentially in # threads and size of channels.

Reachability is decidable, and PSPACE-complete.

A. Bouajjani (LIAFA, UP7) Lecture 1: Concurrent Programs I September 2012 5 / 28



Finite number of threads + bounded queues

Fixed number of threads

Iterative processes (no recursive procedure calls)

Bounded channels

⇒ Finite number of possible channel contents

⇒ Finite product of finite-state systems (threads + channels)

⇒ Decidable

Product grows exponentially in # threads and size of channels.

Reachability is decidable, and PSPACE-complete.

A. Bouajjani (LIAFA, UP7) Lecture 1: Concurrent Programs I September 2012 5 / 28



Finite number of threads + bounded queues

Fixed number of threads

Iterative processes (no recursive procedure calls)

Bounded channels

⇒ Finite number of possible channel contents

⇒ Finite product of finite-state systems (threads + channels)

⇒ Decidable

Product grows exponentially in # threads and size of channels.

Reachability is decidable, and PSPACE-complete.

A. Bouajjani (LIAFA, UP7) Lecture 1: Concurrent Programs I September 2012 5 / 28



Facing the state-space explosion

Partial order techniques

I Independent actions ⇒ commutable actions ⇒ many interleavings
I Explore representatives up to independent actions commutations

Godefroid, Wolper, Peled, Holzman, Valmari, ...

Symbolic techniques

I Compact representations of sets of states + fixpoint calculations
I Bounded model checking + SAT solvers

Clarke, McMillan, Somenzi, Biere, Cimatti, ...

A. Bouajjani (LIAFA, UP7) Lecture 1: Concurrent Programs I September 2012 6 / 28



Beyond the finite-state case

Unbounded (parametric/dynamic) number of threads

I Undecidable in general if threads Ids are allowed
I ⇒ Anonymous threads

Unbounded channels

I Undecidable in general in case of FIFO queues
I ⇒ Unordered queues (multisets), lossy queues

A. Bouajjani (LIAFA, UP7) Lecture 1: Concurrent Programs I September 2012 7 / 28



Programs with Dynamic Creation of Threads

Finite number of variables

Finite data domain

⇒ Threads are anonymous (no way to refer to identities)

Iterative processes (no recursive procedure calls)

⇒ Counting abstraction
I Finite number of possible local states `1, . . . , `m
I Count how many threads are in a given local state

Safety is reducible to state reachability in VASS / Coverability in PN

A. Bouajjani (LIAFA, UP7) Lecture 1: Concurrent Programs I September 2012 8 / 28



Programs with Dynamic Creation of Threads

Finite number of variables

Finite data domain

⇒ Threads are anonymous (no way to refer to identities)

Iterative processes (no recursive procedure calls)

⇒ Counting abstraction
I Finite number of possible local states `1, . . . , `m
I Count how many threads are in a given local state

Safety is reducible to state reachability in VASS / Coverability in PN

A. Bouajjani (LIAFA, UP7) Lecture 1: Concurrent Programs I September 2012 8 / 28



Programs with Dynamic Creation of Threads

Finite number of variables

Finite data domain

⇒ Threads are anonymous (no way to refer to identities)

Iterative processes (no recursive procedure calls)

⇒ Counting abstraction
I Finite number of possible local states `1, . . . , `m
I Count how many threads are in a given local state

Safety is reducible to state reachability in VASS / Coverability in PN

A. Bouajjani (LIAFA, UP7) Lecture 1: Concurrent Programs I September 2012 8 / 28



Vector Addtion Systems with States

Finite state machine + finite number of counter C = {c1, . . . , cn}.
Operations: (No test to zero)

I ci := ci + 1
I ci > 0 / ci := ci − 1

Configuration: (q,V ) where q is a control state and V ∈ Nn

Initial configuration: (q0, 0) where 0 = 0n.

Transition relation:

(q1,V1)
op−−→(q2,V2) iff

I op = “ci := ci + 1”, and V2 = V1[ci ← (V1(ci ) + 1)]
I op = “ci > 0 / ci := ci − 1, and

(V1(ci ) > 0 and V2 = V1[ci ← (V1(ci )− 1)])

A. Bouajjani (LIAFA, UP7) Lecture 1: Concurrent Programs I September 2012 9 / 28



From Multithreaded Programs to VASS

Associate a control state with each valuation of the globals

Associate a counter with each valuation of thread locals

A statement moving globals from g to g ′ and locals from ` to `′:

g
c`>0/c`:=c`−1 ; c`′ :=c`′+1−−−−−−−−−−−−−−−−−→ g ′

Creation of a new thread at initial state `:

g
c`:=c`+1−−−−−−→ g

A. Bouajjani (LIAFA, UP7) Lecture 1: Concurrent Programs I September 2012 10 / 28



VASS: Reachability Problems

State reachability problem:

Given a state q, determine if a configuration (q,V ) is reachable,
for some V ∈ Nn (any one).

Coverability problem:

Given a configuration (q,V ), determine if a configuration (q,V ′)
is reachable, for some V ′ ≥ V . (We say that (q,V ) is coverable.)

EXSPACE-complete [Rackoff 78]

NB: Coverability can be reduced to State reachability and vice-versa.

Configuration reachability problem:

Determine if a given configuration (q,V ) is reachable.

Decidable [Mayr 81], [Kosaraju 82].

EXPSPACE-hard [Lipton 75]. No upper bound known.

A. Bouajjani (LIAFA, UP7) Lecture 1: Concurrent Programs I September 2012 11 / 28



Well Structured Systems
[Abdulla et al. 96], [Finkel, Schnoebelen, 00]

Let U be a universe.

Well-quasi ordering � over U: ∀c0, c1, c2, . . . , ∃i < j , ci � cj

⇒ Each (infinite) set has a finite minor set.

Let S ⊆ U. Upward-closure S = minimal subset of U s.t.
I S ⊆ S ,
I ∀x , y . (x ∈ S and x � y)⇒ y ∈ S .

A set is upward closed if S = S

Upward closed sets are definable by their minor sets
I Assume there is a function Min which associates a minor to each set.
I Assume pre(Min(S)) is computable for each set S .

Monotonicity: � is a simulation relation

∀c1, c
′
1, c2.

(
(c1 −→ c ′1 and c1 � c2)⇒ ∃c ′2. c2 −→ c ′2 and c ′1 � c ′2

)
A. Bouajjani (LIAFA, UP7) Lecture 1: Concurrent Programs I September 2012 12 / 28



Key lemma

Lemma

The pre and pre∗ images of upward closed set are upward closed

1 Let S be an upward closed set.

2 Assume pre(S) is not upward closed.

3 Let c1 ∈ pre(S), and let c2 ∈ U such that c1 � c2 and c2 6∈ pre(S)

4 Let c ′1 ∈ S such that c1−→ c ′1
5 Monotonicity ⇒ there is a c ′2 such that c2−→ c ′2 and c ′1 � c ′2
6 S is upward closed ⇒ c ′2 ∈ S

7 ⇒ c2 ∈ pre(S), contradiction.

8 For pre∗: the union of upward closed sets is upward closed.

A. Bouajjani (LIAFA, UP7) Lecture 1: Concurrent Programs I September 2012 13 / 28



Key lemma

Lemma

The pre and pre∗ images of upward closed set are upward closed

1 Let S be an upward closed set.

2 Assume pre(S) is not upward closed.

3 Let c1 ∈ pre(S), and let c2 ∈ U such that c1 � c2 and c2 6∈ pre(S)

4 Let c ′1 ∈ S such that c1−→ c ′1

5 Monotonicity ⇒ there is a c ′2 such that c2−→ c ′2 and c ′1 � c ′2
6 S is upward closed ⇒ c ′2 ∈ S

7 ⇒ c2 ∈ pre(S), contradiction.

8 For pre∗: the union of upward closed sets is upward closed.

A. Bouajjani (LIAFA, UP7) Lecture 1: Concurrent Programs I September 2012 13 / 28



Key lemma

Lemma

The pre and pre∗ images of upward closed set are upward closed

1 Let S be an upward closed set.

2 Assume pre(S) is not upward closed.

3 Let c1 ∈ pre(S), and let c2 ∈ U such that c1 � c2 and c2 6∈ pre(S)

4 Let c ′1 ∈ S such that c1−→ c ′1
5 Monotonicity ⇒ there is a c ′2 such that c2−→ c ′2 and c ′1 � c ′2

6 S is upward closed ⇒ c ′2 ∈ S

7 ⇒ c2 ∈ pre(S), contradiction.

8 For pre∗: the union of upward closed sets is upward closed.

A. Bouajjani (LIAFA, UP7) Lecture 1: Concurrent Programs I September 2012 13 / 28



Key lemma

Lemma

The pre and pre∗ images of upward closed set are upward closed

1 Let S be an upward closed set.

2 Assume pre(S) is not upward closed.

3 Let c1 ∈ pre(S), and let c2 ∈ U such that c1 � c2 and c2 6∈ pre(S)

4 Let c ′1 ∈ S such that c1−→ c ′1
5 Monotonicity ⇒ there is a c ′2 such that c2−→ c ′2 and c ′1 � c ′2
6 S is upward closed ⇒ c ′2 ∈ S

7 ⇒ c2 ∈ pre(S), contradiction.

8 For pre∗: the union of upward closed sets is upward closed.

A. Bouajjani (LIAFA, UP7) Lecture 1: Concurrent Programs I September 2012 13 / 28



Key lemma

Lemma

The pre and pre∗ images of upward closed set are upward closed

1 Let S be an upward closed set.

2 Assume pre(S) is not upward closed.

3 Let c1 ∈ pre(S), and let c2 ∈ U such that c1 � c2 and c2 6∈ pre(S)

4 Let c ′1 ∈ S such that c1−→ c ′1
5 Monotonicity ⇒ there is a c ′2 such that c2−→ c ′2 and c ′1 � c ′2
6 S is upward closed ⇒ c ′2 ∈ S

7 ⇒ c2 ∈ pre(S), contradiction.

8 For pre∗: the union of upward closed sets is upward closed.

A. Bouajjani (LIAFA, UP7) Lecture 1: Concurrent Programs I September 2012 13 / 28



Key lemma

Lemma

The pre and pre∗ images of upward closed set are upward closed

1 Let S be an upward closed set.

2 Assume pre(S) is not upward closed.

3 Let c1 ∈ pre(S), and let c2 ∈ U such that c1 � c2 and c2 6∈ pre(S)

4 Let c ′1 ∈ S such that c1−→ c ′1
5 Monotonicity ⇒ there is a c ′2 such that c2−→ c ′2 and c ′1 � c ′2
6 S is upward closed ⇒ c ′2 ∈ S

7 ⇒ c2 ∈ pre(S), contradiction.

8 For pre∗: the union of upward closed sets is upward closed.

A. Bouajjani (LIAFA, UP7) Lecture 1: Concurrent Programs I September 2012 13 / 28



Backward Reachability Analysis

Consider the increasing sequence X0 ⊆ X1 ⊆ X2 . . . defined by:

X0 = Min(S)

Xi+1 = Xi ∪Min(pre(Xi ))

Termination:

There is a index i ≥ 0 such that Xi+1 = Xi

The set pre∗(S) is upward closed ⇒ has a finite minor

Wait until a minor is collected

How long shall we wait?

Non primitive recursive in general

A. Bouajjani (LIAFA, UP7) Lecture 1: Concurrent Programs I September 2012 14 / 28



The case of VASS

Usual ≤ order over N is a WQO (Dickson lemma)

Product of WQO’s is a WQO.

⇒ ≤ generalized to Nn is a WQO.

Upward-closed sets = finite disjunctions of
∧n

i=1 li ≤ ci , where li ∈ N
Computation of the Pre:

I op = “cj := cj + 1” : (
∧

i 6=j li ≤ ci ) ∧ (max(lj − 1, 0) ≤ cj)
I op = “cj > 0/cj − 1”: (

∧
i 6=j li ≤ ci ) ∧ (lj + 1 ≤ cj)

No test to zero, only guards of the form c > 0 ⇒ Monotonicity

⇒ Coverability is decidable.

Can we have operation of the following forms? :

ci := 0, ci := cj , ci := ci + cj , ci := cj + ck

Coverability is still decidable. (But not reachability. [Dufourd et al. 98])

A. Bouajjani (LIAFA, UP7) Lecture 1: Concurrent Programs I September 2012 15 / 28



The case of VASS

Usual ≤ order over N is a WQO (Dickson lemma)

Product of WQO’s is a WQO.

⇒ ≤ generalized to Nn is a WQO.

Upward-closed sets = finite disjunctions of
∧n

i=1 li ≤ ci , where li ∈ N
Computation of the Pre:

I op = “cj := cj + 1” : (
∧

i 6=j li ≤ ci ) ∧ (max(lj − 1, 0) ≤ cj)
I op = “cj > 0/cj − 1”: (

∧
i 6=j li ≤ ci ) ∧ (lj + 1 ≤ cj)

No test to zero, only guards of the form c > 0 ⇒ Monotonicity

⇒ Coverability is decidable.

Can we have operation of the following forms? :

ci := 0, ci := cj , ci := ci + cj , ci := cj + ck

Coverability is still decidable. (But not reachability. [Dufourd et al. 98])

A. Bouajjani (LIAFA, UP7) Lecture 1: Concurrent Programs I September 2012 15 / 28



The case of VASS

Usual ≤ order over N is a WQO (Dickson lemma)

Product of WQO’s is a WQO.

⇒ ≤ generalized to Nn is a WQO.

Upward-closed sets = finite disjunctions of
∧n

i=1 li ≤ ci , where li ∈ N
Computation of the Pre:

I op = “cj := cj + 1” : (
∧

i 6=j li ≤ ci ) ∧ (max(lj − 1, 0) ≤ cj)
I op = “cj > 0/cj − 1”: (

∧
i 6=j li ≤ ci ) ∧ (lj + 1 ≤ cj)

No test to zero, only guards of the form c > 0 ⇒ Monotonicity

⇒ Coverability is decidable.

Can we have operation of the following forms? :

ci := 0, ci := cj , ci := ci + cj , ci := cj + ck

Coverability is still decidable. (But not reachability. [Dufourd et al. 98])

A. Bouajjani (LIAFA, UP7) Lecture 1: Concurrent Programs I September 2012 15 / 28



The case of VASS

Usual ≤ order over N is a WQO (Dickson lemma)

Product of WQO’s is a WQO.

⇒ ≤ generalized to Nn is a WQO.

Upward-closed sets = finite disjunctions of
∧n

i=1 li ≤ ci , where li ∈ N
Computation of the Pre:

I op = “cj := cj + 1” : (
∧

i 6=j li ≤ ci ) ∧ (max(lj − 1, 0) ≤ cj)
I op = “cj > 0/cj − 1”: (

∧
i 6=j li ≤ ci ) ∧ (lj + 1 ≤ cj)

No test to zero, only guards of the form c > 0 ⇒ Monotonicity

⇒ Coverability is decidable.

Can we have operation of the following forms? :

ci := 0, ci := cj , ci := ci + cj , ci := cj + ck

Coverability is still decidable. (But not reachability. [Dufourd et al. 98])

A. Bouajjani (LIAFA, UP7) Lecture 1: Concurrent Programs I September 2012 15 / 28



The case of VASS

Usual ≤ order over N is a WQO (Dickson lemma)

Product of WQO’s is a WQO.

⇒ ≤ generalized to Nn is a WQO.

Upward-closed sets = finite disjunctions of
∧n

i=1 li ≤ ci , where li ∈ N
Computation of the Pre:

I op = “cj := cj + 1” : (
∧

i 6=j li ≤ ci ) ∧ (max(lj − 1, 0) ≤ cj)
I op = “cj > 0/cj − 1”: (

∧
i 6=j li ≤ ci ) ∧ (lj + 1 ≤ cj)

No test to zero, only guards of the form c > 0 ⇒ Monotonicity

⇒ Coverability is decidable.

Can we have operation of the following forms? :

ci := 0, ci := cj , ci := ci + cj , ci := cj + ck

Coverability is still decidable. (But not reachability. [Dufourd et al. 98])

A. Bouajjani (LIAFA, UP7) Lecture 1: Concurrent Programs I September 2012 15 / 28



The case of Lossy Fifo Channel Systems

Subword relation over a finite alphabet is a WQO (Higman’s lemma)

Upward-closed sets = finite unions of

Σ∗a1Σ∗a2 · · · amΣ∗

Computation of the Pre:
I Send: Left concatenation + Upward closure
I Receive: Right derivation

Lossyness ⇒ Monotonicity

⇒ Coverability is decidable.

Is configuration reachability decidable ?

Yes, lossyness ⇒ ( reachability ' coverability)

A. Bouajjani (LIAFA, UP7) Lecture 1: Concurrent Programs I September 2012 16 / 28



The case of Lossy Fifo Channel Systems

Subword relation over a finite alphabet is a WQO (Higman’s lemma)

Upward-closed sets = finite unions of

Σ∗a1Σ∗a2 · · · amΣ∗

Computation of the Pre:
I Send: Left concatenation + Upward closure
I Receive: Right derivation

Lossyness ⇒ Monotonicity

⇒ Coverability is decidable.

Is configuration reachability decidable ?

Yes, lossyness ⇒ ( reachability ' coverability)

A. Bouajjani (LIAFA, UP7) Lecture 1: Concurrent Programs I September 2012 16 / 28



The case of Lossy Fifo Channel Systems

Subword relation over a finite alphabet is a WQO (Higman’s lemma)

Upward-closed sets = finite unions of

Σ∗a1Σ∗a2 · · · amΣ∗

Computation of the Pre:
I Send: Left concatenation + Upward closure
I Receive: Right derivation

Lossyness ⇒ Monotonicity

⇒ Coverability is decidable.

Is configuration reachability decidable ?

Yes, lossyness ⇒ ( reachability ' coverability)

A. Bouajjani (LIAFA, UP7) Lecture 1: Concurrent Programs I September 2012 16 / 28



The case of Lossy Fifo Channel Systems

Subword relation over a finite alphabet is a WQO (Higman’s lemma)

Upward-closed sets = finite unions of

Σ∗a1Σ∗a2 · · · amΣ∗

Computation of the Pre:
I Send: Left concatenation + Upward closure
I Receive: Right derivation

Lossyness ⇒ Monotonicity

⇒ Coverability is decidable.

Is configuration reachability decidable ?

Yes, lossyness ⇒ ( reachability ' coverability)

A. Bouajjani (LIAFA, UP7) Lecture 1: Concurrent Programs I September 2012 16 / 28



The case of Lossy Fifo Channel Systems

Subword relation over a finite alphabet is a WQO (Higman’s lemma)

Upward-closed sets = finite unions of

Σ∗a1Σ∗a2 · · · amΣ∗

Computation of the Pre:
I Send: Left concatenation + Upward closure
I Receive: Right derivation

Lossyness ⇒ Monotonicity

⇒ Coverability is decidable.

Is configuration reachability decidable ?

Yes, lossyness ⇒ ( reachability ' coverability)

A. Bouajjani (LIAFA, UP7) Lecture 1: Concurrent Programs I September 2012 16 / 28



Concurrent Programs with Procedures

Procedural program → Pushdown System (finite control + stack)

Concurrent program → Concurrent PDS’s (Multistack systems)

Two stacks can simulate a Turing tape.

Concurrent programs with 2 threads are Turing powerful.

⇒ Restrictions

I Classes of programs with particular features
I Particular kind of behaviors

(under-approximate analysis for bug detection)

A. Bouajjani (LIAFA, UP7) Lecture 1: Concurrent Programs I September 2012 17 / 28



Asynchronous Programs

Synchronous calls

Usual procedure calls

Asynchronous calls
I Calls are stored and dispatched later by the scheduler
I They can be executed in any order

Event-driven programming (requests, responses)

Useful model: distributed systems, web servers, embedded systems

A. Bouajjani (LIAFA, UP7) Lecture 1: Concurrent Programs I September 2012 18 / 28



Formal Models: Multiset Pushdown Systems

A task is a sequential (pushdown) process with dynamic task creation

Created tasks are stored in an unordered buffer (multiset)

Tasks run until completion

If the stack is empty, a task in moved from the multiset to the stack

A. Bouajjani (LIAFA, UP7) Lecture 1: Concurrent Programs I September 2012 19 / 28



Difficulties

Unbounded buffer of tasks

The buffer is a multiset ⇒ can be encoded as counters

Need to combine somehow PDS with VASS

Stack ⇒ not Well Structured

How to get rid of the stack ?

A. Bouajjani (LIAFA, UP7) Lecture 1: Concurrent Programs I September 2012 20 / 28



State Reachability of Multiset PDS

Theorem

The control state reachability problem for MPDS is EXPSPACE-complete.

Reduction to/from the coverability problem for Petri.

First decidability proof by K. Sen and M. Viswanathan, 2006

A. Bouajjani (LIAFA, UP7) Lecture 1: Concurrent Programs I September 2012 21 / 28



Semi-linear Sets

Linear set over Nn is a set of the form

{~u + k1 ~v1 + · · ·+ km ~vm : k1, . . . , km ∈ N}

where ~u, ~v1, . . . , ~vm ∈ Nn

Semi-linear set = finite union of linear sets.

Examples:

I {(0, 0) + k(1, 1) : k ≥ 0} ≡ x1 = x2
I {(0, 0) + k(1, 2) : k ≥ 0} ≡ 2x1 = x2
I {(0, 3) + k(1, 1) : k ≥ 0} ≡ x1 + 3 = x2
I {(0, 3) + k1(0, 1) + k2(1, 1) : k ≥ 0} ≡ x1 + 3 ≤ x2
I {(0, 0, 0) + k1(1, 0, 1) + k2(0, 1, 1) : k1, k2 ≥ 0} ≡ x1 + x2 = x3
I {(0, 0, 3) + k1(1, 0, 2) + k2(0, 1, 1) : k1, k2 ≥ 0} ≡ 2x1 + x2 + 3 = x3

Theorem [Ginsburg, Spanier, 1966]

A set is semi-linear iff it is definable in Presburger arithmetics.

A. Bouajjani (LIAFA, UP7) Lecture 1: Concurrent Programs I September 2012 22 / 28



Semi-linear Sets

Linear set over Nn is a set of the form

{~u + k1 ~v1 + · · ·+ km ~vm : k1, . . . , km ∈ N}

where ~u, ~v1, . . . , ~vm ∈ Nn

Semi-linear set = finite union of linear sets.

Examples:

I {(0, 0) + k(1, 1) : k ≥ 0} ≡ x1 = x2
I {(0, 0) + k(1, 2) : k ≥ 0} ≡ 2x1 = x2
I {(0, 3) + k(1, 1) : k ≥ 0} ≡ x1 + 3 = x2
I {(0, 3) + k1(0, 1) + k2(1, 1) : k ≥ 0} ≡ x1 + 3 ≤ x2
I {(0, 0, 0) + k1(1, 0, 1) + k2(0, 1, 1) : k1, k2 ≥ 0} ≡ x1 + x2 = x3
I {(0, 0, 3) + k1(1, 0, 2) + k2(0, 1, 1) : k1, k2 ≥ 0} ≡ 2x1 + x2 + 3 = x3

Theorem [Ginsburg, Spanier, 1966]

A set is semi-linear iff it is definable in Presburger arithmetics.

A. Bouajjani (LIAFA, UP7) Lecture 1: Concurrent Programs I September 2012 22 / 28



Parikh’s image

Let Σ = {a1, . . . , an}.
Given a word w ∈ Σ∗, the Parikh image of w is:

φ(w) = (#a1(w), . . . ,#an(w)) ∈ Nn

Given a language L ⊆ Σ∗, φ(L) = {φ(w) : w ∈ L}
Examples:

I L1 = {anbn : n ≥ 0}, φ(L1) = {(x1, x2) : x1 = x2}
I L2 = {anbncn : n ≥ 0}, φ(L2) = {(x1, x2, x3) : x1 = x2 ∧ x2 = x3}
I L3 = (ab)∗ = {(ab)n : n ≥ 0}, φ(L3) = {(x1, x2) : x1 = x2}

A. Bouajjani (LIAFA, UP7) Lecture 1: Concurrent Programs I September 2012 23 / 28



Semi-linear sets, CFL’s, and RL’s

Parikh’s Theorem (1966)

For every Context-Free Language L, φ(L) is a semi-linear set.

Proposition

For every semi-linear set S, there exists a Regular Language
L such that φ(L) = S.

Corollary

For every Context-Free Language L, there exists a Regular
language L′ such that φ(L) = φ(L′).

A. Bouajjani (LIAFA, UP7) Lecture 1: Concurrent Programs I September 2012 24 / 28



Semi-linear sets, CFL’s, and RL’s

Parikh’s Theorem (1966)

For every Context-Free Language L, φ(L) is a semi-linear set.

Proposition

For every semi-linear set S, there exists a Regular Language
L such that φ(L) = S.

Corollary

For every Context-Free Language L, there exists a Regular
language L′ such that φ(L) = φ(L′).

A. Bouajjani (LIAFA, UP7) Lecture 1: Concurrent Programs I September 2012 24 / 28



From Multiset PDS to VASS

q0 γ0 q1 γ1 q2

PDS computation with tasks creation

Pending tasks Multiset

M1

M2

q0, γ0
L1

=⇒∗ q1, ε
L1= Set of sequences of created tasks

L1 is a Context-Free Language

M1 is the Parikh image of L1

Parikh’s Theorem: Mi is definable by a finite state automaton Si

Construction of a VASS: Simulation of Si + task consumption rules

A. Bouajjani (LIAFA, UP7) Lecture 1: Concurrent Programs I September 2012 25 / 28



From Multiset PDS to VASS

q0 γ0 q1 γ1 q2

PDS computation with tasks creation

Pending tasks Multiset

M1

M2

q0, γ0
L1

=⇒∗ q1, ε
L1= Set of sequences of created tasks

L1 is a Context-Free Language

M1 is the Parikh image of L1

Parikh’s Theorem: Mi is definable by a finite state automaton Si

Construction of a VASS: Simulation of Si + task consumption rules

A. Bouajjani (LIAFA, UP7) Lecture 1: Concurrent Programs I September 2012 25 / 28



From Multiset PDS to VASS

q0 γ0 q1 γ1 q2

PDS computation with tasks creation

Pending tasks Multiset

M1

M2

q0, γ0
L1

=⇒∗ q1, ε
L1= Set of sequences of created tasks

L1 is a Context-Free Language

M1 is the Parikh image of L1

Parikh’s Theorem: Mi is definable by a finite state automaton Si

Construction of a VASS: Simulation of Si + task consumption rules

A. Bouajjani (LIAFA, UP7) Lecture 1: Concurrent Programs I September 2012 25 / 28



From Multiset PDS to VASS

q0 γ0 q1 γ1 q2

PDS computation with tasks creation

Pending tasks Multiset

M1

M2

q0, γ0
L1

=⇒∗ q1, ε
L1= Set of sequences of created tasks

L1 is a Context-Free Language

M1 is the Parikh image of L1

Parikh’s Theorem: Mi is definable by a finite state automaton Si

Construction of a VASS: Simulation of Si + task consumption rules

A. Bouajjani (LIAFA, UP7) Lecture 1: Concurrent Programs I September 2012 25 / 28



From Multiset PDS to VASS

q0 γ0 q1 γ1 q2

PDS computation with tasks creation

Pending tasks Multiset

M1

M2

q0, γ0
L1

=⇒∗ q1, ε
L1= Set of sequences of created tasks

L1 is a Context-Free Language

M1 is the Parikh image of L1

Parikh’s Theorem: Mi is definable by a finite state automaton Si

Construction of a VASS: Simulation of Si + task consumption rules

A. Bouajjani (LIAFA, UP7) Lecture 1: Concurrent Programs I September 2012 25 / 28



From Multiset PDS to VASS

q0 γ0 q1 γ1 q2

PDS computation with tasks creation

Pending tasks Multiset

M1

M2

q0, γ0
L1

=⇒∗ q1, ε
L1= Set of sequences of created tasks

L1 is a Context-Free Language

M1 is the Parikh image of L1

Parikh’s Theorem: Mi is definable by a finite state automaton Si

Construction of a VASS: Simulation of Si + task consumption rules

A. Bouajjani (LIAFA, UP7) Lecture 1: Concurrent Programs I September 2012 25 / 28



From Multiset PDS to VASS

q0 γ0 q1 γ1 q2

PDS computation with tasks creation

Pending tasks Multiset

M1

M2

q0, γ0
L1

=⇒∗ q1, ε
L1= Set of sequences of created tasks

L1 is a Context-Free Language

M1 is the Parikh image of L1

Parikh’s Theorem: Mi is definable by a finite state automaton Si

Construction of a VASS: Simulation of Si + task consumption rules

A. Bouajjani (LIAFA, UP7) Lecture 1: Concurrent Programs I September 2012 25 / 28



From Multiset PDS to VASS

q0 γ0 q1 γ1 q2

PDS computation with tasks creation

Pending tasks Multiset

M1

M2

q0, γ0
L1

=⇒∗ q1, ε
L1= Set of sequences of created tasks

L1 is a Context-Free Language

M1 is the Parikh image of L1

Parikh’s Theorem: Mi is definable by a finite state automaton Si

Construction of a VASS: Simulation of Si + task consumption rules

A. Bouajjani (LIAFA, UP7) Lecture 1: Concurrent Programs I September 2012 25 / 28



Message-Passing Programs with Procedures

Undecidable even for bounded channels

Restrictions on

I Interaction between recursion and communication
(e.g., communication with empty stack)

I Kind of channels (e.g., lossy, unordered)
I Topology of the network

Decidable classes
[La Torre et al. TACAS’08], [Atig et al., CONCUR’08], ...

A. Bouajjani (LIAFA, UP7) Lecture 1: Concurrent Programs I September 2012 26 / 28



A simple case: Acyclic Lossy Channel Pushdown Networks

Consider the system P1
c1−−→P2

c2−−→P3 · · ·Pn−1
cn−1−−−→Pn

Problem: Is it possible to reach the global state (q1, q2, . . . , qn) ?

Consider the set L(c1) of all possible contents of c1 resulting from P1

computations reaching q1

This set is downward closed w.r.t. the subword relation.

Downward closed sets are regular: unions of

Σ∗1(a1 + ε) · · · (am + ε)Σ∗m+1

The downward closure of a CFL is effectively constructible [Courcelle, 91]

Compose L(c1) with P2 to get a new PDS P̃2

Solve the same problem for P̃2
c2−−→P3

c3−−→· · ·Pn−1
cn−1−−−→Pn

At the end, we need to solve reachability in one pushdown system P̃n

A. Bouajjani (LIAFA, UP7) Lecture 1: Concurrent Programs I September 2012 27 / 28



A simple case: Acyclic Lossy Channel Pushdown Networks

Consider the system P1
c1−−→P2

c2−−→P3 · · ·Pn−1
cn−1−−−→Pn

Problem: Is it possible to reach the global state (q1, q2, . . . , qn) ?

Consider the set L(c1) of all possible contents of c1 resulting from P1

computations reaching q1

This set is downward closed w.r.t. the subword relation.

Downward closed sets are regular: unions of

Σ∗1(a1 + ε) · · · (am + ε)Σ∗m+1

The downward closure of a CFL is effectively constructible [Courcelle, 91]

Compose L(c1) with P2 to get a new PDS P̃2

Solve the same problem for P̃2
c2−−→P3

c3−−→· · ·Pn−1
cn−1−−−→Pn

At the end, we need to solve reachability in one pushdown system P̃n

A. Bouajjani (LIAFA, UP7) Lecture 1: Concurrent Programs I September 2012 27 / 28



A simple case: Acyclic Lossy Channel Pushdown Networks

Consider the system P1
c1−−→P2

c2−−→P3 · · ·Pn−1
cn−1−−−→Pn

Problem: Is it possible to reach the global state (q1, q2, . . . , qn) ?

Consider the set L(c1) of all possible contents of c1 resulting from P1

computations reaching q1

This set is downward closed w.r.t. the subword relation.

Downward closed sets are regular: unions of

Σ∗1(a1 + ε) · · · (am + ε)Σ∗m+1

The downward closure of a CFL is effectively constructible [Courcelle, 91]

Compose L(c1) with P2 to get a new PDS P̃2

Solve the same problem for P̃2
c2−−→P3

c3−−→· · ·Pn−1
cn−1−−−→Pn

At the end, we need to solve reachability in one pushdown system P̃n

A. Bouajjani (LIAFA, UP7) Lecture 1: Concurrent Programs I September 2012 27 / 28



A simple case: Acyclic Lossy Channel Pushdown Networks

Consider the system P1
c1−−→P2

c2−−→P3 · · ·Pn−1
cn−1−−−→Pn

Problem: Is it possible to reach the global state (q1, q2, . . . , qn) ?

Consider the set L(c1) of all possible contents of c1 resulting from P1

computations reaching q1

This set is downward closed w.r.t. the subword relation.

Downward closed sets are regular: unions of

Σ∗1(a1 + ε) · · · (am + ε)Σ∗m+1

The downward closure of a CFL is effectively constructible [Courcelle, 91]

Compose L(c1) with P2 to get a new PDS P̃2

Solve the same problem for P̃2
c2−−→P3

c3−−→· · ·Pn−1
cn−1−−−→Pn

At the end, we need to solve reachability in one pushdown system P̃n

A. Bouajjani (LIAFA, UP7) Lecture 1: Concurrent Programs I September 2012 27 / 28



A simple case: Acyclic Lossy Channel Pushdown Networks

Consider the system P1
c1−−→P2

c2−−→P3 · · ·Pn−1
cn−1−−−→Pn

Problem: Is it possible to reach the global state (q1, q2, . . . , qn) ?

Consider the set L(c1) of all possible contents of c1 resulting from P1

computations reaching q1

This set is downward closed w.r.t. the subword relation.

Downward closed sets are regular: unions of

Σ∗1(a1 + ε) · · · (am + ε)Σ∗m+1

The downward closure of a CFL is effectively constructible [Courcelle, 91]

Compose L(c1) with P2 to get a new PDS P̃2

Solve the same problem for P̃2
c2−−→P3

c3−−→· · ·Pn−1
cn−1−−−→Pn

At the end, we need to solve reachability in one pushdown system P̃n

A. Bouajjani (LIAFA, UP7) Lecture 1: Concurrent Programs I September 2012 27 / 28



A simple case: Acyclic Lossy Channel Pushdown Networks

Consider the system P1
c1−−→P2

c2−−→P3 · · ·Pn−1
cn−1−−−→Pn

Problem: Is it possible to reach the global state (q1, q2, . . . , qn) ?

Consider the set L(c1) of all possible contents of c1 resulting from P1

computations reaching q1

This set is downward closed w.r.t. the subword relation.

Downward closed sets are regular: unions of

Σ∗1(a1 + ε) · · · (am + ε)Σ∗m+1

The downward closure of a CFL is effectively constructible [Courcelle, 91]

Compose L(c1) with P2 to get a new PDS P̃2

Solve the same problem for P̃2
c2−−→P3

c3−−→· · ·Pn−1
cn−1−−−→Pn

At the end, we need to solve reachability in one pushdown system P̃n

A. Bouajjani (LIAFA, UP7) Lecture 1: Concurrent Programs I September 2012 27 / 28



End of Lecture 1:

Dynamic networks of processes can be represented using VASS

Procedures make things more difficult

Constraints on interaction between concurrency and recursion are
necessary to get decidable classes

Asynchronous is an important class of programs for which verification
problems are decidable

Reasoning about interfaces/summaries is an important tool for the
design of decision procedures

Still, complexity is high. Need of efficient techniques.

A. Bouajjani (LIAFA, UP7) Lecture 1: Concurrent Programs I September 2012 28 / 28


