Lecture 2: Verification of Concurrent Programs Part 2: Under Approximate Analysis

Ahmed Bouajjani

LIAFA, University Paris Diderot - Paris 7

VTSA, MPI-Saarbrücken, September 2012

Concurrent Programs with Procedures

- Parallel threads (with/without procedure calls)
- Shared memory
- Interleaving semantics (sequential consistency)
- Model = Concurrent Pushdown Systems (Multistack systems)

Concurrent Programs with Procedures

- Parallel threads (with/without procedure calls)
- Shared memory
- Interleaving semantics (sequential consistency)
- Model = Concurrent Pushdown Systems (Multistack systems)
- Turing powerful: 2 threads
- $\bullet \Rightarrow$ Restrictions: Consider only some schedules
- Aim: detect bugs

Concurrent Programs with Procedures

- Parallel threads (with/without procedure calls)
- Shared memory
- Interleaving semantics (sequential consistency)
- Model = Concurrent Pushdown Systems (Multistack systems)
- Turing powerful: 2 threads
- $\bullet \Rightarrow$ Restrictions: Consider only some schedules
- Aim: detect bugs
- What is a good concept for restricting the set of behaviors ?

Context-Bounded Analysis

[Qadeer, Rehof, 2005]

The number of context switches in a computation is bounded

- Suitable for finding bugs in concurrent programs.
- Concurrency bugs show up after a small number of context switches.

Context-Bounded Analysis

[Qadeer, Rehof, 2005]

The number of context switches in a computation is bounded

- Suitable for finding bugs in concurrent programs.
- Concurrency bugs show up after a small number of context switches.
- Infinite-state space: Unbounded sequential computations
- Decidability ?

Basic case: Pushdown system

• Pushdown system = (Q, Γ, Δ)

Configuration: (q, w) where q ∈ Q is a control state, w ∈ Γ is the stack content.

Basic case: Pushdown system

• Pushdown system = (Q, Γ, Δ)

- Configuration: (q, w) where q ∈ Q is a control state, w ∈ Γ is the stack content.
- Symbolic representation: A finite state automaton.
- Computation of the predecessors/successors:

For every regular set of configurations C, the $pre^*(C)$ and $post^*(C)$ are regular and effectively constructible. [Büchi 62], ..., [B., Esparza, Maler, 97], ...

- Reachability: Polynomial algorithms.
- Can be generalized to model checking.

- Consider a multi-stack systems with *n* stacks
- Configuration: (q, w₁,..., w_n), where q is a control state, w_i ∈ Γ_i are stack contents.

- Consider a multi-stack systems with *n* stacks
- Configuration: (q, w₁,..., w_n), where q is a control state, w_i ∈ Γ_i are stack contents.
- Symbolic representation: clusters (q, A₁,..., A_n), q a control state, A_i are FSA over Γ_i
- Given a cluster C, compute a set of clusters characterizing K-pre*(C) (resp. K-post*(C))

- Consider a multi-stack systems with *n* stacks
- Configuration: (q, w₁,..., w_n), where q is a control state, w_i ∈ Γ_i are stack contents.
- Symbolic representation: clusters (q, A₁,..., A_n), q a control state, A_i are FSA over Γ_i
- Given a cluster C, compute a set of clusters characterizing K-pre*(C) (resp. K-post*(C))
- Generalize the pre* / post* constructions for PDS

- Consider a multi-stack systems with *n* stacks
- Configuration: (q, w₁,..., w_n), where q is a control state, w_i ∈ Γ_i are stack contents.
- Symbolic representation: clusters (q, A₁,..., A_n), q a control state, A_i are FSA over Γ_i
- Given a cluster C, compute a set of clusters characterizing K-pre*(C) (resp. K-post*(C))
- Generalize the pre* / post* constructions for PDS
- Enumerate sequences of the form q₀i₀q₁i₁q₂i₂... i_Kq_Ki_{K+1}, where q_j's are states, and i_j ∈ {1,..., n} are threads identities.

• Let
$$X_{K+1} = C$$
. Compute: for $j = K$ back to 0

•
$$A'_{j+1} = pre^*_{i_{j+1}}(X_{j+1}[i_{j+1}]) \cap q_j \Gamma^*_i$$

• $X_j = (q_j, A_1^{j+1}, \dots, A'_{j+1}, \dots, A_n^{j+1})$

Dynamic Creation of Threads ?

[Atig, B., Qadeer, 09]

Problem

- Bounding the number of context switches \Rightarrow bounding the number of threads.
- \Rightarrow Inadequate bounding concept for the dynamic case.

Each created thread must have a chance to be executed

Dynamic Creation of Threads ?

[Atig, B., Qadeer, 09]

Problem

- Bounding the number of context switches \Rightarrow bounding the number of threads.
- → Inadequate bounding concept for the dynamic case.

 Each created thread must have a chance to be executed

New definition

- Give to each thread a *context switch budget*
- ullet \Rightarrow The number of context switches is bounded for each thread
- ullet \Rightarrow The global number of context switches in a run is unbounded
- NB: Generalization of Asynchronous Programs

Case 1: Dynamic Networks of Finite-State Processes

Decidable ?

Case 1: Dynamic Networks of Finite-State Processes

Decidable ?

Theorem

The K-bounded state reachability problem is EXPSPACE-complete.

Reduction to/from the coverability problem for Petri.

- For every global store $q \in Q$, associate a place q.
- For every stack configuration γ ∈ Γ ∪ {ε} and budget b ∈ {1,..., K} of the active thread, associate a place (γ,b,Act).
- For every stack configuration γ ∈ Γ ∪ {ε} and budget b ∈ {0,..., K} of a pending thread, associate a place (γ,b,Pen).

- For every global store $q \in Q$, associate a place q.
- For every stack configuration γ ∈ Γ ∪ {ε} and budget b ∈ {1,..., K} of the active thread, associate a place (γ,b,Act).
- For every stack configuration γ ∈ Γ ∪ {ε} and budget b ∈ {0,..., K} of a pending thread, associate a place (γ,b,Pen).

Rule of the form: $q\gamma \longrightarrow q'\gamma'$

- For every global store $q \in Q$, associate a place q.
- For every stack configuration γ ∈ Γ ∪ {ε} and budget b ∈ {1,..., K} of the active thread, associate a place (γ,b,Act).
- For every stack configuration γ ∈ Γ ∪ {ε} and budget b ∈ {0,..., K} of a pending thread, associate a place (γ,b,Pen).

Rule of the form: $q\gamma \longrightarrow q'\gamma' \vartriangleright \gamma'' \implies$

- For every global store $q \in Q$, associate a place q.
- For every stack configuration γ ∈ Γ ∪ {ε} and budget b ∈ {1,..., K} of the active thread, associate a place (γ,b,Act).
- For every stack configuration γ ∈ Γ ∪ {ε} and budget b ∈ {0,..., K} of a pending thread, associate a place (γ,b,Pen).

Case 2: Dynamic Networks of Pushdown Systems

• Decidable ?

Case 2: Dynamic Networks of Pushdown Systems

- Decidable ?
- Difficulty:
 - Unbounded number of pending local contexts
 - Can not use the same construction as for the case of finite state threads. (This would need an unbounded number of places.)

Case 2: Dynamic Networks of Pushdown Systems

- Decidable ?
- Difficulty:
 - Unbounded number of pending local contexts
 - Can not use the same construction as for the case of finite state threads. (This would need an unbounded number of places.)

Theorem

The K-bounded state reachability problem is in **2EXPSPACE**.

Exponential reduction to the coverability problem in PN

• Construct a labeled pushdown automaton which:

Guesses the effect of the environment on the states

• Construct a labeled pushdown automaton which:

Guesses the effect of the environment on the states

• Construct a labeled pushdown automaton which:

Makes visible (as transition labels) the created threads

• Construct a labeled pushdown automaton which:

Makes visible (as transition labels) the created threads

• The set of traces *L* characterizes the interaction between the thread and its environment (*L* is a CFL)

• The set of traces *L* characterizes the interaction between the thread and its environment (*L* is a CFL)

Observations: For the state reachability problem

- Order of events is important
- Some created threads may never be scheduled

• The set of traces *L* characterizes the interaction between the thread and its environment (*L* is a CFL)

Observations: For the state reachability problem

- Order of events is important
- Some created threads may never be scheduled

 \Rightarrow Replace L by its downward closure w.r.t. the sub-word relation L \downarrow

Constructing a regular interface (cont.)

- The interactions of a thread with its environment can be characterized by the downward closure L ↓ of the context-free language L
- $L \downarrow$ is regular and effectively constructible ([Courcelle, 1991])
- The size of an automaton for L \$\geq\$ can be exponential in the PDA defining L

Constructing the Petri Net

- Use places for representing the control, one per state
- Count pending tasks having some context switch budget (from 0 to *K*), and waiting to start at some state
- For each created task, guess a sequence of K states (for context switches)
- At context switches, control is given to a pending task waiting for the current state
- Simulate a full sequential computation (following the FSA automaton of the interface) until next transition (g, g')
- \bullet During the simulation, each transition labelled γ corresponds to a task creation
- At a transition (g, g'), leave the control at g (to some other thread) and wait for g' (with a lower switch budget)

Sequentialization under Context Bounding

Question:

Is it possible to reduce CBA of a Concurrent Program to the Reachability Analysis of a Sequential Program ?

Sequentialization under Context Bounding

Question:

Is it possible to reduce CBA of a Concurrent Program to the Reachability Analysis of a Sequential Program ?

Yes: Use compositional reasoning !

[Lal, Reps, 2008]

Sequentialization under Context Bounding: Basic Idea

- Consider a Program with 2 threads T_1 and T_2 , and global variables X
- Consider the problem: Can the program reach the state (q_1,q_2)
- Assume that the threads are scheduled in a Round Robin manner
- Let K be the number of rounds
- Guess an *interface* of each thread:
 - ▶ $I^i = (I_1^i, \dots, I_K^i)$, the global states when T_i starts/is resumed
 - $O^i = (O_1^i, \dots, O_K^i)$, the global states when T_i terminates/is interrupted
- Check that T_1 can reach q_1 by a computation that fulfills its interface
- Check that T_2 can reach q_2 by a computation that fulfills its interface
- Check that the interfaces are composable

▶
$$O_j^1 = I_j^2$$
 for every $j \in \{1, \dots, K\}$
▶ $O_j^2 = I_{j+1}^1$ for every $j \in \{1, \dots, K-1\}$

Sequentialization: Code-to-code translation

Given a concurrent program P, construct a sequential program P_s such that (q_1, q_2) is reachable under K-CB in P iff q_{win} in reachable in P_s .

- Create 2K copies of the global variables X_j and X'_j , for $j \in \{1, \ldots, K\}$
- Start the simulation of T_1 . At each round $j \in \{1, \ldots, K\}$, thread T_1 :
 - **1** Starts by putting some values in X_j (guesses the input I_j^1)
 - 2 Copies X_j in X'_j , and runs by using X'_j as global variables
 - Ochoses nondeterministically the next context-switch point
 - Moves to round j + 1 (locals are not modified) and go to 1 (using new copies of globals X_{j+1} and X'_{j+1}).
- When T1 reaches q_1 , start simulating T_2 . At each round j, thread T_2 :
 - **()** Starts from the content of X'_j that was produced by T_1 in its *j*-th round
 - 2 Runs by using X'_i as global variables
 - Ochoses nondeterministically the next context-switch point
 - Checks that $X'_{j} = X_{j+1}$ (composability check), and move to round j+1
- If q_2 is reachable at round K, then go to state q_{win}

Context-bounded analysis: Complexity

• Finite Number of Threads:

	Unbounded	K-Bounded
Finite-state systems	PSPACE-complete	NP-complete
Pushdown systems	Undecidable	NP-complete

• Dynamic Creation of Threads:

	Unbounded	K-Bounded
Finite-state systems	EXPSPACE-complete	EXPSPACE-complete
Pushdown systems	Undecidable	In 2EXPSPACE
		RR: EXPSPACE-complete [ABQ + Lal]
A. Bouaijani (LIAFA. UP7)	Lecture 2: Concurrent Program	s II September 2012 17

• VASS are sequential machines, so there is a precise sequentialization

- VASS are sequential machines, so there is a precise sequentialization
- What do we mean by "sequentialization" ?

- VASS are sequential machines, so there is a precise sequentialization
- What do we mean by "sequentialization" ?
- We want to use pushdown systems
- We do not want to expose locals: compositional reasoning
- We want to obtain a program of the same type: we should not add other data structures, variables, etc.

- VASS are sequential machines, so there is a precise sequentialization
- What do we mean by "sequentialization" ?
- We want to use pushdown systems
- We do not want to expose locals: compositional reasoning
- We want to obtain a program of the same type: we should not add other data structures, variables, etc.
- In this context, a precise sequentialization of dynamic programs cannot exist (we cannot encode VASS with PDS)

- VASS are sequential machines, so there is a precise sequentialization
- What do we mean by "sequentialization" ?
- We want to use pushdown systems
- We do not want to expose locals: compositional reasoning
- We want to obtain a program of the same type: we should not add other data structures, variables, etc.
- In this context, a precise sequentialization of dynamic programs cannot exist (we cannot encode VASS with PDS)
- Under-approximate sequentialization [B., Emmi, Parlato, 2011]
- Idea:
 - Transform thread creation into procedure calls
 - Allow some reordering using the idea of bounded interfaces

End of Lecture 2:

- Finding adequate bounding notions for concurrent programs is an important issue.
- Adequate bounding should allow to lower the complexity of the analysis, and compositional reductions to sequential analysis.
- Source-to-source reduction are important: allow the use of existing tools.

End of Lecture 2:

- Finding adequate bounding notions for concurrent programs is an important issue.
- Adequate bounding should allow to lower the complexity of the analysis, and compositional reductions to sequential analysis.
- Source-to-source reduction are important: allow the use of existing tools.
- Context-bounding is a interesting concept, but there are others, e.g., delay bounding [Emmi, Qadeer, Rakamaric, 2011]

End of Lecture 2:

- Finding adequate bounding notions for concurrent programs is an important issue.
- Adequate bounding should allow to lower the complexity of the analysis, and compositional reductions to sequential analysis.
- Source-to-source reduction are important: allow the use of existing tools.
- Context-bounding is a interesting concept, but there are others, e.g., delay bounding [Emmi, Qadeer, Rakamaric, 2011]
- Bounding notion for message-passing programs ?
- Phase-bounding has been proposed recently [B., Emmi, 2012]