Automated reasoning for first-order logic Theory, Practice and Challenges

Konstantin Korovin ${ }^{1}$

The University of Manchester UK

```
korovin@cs.man.ac.uk
```

Part II
${ }^{1}$ supported by a Royal Society University Fellowship

Modular instantiation-based reasoning

SAT/SMT vs First-Order

The problem: Show that a given formula is a theorem.

Ground (SAT/SMT)

$$
\begin{gathered}
P(a) \vee Q(c, d) \\
\neg P(a) \vee Q(d, c)
\end{gathered}
$$

Very efficient
Not very expressive DPLL

Industry

First-Order

$$
\begin{array}{rl}
\forall x \exists y & Q(x, y) \vee \neg Q(y, f(x)) \\
& P(a) \vee Q(d, c)
\end{array}
$$

Very expressive
Ground: not as efficient
Resolution/Superposition
Academia \rightarrow Industry

From Ground to First-Order: Efficient at gound + Expressive?

Traditional Methods: Resolution

Reasoning Problem

Given a set of first order clauses S, prove S is unsatisfiable.

$$
\begin{array}{cc}
\text { Resolution: } & \text { Example : } \\
\frac{C \vee L \quad \overline{L^{\prime}} \vee D}{(C \vee D) \sigma} & \frac{Q(x) \vee P(x) \quad \neg P(a) \vee R(y)}{Q(a) \vee R(y)} \\
\\
\begin{array}{c}
L_{1} \vee C_{1} \\
\vdots \\
L_{n} \vee C_{n}
\end{array} & \\
\hline
\end{array}
$$

Traditional Methods: Resolution

Reasoning Problem

Given a set of first order clauses S, prove S is unsatisfiable.

$$
\begin{gathered}
\text { Resolution: } \\
\frac{C \vee L \quad \overline{L^{\prime}} \vee D}{(C \vee D) \sigma} \\
\begin{array}{c}
L_{1} \vee C_{1} \\
\vdots \\
L_{n} \vee C_{n}
\end{array}
\end{gathered}
$$

Example:
$\frac{Q(x) \vee P(x) \quad \neg P(a) \vee R(y)}{Q(a) \vee R(y)}$

Weaknesses:

- Inefficient in propositional case
- Length of clauses can grow fast
- Recombination of clauses
- No effective model representation

Basic idea behind instantiation proving

Can we approximate first-order by ground reasoning?

Basic idea behind instantiation proving

Can we approximate first-order by ground reasoning?

Theorem (Herbrand). For a quantifier free formula $\varphi(\bar{x})$; $\forall \bar{x} \varphi(\bar{x})$ is unsatisfiable iff $\bigwedge_{i} \varphi\left(\bar{t}_{i}\right)$ is unsatisfiable, for some ground terms $\bar{t}_{1}, \ldots, \bar{t}_{n}$.

Basic idea: Interleave instantiation with propositional reasoning.

Main issues:

- How to restrict instantiations.
- How to interleave instantiation with propositional reasoning.

Different approaches

Gilmore (1960): generation of ground instances
Robinson (1965): resolution
Plaisted et al (1992): hyper-linking
Plaisted \& Zhu (2000): semantics-based instance generation
Letz \& Stenz (2000): disconnection tableaux-type calculus
Hooker et al (2002): generation of instances with sem. selection
Baumgartner \& Tinelli (2003): ME: Lifting of DPLL
Ganzinger \& Korovin (2003): Inst-Gen calculus, modular ground reasoning

Claessen (2005): Equinox
... many instantiation based methods for different fragments/logics

Overview of the Inst-Gen procedure

First-Order Clauses
S

Overview of the Inst-Gen procedure

Theorem.[Ganzinger, Korovin LICS'03] Inst-Gen is sound and complete.

Example:

$$
\begin{gathered}
p(f(x), b) \vee q(x, y) \\
\neg p(f(f(x)), y) \\
\quad \neg q(f(x), x)
\end{gathered}
$$

Example:

$$
\begin{gathered}
p(f(x), b) \vee q(x, y) \\
\neg p(f(f(x)), y) \\
\quad \neg q(f(x), x)
\end{gathered}
$$

$$
\begin{gathered}
p(f(\perp), b) \vee q(\perp, \perp) \\
\neg p(f(f(\perp)), \perp) \\
\quad \neg q(f(\perp), \perp)
\end{gathered}
$$

Example:

$$
\begin{gathered}
p(f(x), b) \vee q(x, y) \\
\neg p(f(f(x)), y) \\
\quad \neg q(f(x), x)
\end{gathered}
$$

$$
\begin{gathered}
p(f(\perp), b) \vee q(\perp, \perp) \\
\neg p(f(f(\perp)), \perp) \\
\quad \neg q(f(\perp), \perp)
\end{gathered}
$$

Example:

$$
\begin{gathered}
p(f(x), b) \vee q(x, y) \\
\neg p(f(f(x)), y) \\
\quad \neg q(f(x), x)
\end{gathered}
$$

$$
\begin{gathered}
p(f(\perp), b) \vee q(\perp, \perp) \\
\neg p(f(f(\perp)), \perp) \\
\quad \neg q(f(\perp), \perp)
\end{gathered}
$$

$$
\begin{gathered}
p(f(f(x)), b) \vee q(f(x), y) \\
\quad \neg p(f(f(x)), b) \\
p(f(x), b) \vee q(x, y) \\
\quad \neg p(f(f(x)), y) \\
\quad \neg q(f(x), x)
\end{gathered}
$$

Example:

$$
\left.\begin{array}{c}
\begin{array}{c}
p(f(x), b) \vee q(x, y) \\
\neg p(f(f(x)), y) \\
\neg q(f(x), x)
\end{array} \\
\begin{array}{c}
p(f(f(x)), b) \vee q(f(x), y) \\
\neg p(f(f(x)), b) \\
p(f(x), b) \vee q(x, y) \\
\neg p(f(f(x)), y) \\
\neg q(f(x), x)
\end{array}
\end{array} \begin{array}{c}
p(f(\perp), b) \vee q(\perp, \perp) \\
\neg p(f(f(\perp)), \perp) \\
\neg q(f(\perp), \perp)
\end{array}\right]
$$

Example:

$$
\begin{gathered}
p(f(x), b) \vee q(x, y) \\
\neg p(f(f(x)), y) \\
\quad \neg q(f(x), x)
\end{gathered}
$$

$$
p(f(f(x)), b) \vee q(f(x), y)
$$

$$
\neg p(f(f(x)), b)
$$

$$
p(f(x), b) \vee q(x, y)
$$

$$
\neg p(f(f(x)), y)
$$

$$
\neg q(f(x), x)
$$

$$
\begin{gathered}
p(f(\perp), b) \vee q(\perp, \perp) \\
\neg p(f(f(\perp)), \perp) \\
\quad \neg q(f(\perp), \perp)
\end{gathered}
$$

$$
p(f(f(\perp)), b) \vee q(f(\perp), \perp)
$$

$$
\neg p(f(f(\perp)), b)
$$

$$
p(f(\perp), b) \vee q(\perp, \perp)
$$

$$
\neg p(f(f(\perp)), \perp)
$$

$$
\neg q(f(\perp), \perp)
$$

The final set is propositionally unsatisfiable.

Resolution vs Inst-Gen

Resolution :

$$
\begin{gathered}
\frac{(C \vee L)\left(\overline{L^{\prime}} \vee D\right)}{(C \vee D) \sigma} \\
\sigma=\operatorname{mgu}\left(L, L^{\prime}\right)
\end{gathered}
$$

Weaknesses of resolution:
Inefficient in the ground/EPR case
Length of clauses can grow fast
Recombination of clauses
No explicit model representation

Instantiation :

$$
\begin{array}{cc}
(C \vee L) & \left(\overline{L^{\prime}} \vee D\right) \\
(C \vee L) \sigma & \left(\overline{L^{\prime}} \vee D\right) \sigma \\
\sigma=\operatorname{mgu}\left(L, L^{\prime}\right)
\end{array}
$$

Strengths of instantiation:
Modular ground reasoning
Length of clauses is fixed
Decision procedure for EPR
No recombination
Semantic selection
Redundancy elimination
Effective model presentation

Redundancy Elimination

The key to efficiency is redundancy elimination.

Redundancy Elimination

The key to efficiency is redundancy elimination.

Ground clause C is redundant if

- $C_{1}, \ldots, C_{n}=C$
- $C_{1}, \ldots, C_{n} \prec C$
- $P(a) \models Q(b) \vee P(a)$
- $P(a) \prec Q(b) \vee P(a)$

Where \prec is a well-founded ordering.

Redundancy Elimination

The key to efficiency is redundancy elimination.

Ground clause C is redundant if

- $C_{1}, \ldots, C_{n}=C$
- $C_{1}, \ldots, C_{n} \prec C$
- $P(a) \models Q(b) \vee P(a)$
- $P(a) \prec Q(b) \forall P(a)$

Where \prec is a well-founded ordering.
Theorem [Ganzinger, Korovin]. Redundant clauses/closures can be eliminated.

Consequences:

- many usual redundancy elimination techniques
- redundancy for inferences
- new instantiation-specific redundancies

Simplifications by SAT/SMT solver [Korovin IJCAR'08]

Can off-the-shelf ground solver be used to simplify ground clauses?

Simplifications by SAT/SMT solver [Korovin IJCAR'08]

Can off-the-shelf ground solver be used to simplify ground clauses?

Abstract redundancy:

$$
\begin{aligned}
& C_{1}, \ldots, C_{n} \models C \\
& C_{1}, \ldots, C_{n} \prec C
\end{aligned}
$$

$S_{g r} \models C$ - ground solver
follows from smaller?

Simplifications by SAT/SMT solver [Korovin IJCAR'08]

Can off-the-shelf ground solver be used to simplify ground clauses?

Abstract redundancy:

$$
\begin{aligned}
& C_{1}, \ldots, C_{n} \models C \\
& C_{1}, \ldots, C_{n} \prec C
\end{aligned}
$$

$S_{g r} \models C$ - ground solver follows from smaller?

Basic idea:

- split $D \subset C$
- check $S_{g r} \models D$
- add D to S and remove C

Simplifications by SAT/SMT solver [Korovin IJCAR'08]

Can off-the-shelf ground solver be used to simplify ground clauses?

Abstract redundancy:

$$
\begin{aligned}
& C_{1}, \ldots, C_{n} \models C \\
& C_{1}, \ldots, C_{n} \prec C
\end{aligned}
$$

Basic idea:

- split $D \subset C$
- check $S_{g r} \models D$
- add D to S and remove C
$S_{g r} \models C$ - ground solver follows from smaller ?

Global ground subsumption:

$$
\frac{D \forall C^{\top}}{D}
$$

where $S_{g r} \models D$ and $C^{\prime} \neq \emptyset$

Global Ground Subsumption [Korovin IJCAR'08]

$$
\begin{aligned}
& \quad S_{g r} \\
& \neg Q(a, b) \vee P(a) \vee P(b) \\
& P(a) \vee Q(a, b) \\
& \neg P(b)
\end{aligned}
$$

Global Ground Subsumption [Korovin IJCAR'08]

$$
\begin{aligned}
& \quad S_{g r} \\
& \neg Q(a, b) \vee P(a) \vee P(b) \\
& P(a) \vee Q(a, b) \\
& \neg P(b)
\end{aligned}
$$

Global Ground Subsumption [Korovin IJCAR'08]

\[

\]

A minimal $D \subset C$ such that $S_{g r} \models D$ can be found in a linear number of implication checks.

Global Ground Subsumption [Korovin IJCAR'08]

$$
\begin{aligned}
& \quad \frac{S_{g r}}{} \\
& \neg Q(a, b) \vee P(a) \vee P(b) \\
& P(a) \vee Q(a, b) \\
& \neg P(b)
\end{aligned}
$$

A minimal $D \subset C$ such that $S_{g r} \models D$ can be found in a linear number of implication checks.

Global Ground Subsumption generalises:

- strict subsumption
- subsumption resolution

Non-Ground Simplifications by SAT/SMT [Korovin IJCAR'08]

Off-the-shelf ground solver can be used to simplify ground clauses.
Can we do more?

Non-Ground Simplifications by SAT/SMT [Korovin IJCAR'08]

Off-the-shelf ground solver can be used to simplify ground clauses.
Can we do more? Yes!
Ground solver can be used to simplify non-ground clauses.

Non-Ground Simplifications by SAT/SMT [Korovin IJCAR'08]

Off-the-shelf ground solver can be used to simplify ground clauses.
Can we do more? Yes!
Ground solver can be used to simplify non-ground clauses.

The main idea:

$$
S_{g r} \models \forall \bar{x} C(\bar{x})
$$

Non-Ground Simplifications by SAT/SMT [Korovin IJCAR'08]

Off-the-shelf ground solver can be used to simplify ground clauses.
Can we do more? Yes!
Ground solver can be used to simplify non-ground clauses.

The main idea:

$$
S_{g r} \models \forall \bar{x} C(\bar{x}) \quad S_{g r} \models C(\bar{d}) \quad \text { for fresh } \bar{d}
$$

Non-Ground Simplifications by SAT/SMT [Korovin IJCAR'08]

Off-the-shelf ground solver can be used to simplify ground clauses.
Can we do more? Yes!
Ground solver can be used to simplify non-ground clauses.

The main idea:

$$
\begin{aligned}
& S_{g r}=\forall \bar{x} C(\bar{x}) \\
& C_{1}(\bar{x}), \ldots, C_{n}(\bar{x}) \in S
\end{aligned}
$$

$$
\begin{aligned}
& S_{g r} \models C(\bar{d}) \text { for fresh } \bar{d} \\
& C_{1}(\bar{d}), \ldots, C_{n}(\bar{d}) \models C(\bar{d})
\end{aligned}
$$

Non-Ground Simplifications by SAT/SMT [Korovin IJCAR'08]

Off-the-shelf ground solver can be used to simplify ground clauses.
Can we do more? Yes!
Ground solver can be used to simplify non-ground clauses.

The main idea:

$$
\begin{aligned}
& S_{g r} \models \forall \bar{x} C(\bar{x}) \\
& C_{1}(\bar{x}), \ldots, C_{n}(\bar{x}) \in S \\
& C_{1}(\bar{x}), \ldots, C_{n}(\bar{x}) \prec C(\bar{x})
\end{aligned}
$$

$S_{g r} \models C(\bar{d})$ for fresh \bar{d} $C_{1}(\bar{d}), \ldots, C_{n}(\bar{d}) \models C(\bar{d})$ as
in Global Subsumption
Non-Ground Global Subsumption

Non-Ground Global Subsumption

S

$\neg P(x) \vee Q(x)$
$\neg Q(x) \vee S(x, y)$
$P(x) \vee S(x, y)$

$$
S(x, y) \vee Q(x)
$$

Simplify first-order by purely ground reasoning!

Non-Ground Global Subsumption

Simplify first-order by purely ground reasoning!

Non-Ground Global Subsumption

\[

\]

Simplify first-order by purely ground reasoning!

Non-Ground Global Subsumption

\[

\]

Simplify first-order by purely ground reasoning!

Non-Ground Global Subsumption

$$
\begin{array}{cc}
\frac{S}{\neg P(x) \vee Q(x)} & C \\
\begin{array}{lc}
\neg Q(x) \vee S(x, y) \\
P(x) \vee S(x, y)
\end{array} & \begin{array}{c}
S(x, y) \vee Q(x) \\
S_{g r}
\end{array} \\
\hline \neg P(a) \vee Q(a) \\
\neg Q(a) \vee S(a, b) \\
P(a) \vee S(a, b) & \frac{C_{g r}}{S(a, b) \vee Q(a)} \\
\hline
\end{array}
$$

Simplify first-order by purely ground reasoning!

Finer-grained control: closure orderings

Finer-grained control: replace ground clauses with ground closures.
Closure, a closure is a pair $C \cdot \sigma$, where C is a clause and σ a grounding substitution

$$
(A(a) \vee B(x)) \cdot[b / x]
$$

- θ properly instantiates C Slogan: innore speciric representations take priority over less specific ones

Finer-grained control: closure orderings

Finer-grained control: replace ground clauses with ground closures.
Closure, a closure is a pair $C \cdot \sigma$, where C is a clause and σ a grounding substitution

$$
(A(a) \vee B(x)) \cdot[b / x]
$$

Represents: ground clause $C \sigma$

$$
A(a) \vee B(b)
$$

Closure ordering: any total, well-founded ordering such that

- θ properly instantiates C Slogan: innore speciric representations take priority over less specific ones

Finer-grained control: closure orderings

Finer-grained control: replace ground clauses with ground closures.
Closure, a closure is a pair $C \cdot \sigma$, where C is a clause and σ a grounding substitution

$$
(A(a) \vee B(x)) \cdot[b / x]
$$

Represents: ground clause $C \sigma$

$$
A(a) \vee B(b)
$$

Closure ordering: any total, well-founded ordering such that
$C \theta \cdot \tau \prec C \cdot \sigma$ if

- $C \sigma=C \theta \tau$, and
- θ properly instantiates C

Slogan: more specific representations take priority over less specific ones
Ex: $(p(a) \vee q(z)) \cdot[b / z] \prec(p(y) \vee q(z)) \cdot[a / y, b / z]$

Closure-based redundancy elimination

Definition call $C \cdot \sigma$ redundant in S if

- $C_{1} \cdot \sigma_{1}, \ldots, C_{n} \cdot \sigma_{n}=C \cdot \sigma$ and
- $C_{1} \cdot \sigma_{1}, \ldots, C_{n} \cdot \sigma_{n} \prec C \cdot \sigma$

Theorem. [Ganzinger, Korovin]
Redundant closures (and clauses) can be eliminated.

Consequences:

- generalises usual redundancy
- new instantiation specific redundancies
- blocking non-proper instances (merging variables) can be eliminated
- dismatching constraints
- redundancy for inferences

Dismatching Constraints [Korovin (IJCAR'08, vol. HG'13)]

Example:

Then the inference between (1) and (2) is redundant!

Why? the conclusion is represented twice $p(f(a)) \vee \neg q(f(f(a)))$
\square

This can be represented as a dismatching constraint.

How to make closures redundant? Instantiate!
Fvery nroner instantiation inference makes closures redundant in the

Dismatching Constraints [Korovin (IJCAR'08, vol. HG'13)]

Example:

$$
\begin{align*}
& p(x) \vee \neg q(f(x)) \tag{1}\\
& \frac{p(f(x))}{} \vee \stackrel{\neg q(f(f(x)))}{ } \tag{2}\\
& \underline{q}(f(f(a))) \tag{3}
\end{align*}
$$

Then the inference between (1) and (2) is redundant!

This can be represented as a dismatching constraint.

How to make closures redundant? Instantiate! Every proper instantiation inference makes closure redundant in the

Dismatching Constraints [Korovin (IJCAR'08, vol. HG'13)]

Example:

$$
\begin{align*}
& p(x) \vee \neg q(f(x)) \tag{1}\\
& \frac{p(f(x))}{} \vee \vee \neg q(f(f(x))) \tag{2}\\
& \underline{q}(f(f(a))) \tag{3}
\end{align*}
$$

Then the inference between (1) and (2) is redundant!

Why?

This can be represented as a dismatching constraint.

How to make closures redundant? Instantiate! Every proper instantiation inference makes closure redundant in the

Dismatching Constraints [Korovin (IJCAR'08, vol. HG'13)]

Example:

$$
\begin{align*}
& p(x) \vee \neg q(f(x)) \tag{1}\\
& \frac{p(f(x))}{} \vee \stackrel{\neg q(f(f(x)))}{ } \tag{2}\\
& \underline{q}(f(f(a))) \tag{3}
\end{align*}
$$

Then the inference between (1) and (2) is redundant!
Why? the conclusion is represented twice $p(f(a)) \vee \neg q(f(f(a)))$ $p(f(x)) \vee \neg q(f(f(x))) \cdot[a / x] \prec p(x) \vee \neg q(f(x)) \cdot[f(a) / x]$

Dismatching Constraints [Korovin (IJCAR'08, vol. HG'13)]

Example:

$$
\begin{align*}
& p(x) \vee \neg q(f(x)) \tag{1}\\
& \frac{p(f(x))}{} \vee \vee \neg q(f(f(x))) \tag{2}\\
& \underline{q}(f(f(a))) \tag{3}
\end{align*}
$$

Then the inference between (1) and (2) is redundant!
Why? the conclusion is represented twice $p(f(a)) \vee \neg q(f(f(a)))$ $p(f(x)) \vee \neg q(f(f(x))) \cdot[a / x] \prec p(x) \vee \neg q(f(x)) \cdot[f(a) / x]$

This can be represented as a dismatching constraint.

$$
p(x) \vee \underline{\neg q(f(x))} \mid x \triangleleft_{d s} f(x)
$$

How to make closures redundant? Instantiate! Every proper instantiation inference makes closures redundant in the

Dismatching Constraints [Korovin (IJCAR'08, vol. HG'13)]

Example:

$$
\begin{align*}
& p(x) \vee \neg q(f(x)) \tag{1}\\
& \frac{p(f(x))}{} \vee \vee \neg q(f(f(x))) \tag{2}\\
& \underline{q}(f(f(a))) \tag{3}
\end{align*}
$$

Then the inference between (1) and (2) is redundant!
Why? the conclusion is represented twice $p(f(a)) \vee \neg q(f(f(a)))$
$p(f(x)) \vee \neg q(f(f(x))) \cdot[a / x] \prec p(x) \vee \neg q(f(x)) \cdot[f(a) / x]$
This can be represented as a dismatching constraint.

$$
p(x) \vee \underline{\neg q(f(x))} \mid x \triangleleft_{d s} f(x)
$$

How to make closures redundant? Instantiate!
\qquad

Dismatching Constraints [Korovin (IJCAR'08, vol. HG'13)]

Example:

$$
\begin{align*}
& p(x) \vee \neg q(f(x)) \tag{1}\\
& \frac{p(f(x))}{} \vee \vee \neg q(f(f(x))) \tag{2}\\
& \underline{q}(f(f(\mathrm{fa}))) \tag{3}
\end{align*}
$$

Then the inference between (1) and (2) is redundant!
Why? the conclusion is represented twice $p(f(a)) \vee \neg q(f(f(a)))$
$p(f(x)) \vee \neg q(f(f(x))) \cdot[a / x] \prec p(x) \vee \neg q(f(x)) \cdot[f(a) / x]$
This can be represented as a dismatching constraint.

$$
p(x) \vee \underline{\neg q(f(x))} \mid x \triangleleft_{d s} f(x)
$$

How to make closures redundant? Instantiate!
Every proper instantiation inference makes closures redundant in the premise.

Dismatching Constraints [Korovin IJCAR'08, HG'13]

Example

$$
\begin{aligned}
& A(f(y)) \vee D_{1} \quad \neg A(x) \vee C \\
& A\left(f^{3}(y)\right) \vee D_{2} \\
& A\left(f^{5}(y)\right) \vee D_{3} \\
& \ldots \\
& A\left(f^{i_{n}}(y)\right) \vee D_{n}
\end{aligned}
$$

Premises inherit the constraints during instantiation inferences.

Dismatching Constraints [Korovin IJCAR'08, HG'13]

Example

$$
\begin{array}{ll}
A(f(y)) \vee D_{1} & \neg A(x) \vee C \mid x \triangleleft_{d s} f(y) \\
A\left(f^{3}(y)\right) \vee D_{2} & \neg A(f(y)) \vee C \\
A\left(f^{5}(y)\right) \vee D_{3} & \\
\ldots \\
A\left(f^{i_{n}}(y)\right) \vee D_{n} &
\end{array}
$$

All other inferences with $\neg A(x) \vee C$ are blocked!

Premises inherit the constraints during instantiation inferences.

Dismatching Constraints [Korovin IJCAR'08, HG'13]

Example

$$
\begin{array}{ll}
A(f(y)) \vee D_{1} & \neg A(x) \vee C \mid x \triangleleft_{d s} f(y) \\
A\left(f^{3}(y)\right) \vee D_{2} & \neg A(f(y)) \vee C \\
A\left(f^{5}(y)\right) \vee D_{3} & \\
\ldots & \\
A\left(f^{i_{n}}(y)\right) \vee D_{n} &
\end{array}
$$

All other inferences with $\neg A(x) \vee C$ are blocked!
Premises inherit the constraints during instantiation inferences.

Summary

Inst-Gen modular instantiation based reasoning for first-order logic.

- Inst-Gen is sound and complete for first-order logic
- combines efficient ground reasoning with first-order reasoning
- decision procedure for effectively propositional logic (EPR)

Summary

Inst-Gen modular instantiation based reasoning for first-order logic.

- Inst-Gen is sound and complete for first-order logic
- combines efficient ground reasoning with first-order reasoning
- decision procedure for effectively propositional logic (EPR) - redundancy elimination

Summary

Inst-Gen modular instantiation based reasoning for first-order logic.

- Inst-Gen is sound and complete for first-order logic
- combines efficient ground reasoning with first-order reasoning
- decision procedure for effectively propositional logic (EPR)

Summary

Inst-Gen modular instantiation based reasoning for first-order logic.

- Inst-Gen is sound and complete for first-order logic
- combines efficient ground reasoning with first-order reasoning
- decision procedure for effectively propositional logic (EPR)
- redundancy elimination
- usual: tautology elimination, strict subsumption
- global subsumption:
non-ground simplifications using SAT/SMT reasoning
- closure-based redundancies:

Summary

Inst-Gen modular instantiation based reasoning for first-order logic.

- Inst-Gen is sound and complete for first-order logic
- combines efficient ground reasoning with first-order reasoning
- decision procedure for effectively propositional logic (EPR)
- redundancy elimination
- usual: tautology elimination, strict subsumption
non-ground simplifications using SAT/SMT reasoning
- closure-based redundancies:

Summary

Inst-Gen modular instantiation based reasoning for first-order logic.

- Inst-Gen is sound and complete for first-order logic
- combines efficient ground reasoning with first-order reasoning
- decision procedure for effectively propositional logic (EPR)
- redundancy elimination
- usual: tautology elimination, strict subsumption
- global subsumption:
non-ground simplifications using SAT/SMT reasoning

Summary

Inst-Gen modular instantiation based reasoning for first-order logic.

- Inst-Gen is sound and complete for first-order logic
- combines efficient ground reasoning with first-order reasoning
- decision procedure for effectively propositional logic (EPR)
- redundancy elimination
- usual: tautology elimination, strict subsumption
- global subsumption: non-ground simplifications using SAT/SMT reasoning
- closure-based redundancies:
* blocking non-proper instantiators
- dismatching constraints

Summary

Inst-Gen modular instantiation based reasoning for first-order logic.

- Inst-Gen is sound and complete for first-order logic
- combines efficient ground reasoning with first-order reasoning
- decision procedure for effectively propositional logic (EPR)
- redundancy elimination
- usual: tautology elimination, strict subsumption
- global subsumption: non-ground simplifications using SAT/SMT reasoning
- closure-based redundancies:
- blocking non-proper instantiators

Summary

Inst-Gen modular instantiation based reasoning for first-order logic.

- Inst-Gen is sound and complete for first-order logic
- combines efficient ground reasoning with first-order reasoning
- decision procedure for effectively propositional logic (EPR)
- redundancy elimination
- usual: tautology elimination, strict subsumption
- global subsumption: non-ground simplifications using SAT/SMT reasoning
- closure-based redundancies:
- blocking non-proper instantiators
- dismatching constraints

Equational instantiation-based reasoning

Equality and Paramodulation

Superposition calculus:

$$
\frac{C \vee s \simeq t \quad L\left[s^{\prime}\right] \vee D}{(C \vee D \vee L[t]) \theta}
$$

where (i) $\theta=\operatorname{mgu}\left(s, s^{\prime}\right.$), (ii) s^{\prime} is not a variable, (iii) $s \theta \sigma \succ t \theta \sigma$, (iv) \ldots
The same weaknesses as resolution has:

- Inefficient in the ground/EPR case
- Length of clauses can grow fast
- Recombination of clauses
- No explicit model representation

Equality Superposition vs Inst-Gen

$$
\begin{gathered}
\text { Superposition } \\
\frac{C \vee I \simeq r \quad L\left[I^{\prime}\right] \vee D}{(C \vee D \vee L[r]) \theta} \\
\theta=\operatorname{mgu}\left(I, I^{\prime}\right)
\end{gathered}
$$

Equality Superposition vs Inst-Gen

$$
\begin{gathered}
\text { Superposition } \\
\frac{C \vee I \simeq r \quad L\left[I^{\prime}\right] \vee D}{(C \vee D \vee L[r]) \theta} \\
\theta=\operatorname{mgu}\left(I, I^{\prime}\right)
\end{gathered}
$$

$$
\begin{gathered}
\frac{C \vee I \simeq r \quad L\left[I^{\prime}\right] \vee D}{(C \vee I \simeq r) \theta \quad\left(L\left[I^{\prime}\right] \vee D\right) \theta} \\
\theta=\operatorname{mgu}\left(I, I^{\prime}\right)
\end{gathered}
$$

Incomplete!

Superposition+Instantiation

$$
\begin{aligned}
f(h(x)) & \simeq c \\
h(x) & \simeq x \\
f(a) & \nsucceq c
\end{aligned}
$$

This set is inconsistent but the contradiction is not deducible by the inference system above.

Superposition+Instantiation

$$
\begin{aligned}
f(h(x)) & \simeq c \\
h(x) & \simeq x \\
f(a) & \nsucceq c
\end{aligned}
$$

This set is inconsistent but the contradiction is not deducible by the inference system above.

The idea is to consider proofs generated by unit superposition:

$$
\frac{h(x) \simeq x \quad f(h(y)) \simeq c}{\frac{f(x) \simeq c}{\frac{c \nsim c}{\square}}}
$$

Superposition+Instantiation

$$
\begin{aligned}
f(h(x)) & \simeq c \\
h(x) & \simeq x \\
f(a) & \nsucceq c
\end{aligned}
$$

This set is inconsistent but the contradiction is not deducible by the inference system above.

The idea is to consider proofs generated by unit superposition:

$$
\frac{h(x) \simeq x \quad f(h(y)) \simeq c}{\frac{f(x) \simeq c}{} \quad[x / y] \quad f(a) \nsim c}[a / x]
$$

Superposition+Instantiation

$$
\begin{aligned}
f(h(x)) & \simeq c \\
h(x) & \simeq x \\
f(a) & \nsucceq c
\end{aligned}
$$

This set is inconsistent but the contradiction is not deducible by the inference system above.

The idea is to consider proofs generated by unit superposition:

$$
\frac{h(x) \simeq x \quad f(h(y)) \simeq c}{\frac{f(x) \simeq c}{}[x / y] \quad f(a) \not 千 c}[a / x]
$$

Propagating substitutions: $\quad\{h(a) \simeq a ; f(h(a)) \simeq c ; f(a) \not 千 c\}$ ground unsatisfiable.

Superposition+Instantiation

$$
\begin{aligned}
& f(h(x)) \simeq c \vee C_{1}(x, y) \\
& h(x) \simeq x \\
& f(a) \nsucceq \\
& c \vee \\
& C_{2}(x, y) \\
&(x, y)
\end{aligned}
$$

This set is inconsistent but the contradiction is not deducible by the inference system above.

The idea is to consider proofs generated by unit superposition:

$$
\frac{h(x) \simeq x \quad f(h(y)) \simeq c}{\frac{f(x) \simeq c}{}[x / y] \quad f(a) \not 千 c}[a / x]
$$

Propagating substitutions: $\quad\{h(a) \simeq a ; f(h(a)) \simeq c ; f(a) \not 千 c\}$ ground unsatisfiable.

Superposition + Instantiation

$$
\begin{array}{rlrllll}
f(h(x)) & \simeq c & \vee & C_{1}(x, y) & f(h(a)) & \simeq c \vee C_{1}(a, y) \\
h(x) & \simeq x & \vee & C_{2}(x, y) & h(a) & \simeq a \vee C_{2}(a, y) \\
f(a) & \not 千 & c & \vee & C_{3}(x, y) & f(a) & \nsim c
\end{array}
$$

This set is inconsistent but the contradiction is not deducible by the inference system above.

The idea is to consider proofs generated by unit superposition:

$$
\frac{h(x) \simeq x \quad f(h(y)) \simeq c}{\frac{f(x) \simeq c}{} \quad[x / y] \quad f(a) \nsim c}[a / x]
$$

Propagating substitutions: $\quad\{h(a) \simeq a ; f(h(a)) \simeq c ; f(a) \nsucceq c\}$ ground unsatisfiable.

Inst-Gen-Eq instantiation-based equational reasoning

Inst-Gen-Eq instantiation-based equational reasoning

Inst-Gen-Eq instantiation-based equational reasoning

Inst-Gen-Eq instantiation-based equational reasoning

Inst-Gen-Eq instantiation-based equational reasoning

Inst-Gen-Eq instantiation-based equational reasoning

Theorem.[Ganzinger, Korovin CSL'04] Inst-Gen-Eq is sound and complete.

Inst-Gen-Eq: Key properties

Inst-Gen-Eq is

- sound and complete for first-order logic with equality
- combines SMT for ground reasoning and superposition-based unit
reasoning
> unit superposition does not have weaknesses of the general
superposition
to Inst-Gen-Eq
- redundancy elimination become more powerful: now we can use S^AT to simplify first-order rather than SAT

Inst-Gen-Eq: Key properties

Inst-Gen-Eq is

- sound and complete for first-order logic with equality
- combines SMT for ground reasoning and superposition-based unit reasoning
> unit superposition does not have weaknesses of the general superposition
> * ail redundancy elimination techniques from Inst-Gen are applicable to Inst-Gen-Eq
- radundancy elimination become more powertul: now we can use SMT to simplify first-order rather than SAT

Inst-Gen-Eq: Key properties

Inst-Gen-Eq is

- sound and complete for first-order logic with equality
- combines SMT for ground reasoning and superposition-based unit reasoning
- unit superposition does not have weaknesses of the general superposition
- redundancy elimination become more powerful: now we can use SMT to simplify first-order rather than SAT

Inst-Gen-Eq: Key properties

Inst-Gen-Eq is

- sound and complete for first-order logic with equality
- combines SMT for ground reasoning and superposition-based unit reasoning
- unit superposition does not have weaknesses of the general superposition
- all redundancy elimination techniques from Inst-Gen are applicable to Inst-Gen-Eq
\rightarrow redundancy elimination become more powerful: now we can use SnnT to simplify first-order rather than SAT

Inst-Gen-Eq: Key properties

Inst-Gen-Eq is

- sound and complete for first-order logic with equality
- combines SMT for ground reasoning and superposition-based unit reasoning
- unit superposition does not have weaknesses of the general superposition
- all redundancy elimination techniques from Inst-Gen are applicable to Inst-Gen-Eq
- redundancy elimination become more powerful: now we can use SMT to simplify first-order rather than SAT

Inst-Gen-Eq: Key properties

Inst-Gen-Eq is

- sound and complete for first-order logic with equality
- combines SMT for ground reasoning and superposition-based unit reasoning
- unit superposition does not have weaknesses of the general superposition
- all redundancy elimination techniques from Inst-Gen are applicable to Inst-Gen-Eq
- redundancy elimination become more powerful: now we can use SMT to simplify first-order rather than SAT

Inst-Gen-Eq: Key properties

Inst-Gen-Eq is

- sound and complete for first-order logic with equality
- combines SMT for ground reasoning and superposition-based unit reasoning
- unit superposition does not have weaknesses of the general superposition
- all redundancy elimination techniques from Inst-Gen are applicable to Inst-Gen-Eq
- redundancy elimination become more powerful: now we can use SMT to simplify first-order rather than SAT

New technical issue: Potentially we need to consider all unit-superposition proofs!

Labelled Unit Superposition [Korovin, Sticksel LPAR'10]

General idea: Dismatching constraints can be used to block already derived proofs!
\qquad
\qquad
\square

- correspond' 'o dirferen' c'auses,
- have different dismatching constraints
- he renresented many times in the same proof search

Labelled Unit Superposition [Korovin, Sticksel LPAR'10]

General idea: Dismatching constraints can be used to block already derived proofs!

Unit superposition with dismatching constraints:

$$
\frac{(I \simeq r)\left|\left[D_{1}\right] \quad L\left[l^{\prime}\right]\right|\left[D_{2}\right]}{L[r] \theta \mid\left[\left(D_{1} \wedge D_{2}\right) \theta\right]}(\theta) \quad \frac{s \not \approx t \mid[D]}{\square}(\mu)
$$

where (i) $\theta=\operatorname{mgu}\left(I, I^{\prime}\right)$; (ii) I^{\prime} is not a variable; (iii) for some grounding substitution σ, satisfying $\left(D_{1} \wedge D_{2}\right) \theta, I \sigma \succ r \sigma$; (iv) $\mu=\operatorname{mgu}(s, t) ;(v) D \mu$ is satisfiable.

Next technical issue: The same unit literal can

- correspond to different clauses,
- have different dismatching constra ints
- be represented many times in the same proof search

Labelled Unit Superposition [Korovin, Sticksel LPAR'10]

General idea: Dismatching constraints can be used to block already derived proofs!

Unit superposition with dismatching constraints:

$$
\frac{(I \simeq r)\left|\left[D_{1}\right] \quad L\left[I^{\prime}\right]\right|\left[D_{2}\right]}{L[r] \theta \mid\left[\left(D_{1} \wedge D_{2}\right) \theta\right]}(\theta)
$$

$$
\frac{s \nsim t \mid[D]}{\square}(\mu)
$$

where (i) $\theta=\operatorname{mgu}\left(I, I^{\prime}\right)$; (ii) I^{\prime} is not a variable; (iii) for some grounding substitution σ, satisfying $\left(D_{1} \wedge D_{2}\right) \theta, I \sigma \succ r \sigma$; (iv) $\mu=\operatorname{mgu}(s, t) ;(v) D \mu$ is satisfiable.

Next technical issue: The same unit literal can

- correspond to different clauses,
- have different dismatching constraints
- be represented many times in the same proof search

Solution: labelled approach

Tree Labelled Unit Superposition

- Preserve Boolean structure of proofs
- Closure is a propositional variable in an AND/OR tree
- Conjunction \wedge in superposition, disjunction \vee in merging

Label of the Contradiction \square

OBDD Labelled Unit Superposition

Disadvantages of trees

- Not produced in normal form
- Sequence of inferences determines shape
- Potential growth ad infinitum
- OBDD as normal form
- Maintenance effort
- Reordering required

Labels: Sets vs. Trees vs. OBDDs

iProver-Eq - CVC3 as a background solver on pure equational problems. (developed with Christoph Sticksel)

Features	Normal	Precise elim. form no
Sets	yes	yes
Trees	no	yes
OBDDs	yes	
[Korovin, Sticksel LPAR'10]		

Theory instantiation

Theory instantiation [Ganzinger, Korovin LPAR'06]

f.-o. clauses S theory T

Theory instantiation [Ganzinger, Korovin LPAR'06]

| f.-o. clauses S
 theory T |
| :---: |\(\xrightarrow{\perp: \bar{x} \rightarrow \perp} \underset{\substack{Ground Clauses

S_{\perp}}}{ }\)

Theory instantiation [Ganzinger, Korovin LPAR'06]

f.-o. clauses S theory T	$\perp: \bar{x} \rightarrow \perp$	Ground Clauses S_{\perp}	$\xrightarrow{S \perp \text { UnSAT }}$	theorem proved

Theory instantiation [Ganzinger, Korovin LPAR'06]

Theory instantiation [Ganzinger, Korovin LPAR'06]

Theory instantiation [Ganzinger, Korovin LPAR'06]

Theory instantiation

Conditions on completeness:

- complete ground reasoning modulo T
- answer completeness of unit reasoning modulo T
- T is universal

Answer completeness: If $L_{1} \tau \wedge \ldots \wedge L_{n} \tau \neq{ }_{T} \square$ for ground τ. Then such that θ is a genralization of τ and $L_{1} \theta \perp, \ldots, L_{n} \theta \perp \vdash_{T} \square$ Theorem. Theory instantiation is sound and complete under these conditions.

Theory instantiation

Conditions on completeness:

- complete ground reasoning modulo T
- answer completeness of unit reasoning modulo T
- T is universal

Answer completeness: If $L_{1} \tau \wedge \ldots \wedge L_{n} \tau \models T \square$ for ground τ. Then

$$
\frac{L_{1}, \ldots, L_{n}}{L_{1} \theta, \ldots, L_{n} \theta} \cup C
$$

such that θ is a genralization of τ and $L_{1} \theta \perp, \ldots, L_{n} \theta \perp \vdash_{T} \square$
Theorem. Theory instantiation is sound and complete under these
conditions.

Theory instantiation

Conditions on completeness:

- complete ground reasoning modulo T
- answer completeness of unit reasoning modulo T
- T is universal

Answer completeness: If $L_{1} \tau \wedge \ldots \wedge L_{n} \tau \models T \square$ for ground τ. Then

$$
\frac{L_{1}, \ldots, L_{n}}{L_{1} \theta, \ldots, L_{n} \theta} \cup C
$$

such that θ is a genralization of τ and $L_{1} \theta \perp, \ldots, L_{n} \theta \perp \vdash_{T} \square$
Theorem. Theory instantiation is sound and complete under these conditions.

Evaluation

CASC 2013

CASC 2013 results

General first-order (FOF) 300 problems

	Vampire	E	iProver	E-KRHyper	Prover9
prob	281	249	167	122	119
time	12	29	12	8	12

CASC 2013 results

General first-order (FOF) 300 problems

	Vampire	E	iProver	E-KRHyper	Prover9
prob	281	249	167	122	119
time	12	29	12	8	12

Effectively propositional 100 problems

	iProver	Vampire	PEPR	E	EKRHyper
prob	81	47	43	23	8
time	27	15	26	50	27

CASC 2013 results

General first-order (FOF) 300 problems

	Vampire	E	iProver	E-KRHyper	Prover9
prob	281	249	167	122	119
time	12	29	12	8	12

Effectively propositional 100 problems

	iProver	Vampire	PEPR	E	EKRHyper
prob	81	47	43	23	8
time	27	15	26	50	27

First-order satisfiability (FNT) 150 problems

	iProver	Paradox	CVC4	E	Nitrox	Vampire
prob	122	99	96	79	79	78
time	52	2	25	20	29	30

Non-cyclic sorts for first-order satisfiability [Korovin FroCoS'13]

Effectively propositional logic (EPR)

Effectively Propositional Logic (EPR)

EPR: No functions except constants: $P(x, y) \vee \neg Q(c, y)$

Effectively Propositional Logic (EPR)

EPR: No functions except constants: $P(x, y) \vee \neg Q(c, y)$
Transitivity: $\neg P(x, y) \vee \neg P(y, z) \vee P(x, z)$
Symmetry: $P(x, y) \vee \neg P(y, x)$
Verification:

$$
\begin{aligned}
& \forall A\left(\text { wren }_{h 1} \wedge A=\text { wraddrFunc } \rightarrow\right. \\
& \left.\forall B\left(\text { range }_{[35,0]}(B) \rightarrow\left(\text { imem }^{\prime}(A, B) \leftrightarrow \text { iwrite }(B)\right)\right)\right) .
\end{aligned}
$$

Applications:

- Hardware Verification (Intel)
- Planning/Scheduling
- Finite model reasoning

EPR is hard for resolution, but decidable by instantiation methods.

Properties of EPR

Direct reduction to SAT - exponential blow-up.
Satisfiability for EPR is NEXPTIME-complete.
More succinct but harder to solve.... Any gain?

Properties of EPR

Direct reduction to SAT - exponential blow-up.
Satisfiability for EPR is NEXPTIME-complete.
More succinct but harder to solve.... Any gain?
Yes: Reasoning can be done at a more general level.
Restricting instances:

$$
\begin{aligned}
& \neg \operatorname{mem}\left(a_{1}, x_{1}\right) \vee \neg \operatorname{mem}\left(a_{2}, x_{2}\right) \vee \ldots \neg \operatorname{mem}\left(a_{n}, x_{n}\right) \\
& \operatorname{mem}\left(b_{1}, x_{1}\right) \vee \operatorname{mem}\left(b_{2}, x_{2}\right) \vee \ldots \vee \operatorname{mem}\left(b_{n}, x_{n}\right)
\end{aligned}
$$

General lemmas:

$$
\begin{aligned}
& \neg a(x) \vee b(x) \quad \neg b(x) \vee \operatorname{mem}(x, y) \\
& a(x) \vee \operatorname{mem}(x, y)
\end{aligned}
$$

Properties of EPR

Direct reduction to SAT - exponential blow-up.
Satisfiability for EPR is NEXPTIME-complete.
More succinct but harder to solve.... Any gain?
Yes: Reasoning can be done at a more general level.
Restricting instances:

$$
\begin{aligned}
& \neg \operatorname{mem}\left(a_{1}, x_{1}\right) \vee \neg \operatorname{mem}\left(a_{2}, x_{2}\right) \vee \ldots \neg \operatorname{mem}\left(a_{n}, x_{n}\right) \\
& \operatorname{mem}\left(b_{1}, x_{1}\right) \vee \operatorname{mem}\left(b_{2}, x_{2}\right) \vee \ldots \vee \operatorname{mem}\left(b_{n}, x_{n}\right)
\end{aligned}
$$

General lemmas:

$$
\begin{array}{cc}
\neg a(x) \vee b(x) & \neg b(x) \vee \operatorname{mem}(x, y) \\
a(x) \vee \operatorname{mem}(x, y) & \operatorname{mem}(x, y)
\end{array}
$$

Properties of EPR

Direct reduction to SAT - exponential blow-up.
Satisfiability for EPR is NEXPTIME-complete.
More succinct but harder to solve.... Any gain?
Yes: Reasoning can be done at a more general level.
Restricting instances:

$$
\begin{aligned}
& \neg \operatorname{mem}\left(a_{1}, x_{1}\right) \vee \neg \operatorname{mem}\left(a_{2}, x_{2}\right) \vee \ldots \neg \operatorname{mem}\left(a_{n}, x_{n}\right) \\
& \operatorname{mem}\left(b_{1}, x_{1}\right) \vee \operatorname{mem}\left(b_{2}, x_{2}\right) \vee \ldots \vee \operatorname{mem}\left(b_{n}, x_{n}\right)
\end{aligned}
$$

General lemmas:

$$
\begin{gathered}
\neg a(x) \vee b(x) \\
a(x) \vee \operatorname{mem}(x, y)
\end{gathered} \quad \begin{gathered}
\neg b(x) \vee \operatorname{mem}(x, y) \\
\operatorname{mem}(x, y)
\end{gathered}
$$

More expressive logics can speed up calculations!

Hardware verification

Functional Equivalence Checking

- The same functional behaviour can be implemented in different ways
- Optimised for:
- Timing - better performance
- Power - longer battery life
- Area - smaller chips
- Verification: optimisations do not change functional behaviour

Method of choice: Bounded Model Checking (BMC) used at Intel, IBM

EPR-based BMC Navarro-Perez, Voronkov (CADE'07)

EPR encoding:

- s_{0}, \ldots, s_{k} constants denote unrolling bounds
- first-order formulas $I(S), P(S), T\left(S, S^{\prime}\right)$
- next state predicate $\operatorname{Next}\left(S, S^{\prime}\right)$

BMC can be encoded

$$
\begin{array}{cl}
I\left(s_{0}\right) ; \neg P\left(s_{k}\right) ; & \text { initial and final sta } \\
\forall S, S^{\prime}\left(\operatorname{Next}\left(S, S^{\prime}\right) \rightarrow T\left(S, S^{\prime}\right)\right) ; & \text { transition relation } \\
\operatorname{Next}\left(s_{0}, s_{1}\right) ; N \operatorname{ext}\left(s_{1}, s_{2}\right) ; \ldots \operatorname{Next}\left(s_{k-1}, s_{k}\right) ; & \text { next state relation }
\end{array}
$$

- EPR encoding provides succinct representation
- avoids copying transition relation
- reasoning can be done at higher level

BMC with bit-vectors, memories:

EPR-based BMC Navarro-Perez, Voronkov (CADE'07)

EPR encoding:

- s_{0}, \ldots, s_{k} constants denote unrolling bounds
- first-order formulas $I(S), P(S), T\left(S, S^{\prime}\right)$
- next state predicate $\operatorname{Next}\left(S, S^{\prime}\right)$

BMC can be encoded

$$
\begin{array}{cl}
I\left(s_{0}\right) ; \neg P\left(s_{k}\right) ; & \text { initial and final sta } \\
\forall S, S^{\prime}\left(\operatorname{Next}\left(S, S^{\prime}\right) \rightarrow T\left(S, S^{\prime}\right)\right) ; & \text { transition relation } \\
\operatorname{Next}\left(s_{0}, s_{1}\right) ; N \operatorname{ext}\left(s_{1}, s_{2}\right) ; \ldots \operatorname{Next}\left(s_{k-1}, s_{k}\right) ; & \text { next state relation }
\end{array}
$$

- EPR encoding provides succinct representation
- avoids copying transition relation
- reasoning can be done at higher level

BMC with bit-vectors, memories:
[M. Emmer, Z. Khasidashvili, K. Korovin, C. Sticksel, A. Voronkov IJCAR'12]

Experiments: iProver vs Intel BMC

Problem	\# Memories	\# Transient BVs	Intel BMC	iProver BMC
ROB2	2 (4704 bits)	255 (3479 bits)	50	8
DCC2	4 (8960 bits)	426 (1844 bits)	8	11
DCC1	4 (8960 bits)	1827 (5294 bits)	7	8
DCI1	32 (9216 bits)	3625 (6496 bits)	6	4
BPB2	4 (10240 bits)	550 (4955 bits)	50	11
SCD2	$2(16384$ bits)	80 (756 bits)	4	14
SCD1	$2(16384$ bits)	556 (1923 bits)	4	12
PMS1	8 (46080 bits)	1486 (6109 bits)	2	10

Large memories:
iProver outperforms highly optimised Intel SAT-based model checker.

> Implementation

iProver general features

- Inst-Gen also uses SAT solver and resolution for simplifications
- Query answering: using answer substitutions
- Finite model finding: based on EPR/sort inference/non-cyclic sorts
- Bounded model checking mode: (Intel format)
- Proof representation: non-trivial due to SAT solver simplifications
- Model representation: using formulas in term algebra; special model representation for hardware BMC

iProver implementation features

iProver is implemented in OCaml, around 50,000 LOC Core:

- Inst-Gen Given clause algorithm
- SAT solvers for ground reasoning: MiniSAT, PicoSAT, Lingeling
- strategy scheduling
- preprocessing
- splitting with naming

Simplifications:

- Literal selection
- Subsumption (forward/backward)
- Subsumption resolution (forward/backward)
- Dismatching constraints
- Blocking non-proper instantiators
- Global subsumption: SAT solver is used for non-ground simplifications

Inst-Gen given clause algorithm

Passive: clauses that are waiting to participate in inferences

- priority queues based on lexicographic combinations of parameters

$$
\begin{array}{cc}
- \text { - inst_pass_queue1 } & \text { [-conj_dist; + conj_symb; - num_var] }] \\
- \text { - inst_pass_queue } 2 & {[+ \text { age; }- \text { num_symb }]}
\end{array}
$$

Inst-Gen given clause algorithm

Passive: clauses that are waiting to participate in inferences

- priority queues based on lexicographic combinations of parameters

$$
\begin{array}{cc}
- \text { - inst_pass_queue1 } & \text { [-conj_dist; + conj_symb; - num_var }] \\
- \text { - inst_pass_queue } & {[+ \text { age; }- \text { num_symb }]}
\end{array}
$$

Active: clauses between which all inferences are done

- unification index on selected literals

Non-perfect discrimination trees
\qquad

Inst-Gen given clause algorithm

Passive: clauses that are waiting to participate in inferences

- priority queues based on lexicographic combinations of parameters

$$
\begin{array}{cc}
- \text { - inst_pass_queue1 } & \text { [-conj_dist; + conj_symb; - num_var }] \\
- \text { - inst_pass_queue2 } & {[+ \text { age; }- \text { num_symb }]}
\end{array}
$$

Active: clauses between which all inferences are done

- unification index on selected literals

Non-perfect discrimination trees
Given clause: C

1. C - next clause from the top of Passive
2. simplify C : compressed feature indexes
3. perform all inferences between C and Active
4. add all conclusions to passive
5. add \perp-grounding of conclusions to the SAT solver

Inst-Gen Loop

literal selection change

[Korovin (Essays in Memory of Harald Ganzinger 2013])

Indexing

Why indexing:

- Single subsumption is NP-hard.
- We can have 100,000 clauses in our search space
- Applying naively between all pairs of clauses we need $10,000,000,000$ subsumption checks !
- non-perfect discrimination trees for unification, matching
- compressed feature vector indexes for subsumption, subsumption resolution, dismatching constraints.

Indexing

Why indexing:

- Single subsumption is NP-hard.
- We can have 100,000 clauses in our search space
- Applying naively between all pairs of clauses we need $10,000,000,000$ subsumption checks !

Indexes in iProver:

- non-perfect discrimination trees for unification, matching
- compressed feature vector indexes for subsumption, subsumption resolution, dismatching constraints.

Discrimination trees

Efficient filtering unification, matching and generalisation candidates

Feature vector index

Subsumption is very expensive and usual indexing are complicated. Feature vector index [Schulz'04] works well for subsumption, and many other operations

Design efficient filters based on "features of clauses":

- clause C can not subsume any clause with number of literals strictly less than C
\rightarrow clause C can not subsume any clause with number of positive litemals strietly Inss than C
- clause C can not subsume any clause with the number of occurrences of a symbolf less than in C

Feature vector index

Subsumption is very expensive and usual indexing are complicated. Feature vector index [Schulz'04] works well for subsumption, and many other operations

Design efficient filters based on "features of clauses":

- clause C can not subsume any clause with number of literals strictly less than C
- clause C can not subsume any clause with number of positive literals strictly less than C
\rightarrow clause C can not subsume any clause with the number of occurrences of a symbol f less than in C

Feature vector index

Subsumption is very expensive and usual indexing are complicated. Feature vector index [Schulz'04] works well for subsumption, and many other operations

Design efficient filters based on "features of clauses":

- clause C can not subsume any clause with number of literals strictly less than C
- clause C can not subsume any clause with number of positive literals strictly less than C
- clause C can not subsume any clause with the number of occurrences of a symbol f less than in C

Feature vector index

Subsumption is very expensive and usual indexing are complicated. Feature vector index [Schulz'04] works well for subsumption, and many other operations

Design efficient filters based on "features of clauses":

- clause C can not subsume any clause with number of literals strictly less than C
- clause C can not subsume any clause with number of positive literals strictly less than C
- clause C can not subsume any clause with the number of occurrences of a symbol f less than in C

Feature vector index

Subsumption is very expensive and usual indexing are complicated. Feature vector index [Schulz'04] works well for subsumption, and many other operations

Design efficient filters based on "features of clauses":

- clause C can not subsume any clause with number of literals strictly less than C
- clause C can not subsume any clause with number of positive literals strictly less than C
- clause C can not subsume any clause with the number of occurrences of a symbol f less than in C

Feature vector index

Subsumption is very expensive and usual indexing are complicated. Feature vector index [Schulz'04] works well for subsumption, and many other operations

Design efficient filters based on "features of clauses":

- clause C can not subsume any clause with number of literals strictly less than C
- clause C can not subsume any clause with number of positive literals strictly less than C
- clause C can not subsume any clause with the number of occurrences of a symbol f less than in C

Feature vector index

Fix: a list of features:

1. number of literals
2. number of occurrences of f
3. number of occurrences of g

With each clause associate a feature vector:
numeric vector of feature values
Example: feature vector of $C=p(f(f(x))) \vee \neg p(g(y))$ is
$f v(C)=[2,2,1]$
Arrange feature vectors in a trie data structure.

For retrieving all candidates which can be subsumed by C we need to

Feature vector index

Fix: a list of features:

1. number of literals
2. number of occurrences of f
3. number of occurrences of g

With each clause associate a feature vector:
numeric vector of feature values
Example: feature vector of $C=p(f(f(x))) \vee \neg p(g(y))$ is
$f v(C)=[2,2,1]$
Arrange feature vectors in a trie data structure.
For retrieving all candidates which can be subsumed by C we need to traverse only vectors which are component-wise greater or equal to $f v(C)$.

Compressed feature vector index [Korovin (iProver'08)]

The signature based features are most useful but also expensive.

Example: is signature contains 1000 symbols and we use all symbols as features then feature vector for every clause will be 1000 in length.

Basic idea: for each clause most features will be 0 .
Compress feature vector: use list of pairs $\left[\left(p_{1}, v_{1}\right), \ldots,\left(p_{n}, v_{1}\right)\right]$ where p_{i} are non-zero positions and v_{i} are values that start from this position. Sequential positions with the same value are combined. iProver uses compressed feature vector index for forward and backward subsumption, subsumption resolution and dismatching constraints.

Compressed feature vector index [Korovin (iProver'08)]

The signature based features are most useful but also expensive.

Example: is signature contains 1000 symbols and we use all symbols as features then feature vector for every clause will be 1000 in length.

Basic idea: for each clause most features will be 0 .

Compress feature vector: use list of pairs $\left[\left(p_{1}, v_{1}\right), \ldots,\left(p_{n}, v_{1}\right)\right]$ where p_{i} are non-zero positions and v_{i} are values that start from this position. Sequential positions with the same value are combined. iProver uses compressed feature vector index for forward and backward subsumption, subsumption resolution and dismatching constraints.

Compressed feature vector index [Korovin (iProver'08)]

The signature based features are most useful but also expensive.
Example: is signature contains 1000 symbols and we use all symbols as features then feature vector for every clause will be 1000 in length.

Basic idea: for each clause most features will be 0 .
Compress feature vector: use list of pairs $\left[\left(p_{1}, v_{1}\right), \ldots,\left(p_{n}, v_{1}\right)\right]$ where p_{i} are non-zero positions and v_{i} are values that start from this position. Sequential positions with the same value are combined.
iProver uses compressed feature vector index for forward and backward subsumption, subsumption resolution and dismatching constraints.

Summary

iProver is a theorem prover for full clausal first-order logic which features

- Query answering: using answer substitutions
- Finite model finding: based on EPR/sort inference/non-cyclic sorts
- Bounded model checking mode: (Intel format)
- Proof representation: non-trivial due to SAT solver simplifications
- Model representation: using formulas in term algebra; special model representation for hardware BMC
iProver has solid performance over the whole range of TPTP.
iProver excels on EPR problems and in turn on satisfiability, bounded model checking and other encodings into EPR.

PhD opportunities in reasoning, logic and verification, please contact: korovin@cs.man.ac.uk

