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Sequential Consistency (SC) model

Parallel processes with shared memory

Interleaving (Sequentially Consistent) semantics:

I Computations of different processes are shuffled

I Program order is preserved for each process.
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Total Store Ordering (TSO)

Reads can overtake writes on 6= variables.

FIFO buffers where writes are stored to be executed later.

Reads take values from the main memory if no writes in the buffer on
the same variable. Otherwise they get the value of the last write in
the buffer on the same variable.
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Write-to-Read Relaxation

P1 : write(x, 1) ; read(y, 0)
P2 : read(x, 0)

A scheduling for SC semantics: 3 steps

P1 : write(x, 1)(2) ; read(y, 0)(3)

P2 : read(x, 0)(1)

Allowing reordering of actions on different variables: 2 steps !

P1 : read(y, 0)(1) ; write(x, 1)(2)

P2 : read(x, 0)(1)
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Relaxed Models
Read Local Write Early

write (x,d) ; read (x,d) 7→ write (x,d)

(+) W→ R: Write to Read

write (x,d) ; read (y,d’) 7→ read (y,d’) ; write (x,d)

⇒ TSO model (Total Store Ordering)

(+) W→W: Write to Write

write (x,d) ; write (y,d’) 7→ write (y,d’) ; write (x,d)

⇒ PSO model (Partial Store Ordering)

(+) R→ R/W: Read to Read/Write

⇒ ∼RMO model (Relaxed Memory Ordering)
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Relaxation ⇒ Potential Bad Behaviors

x = y = 0

thread 1 thread 2

a: y = 1

b: r1 = x

c: if(r1 == 0) {
d: . . .

c: if(r1 == 0) }

p: x = 1

q: r2 = y

s: if(r2 == 0) {
t: . . .

c: if(r2 == 0) }

1- Initial state

thread 1 thread 2

pc1 = a

r1 = ?

pc2 = p

r2 = ?

shared memory

x = 0 y = 0

Dekker’s mutual exclusion protocol. Fails under Write to Read relaxation.
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Memory Reordering Fences

Write-Write Fences (wfence):

Prevent reordering between writes.

Read-Read Fences (rfence):

Prevent reordering between reads.

Fences (fence):

Prevent reordering between any two memory operations.
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Program Syntax

Finite number of shared variables {x , y , x1...}

Finite data domain {d , d1, d2, ...}

Finite number of finite-control processes P1, . . . ,Pn with operations:

Write(x , d),Wfence,Read(x , d),Rfence,AtomicRW (x , d1, d2)
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Safety Verification Problem

For a memory model µ, a program P, and a (control + memory) state s

State Reachability Problem (Safety)

s is reachable in P ?

Decidability / Complexity ?

Each process is finite-state

For the SC memory model, this problem is PSPACE-complete

Nontrivial for weak memory models:

Pathsµ(P) = Closureµ(PathsSC(P)) is nonregular
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Results for TSO [Atig, B., Burckhardt, Musuvathi, 2010]

The state reachability problem is decidable for TSO.

... but highly complex: Nonprimitive recursive

The repeated state reachability problem is undecidable for TSO

→ Store buffers can simulate lossy channels, and vice-versa.
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Decidability Frontier [Atig, B., Burckhardt, Musuvathi, 2012]

The state reachability problem is undecidable for

TSO + R2W

The state reachability problem is decidable for

NSW = TSO + W2W + R2R
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Getting rid of Store Buffers [Atig, B., Parlato, 2011]

When is it possible to reduce TSO verification to SC verification ?

Find restrictions on the explored behaviors such that:

Given a concurrent program P, it is possible to build a
concurrent program P ′ such that: running P with TSO
semantics under these restrictions is equivalent to running
P ′ with SC semantics.

A notion of Context-Bounded Analysis for TSO

Unbounded number of context-switches: Bounding the age of each
write in the buffer in terms of context-switches.

⇒ Transfer decidability/complexity results from SC to TSO.

⇒ Use existing tools for concurrent programs under SC.
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The rest of the lecture

Decidability and complexity for TSO:

Simulations by/of Lossy Channel Systems

Decidability and complexity beyond TSO:

I Speculative writes lead to undecidability
I Decidability: deal with reordered reads

From TSO to SC under bounded analysis
I 2 notions of bounds

I Store buffers  2K copies of the globals per thread
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An operational model for TSO

Each process has a FIFO buffer

Configuration = control states + memory state + buffers contents

Write(x,d) is sent to the buffer

Memory update = execution of a Write taken from some buffer

Read(x,d) is executed either if
I The last Write to x in the buffer is Write(x,d) (Read Own Write)
I The buffer does not contain a Write to x , and Memory(x) = d

AtomicRW (x , d1, d2) requires that the buffer is empty (∼ fence)
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From W → R systems to Lossy Channel Systems

Thread 1: p0 p1
w(x, 1)

p2
w(y, 1)

p3
w(x, 2)

p4
w(y, 2)

p5
w(y, 3)

Thread 2 : q0 q1
r(x, 2)

q2
r(y, 0)

Model: The store buffers are considered as perfect FIFO channels

The store buffer of Thread 1

x

y

0

0

0

0

w(x, 1)w(y, 1)w(x, 2)w(y, 2)w(y, 3)

0

1

w(y, 1)w(x, 2)w(y, 2)w(y, 3)

1

1

w(x, 2)w(y, 2)w(y, 3)

1

2

w(y, 2)w(y, 3)

1

2

w(y, 2)w(y, 3)

Deadlock
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From W → R systems to Lossy Channel Systems
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From W → R systems to Lossy Channel Systems
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From W → R systems to Lossy Channel Systems

Problem: Interference between processes ?

⇒ Each process guesses occurrences of writes by other processes

Process Memory

Write: Compute a new memory state; send it to the channel

Read: Check the channel/memory

Memory update: Receive a state; copy it to the memory

Guessed Write: Send the guessed state to the channel

⇒ Check that all process agree on the sequence of states

Synchronization of the lossy channel machines over send actions
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Decidability for the State Reachability Problem

Thm
The state reachability problem for TSO programs is
reducible to the control-state reachability problem for LCS.

Thm ([Abdulla, Jonsson, 1993])

The control-state reachability problem for LCS is decidable

Corollary

The state reachability problem for TSO systems is decidable.
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From Lossy Channel Systems to W→ R systems

T1

T2

re
a

d
rea

d

write update

update write

x

y

T1 simulates the lossy channel machine:

I Send operation: Write operation of T1 to the variable x

I Read operation: Read operation of T1 from the variable y

T2 transfers the successive values of the variable x to the variable y
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Complexity

Thm
Every LCS can be simulated by a TSO program.

Thm ([Schnoebelen, 2001])

The control-state reachability problem for LCS is
non-primitive recursive

⇒ Lower bound for the state reachability problem under TSO.
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TSO + R2W: Causality cycles

x = y = 0
P1 P2

(1) r(x , 1) (3) r(y , 1)
(2) w(y , 1) (4) w(x , 1)

x = y = 1

This behavior is possible since writes can overtake reads:

(2), (3), (4), (1)

Speculative writes ⇒ causality cycles
I (2) is executed assuming that (1) will be executed in the future
I (1) is indeed executed, but it is based on a write that depends from (2)
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TSO + R2W: Undecidabiity

w(x1, uik )

r(x
2 ,u

ik )

w(y1, ik)

r(
y 2
,i

k
)

Thread 1

w(x2, vil )

r(x
1 ,v

il )

w(y2, jl)

r(
y 1
,j

l)

Thread 2

write
u i1
· · · u

in

write i1 · · · in

read ui1 · · · uinread i1 · · · in

read vj1 · · · vjmread j1 · · · jm

write vj1 · · ·
vjm

write
j1
· · · jm

]

x1

]

y1

]

x2

]

y2

Assume that: ui1ui2 · · · uin = vj1vj2 · · · vjm and i1i2 · · · in = j1j2 · · · jm

T1: r(y2, in) w(y1, in) r(x2, uin ) w(x1, uin ) · · · r(y2, i1) w(y1, i1) r(x2, ui1 ) w(x1, ui1 )

T2: r(y1, jn) w(y2, jn) r(x1, vjn ) w(x2, vjn ) · · · r(y1, j1) w(y2, j1) r(x1, vj1 ) w(x2, vj1 )

⇒ Reachability TSO + R2W
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NSW: Non Speculative Writes

TSO = Read-Local-Write-Early + W2R

PSO = TSO + W2W

NSW = PSO + R2R

Simulation of TSO under PSO:

Add a write-write fence (wfence) before each write

Simulation of PSO under NSW:

Add a read-read fence (rfence) before each read

A. Bouajjani (LIAFA, UP7) Lecture 3: Weak Memory Models September 2012 24 / 42



NSW: Non Speculative Writes

TSO = Read-Local-Write-Early + W2R

PSO = TSO + W2W

NSW = PSO + R2R

Simulation of TSO under PSO:

Add a write-write fence (wfence) before each write

Simulation of PSO under NSW:

Add a read-read fence (rfence) before each read

A. Bouajjani (LIAFA, UP7) Lecture 3: Weak Memory Models September 2012 24 / 42



NSW: Non Speculative Writes

TSO = Read-Local-Write-Early + W2R

PSO = TSO + W2W

NSW = PSO + R2R

Simulation of TSO under PSO:

Add a write-write fence (wfence) before each write

Simulation of PSO under NSW:

Add a read-read fence (rfence) before each read

A. Bouajjani (LIAFA, UP7) Lecture 3: Weak Memory Models September 2012 24 / 42



Operational Model: Event Structures

Process 1: p0
w(x, 1)

p1
w(y, 1)

p2
wfence

p3
r(x, 2)

p4
w(y, 2)

p5

Process 2: q0
fence

q1
r(y, 1)

q2
w(x, 2)

q3
rfence

q4
r(x, 2)

q5

w(x , 1)

w(y , 1)

wf

r(x , 2)

w(y , 2)

r(y , 1)

w(x , 2)

p0

p1p2p3p4p5

q0

q1q2q3q4q5

x = 0

x = 1x = 2

y = 0y = 1y = 2
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Configuration= control states + memory state + event structures

w(x , 1)

w(y , 1)

wf

r(x , 2)

w(y , 2)

r(y , 1)

w(x , 2)
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p1p2p3p4p5
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Writes on x are inserted after the last reads, wfences, and writes on x .
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From Event Structures to Buffers
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Elimination of Reads

Configuration= control states + event structures+ memory history buffer.
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Elimination of Write Fences

Configurations= Control states + Variable/Serial Buffers + History Buffer

Serial BuffersVariable Buffers
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The State Reachability Problem for NSW
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Decidability of State Reachability

Approach: Well Structured Systems [Abdulla et al., Finkel et al.]

Well-Quasi Ordering ≤ on Configurations
on every sequence c0, c1, c2, . . ., ∃i < j . ci ≤ cj

Monotonicity:
≤ is a simulation relation w.r.t. transition relation of the model

⇒ Backward reachability analysis terminates

Problem: NSW ?

Sub-word ordering on buffers?
I NSW are Not Monotonic!

Hard to apply WSS framework to NSW

BBBx=0a x=0b x=0c

�
BBBx=0a x=0c
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NSW+ systems

NSW ≡ NSW+

NSW+: WSS wrt �

Single Serial BufferVariable Buffers
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NSW+ systems
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NSW+ systems
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NSW+ systems

NSW ≡ NSW+

NSW+: WSS wrt �

Processes have different views
of memory (the use of pointers)
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State Reachability: Under approximate analysis

What is a suitable bounding notion ?

Should allow a compositional reduction to SC

Should avoid representing the contents of store buffers
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K-round Reachability
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Compositional Reasoning
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Encoding Store Buffers: The View of a Process
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Simulating Round 1

A. Bouajjani (LIAFA, UP7) Lecture 3: Weak Memory Models September 2012 37 / 42



Simulating Round 2
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Bounding Store Ages
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Bounding Store Ages

Translation: Maskj and Queuej are used circularly (modulo K + 1).
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Consequences

K -round reachability is decidable for boolean concurrent programs
with recursive procedure calls.

K -store-age reachability is decidable for boolean concurrent programs
with finite-state threads (without recursion).

These results hold also for programs with parametric/dynamic
number of threads. (Reduction to coverability in Petri nets, using
[Atig, B., Qadeer, 2009] for programs with recursion)

It is possible to use existing tools for the analysis/verification/testing
of concurrent programs under SC.
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State Reachability: Conclusion

State Reachability: Decidable for TSO and beyond. Undecidability when
speculative writes are allowed.

But it is a hard problem (nonprimitive recursive when decidable) !

However, it is possible to have efficient analysis techniques

Reduction to SC is a promising idea, can be generalized beyond TSO

Abstraction-based techniques:

e.g., [Kuperstein, Vechev, Yahav, PLDI’11]

Symbolic techniques:

[Abdulla, Atig, Chen, Leonardson, Rezine, TACAS’12]
[Linden, Wolper, SPIN’10-11]

Other important models: PowerPC, ARM (hardware), C++
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