

Semantic guidance for unbounded symbolic reachability

Martin Suda

Max Planck Institute für Informatik

VTSA 2012

Transition system

Reachability

Does there exist a finite path from an I-state to a G-state?

Symbolically represented transition system

Reachability

Does there exist a finite path from an $/$-state to a G-state?

Fixed length reachability via SAT

- Does there exist a path from an l-state to a G-state of length k ?
- We can use a SAT-solver to answer such question:

Fixed length reachability via SAT

- Does there exist a path from an I-state to a G-state of length k ?
- We can use a SAT-solver to answer such question:

Fixed length reachability via SAT

- Does there exist a path from an I-state to a G-state of length k ?
- We can use a SAT-solver to answer such question:

Fixed length reachability via SAT

- Does there exist a path from an I-state to a G-state of length k ?
- We can use a SAT-solver to answer such question:

Fixed length reachability via SAT

- Does there exist a path from an I-state to a G-state of length k ?
- We can use a SAT-solver to answer such question:

Fixed length reachability via SAT

- Does there exist a path from an I-state to a G-state of length k ?
- We can use a SAT-solver to answer such question:

- Now just run the solver: A push button technology!

Fixed length reachability via SAT

- Does there exist a path from an I-state to a G-state of length k ?
- We can use a SAT-solver to answer such question:

- Now just run the solver: A push button technology!

Bounded model checking

- Iterate the above for increasing values of $k=0,1,2, \ldots$
- If one of them is SAT, we have an answer!
- But how do we know when to terminate in the other case?

Opening the blackbox

- We need more control over what's happening inside the solver
- Let's control the way the model is constructed:

Opening the blackbox

- We need more control over what's happening inside the solver
- Let's control the way the model is constructed:

Opening the blackbox

- We need more control over what's happening inside the solver
- Let's control the way the model is constructed:

Opening the blackbox

- We need more control over what's happening inside the solver
- Let's control the way the model is constructed:

Opening the blackbox

- We need more control over what's happening inside the solver
- Let's control the way the model is constructed:

Opening the blackbox

- We need more control over what's happening inside the solver
- Let's control the way the model is constructed:

Opening the blackbox

- We need more control over what's happening inside the solver
- Let's control the way the model is constructed:

- If the model cannot be extended, a conflict clause is derived,

Opening the blackbox

- We need more control over what's happening inside the solver
- Let's control the way the model is constructed:

- If the model cannot be extended, a conflict clause is derived,
- which forces the search to take a different path.

Opening the blackbox

- We need more control over what's happening inside the solver
- Let's control the way the model is constructed:

- If the model cannot be extended, a conflict clause is derived,
- which forces the search to take a different path.
- As with BMC we either finish with the full model,

Opening the blackbox

- We need more control over what's happening inside the solver
- Let's control the way the model is constructed:

- If the model cannot be extended, a conflict clause is derived,
- which forces the search to take a different path.
- As with BMC we either finish with the full model,
- or discover inconsistency in a form of the empty clause \perp.

Dependency

We say that a conflict clause C depends on another clause D if D was used as an assumption in the proof of C.

Dependency

We say that a conflict clause C depends on another clause D if D was used as an assumption in the proof of C.

Dependency in action

Typically, the empty clause depends both on φ and ψ in our runs, otherwise we can directly terminate with UNSAT:

Dependency

We say that a conflict clause C depends on another clause D if D was used as an assumption in the proof of C.

Dependency in action

Typically, the empty clause depends both on φ and ψ in our runs, otherwise we can directly terminate with UNSAT:

- Empty clause depending only on φ : there is no path of length k starting in a φ-state.
- Empty clause depending only on ψ : there is no path of length k ending in a ψ-state.
- Empty clause depending on neither: there is no path of lenght k.

Defining layers

Let L_{i} be the set of clauses that depend on ψ and were inserted j steps before the goal formula ψ.

Defining layers

Let L_{i} be the set of clauses that depend on ψ and were inserted j steps before the goal formula ψ.

Properties of layers

- $\left(L_{i}\right)^{\prime} \wedge \tau \models L_{i+1}$ (The way they get derived.)
- $L_{i} \wedge \varphi \vDash \perp$ (That's how it ended when $k=i$.)
- Once $L_{i}=L_{j}$ for $i \neq j$, the whole instance is UNSAT. (Cut and paste argmument over the proof.)

Summary of the method

- SAT-solver builds a model path for left to right
- Failure to proceed is recorded as a clause at that position
- Repeating pattern of such clauses entails overall UNSAT

Summary of the method

- SAT-solver builds a model path for left to right
- Failure to proceed is recorded as a clause at that position
- Repeating pattern of such clauses entails overall UNSAT

Related work

- BMC [Biere, Cimatti, Clarke, Zhu 1999]
- k-induction [Sheeran, Singh, Stålmarck 2000]
- Interpolation [McMillan 2003]
- IC3/PDR [Bradley 2011]

Summary of the method

- SAT-solver builds a model path for left to right
- Failure to proceed is recorded as a clause at that position
- Repeating pattern of such clauses entails overall UNSAT

Related work

- BMC [Biere, Cimatti, Clarke, Zhu 1999]
- k-induction [Sheeran, Singh, Stålmarck 2000]
- Interpolation [McMillan 2003]
- IC3/PDR [Bradley 2011]

Thank you for attention

Comments? Questions? Suggestions?

