Lecture 1:
Verification of Concurrent Programs
Part 1: Decidability and Complexity Results

Ahmed Bouajjani

LIAFA, University Paris Diderot — Paris 7

VTSA, MPI-Saarbriicken, September 2012

A. Bouajjani (LIAFA, UP7) Lecture 1: Concurrent Programs |

Outline of the lectures

@ Lecture 1: Concurrent programs: Decidability and complexity Results

» Basic models
» Limits of the decidability of the reachability problem
» Classes of programs/models with a decidable state reachability problem

@ Lecture 2: Concurrent programs: Under-approximate analysis

» Bounded analysis for concurrent programs
» Decidability and complexity issues
» Compositional reduction to state reachability in sequential programs

@ Lecture 3: Weak memory models: State reachability problem

» Weaker models than Sequential Consistency
» (Un)Decidability and complexity of the state reachability problem
» Efficient under-approximate analysis: Reduction to SC state reachability

@ Lecture 4: Weak memory models: Robustness against a WMM

» Check that all behaviors are still sequentially consistent
» Decidability and complexity
» Reduction to SC state reachability

A. Bouajjani (LIAFA, UP7) Lecture 1: Concurrent Programs | September 2012 2/28

Concurrent Programs

e Parallel threads (with/without procedure calls)
e Static/Dynamic number of threads
e Communication

» Shared memory

* Notion of action atomicity
* Actions by a same threads are executed in the same order
(Sequential Consistency)
* Actions by different threads are interleaved non-deterministically
» Message passing

* Channels (queues)
* Unordered/FIFO ...
* Perfect/Lossy

o We assume finite data domain (e.g., booleans).

A. Bouajjani (LIAFA, UP7) Lecture 1: Concurrent Programs | September 2012 3/28

Finite number of threads + Shared variables

o Fixed number of threads
@ lterative processes (no recursive procedure calls)

@ Finite number of variables

A. Bouajjani (LIAFA, UP7) Lecture 1: Concurrent Programs | September 2012 4/28

Finite number of threads + Shared variables

Fixed number of threads

Iterative processes (no recursive procedure calls)

Finite number of variables

A variable has a finite number of possible values

= Finite product of finite-state systems (threads + variables)

= Decidable

A. Bouajjani (LIAFA, UP7) Lecture 1: Concurrent Programs | September 2012 4/28

Finite number of threads + Shared variables

Fixed number of threads

lterative processes (no recursive procedure calls)

Finite number of variables

A variable has a finite number of possible values

= Finite product of finite-state systems (threads + variables)
= Decidable

Product grows exponentially in # threads and # variables.

Reachability is decidable, and PSPACE-complete.
[Kozen, FOCS'77]

A. Bouajjani (LIAFA, UP7) Lecture 1: Concurrent Programs | September 2012 4/28

Finite number of threads + bounded queues

@ Fixed number of threads
@ lterative processes (no recursive procedure calls)

@ Bounded channels

A. Bouajjani (LIAFA, UP7) Lecture 1: Concurrent Programs |

September 2012

5/28

Finite number of threads + bounded queues

Fixed number of threads

Iterative processes (no recursive procedure calls)

Bounded channels

= Finite number of possible channel contents

= Finite product of finite-state systems (threads + channels)
= Decidable

A. Bouajjani (LIAFA, UP7) Lecture 1: Concurrent Programs | September 2012 5/28

Finite number of threads + bounded queues

Fixed number of threads

Iterative processes (no recursive procedure calls)

Bounded channels

= Finite number of possible channel contents

= Finite product of finite-state systems (threads + channels)
= Decidable

Product grows exponentially in # threads and size of channels.
Reachability is decidable, and PSPACE-complete.

A. Bouajjani (LIAFA, UP7) Lecture 1: Concurrent Programs | September 2012 5/28

Facing the state-space explosion

@ Partial order techniques

> Independent actions = commutable actions = many interleavings
» Explore representatives up to independent actions commutations
Godefroid, Wolper, Peled, Holzman, Valmari, ...

@ Symbolic techniques

» Compact representations of sets of states + fixpoint calculations
» Bounded model checking + SAT solvers
Clarke, McMillan, Somenzi, Biere, Cimatti, ...

A. Bouajjani (LIAFA, UP7) Lecture 1: Concurrent Programs | September 2012 6 /28

Beyond the finite-state case

@ Unbounded (parametric/dynamic) number of threads

» Undecidable in general if threads Ids are allowed
» = Anonymous threads

@ Unbounded channels

» Undecidable in general in case of FIFO queues
» = Unordered queues (multisets), lossy queues

A. Bouajjani (LIAFA, UP7) Lecture 1: Concurrent Programs | September 2012 7 /28

Programs with Dynamic Creation of Threads

@ Finite number of variables
@ Finite data domain

e = Threads are anonymous (no way to refer to identities)

A. Bouajjani (LIAFA, UP7) Lecture 1: Concurrent Programs | September 2012 8 /28

Programs with Dynamic Creation of Threads

@ Finite number of variables

Finite data domain

= Threads are anonymous (no way to refer to identities)

lterative processes (no recursive procedure calls)

= Counting abstraction

» Finite number of possible local states /4,...,¢,,
» Count how many threads are in a given local state

A. Bouajjani (LIAFA, UP7) Lecture 1: Concurrent Programs | September 2012 8 /28

Programs with Dynamic Creation of Threads

@ Finite number of variables
@ Finite data domain
e = Threads are anonymous (no way to refer to identities)

@ lterative processes (no recursive procedure calls)

@ = Counting abstraction

» Finite number of possible local states /4,...,¢,,
» Count how many threads are in a given local state

@ Safety is reducible to state reachability in VASS / Coverability in PN

A. Bouajjani (LIAFA, UP7) Lecture 1: Concurrent Programs | September 2012 8 /28

Vector Addtion Systems with States

@ Finite state machine + finite number of counter C = {cy,..., ¢y}
@ Operations: (No test to zero)

» cii=c¢+1

»¢>0/¢c=c¢—1
e Configuration: (g, V) where ¢ is a control state and V € N”
e Initial configuration: (qgo,0) where 0 = 0".
@ Transition relation:

(g1, V1) =%(a2, Vo) iff
» op= ‘¢i:=¢ +1", and Vo = Vi[c; + (Va(c) +1)]

> op = “C,->O/C,'::C,'—1, and
(Vi(ci) > 0 and Vo = Vi[ci + (Va(c) —1)])

A. Bouajjani (LIAFA, UP7) Lecture 1: Concurrent Programs | September 2012 9 /28

From Multithreaded Programs to VASS

@ Associate a control state with each valuation of the globals
@ Associate a counter with each valuation of thread locals
@ A statement moving globals from g to g’ and locals from / to ¢':

C[>0/Cg::Cg—1;CZ/:=CZ/+1 /

>

@ Creation of a new thread at initial state ¢:

cpi=cp+1
E§—— 8

A. Bouajjani (LIAFA, UP7) Lecture 1: Concurrent Programs | September 2012 10 / 28

VASS: Reachability Problems

@ State reachability problem:
Given a state q, determine if a configuration (q, V') is reachable,
for some V € N" (any one).

o Coverability problem:

Given a configuration (q, V), determine if a configuration (g, V')
is reachable, for some V' > V. (We say that (q, V) is coverable.)

EXSPACE-complete [Rackoff 78]

NB: Coverability can be reduced to State reachability and vice-versa.

o Configuration reachability problem:

Determine if a given configuration (q, V') is reachable.

Decidable [Mayr 81], [Kosaraju 82].
EXPSPACE-hard [Lipton 75]. No upper bound known.

A. Bouajjani (LIAFA, UP7) Lecture 1: Concurrent Programs | September 2012 11 /28

Well Structured Systems
[Abdulla et al. 96], [Finkel, Schnoebelen, 00]
@ Let U be a universe.
e Well-quasi ordering = over U: Vg, c1,¢0,..., di <j, ¢ 2 ¢
e = Each (infinite) set has a finite minor set.

@ Let S C U. Upward-closure S = minimal subset of U s.t.
» SCS,
» Vx,y. (x€Sand x < y)=y€S.
@ A set is upward closed if S = S
@ Upward closed sets are definable by their minor sets
» Assume there is a function Min which associates a minor to each set.

> Assume pre(Min(S)) is computable for each set S.
@ Monotonicity: < is a simulation relation

Ver, o, . ((a — ¢f and ¢ 2 &) = 3¢5 &2 — 3 and ¢] = &)

A. Bouajjani (LIAFA, UP7) Lecture 1: Concurrent Programs | September 2012 12 /28

Key lemma

Lemma
The pre and pre* images of upward closed set are upward closed

@ Let S be an upward closed set.

@ Assume pre(S) is not upward closed.
© Let 1 € pre(S), and let ¢ € U such that c; < & and ¢ & pre(S)

A. Bouajjani (LIAFA, UP7) Lecture 1: Concurrent Programs | September 2012 13 /28

Key lemma

Lemma
The pre and pre* images of upward closed set are upward closed

@ Let S be an upward closed set.

@ Assume pre(S) is not upward closed.

@ Let ¢ € pre(S), and let ¢x € U such that ¢; < ¢ and ¢, & pre(S)
Q Let ¢f € S such that ¢; — ¢

A. Bouajjani (LIAFA, UP7) Lecture 1: Concurrent Programs | September 2012 13 /28

Key lemma

Lemma
The pre and pre* images of upward closed set are upward closed

@ Let S be an upward closed set.

@ Assume pre(S) is not upward closed.

@ Let ¢ € pre(S), and let ¢x € U such that ¢; < ¢ and ¢, & pre(S)
Q Let ¢f € S such that ¢; — ¢

@ Monotonicity = there is a ¢} such that c; — ¢} and ¢] < ¢}

A. Bouajjani (LIAFA, UP7) Lecture 1: Concurrent Programs | September 2012 13 /28

Key lemma

Lemma
The pre and pre* images of upward closed set are upward closed

@ Let S be an upward closed set.

@ Assume pre(S) is not upward closed.

@ Let ¢ € pre(S), and let ¢x € U such that ¢; < ¢ and ¢, & pre(S)
Q Let ¢f € S such that ¢; — ¢

@ Monotonicity = there is a ¢} such that c; — ¢} and ¢] < ¢}

@ S is upward closed = ¢; € S

A. Bouajjani (LIAFA, UP7) Lecture 1: Concurrent Programs | September 2012 13 /28

Key lemma

Lemma
The pre and pre* images of upward closed set are upward closed

© Let S be an upward closed set.

@ Assume pre(S) is not upward closed.

@ Let ¢ € pre(S), and let ¢x € U such that ¢; < ¢ and ¢, & pre(S)
Q Let ¢f € S such that ¢; — ¢

@ Monotonicity = there is a ¢} such that c; — ¢} and ¢] < ¢}

@ S is upward closed = ¢; € S

@ = ¢ € pre(S), contradiction.

A. Bouajjani (LIAFA, UP7) Lecture 1: Concurrent Programs | September 2012 13 /28

Key lemma

Lemma
The pre and pre* images of upward closed set are upward closed

Let S be an upward closed set.

Assume pre(S) is not upward closed.

Let c1 € pre(S), and let ¢, € U such that ¢; < ¢ and ¢ & pre(S)
Let ¢ € S such that ¢; — ¢}

Monotonicity = there is a ¢} such that c; — ¢} and ¢] < ¢}

S is upward closed = ¢ € S

= ¢ € pre(S), contradiction.

© 00000CO0CO

For pre*: the union of upward closed sets is upward closed.

A. Bouajjani (LIAFA, UP7) Lecture 1: Concurrent Programs | September 2012 13 /28

Backward Reachability Analysis

Consider the increasing sequence Xp C X3 C X5... defined by:
L Xo = I\/Iin(S)
e Xii11 = X; UMin(pre(X;))

Termination:
There is a index i > 0 such that X; 1 = X;

@ The set pre*(S) is upward closed = has a finite minor
e Wait until a minor is collected
@ How long shall we wait?

@ Non primitive recursive in general

A. Bouajjani (LIAFA, UP7) Lecture 1: Concurrent Programs | September 2012 14 / 28

The case of VASS

@ Usual < order over N is a WQO (Dickson lemma)
@ Product of WQO's is a WQO.
e = < generalized to N" is a WQO.

A. Bouajjani (LIAFA, UP7) Lecture 1: Concurrent Programs |

September 2012

15 / 28

The case of VASS

@ Usual < order over N is a WQO (Dickson lemma)
Product of WQO's is a WQO.
e = < generalized to N" is a WQO.

Upward-closed sets = finite disjunctions of AI_; /i < ¢;, where [; € N

Computation of the Pre:
»op="g:=qg+1": (A yli<c)A(max(l;—1,0) <)
»op="¢>0/g-1" (Nyhi<a)rN([+1<q)

A. Bouajjani (LIAFA, UP7) Lecture 1: Concurrent Programs | September 2012 15 / 28

The case of VASS
@ Usual < order over N is a WQO (Dickson lemma)
@ Product of WQO's is a WQO.
e = < generalized to N" is a WQO.
o Upward-closed sets = finite disjunctions of AI_; /i < ¢;, where [; € N

o Computation of the Pre:
»op="g=qg+1": (Ayl<c)A(max(lj—1,0) < g)
»op="¢G>0/g—1" (Niyli<c)N(j+1<q)

@ No test to zero, only guards of the form ¢ > 0 = Monotonicity

@ = Coverability is decidable.

A. Bouajjani (LIAFA, UP7) Lecture 1: Concurrent Programs | September 2012 15 / 28

The case of VASS
@ Usual < order over N is a WQO (Dickson lemma)
@ Product of WQO's is a WQO.
e = < generalized to N" is a WQO.
o Upward-closed sets = finite disjunctions of AI_; /i < ¢;, where [; € N

o Computation of the Pre:
»op="g=qg+1": (Ayl<c)A(max(lj—1,0) < g)
»op="¢G>0/g—1" (Niyli<c)N(j+1<q)

@ No test to zero, only guards of the form ¢ > 0 = Monotonicity

@ = Coverability is decidable.

@ Can we have operation of the following forms? :

¢ =0,¢:=¢j,¢:=¢+¢,c:=¢+cxk

A. Bouajjani (LIAFA, UP7) Lecture 1: Concurrent Programs | September 2012 15 / 28

The case of VASS
@ Usual < order over N is a WQO (Dickson lemma)
@ Product of WQO's is a WQO.
e = < generalized to N" is a WQO.
o Upward-closed sets = finite disjunctions of AI_; /i < ¢;, where [; € N

o Computation of the Pre:
»op="g=qg+1": (Ayl<c)A(max(lj—1,0) < g)
»op="¢G>0/g—1" (Niyli<c)N(j+1<q)

@ No test to zero, only guards of the form ¢ > 0 = Monotonicity
@ = Coverability is decidable.
@ Can we have operation of the following forms? :

¢ =0,¢:=¢j,¢:=¢+¢,c:=¢+cxk

e Coverability is still decidable. (But not reachability. [Dufourd et al. 98])

A. Bouajjani (LIAFA, UP7) Lecture 1: Concurrent Programs | September 2012 15 / 28

The case of Lossy Fifo Channel Systems

@ Subword relation over a finite alphabet is a WQO (Higman's lemma)

A. Bouajjani (LIAFA, UP7) Lecture 1: Concurrent Programs | September 2012 16 / 28

The case of Lossy Fifo Channel Systems

@ Subword relation over a finite alphabet is a WQO (Higman's lemma)

o Upward-closed sets = finite unions of
Yra1X*ar - camX”

o Computation of the Pre:

» Send: Left concatenation + Upward closure
» Receive: Right derivation

A. Bouajjani (LIAFA, UP7) Lecture 1: Concurrent Programs | September 2012 16 / 28

The case of Lossy Fifo Channel Systems

@ Subword relation over a finite alphabet is a WQO (Higman's lemma)
o Upward-closed sets = finite unions of
Yra1XFray - camXt

o Computation of the Pre:

» Send: Left concatenation + Upward closure
» Receive: Right derivation

@ Lossyness = Monotonicity

@ = Coverability is decidable.

A. Bouajjani (LIAFA, UP7) Lecture 1: Concurrent Programs | September 2012 16 / 28

The case of Lossy Fifo Channel Systems

@ Subword relation over a finite alphabet is a WQO (Higman's lemma)

o Upward-closed sets = finite unions of
Yra1X*ar - camX”

o Computation of the Pre:

» Send: Left concatenation + Upward closure
» Receive: Right derivation

@ Lossyness = Monotonicity
@ = Coverability is decidable.

@ Is configuration reachability decidable ?

A. Bouajjani (LIAFA, UP7) Lecture 1: Concurrent Programs | September 2012 16 / 28

The case of Lossy Fifo Channel Systems

@ Subword relation over a finite alphabet is a WQO (Higman's lemma)

@ Upward-closed sets = finite unions of
Yra1X*ar - camX”

o Computation of the Pre:

» Send: Left concatenation + Upward closure
> Receive: Right derivation

@ Lossyness = Monotonicity
@ = Coverability is decidable.

@ Is configuration reachability decidable ?

@ Yes, lossyness = (reachability ~ coverability)

A. Bouajjani (LIAFA, UP7) Lecture 1: Concurrent Programs | September 2012 16 / 28

Concurrent Programs with Procedures

@ Procedural program — Pushdown System (finite control + stack)
e Concurrent program — Concurrent PDS’s (Multistack systems)
@ Two stacks can simulate a Turing tape.

@ Concurrent programs with 2 threads are Turing powerful.

@ = Restrictions

» Classes of programs with particular features
» Particular kind of behaviors
(under-approximate analysis for bug detection)

A. Bouajjani (LIAFA, UP7) Lecture 1: Concurrent Programs | September 2012 17 / 28

Asynchronous Programs

@ Synchronous calls

Usual procedure calls
@ Asynchronous calls

> Calls are stored and dispatched later by the scheduler
» They can be executed in any order

e Event-driven programming (requests, responses)

@ Useful model: distributed systems, web servers, embedded systems

A. Bouajjani (LIAFA, UP7) Lecture 1: Concurrent Programs | September 2012 18 / 28

Formal Models: Multiset Pushdown Systems

@ A task is a sequential (pushdown) process with dynamic task creation
o Created tasks are stored in an unordered buffer (multiset)

@ Tasks run until completion

If the stack is empty, a task in moved from the multiset to the stack

A. Bouajjani (LIAFA, UP7) Lecture 1: Concurrent Programs | September 2012 19 /28

Difficulties

Unbounded buffer of tasks

The buffer is a multiset = can be encoded as counters
Need to combine somehow PDS with VASS

Stack = not Well Structured

How to get rid of the stack ?

A. Bouajjani (LIAFA, UP7) Lecture 1: Concurrent Programs | September 2012 20 / 28

State Reachability of Multiset PDS

Theorem
The control state reachability problem for MPDS is EXPSPACE-complete. J

Reduction to/from the coverability problem for Petri.

First decidability proof by K. Sen and M. Viswanathan, 2006

A. Bouajjani (LIAFA, UP7) Lecture 1: Concurrent Programs | September 2012 21 /28

Semi-linear Sets
@ Linear set over N” is a set of the form
{4+ kgvi+ -+ kmVm © ki,...,km € N}
where G, v1,...,Vy, € N”
@ Semi-linear set = finite union of linear sets.

@ Examples:

» {(0,0)+k(L,1) : k>0} = x1=x

» {(0,0) + k(1,2) : k>0} = 2xy =x

» {(0,3)+k(1,1) : k>0} = x1+3=x

» {(0,3) + k1(0,1) + kx(1,1) : k>0} = x1+3<x

> {(O,O,O)—I—k1(1,0,1)—|—k2(0,1,1) : kl,kzZO} = X1 +Xo=X3

> {(0,0,3)+k1(1,0,2)+k2(0,1,1) : kl,k220} =2q+x+3=x3

A. Bouajjani (LIAFA, UP7) Lecture 1: Concurrent Programs | September 2012 22 /28

Semi-linear Sets

@ Linear set over N" is a set of the form

{d+kivi+ -+ kmVm : ki,..., km € N}

where 4, vq, ...,

Vm € N7

@ Semi-linear set = finite union of linear sets.

@ Examples:

> {(0,0) + k(
> {(0,0) + &(
> {(0,3) + k(
> {(0,3) + Ky
> {(0,0,0) +
> {(0,0,3) +

[N

7072) + k2(

k>0 = x4 =x

k>0 = 24 =x

k>0 = xx+3=x
+k(1,1) - k>0 = x1+3<x
0)1)+k2(

y 4y) . kl;kZZO}

@ Theorem [Ginsburg, Spanier, 1966]
A set is semi-linear iff it is definable in Presburger arithmetics.

A. Bouajjani (LIAFA, UP7)

Lecture 1: Concurrent Programs |

a]-)l) . kl;k220} =
1,1

X1+X2:X3

2x1+x+3=x3

September 2012

22 /28

Parikh's image

o Let X ={a1,...,an}.
@ Given a word w € ¥*, the Parikh image of w is:

P(w) = (#a(w), ..., #a,(w)) €N
e Given a language L C ¥, ¢(L) = {p(w) : w € L}

o Examples:

» Ly ={a"b" : n>0}, ¢(L1) = {(x1,x2) : x1 = x2}
> L, ={a"b"c" : n>0}, d(L2) = {(x1,x%,x3) : x1 =X Axo=x3}
» L3 = (ab)* = {(ab)"” : n >0}, #(L3) = {(x1,x2) : x1 = x2}

A. Bouajjani (LIAFA, UP7) Lecture 1: Concurrent Programs | September 2012 23 /28

Semi-linear sets, CFL's, and RL's

@ Parikh’'s Theorem (1966)

For every Context-Free Language L, ¢(L) is a semi-linear set.

A. Bouajjani (LIAFA, UP7) Lecture 1: Concurrent Programs | September 2012 24 /28

Semi-linear sets, CFL's, and RL's

@ Parikh’'s Theorem (1966)

For every Context-Free Language L, ¢(L) is a semi-linear set.

@ Proposition

For every semi-linear set S, there exists a Regular Language
L such that ¢(L) = S.

o Corollary

For every Context-Free Language L, there exists a Regular
language L' such that ¢(L) = ¢(L').

A. Bouajjani (LIAFA, UP7) Lecture 1: Concurrent Programs | September 2012 24 /28

From Multiset PDS to VASS

PDS computation with tasks creation

A A

qo Yo a1 71 aqz

Pending tasks Multiset

A. Bouajjani (LIAFA, UP7) Lecture 1: Concurrent Programs | September 2012 25 /28

From Multiset PDS to VASS

PDS computation with tasks creation

A A

qo Yo a1 71 aqz

Pending tasks Multiset

A. Bouajjani (LIAFA, UP7) Lecture 1: Concurrent Programs | September 2012 25 /28

From Multiset PDS to VASS

PDS computation with tasks creation

A A

qo Y0 a1 Ba! az

Pending tasks Multiset

A. Bouajjani (LIAFA, UP7) Lecture 1: Concurrent Programs | September 2012 25 /28

From Multiset PDS to VASS

PDS computation with tasks creation

A A

qo Y0 a1 Ba! az

Pending tasks Multiset

A. Bouajjani (LIAFA, UP7) Lecture 1: Concurrent Programs | September 2012 25 /28

From Multiset PDS to VASS

PDS computation with tasks creation

A A

qo Y0 a1 Ba! az

Pending tasks Multiset

A. Bouajjani (LIAFA, UP7) Lecture 1: Concurrent Programs | September 2012 25 /28

From Multiset PDS to VASS

qo 8 a1 Ba! az

(]
\ W

L,= Set of sequences of created tasks
Ly
do, Yo =" qu, € L; is a Context-Free Language

M; is the Parikh image of L;

A. Bouajjani (LIAFA, UP7) Lecture 1: Concurrent Programs | September 2012 25 /28

From Multiset PDS to VASS

qo 7 a1 Ba! az

Do]

Parikh's Theorem: M; is definable by a finite state automaton S;

A. Bouajjani (LIAFA, UP7) Lecture 1: Concurrent Programs | September 2012 25 /28

From Multiset PDS to VASS

qo Y0 a1 Ba! az

Parikh's Theorem: M; is definable by a finite state automaton S;

Construction of a VASS: Simulation of S; + task consumption rules

A. Bouajjani (LIAFA, UP7) Lecture 1: Concurrent Programs | September 2012 25 /28

Message-Passing Programs with Procedures

@ Undecidable even for bounded channels
@ Restrictions on

> Interaction between recursion and communication
(e.g., communication with empty stack)

» Kind of channels (e.g., lossy, unordered)

» Topology of the network

@ Decidable classes
[La Torre et al. TACAS'08], [Atig et al., CONCUR'08], ...

A. Bouajjani (LIAFA, UP7) Lecture 1: Concurrent Programs | September 2012 26 / 28

A simple case: Acyclic Lossy Channel Pushdown Networks

Ch—1

@ Consider the system Py -4 Py 25 Py... P, 25 P,

@ Problem: Is it possible to reach the global state (g1, g2,...,qn) ?

A. Bouajjani (LIAFA, UP7) Lecture 1: Concurrent Programs | September 2012 27 / 28

A simple case: Acyclic Lossy Channel Pushdown Networks

Ch—1

@ Consider the system P, % Py 25 Py... P, =5 P,
@ Problem: Is it possible to reach the global state (g1, g2,...,qn) ?

@ Consider the set L(cy) of all possible contents of ¢; resulting from Py
computations reaching g;

A. Bouajjani (LIAFA, UP7) Lecture 1: Concurrent Programs | September 2012 27 / 28

A simple case: Acyclic Lossy Channel Pushdown Networks

Ch—1

@ Consider the system P, % Py 25 Py... P, =5 P,
@ Problem: Is it possible to reach the global state (g1, g2,...,qn) ?

@ Consider the set L(cy) of all possible contents of ¢; resulting from Py
computations reaching g;

This set is downward closed w.r.t. the subword relation.

@ Downward closed sets are regular: unions of

Yi(ar+e) - (am+ €)X

A. Bouajjani (LIAFA, UP7) Lecture 1: Concurrent Programs | September 2012 27 / 28

A simple case: Acyclic Lossy Channel Pushdown Networks

Ch—1

@ Consider the system P, % Py 25 Py... P, =5 P,
@ Problem: Is it possible to reach the global state (g1, g2,...,qn) ?

@ Consider the set L(cy) of all possible contents of ¢; resulting from Py
computations reaching g;

@ This set is downward closed w.r.t. the subword relation.

@ Downward closed sets are regular: unions of
Yi(ar+e) - (am+ €)X

@ The downward closure of a CFL is effectively constructible [Courcelle, 91]

A. Bouajjani (LIAFA, UP7) Lecture 1: Concurrent Programs | September 2012 27 / 28

A simple case: Acyclic Lossy Channel Pushdown Networks

Ch—1

@ Consider the system P, % Py 25 Py... P, =5 P,
@ Problem: Is it possible to reach the global state (g1, g2,...,qn) ?

@ Consider the set L(c;) of all possible contents of ¢; resulting from P,
computations reaching q;

@ This set is downward closed w.r.t. the subword relation.

@ Downward closed sets are regular: unions of
Yi(ar+e) - (am+ €)X

@ The downward closure of a CFL is effectively constructible [Courcelle, 91]

@ Compose L(c;) with P, to get a new PDS P,

Cn—1

@ Solve the same problem for P, 23 P3 =...P,_; 2 P,

A. Bouajjani (LIAFA, UP7) Lecture 1: Concurrent Programs | September 2012 27 / 28

A simple case: Acyclic Lossy Channel Pushdown Networks

@ Consider the system P, -5 P, 23 P5 .- Py —2“55 P,
@ Problem: Is it possible to reach the global state (g1, g2,...,qn) ?

@ Consider the set L(c;) of all possible contents of ¢; resulting from P,
computations reaching q;

@ This set is downward closed w.r.t. the subword relation.

@ Downward closed sets are regular: unions of

Yi(ate)(am+ €)X
@ The downward closure of a CFL is effectively constructible [Courcelle, 91]
@ Compose L(c;) with P, to get a new PDS P,

@ Solve the same problem for P, -2 P53 25 ... P,_1 =% P,

@ At the end, we need to solve reachability in one pushdown system ’P:,

A. Bouajjani (LIAFA, UP7) Lecture 1: Concurrent Programs | September 2012 27 / 28

End of Lecture 1:

@ Dynamic networks of processes can be represented using VASS
@ Procedures make things more difficult

@ Constraints on interaction between concurrency and recursion are
necessary to get decidable classes

@ Asynchronous is an important class of programs for which verification
problems are decidable

@ Reasoning about interfaces/summaries is an important tool for the
design of decision procedures

@ Still, complexity is high. Need of efficient techniques.

A. Bouajjani (LIAFA, UP7) Lecture 1: Concurrent Programs | September 2012 28 /28

