
u www.iaik.tugraz.at

Reactive Synthesis

24.09.2013

Swen Jacobs <swen.jacobs@iaik.tugraz.at>

VTSA 2013

Nancy, France

Swen Jacobs

VTSA 2013

2

Property Synthesis
(You Will Never Code Again)

Swen Jacobs

VTSA 2013

3 Construct Correct Systems

Requirements

Specification Implementation

Verification

Synthesis

Don’t do the same thing twice!
Use synthesis!

Automatically

Swen Jacobs

VTSA 2013

4 Motivation

 Coding is hard, want higher level of abstraction:

 Bugs are:

 very expensive, especially in security critical

applications and hardware

 hard to kill: finding and fixing bugs takes 50%-80%

of design time

Machine code ⇒ Assembly ⇒ C ⇒ Java ⇒ Ruby? ⇒ …

Silicon ⇒ Gates ⇒ RTL ⇒ Transactions? ⇒ …

Swen Jacobs

VTSA 2013

5 Our Focus

 Reactive systems

 Continuous interaction with environment

 Correctness statements are temporal
(temporal logic, automata)

 Ex: Operating systems, web browsers, circuits,
protocols

 Finite State

 Prototypical finite state reactive system: circuit

 Not our focus: functions

 One input, one output, non-termination is a bug

 Correctness is input/output relation (Hoare logic)

Swen Jacobs

VTSA 2013

6 Other Application Areas

 Program repair

 Program sketching

 Synthesis of synchronization skeletons

 …

Synthesis, Part I: Basics

Swen Jacobs

VTSA 2013

7

 Synthesis as a Game

 General: LTL Synthesis

 Time-Efficient: GR(1) Synthesis

 Application: AMBA Bus Protocol

 Space-Efficient: Bounded/Safraless Approaches

Swen Jacobs

VTSA 2013

8

Synthesis as a Game

Swen Jacobs

VTSA 2013

9 Synthesis as a Game

Given
 Input and output signals

 Specification of the behavior

Determine
 Realizability: Is there a finite state system

that realizes the specification?

 Synthesis: If system exists, construct it

Two player game
 Environment: determines inputs (not controllable)

 System: determines outputs (controllable)

 Game: finite state graph, infinite plays

 Winning condition for player System: formula φ

?

Swen Jacobs

VTSA 2013

10 Games

Two player graph-based, turn-based games with infinitary winning conditions

 Antagonist controls 𝐼
 Protagonist controls 𝑂

 graph based:
 Set of states 𝑄
 Initial state 𝑞0
 Transition function 𝛿: 𝑄 × 𝐼 × 𝑂 → 𝑄

 turn based:
 Start from 𝑞0
 Antagonist selects 𝑖𝑘, protagonist selects 𝑜𝑘, proceed to 𝑞𝑘+1 = 𝛿(𝑖𝑘 , 𝑜𝑘)
 Ensuing play: 𝑞0 𝑖0 𝑜0 𝑞1 𝑖1 𝑜1 𝑞2…

 Winning condition: objective over F ⊆ 𝑄
 Strategy: 𝑄 × 𝐼∗ → 𝑂
 For every input sequence, strategy fixes a play

 Winning strategy: strategy such that all resulting plays fulfill

graph-based, turn-based with infinitary winning conditionsTwo player

Winning Conditions

Swen Jacobs

VTSA 2013

11

 Reachability: want to reach a state in F ⊆ 𝑄

 Safety: want to stay in F ⊆ 𝑄

 Büchi: want to visit F ⊆ 𝑄 infinitely often

 Co-Büchi: want to visit F ⊆ 𝑄 only finitely often

 others exist… (later)

Swen Jacobs

VTSA 2013

12 Example

𝒊𝒏𝒑𝒖𝒕 𝒃𝒖𝒕𝒕𝒐𝒏
𝒐𝒖𝒕𝒑𝒖𝒕 𝒄𝒐𝒇𝒇𝒆𝒆
𝐆(𝒃𝒖𝒕𝒕𝒐𝒏 𝐅 𝒄𝒐𝒇𝒇𝒆𝒆)

¬𝑐

𝑏 ∧ ¬𝑐

¬𝑏 ∨ 𝑐

1𝑞0 𝑞1

𝑐

Possible strategy:

serve coffee iff automaton is in state 𝑞1
In this case, LTL game reduces to Büchi game

LTL game

Büchi game

red moves first

green moves second

green’s objective: visit 𝑞0 infinitely often

Example: Alternative Representation

Swen Jacobs

VTSA 2013

13

¬𝑏

𝑐

¬𝑐

𝑏

𝑐

¬𝑐

¬𝑐

𝑏 ∧ ¬𝑐

¬𝑏 ∨ 𝑐

1𝑞0 𝑞1

𝑐

• compact

• looks like automaton

• order of moves (input, output)

only implicit

• explicit order of moves

• need more states

Swen Jacobs

VTSA 2013

14 Symbolic Computation: Fixpoints

A B C D
0/-,1/0

0/1,1/0

1/10/0,1/1

Find all states from

which system can

force visit to goal state

(= winning region /

attractor)

+ a strategy

Label on edges:

• Environment input

• System output

dash (–) means don‘t

care

0/-

1/-

A

0/0,1/1

0/-
1/-

Winning region

B
0/-,1/0

0/1,1/0

1/1

CA

0/0,1/1

0/-
1/- D

DC
0/-,1/0

0/1,1/0

1/1

B

Swen Jacobs

VTSA 2013

15 Computing Büchi Games

𝑭𝒐𝒓𝒄𝒆𝟏(𝑭) = set of states from which system can force visit

to 𝑆 in one step

𝑭𝒐𝒓𝒄𝒆𝟏 𝑭 = 𝒒 ∈ 𝑸 ∀𝑖 ∈ 𝐼 ∃𝑜 ∈ 𝑂: 𝛿 𝑞, 𝑖, 𝑜 ∈ 𝐹 }

¬𝑏

𝑐

¬𝑐

𝑏

𝑐

¬𝑐

Swen Jacobs

VTSA 2013

16 Computing Büchi Games

𝑭𝒐𝒓𝒄𝒆𝟏(𝑭) = set of states from which system can force visit

to 𝐹 in one step

𝑭𝒐𝒓𝒄𝒆∗ 𝑭 = set of states from which system can force visit

to 𝐹 in any number of steps

(least fixpoint of applying 𝐹𝑜𝑟𝑐𝑒1 to 𝐹)

𝑹𝒆𝒄𝒖𝒓(𝑭) = set of states from which system can repeatedly

force visit to 𝐹 in any number of steps

(nested fixpoint operation)

¬𝑏

𝑐

¬𝑐

𝑏

𝑐

¬𝑐

Swen Jacobs

VTSA 2013

17 Computing Büchi Games

Winning region is 𝑭𝒐𝒓𝒄𝒆∗ 𝑭 for reachability game,

𝑹𝒆𝒄𝒖𝒓 𝑭 for Büchi game.

(Safety defined with dual 𝐹𝑜𝑟𝑐𝑒 operator for environment)

For reachability, safety and Büchi games, memoryless

strategies are sufficient, i.e., strategies 𝑄 × 𝐼 → 𝑂

¬𝑏

𝑐

¬𝑐

𝑏

𝑐

¬𝑐

Swen Jacobs

VTSA 2013

18 FourSteps to Synthesis

1. Specify

 LTL, Büchi automata,…

2. Obtain a game

3. Solve the game

4. Construct circuit

Swen Jacobs

VTSA 2013

19

LTL Synthesis

Swen Jacobs

VTSA 2013

20 LTL Synthesis

LTL Synthesis [PnueliRosner89]

1. Specify
 Formula 𝜑 in LTL

2. Obtain a game
 Convert 𝜑 to nondeterministic

Büchi automaton 𝐴
(exponential blowup)

 Convert 𝐴 to deterministic
Rabin or Parity automaton
(=game)
(exponential blowup)

3. Solve the game
 parity games can be solved

in polynomial time

4. Construct Circuit

Swen Jacobs

VTSA 2013

21 Arbiter: From LTL to Büchi

Input: 𝑟1, 𝑟2 (requests)

Output: 𝑔1, 𝑔2 (grants)

Specification:

𝐆 𝑟1 → 𝐅 𝑔1
𝐆 𝑟2 → 𝐅 𝑔2
𝐆¬ 𝑔1 ∧ 𝑔2

Arbiter𝑟1, 𝑟2 𝑔1, 𝑔2

1. Specify

2. Obtain a game

3. Solve the game

4. Construct circuit

Swen Jacobs

VTSA 2013

22 Obtaining a game

 From LTL to Büchi automata

 Not in detail in this tutorial – see [VardiWolper86]

 From Büchi automata to games

 Non-determinism is bad

 Advanced acceptance conditions

1. Specify

2. Obtain a game

3. Solve the game

4. Construct circuit

Swen Jacobs

VTSA 2013

23 Arbiter: From LTL to Büchi

Input: 𝑟1, 𝑟2 (requests)

Output: 𝑔1, 𝑔2 (grants)

Specification:

𝐆 𝑟1 → 𝐅 𝑔1
𝐆 𝑟2 → 𝐅 𝑔2
𝐆¬ 𝑔1 ∧ 𝑔2

Arbiter𝑟1, 𝑟2 𝑔1, 𝑔2

1. Specify

2. Obtain a game

3. Solve the game

4. Construct circuit

Swen Jacobs

VTSA 2013

24 Nondeterminism is bad

input button, water

output coffee

𝐆𝐅 𝒘𝒂𝒕𝒆𝒓 𝐆 𝒃𝒖𝒕𝒕𝒐𝒏 𝐅 𝒄𝒐𝒇𝒇𝒆𝒆 ∧
𝐆(𝒘𝒂𝒕𝒆𝒓𝒄𝒐𝒇𝒇𝒆𝒆)

¬𝑤 ∧ ¬𝑐

𝑏 ∧ ¬𝑐

¬𝑏 ∨ 𝑐 ∧ 𝑤

11 0

¬𝑐

𝑐 ∧ 𝑤

11

LTL game

Büchi game

No winning strategy because of nondeterminism,

even though LTL game is won

won?

won?

Note: not complete!

Advanced Acceptance Conditions

Swen Jacobs

VTSA 2013

25

 Rabin: defined by 𝐸1, 𝐹1 , … , 𝐸𝑛, 𝐹𝑛 , with 𝐸𝑖 , 𝐹𝑖 ⊆
𝑄. System wins if there exists an 𝒊 such that 𝐸𝑖 is

visited finitely often and 𝐹𝑖 is visited infinitely often.

 Streett: like Rabin, but System wins if for all 𝒊, if 𝐹𝑖
is visited infinitely often, then 𝐸𝑖 must be visited

infinitely often. (negation of Rabin)

 Parity: every state is assigned a priority from ℕ.

System wins if minimum priority of all states visited

infinitely often is even.

Swen Jacobs

VTSA 2013

26 LTL Synthesis

1. Specify

 Formula 𝜑 in LTL, size 𝑛

2. Obtain a game

 Convert 𝜑 to a nondeterministic Büchi Automaton 𝐴,
size 2𝑛

 Determinize 𝐴 to a deterministic Parity automaton

(=game), size 22
𝑛

3. Solve the parity game, time 22
𝑛

Will not consider this approach in detail.

It is complex and not very scalable.

Swen Jacobs

VTSA 2013

27 LTL Synthesis – Alternative Approaches

Synthesis problem can also be solved by

 decomposing 𝜑, simplifying each part, then composing

[SohailSomenzi09, MorgensternSchneider10]

(not in this tutorial)

 Limiting size of solution, incrementally increasing bound

[ScheweFinkbeiner07,FiliotJinRaskin11, Ehlers12]

(Later!)

 Considering efficiently decidable fragments (Now!)

Swen Jacobs

VTSA 2013

28

GR(1) Synthesis

Swen Jacobs

VTSA 2013

29 Avoiding Complexity: GR(1) Games

LTL Synthesis [PnueliRosner89]

1. Specify
 Formula 𝜑 in Linear Temporal

Logic

2. Obtain a game
 Convert 𝜑 to a

nondeterministic Büchi
Automaton 𝐴 (exponential
blowup)

 Determinize 𝐴 to a
deterministic Rabin or Parity
automaton (=game)
(exponential blowup)

3. Solve the game
 equals solving a parity game,

can be done in polynomial
time

4. Construct Circuit

GR(1) Synthesis [PitermanPnueliSa’ar06]

1. Specify
 Sets of deterministic Büchi

automata, for environment and
system

2. Specification = game
 no work

3. Solve the game
 A GR(1) game

4. Construct Circuit

Swen Jacobs

VTSA 2013

30 Avoiding Complexity: GR(1) Specs

1. Specification:
 Set of 𝑚 deterministic Büchi automata for assumptions: 𝐴1…𝐴𝑚
 Set of 𝑛 deterministic Büchi automata for guarantees: 𝐺1…𝐺𝑛

Both encoded symbolically

2. Specification = Game

3. Solve the game

4. Determine circuit from winning strategy (…)

Advantages of this setting:

 We do not need one automaton for full spec

 We do not need to determinize

 Symbolic formulation

But: not all LTL properties can be expressed this way(!)

Swen Jacobs

VTSA 2013

31 Obtaining a GR(1) Specification

Symbolic:

Introduce 𝑥 as variable for state space

initial 𝑖𝐴 = ¬𝑥

transition relation 𝑇𝐴 =
¬𝑥 ∧ (¬𝑟 ∨ 𝑔)𝑥’
¬𝑥 ∧ 𝑟 ∧ ¬𝑔 𝑥’

𝑥 ∧ ¬𝑔 𝑥’
𝑥 ∧ 𝑔𝑥’

fairness 𝐹𝐴: 𝐆𝐅 𝑠𝑡𝑎𝑡𝑒’

0 1

𝑟 ∧ ¬𝑔

𝑔

¬𝑟 ∨ 𝑔 ¬𝑔

Example: G(r F g)

Swen Jacobs

VTSA 2013

32

Gen. Reactivity(1):

 𝑖 𝐆𝐅 𝐴𝑖 → 𝑗 𝐆𝐅 𝐺𝑗

To solve: compute nested fixpoints of states from which system
can force visit to 𝐺j if environment satisfies assumptions 𝐴𝑖

Direct symbolic implementation. Complexity: 𝑂 𝑄 2 ⋅ 𝑇 ⋅𝑚 ⋅ 𝑛
[KestenPitermanPnueli05,PitermanPnueliSa’ar06]

Computing a GR1 Game

G0

𝐴𝑚

𝐴1 𝐴2

𝐴1 𝐴2

…

G1

𝐴𝑚

…

𝐺0

𝐺1

Swen Jacobs

VTSA 2013

33

GR(1) A1 … Am G1 … Gn

1-pair Streett

Solve using Jurdzinki’s algorithm in 𝑂 𝑄 ⋅ 𝑇 time

[d’AlfaroFaella09]

better because 𝑚, 𝑛 << 𝑄

Alternative: Reduce GR(1) to Streett

reductioncounting construction

blowup: O(m)
counting construction

blowup:O(n)

[PPS06] Streett reduction algorithm

time 𝑂 𝑄 2 ⋅ 𝑇 ⋅𝑚 ⋅𝑛 𝑂 𝑄 ⋅ 𝑇 ⋅ 𝑚 ⋅ 𝑛 2

A G
Note: counting construction on G

introduces memory of size n

Swen Jacobs

VTSA 2013

34 Avoiding Complexity: GR(1) Games

LTL Synthesis [PnueliRosner89]

1. Specify
 Formula 𝜑 in Linear Temporal

Logic

2. Obtain a game
 Convert 𝜑 to a

nondeterministic Büchi
Automaton 𝐴 (exponential
blowup)

 Determinize 𝐴 to a
deterministic Rabin or Parity
automaton (=game)
(exponential blowup)

3. Solve the game
 equals solving a parity game,

can be done in polynomial
time

4. Construct Circuit

GR(1) Synthesis [PitermanPnueliSa’ar06]

1. Specify
 Sets of deterministic Büchi

automata, for environment and
system

2. Specification = game
 no work

3. Solve the game
 A GR(1) game

4. Construct Circuit

Swen Jacobs

VTSA 2013

35 Selecting One Implementation

Specification = Set of sequential circuits

Strategy = Set of combinational circuits

One combinational circuit

GR(1) Synthesis

(fix memory elements)

Construction of circuit

Less freedom

Fewer circuits

More complexity

Swen Jacobs

VTSA 2013

36 Constructing Circuit

|inputs|
FFs

|outputs|
FFs

Comb.

Logic

sequential

inputs

sequential

outputs

|vars|
FFs

combinational inputs I combinational outputs O

• Spec is given in terms of sequential inputs and outputs
• Flipflops keep track of state of specification automata (state space of game)
• Strategy is relation between combinational inputs and combinational outputs:

R I X O
• A circuit is a function f: I O

Swen Jacobs

VTSA 2013

37 From BDD to Circuit

Relation Solving

Given: Strategy R: I x O

Find: function f: I O such that

if f(i) = o then

(i,o) R or o. (i,o) R

Multiple possibilities lead to wildly different sizes in
circuits

0 1

Strategy Minimization/Determinization

Swen Jacobs

VTSA 2013

38

Challenges:

 Find simple function (small number of gates)

 Strategy relations are huge

 Encoded symbolically (e.g. BDD)

Symbolic algorithms

 Efficiency

Different approaches based on BDD manipulation

and/or learning.

Swen Jacobs

VTSA 2013

39

(Synthesizing)

The AMBA Bus Protocol

Swen Jacobs

VTSA 2013

40 AMBA Bus

 Industrial standard

 ARM’s AMBA AHB bus
• High performance on-chip bus

• Data, address, and control signals (pipelined)

• Arbiter part of bus (determines control signals)

• Up to 16 masters and 16 clients

AMBA AHB

Master 0 Master 1 Master 15 Client 0 Client 1 Client 15... ...

Arbiter

Swen Jacobs

VTSA 2013

41 AMBA Bus

 Master initiates transfer. Signals:

 HBUSREQi - Master i wants the bus

 HLOCKi - Master i wants an uninterruptible access

 HBURST - This access has length 1/4/incr

 address & data lines

 The arbiter decides access

 HGRANTi - Next transfer for master i

 HMASTER[..] - Currently active master

 HMASTLOCK - Current access is uninterruptible

 The clients synchronize the transfer

 HREADY - Ready for next transfer

 Sequence for master

 Ask; wait for grant; wait for hready; state transfer type & start transfer

Swen Jacobs

VTSA 2013

42 AMBA Arbiter

 Specification

 3 Assumptions, 12 Guarantees.

 Example:

“When a locked unspecified length burst starts, new access does not start

until current master (i) releases bus by lowering HBUSREQi.”

i G(HMASTLOCK HBURST=INCR HMASTER=i START →

X(¬START U ¬HBUSREQi))

Swen Jacobs

VTSA 2013

43 Formulation of Spec Matters

Assumption that master must eventually release locked bus

i: G((HMASTLOCK HBURST=INCR HMASTER=i) F HBUSREQ[i])

can also be written as

G((HMASTLOCK HBURST=INCR) F HBUSREQ[HMASTER])

(We know that bus master does not change)

Now, instead of n automata with n fairness constraints, we have one!

Swen Jacobs

VTSA 2013

44 New Spec

0

200

400

600

800

1000

1200

1400

1 2 3 4 5 6 7 8 9 10

KS

cofactors

new spec

manual

#masters

Circuit size

Swen Jacobs

VTSA 2013

45 AMBA Case Study: Results

 Expressibility of GR(1) is sufficient

 Deciding realizability is fast

 Specification is short and easy to understand

 Synthesis works!

Swen Jacobs

VTSA 2013

46 Challenges: Specification

 Informal specs often ambiguous (AMBA spec is)

 you also have this problem when writing Verilog code

 Is specifying really easier than coding?

 GR(1) is a very special case, interesting things may

not be (easily) expressible

Swen Jacobs

VTSA 2013

47 Challenges: Size

 Circuits are LARGE, size depends on parameter

(# masters)

 Much bigger increase than necessary

(see manual implementation)

 Smarter circuit generation needed

 Size depends strongly on formulation of

specification

Swen Jacobs

VTSA 2013

48

Bounded (Safraless) Approaches

Reactive Systems, More Formally

Swen Jacobs

VTSA 2013

49

3 views on synthesis:

 synthesize a strategy for a game – depends on

game graph

 synthesize a circuit – special form, good for bit-level

symbolic reasoning

 synthesize a labelled transition system – this is

close to the “automata” point of view

Labelled Transition Systems

Swen Jacobs

VTSA 2013

50

A labelled transition system (LTS) 𝑆 with inputs 𝐼 and

outputs 𝑂 is a tuple (𝑇, 𝑡0, 𝜏, 𝑜) with

 𝑇 a set of states

 𝑡0 an initial state

 𝜏: 𝑇 × 𝔹𝐼 → 𝑇 a transition function

 𝑜: 𝑇 → 𝔹𝑂 a (state) labelling function

Bounded (Safraless) Approaches

Swen Jacobs

VTSA 2013

51

Avoid determinisation step by alternative approach:

1. reduce synthesis problem to emptiness check of

universal coBüchi tree automaton

Universal Co-Büchi Tree Automaton (UCT)

Swen Jacobs

VTSA 2013

52

Universal: takes all possible transitions at once, i.e.,

can be in multiple states at the same time

Co-Büchi: no state in 𝐹 may be visited inf. often

Tree Automaton: reads trees instead of words

Space of executions of an LTS is a tree: branches

labeled with inputs, nodes with outputs.

Bounded (Safraless) Approaches

Swen Jacobs

VTSA 2013

53

Avoid determinisation step by alternative approach:

1. reduce synthesis problem to emptiness check of

universal coBüchi tree automaton

2. reduce emptiness check to checking acceptance of

trees/systems of bounded size.

For bounded size, problem can be encoded as

decidable SMT constraints [ScheweFinkbeiner07]

(alternative: [FiliotJinRaskin11])

Bounded Synthesis [ScheweFinkbeiner07]

Swen Jacobs

VTSA 2013

54

1. Translate LTL specification into UCT

2. Generate SMT constraints equivalent to

realizability of spec (in system of size 𝑘)

3. Solve constraints for increasing 𝑘,

obtain system (if one exists)

Bounded Synthesis: Construct UCT

Swen Jacobs

VTSA 2013

55

Specification Automaton

∧1≤𝑖≤2 𝐆(𝑟𝑖 → 𝐅𝑔𝑖)
𝐆¬ 𝑔1 ∧ 𝑔2

Bounded Synthesis: Acceptance of UCT

Swen Jacobs

VTSA 2013

56

System Automaton

𝑔1𝑔2

𝑔1𝑔2𝑔1𝑔2

𝑟1 𝑟2
𝑟1𝑟2

 𝑟1𝑟2

𝑟1 𝑟2

𝑟1𝑟2

𝑟1𝑟2 ∨ 𝑟1𝑟2

(implicit self-loops in

remaining cases)

Bounded Synthesis: SMT Constraints

Swen Jacobs

VTSA 2013

57

Idea: Annotate states of system with

 predicates 𝜆𝑞
𝔹: 𝑇 → 𝔹, representing reachable states

of the automaton, i.e.,

𝜆𝑞
𝔹 𝑡 is true if partial run of system that ends in 𝑡 can

lead to automaton state that includes 𝑞

 counting functions 𝜆𝑞
#: 𝑇 → ℕ, representing

maximum number of visits to rejecting states in any

partial run of the system that ends in 𝑡

Bounded Synthesis: Annotations

Swen Jacobs

VTSA 2013

58

Annotation Automaton

𝜆1
𝔹 𝑡0
𝜆1
𝑡0 = 0

∀𝐼 ∀𝑡: 𝜆1
𝔹 𝑡

→ 𝜆1
𝔹 𝜏 𝑡, 𝐼 ∧ 𝜆1

𝜏 𝑡, 𝐼 ≥ 𝜆1
𝑡

∀𝐼 ∀𝑡: 𝜆1
𝔹 𝑡 ∧ 𝑟1 ∈ 𝐼

→ 𝜆2
𝔹 𝜏 𝑡, 𝐼 ∧ 𝜆2

𝜏 𝑡, 𝐼 > 𝜆1
𝑡

… …

For given system 𝑆 and UCT 𝐴, satisfying annotation

exists iff 𝐴 accepts 𝑆.

Bounded Synthesis: Solving

Swen Jacobs

VTSA 2013

59

 For given system, such SMT constraints are

decidable and solved automatically

 If we let transition function and output function of

system be unknown/uninterpreted, we can use

SMT solver for synthesis

 In this case, need to restrict size of system

(s.t. quantifiers can be finitely instantiated)

 Very mature SMT solvers can be used out-of-the-box

Bounded Synthesis: Wrap-up

Swen Jacobs

VTSA 2013

60

Bounded synthesis

 solves the synthesis problem by smart encoding

into SMT constraints

 finds the smallest implementation

(wrt. # states in LTS, or other metrics)

 does not scale very well

(without additional optimizations)

End of Synthesis, Part I: Basics

Swen Jacobs

VTSA 2013

61

 Synthesis as a Game

 General: LTL Synthesis

 Time-Efficient: GR(1) Synthesis

 Application: AMBA Bus Protocol

 Space-Efficient: Bounded/Safraless Approaches

Bibliography

Swen Jacobs

VTSA 2013

62

[PnueliRosner89] A. Pnueli, R. Rosner: On the Synthesis of a Reactive Module.

POPL 89.

[SohailSomenzi09] S. Sohail, F. Somenzi: Safety First: A Two-Stage Algorithm for LTL

Games. FMCAD 09.

[MorgensternSchneider10] A. Morgenstern, K. Schneider: Exploiting the Temporal Logic

Hierarchy and the Non-Confluence Property for Efficient LTL Synthesis.

GANDALF 10.

[ScheweFinkbeiner07] S. Schewe, B. Finkbeiner: Bounded Synthesis. ATVA 07.

[FiliotJinRaskin11] E. Filiot, N. Jin, J.F. Raskin: Antichains and compositional algorithms

for LTL synthesis. FMSD 11.

[Ehlers12] R. Ehlers: Symbolic Bounded Synthesis. FMSD 12.

[VardiWolper86] M. Vardi, P. Wolper: Automata-theoretic techniques for modal logics of

programs. JCSS 86.

[KestenPitermanPnueli05] Y. Kesten, N. Piterman, A. Pnueli: Bridging the Gap between

Fair Simulation and Trace Inclusion. I&C 05.

[PitermanPnueliSa’ar06] N. Piterman, A. Pnueli, Y. Sa'ar: Synthesis of Reactive(1)

Designs. VMCAI 06.

