

Reactive Synthesis

Swen Jacobs <swen.jacobs@iaik.tugraz.at> VTSA 2013 Nancy, France 24.09.2013

ΙΙΑΙΚ

Property Synthesis (You Will Never Code Again)

Construct Correct Systems Automatically

Motivation

ΠΑΙΚ

- Coding is hard, want higher level of abstraction: Machine code ⇒ Assembly ⇒ C ⇒ Java ⇒ Ruby? ⇒ ...
 Silicon ⇒ Gates ⇒ RTL ⇒ Transactions? ⇒ ...
 - Bugs are:
 - very expensive, especially in security critical applications and hardware
 - hard to kill: finding and fixing bugs takes 50%-80% of design time

Our Focus

ΠΔΙΚ

5

- Reactive systems
 - Continuous interaction with environment
 - Correctness statements are temporal (temporal logic, automata)
 - Ex: Operating systems, web browsers, circuits, protocols
- Finite State
 - Prototypical finite state reactive system: circuit
- Not our focus: functions
 - One input, one output, non-termination is a bug
 - Correctness is input/output relation (Hoare logic)

Other Application Areas

- Program repair
- Program sketching
- Synthesis of synchronization skeletons

. . .

Synthesis, Part I: Basics

- Synthesis as a **Game**
- General: LTL Synthesis
- Time-Efficient: GR(1) Synthesis
- Application: AMBA Bus Protocol
- Space-Efficient: Bounded/Safraless Approaches

ΙΙΑΙΚ

Synthesis as a Game

Synthesis as a Game

Given

- Input and output signals
- Specification of the behavior

Determine

- Realizability: Is there a finite state system that realizes the specification?
- Synthesis: If system exists, construct it

Two player game

- Environment: determines inputs (not controllable)
- System: determines outputs (controllable)
- Game: finite state graph, infinite plays
- Winning condition for player System: formula φ

Games

ΙΙΑΙΚ

10

Two player graph-based, turn-based games with infinitary winning conditions

- Antagonist controls I
- Protagonist controls 0
- graph based:
 - Set of states Q
 - Initial state q_0
 - Transition function $\delta: Q \times I \times O \rightarrow Q$
- turn based:
 - Start from q_0
 - Antagonist selects i_k , protagonist selects o_k , proceed to $q_{k+1} = \delta(i_k, o_k)$
 - Ensuing play: $q_0 i_0 o_0 q_1 i_1 o_1 q_2 \dots$
- Winning condition: objective over $F \subseteq Q$
- Strategy: $Q \times I^* \to 0$
- For every input sequence, strategy fixes a play
- Winning strategy: strategy such that all resulting plays fulfill ϕ

Winning Conditions

- **Reachability**: want to reach a state in $F \subseteq Q$
- **Safety**: want to stay in $F \subseteq Q$
- **Büchi**: want to visit $F \subseteq Q$ infinitely often
- **Co-Büchi**: want to visit $F \subseteq Q$ only finitely often
- others exist... (later)

Example

input button output coffee G(*button* → F coffee)

LTL game

red moves first green moves second

green's objective: visit q_0 infinitely often

Büchi game

Possible strategy: serve coffee iff automaton is in state q_1 *In this case, LTL game reduces to Büchi game*

Example: Alternative Representation

- compact
- looks like automaton
- order of moves (input, output) only implicit

- explicit order of moves
- need more states

Force¹(F) = set of states from which system can force visit
 to S in one step

 $Force^{1}(F) = \{ q \in Q \mid \forall i \in I \exists o \in O : \delta(q, i, o) \in F \}$

Force¹(F) = set of states from which system can force visit
 to F in one step

Force*(F) = set of states from which system can force visit
 to F in any number of steps
 (least fixpoint of applying Force¹ to F)

Recur(F) = set of states from which system can repeatedly
 force visit to F in any number of steps
 (nested fixpoint operation)

Winning region is $Force^*(F)$ for reachability game, Recur(F) for Büchi game.

(Safety defined with dual *Force* operator for environment)

For reachability, safety and Büchi games, **memoryless** strategies are sufficient, i.e., strategies $Q \times I \rightarrow O$

FourSteps to Synthesis

- 1. Specify
 - LTL, Büchi automata,...
- 2. Obtain a game
- **3.** Solve the game
- 4. Construct circuit

LTL Synthesis

ΙΙΑΙΚ LTL Synthesis

LTL Synthesis [PnueliRosner89]

Specify 1.

20

- Formula φ in LTL
- Obtain a game 2.
 - Convert φ to nondeterministic Büchi automaton A (exponential blowup)
 - Convert A to deterministic Rabin or Parity automaton (=game) (exponential blowup)
- Solve the game 3.
 - parity games can be solved in polynomial time
- **Construct Circuit** 4.

Input: r_1, r_2 (requests) Output: g_1, g_2 (grants)

Specification:

 $\begin{array}{l} \mathbf{G}(r_1 \rightarrow \mathbf{F} \ g_1) \\ \mathbf{G}(r_2 \rightarrow \mathbf{F} \ g_2) \\ \mathbf{G} \neg (g_1 \land g_2) \end{array}$

Obtaining a game

- Specify
 Obtain a game
 Solve the game
 Construct circuit
- Not in detail in this tutorial see [VardiWolper86]
- From Büchi automata to games

From LTL to Büchi automata

- Non-determinism is bad
- Advanced acceptance conditions

Input: r_1, r_2 (requests) Output: g_1, g_2 (grants)

Specification:

 $\begin{array}{l} \mathbf{G}(r_1 \rightarrow \mathbf{F} \ g_1) \\ \mathbf{G}(r_2 \rightarrow \mathbf{F} \ g_2) \\ \mathbf{G} \neg (g_1 \land g_2) \end{array}$

ΙΙΔΙΚ **Advanced Acceptance Conditions**

- **Rabin**: defined by $\{(E_1, F_1), \dots, (E_n, F_n)\}$, with $E_i, F_i \subseteq$ Q. System wins if there **exists an** i such that E_i is visited finitely often and F_i is visited infinitely often.
 - Streett: like Rabin, but System wins if for all i, if F_i is visited infinitely often, then E_i must be visited infinitely often. (negation of Rabin)
 - **Parity**: every state is assigned a **priority** from \mathbb{N} . System wins if **minimum** priority of all states visited infinitely often is even.

25

LTL Synthesis

1. Specify

ΙΙΑΙΚ

26

- Formula φ in LTL, size n
- 2. Obtain a game
 - Convert φ to a nondeterministic Büchi Automaton A, size 2^n
 - Determinize A to a deterministic Parity automaton (=game), size 2^{2ⁿ}
- 3. Solve the parity game, time 2^{2^n}

Will not consider this approach in detail. It is complex and not very scalable.

LTL Synthesis – Alternative Approaches

Synthesis problem can also be solved by

- decomposing φ, simplifying each part, then composing
 [SohailSomenzi09, MorgensternSchneider10]
 (not in this tutorial)
- Limiting size of solution, incrementally increasing bound [ScheweFinkbeiner07,FiliotJinRaskin11, Ehlers12] (Later!)
- Considering efficiently decidable fragments (Now!)

GR(1) Synthesis

Avoiding Complexity: GR(1) Games

LTL Synthesis [PnueliRosner89]

- . Specify
 - Formula φ in Linear Temporal Logic
- 2. Obtain a game
 - Convert φ to a nondeterministic Büchi Automaton A (exponential blowup)
 - Determinize A to a deterministic Rabin or Parity automaton (=game) (exponential blowup)
- 3. Solve the game
 - equals solving a parity game, can be done in polynomial time
- 4. Construct Circuit

GR(1) Synthesis [PitermanPnueliSa'ar06]

- 1. Specify
 - Sets of deterministic Büchi automata, for environment and system
- 2. Specification = game
 - no work

- 3. Solve the game
 - A GR(1) game
- 4. Construct Circuit

Avoiding Complexity: GR(1) Specs

1. Specification:

- Set of *m* deterministic Büchi automata for assumptions: $A_1 \dots A_m$
- Set of n deterministic Büchi automata for guarantees: $G_1 \dots G_n$ Both encoded symbolically
- 2. Specification = Game
- **3.** Solve the game
- 4. Determine circuit from winning strategy (...)

Advantages of this setting:

- We do not need one automaton for full spec
- We do not need to determinize
- Symbolic formulation

But: not all LTL properties can be expressed this way(!)

IIAIK 31

Obtaining a GR(1) Specification

Example: $G(r \rightarrow Fg)$

Symbolic:

Introduce *x* as variable for state space

initial $i_A = \neg x$

transition relation
$$T_A =$$

 $\neg x \land (\neg r \lor g) \rightarrow \neg x'$
 $\neg x \land r \land \neg g \rightarrow x'$
 $x \land \neg g \rightarrow x'$
 $x \land g \rightarrow \neg x'$

To solve: compute nested fixpoints of states from which system can force visit to G_i if environment satisfies assumptions A_i

Direct symbolic implementation. Complexity: $O(|Q|^2 \cdot |T| \cdot m \cdot n)$ [KestenPitermanPnueli05,PitermanPnueliSa'ar06]

Note: counting construction on G introduces memory of size n

Solve using Jurdzinki's algorithm in $O(|Q| \cdot |T|)$ time [d'AlfaroFaella09]

better because $m, n \ll Q$

	[PPS06]	Streett reduction algorithm
time	$O(Q ^2 \cdot T \cdot m \cdot n)$	$O(Q \cdot T \cdot (m \cdot n)^2)$

Avoiding Complexity: GR(1) Games

LTL Synthesis [PnueliRosner89]

- . Specify
 - Formula φ in Linear Temporal Logic
- 2. Obtain a game
 - Convert φ to a nondeterministic Büchi Automaton A (exponential blowup)
 - Determinize A to a deterministic Rabin or Parity automaton (=game) (exponential blowup)
- 3. Solve the game
 - equals solving a parity game, can be done in polynomial time
- 4. Construct Circuit

GR(1) Synthesis [PitermanPnueliSa'ar06]

- 1. Specify
 - Sets of deterministic Büchi automata, for environment and system
- 2. Specification = game
 - no work

- 3. Solve the game
 - A GR(1) game
- 4. Construct Circuit

Less freedom Fewer circuits More complexity

- Spec is given in terms of sequential inputs and outputs
- Flipflops keep track of state of specification automata (state space of game)
- Strategy is relation between combinational inputs and combinational outputs: $R \subseteq I \; X \; O$
- A circuit is a function f: $I \rightarrow O$

From BDD to Circuit

Relation Solving

Given: Strategy R: I x O **Find**: function f: I \rightarrow O such that if f(i) = 0 then (i,0) \in R or $\neg \exists 0$. (i,0) \in R

Multiple possibilities lead to wildly different sizes in circuits

Strategy Minimization/Determinization

Challenges:

- Find simple function (small number of gates)
- Strategy relations are huge
 - Encoded symbolically (e.g. BDD)
 - Symbolic algorithms
- Efficiency

Different approaches based on BDD manipulation and/or learning.

(Synthesizing) The AMBA Bus Protocol

Industrial standard ARM's AMBA AHB bus

- High performance on-chip bus
- Data, address, and control signals (pipelined)
- Arbiter part of bus (determines control signals)
- Up to 16 masters and 16 clients

AMBA Bus

ΙΙΑΙΚ

41

Master initiates transfer. Signals:

- HBUSREQi Master i wants the bus
- HLOCKi
 - Master i wants an uninterruptible access
- HBURST
- This access has length 1/4/incr
- address & data lines
- The arbiter decides access
 - HGRANTi Next transfer for master i
 - HMASTER[..] Currently active master
 - HMASTLOCK Current access is uninterruptible
- The clients synchronize the transfer
 - HREADY Ready for next transfer
- Sequence for master
 - Ask; wait for grant; wait for hready; state transfer type & start transfer

AMBA Arbiter

ΙΙΑΙΚ

42

- Specification
- 3 Assumptions, 12 Guarantees.
- Example:

"When a locked unspecified length burst starts, new access does not start until current master (i) releases bus by lowering HBUSREQi."

 $\Lambda_i G(HMASTLOCK \land HBURST=INCR \land HMASTER=i \land START \rightarrow X(\neg START U \neg HBUSREQi))$

Secure & Correct System

Formulation of Spec Matters

Assumption that master must eventually release locked bus

 \land i: G((HMASTLOCK ∧ HBURST=INCR ∧ HMASTER=i) → F ¬HBUSREQ[i]) can also be written as G((HMASTLOCK ∧ HBURST=INCR) → F ¬HBUSREQ[HMASTER])

(We know that bus master does not change)

Now, instead of *n* automata with *n* fairness constraints, we have one! Spec can be simplified Synthesis successful for ≤ 10 Masters

AMBA Case Study: Results

- Expressibility of GR(1) is sufficient
- Deciding realizability is fast
- Specification is short and easy to understand
- Synthesis works!

Challenges: Specification

- Informal specs often ambiguous (AMBA spec is)
 - you also have this problem when writing Verilog code
- Is specifying really easier than coding?
 - GR(1) is a very special case, interesting things may not be (easily) expressible

Challenges: Size

- Circuits are LARGE, size depends on parameter (# masters)
 - Much bigger increase than necessary (see manual implementation)
- Smarter circuit generation needed
- Size depends strongly on formulation of specification

Bounded (Safraless) Approaches

Reactive Systems, More Formally

- 3 views on synthesis:
- synthesize a strategy for a game depends on game graph
- synthesize a circuit special form, good for bit-level symbolic reasoning
- synthesize a labelled transition system this is close to the "automata" point of view

Labelled Transition Systems

- A **labelled transition system** (**LTS**) *S* with inputs *I* and outputs *O* is a tuple (T, t_0, τ, o) with
- T a set of states
- t_0 an initial state
- $\tau: T \times \mathbb{B}^I \to T$ a transition function
- $o: T \to \mathbb{B}^O$ a (state) labelling function

Bounded (Safraless) Approaches

Avoid determinisation step by alternative approach:

1. reduce synthesis problem to emptiness check of universal coBüchi tree automaton

ΙΙΔΙΚ

Universal Co-Büchi Tree Automaton (UCT)

Universal: takes all possible transitions at once, i.e., can be in multiple states at the same timeCo-Büchi: no state in *F* may be visited inf. oftenTree Automaton: reads trees instead of words

Space of executions of an LTS is a tree: branches labeled with inputs, nodes with outputs. A UCT can directly read a system and accept/reject it.

> SCOS Secure & Correct Systems

ΙΙΔΙΚ

Bounded (Safraless) Approaches

Avoid determinisation step by alternative approach:

- 1. reduce synthesis problem to emptiness check of universal coBüchi tree automaton
- 2. reduce emptiness check to checking acceptance of trees/systems of **bounded size**.

For bounded size, problem can be encoded as decidable SMT constraints [ScheweFinkbeiner07] (alternative: [FiliotJinRaskin11])

ΙΙΔΙΚ

Bounded Synthesis [ScheweFinkbeiner07]

- 1. Translate LTL specification into UCT
- 2. Generate SMT constraints equivalent to realizability of spec (in system of size *k*)
- **3. Solve constraints** for increasing *k*, obtain system (if one exists)

Bounded Synthesis: Construct UCT

Bounded Synthesis: SMT Constraints

Idea: Annotate states of system with

- **predicates** $\lambda_q^{\mathbb{B}}: T \to \mathbb{B}$, representing reachable states of the automaton, i.e., $\lambda_q^{\mathbb{B}}(t)$ is true if partial run of system that ends in *t* can lead to automaton state that includes *q*
- counting functions $\lambda_q^{\#}: T \to \mathbb{N}$, representing maximum number of visits to rejecting states in any partial run of the system that ends in *t*

 $\rightarrow \lambda_{2}^{\mathbb{B}}(\tau(t,I)) \wedge \lambda_{2}^{\#}(\tau(t,I)) > \lambda_{1}^{\#}(t)$

For given system S and UCT A, satisfying annotation exists iff A accepts S.

VTSA 2013 Swen Jacobs

 r_2

 g_1g_2

Bounded Synthesis: Solving

- For given system, such SMT constraints are decidable and solved automatically
- If we let transition function and output function of system be unknown/uninterpreted, we can use SMT solver for synthesis
- In this case, need to restrict size of system (s.t. quantifiers can be finitely instantiated)
- Very mature SMT solvers can be used out-of-the-box

Bounded Synthesis: Wrap-up

Bounded synthesis

- solves the synthesis problem by smart encoding into SMT constraints
- finds the smallest implementation (wrt. # states in LTS, or other metrics)
- does not scale very well (without additional optimizations)
 How to make this work for bigger systems?

End of Synthesis, Part I: Basics

- Synthesis as a **Game**
- General: LTL Synthesis
- Time-Efficient: GR(1) Synthesis
- Application: AMBA Bus Protocol
- Space-Efficient: Bounded/Safraless Approaches

ΙΙΑΙΚ

61

ΙΙΑΙΚ **Bibliography**

62

[PnueliRosner89] A. Pnueli, R. Rosner: On the Synthesis of a Reactive Module. POPL 89.

[SohailSomenzi09] S. Sohail, F. Somenzi: Safety First: A Two-Stage Algorithm for LTL Games, FMCAD 09.

[MorgensternSchneider10] A. Morgenstern, K. Schneider: Exploiting the Temporal Logic Hierarchy and the Non-Confluence Property for Efficient LTL Synthesis. GANDALE 10.

[ScheweFinkbeiner07] S. Schewe, B. Finkbeiner: Bounded Synthesis. ATVA 07.

[FiliotJinRaskin11] E. Filiot, N. Jin, J.F. Raskin: Antichains and compositional algorithms for LTL synthesis. FMSD 11.

[Ehlers12] R. Ehlers: Symbolic Bounded Synthesis. FMSD 12.

[VardiWolper86] M. Vardi, P. Wolper: Automata-theoretic techniques for modal logics of programs. JCSS 86.

[KestenPitermanPnueli05] Y. Kesten, N. Piterman, A. Pnueli: Bridging the Gap between Fair Simulation and Trace Inclusion, I&C 05.

[PitermanPnueliSa'ar06] N. Piterman, A. Pnueli, Y. Sa'ar: Synthesis of Reactive(1) Designs. VMCAI 06.

