Reasoning about data consistency in distributed systems

Alexey Gotsman

IMDEA Software Institute, Madrid, Spain

Data is replicated and partitioned across multiple nodes

Sign Up
It's free and alw

First name

Email

Re-enter ema

New passworc

Data centres across the world

Disaster-tolerance, minimising latency

Data centres across the world

Disaster-tolerance, minimising latency

Data centres across the world

Disaster-tolerance, minimising latency

With thousands of machines inside

Load-balancing, fault-tolerance

Replicas on mobile devices

- Strong consistency model: the system behaves as if it processes requests serially on a centralised database - linearizability, serializability

\approx

- Strong consistency model: the system behaves as if it processes requests serially on a centralised database - linearizability, serializability
- Requires synchronisation: contact other replicas when processing a request

\sim

- Expensive: communication increases latency
- Impossible: either strong Consistency or Availability in the presence of network Partitions [CAP theorem]

\sim

- Expensive: communication increases latency
- Impossible: either strong Consistency or Availability in the presence of network Partitions [CAP theorem]

\sim

- Expensive: communication increases latency
- Impossible: either strong Consistency or Availability in the presence of network Partitions [CAP theorem]

Relaxing synchronisation

Process an update locally, propagate effects to other replicas later

Relaxing synchronisation

Process an update locally, propagate effects to other replicas later

+ Better scalability \& availability
- Weakens consistency: deposit seen with a delay

NoSQL data stores

New generation of data stores with high scalability and low latency, but weak consistency

So what consistency guarantees do they provide?

Anomalies

Anomalies

Anomalies

Anomalies

Early days

Poor guidelines on how to use the weakly consistent data stores: are we weakening consistency too much, too little, just right?

Early days

Poor guidelines on how to use the weakly consistent data stores: are we weakenino consistency too much, too li
 ```practice```

Building reliable distributed systems at a wortdwide scate demands trade-off between consistency and availability.

Eventually Consistent

AT THE foundation of Amazon's cloud computing are infrastructure services such as Amazon's 53 (simple
Storage Service), SimpleDB, and EC2 (Elastic Compute Cloud) that provide the resources for constructing Internet-scale computing platforms and a great variety of applications. The requirements placed on these
infrastructure services are very strict; they need to infrastructure services are very strict; they need to
score high marks in the areas of security, scalability, score high marks in the areas of security, scalability,
availability, performance, and cost-effectiveness, and availability, performance, and cost-effectiveness, and
they need to meet these requirements while serving they need to meet these requirements while serving
millions of customers around the olobe, continuously millions of customers around the globe, continuously.
Under the covers these services are massive distributed systems that operate on a worldwide scale. This scale creates additional challenges, because when a system processes tilions and thions or requests, events of must be accounted for upfront in the design and architecture of the system. Given the worldwide arche fore systems, we use replication scope of these systems, we use replication techniques
ubiquitously to guarantee consistent performance and ubiquitously to guarantee consistent performance and to our goals, it cannot achieve them in a perfectly
$\left\lvert\, \begin{aligned} & \text { transparent manner; under a number } \\ & \text { of conditions the customers of these }\end{aligned}\right.$ of conditions the customers of these
services will be confronted with the consequences of using replic
techniques inside the sevices. techniques inside the services.
One of the ways in which this Onts
fistenc
sist sisten
when when many widespread, particularly
systems provide an eventual buted
tency model systems many wide an enead evtual col consis-
tency model in the context of data rep
licition tency model in the context of data rep
lication. When designing these large
scale scale systems at At Amzonn, we use a set
of guiding priniciles and abstrations
related to large.scale data replication of guiding principles and abstrac
related to olagesecale data replicatio
and
and focus on the trade-ofs betwe
high availabilitity high availability and data consistency.
Here, I present some of the relevant
background that has informed our apHere, I present some of the releva
background that has informed our ap-
proach to delivering reliable idstrib-
uted systems trat must operate on proach to delivering reliable e
uted systems that must operate on
global scale. (An earlier version of this globar scale. (ane a a posting on th
articl appeared
atll Things Distributed" weblog "All Things Distributed" Weblog
was greaty improved with the help its readers.)
Historical Perspective
Historical Perspective
In an ideal world there would be only
one consistery one consistency model: when an up-
oate
dat made all obserers would date is made all observers would see
that update. The first time this sur-
is
by
by . $\begin{aligned} & \text { funda } \\ & \text { fund } \\ & \text { replic } \\ & \text { of tec } \\ & \text { consis }\end{aligned}$ $\left\lvert\, \begin{aligned} & \text { consis } \\ & \text { try to } \\ & \text { ry-th } \\ & \text { appea } \\ & \text { instea }\end{aligned}\right.$ $\left\lvert\, \begin{aligned} & \text { instaad } \\ & \text { system } \\ & \text { time to } \\ & \text { ter to }\end{aligned}\right.$

nd	large
es	
esw	
bega	
abili	es

bega
abili

Early days

Poor guidelines on how to use the weakly
consistent data stores: are we weakenino
consistency too much, too lif practice
Building reliable distributed systems | between consistency and availability. BY WERNER VOGELS

Eventually Consistent

at the foundation of Amazon's cloud computing are
infrastructure services such as Amazon's S3 (Simple infrastructure services such as Amazon's S3 (Simple
Storage Service), SimpleDB, and EC2 (Elastic Compute Cloud) that provide the resources for constructing Internet-scale computing platforms and a great variety of applications. The requirements placed on these infrastructure services are very strict; they need to score high marks in the areas of security, scalability, availability, performance, and cost-effectiveness, and they need to meet these requirements while serving millions of customers around the globe, continuously. Under the covers these services are massive distributed systems that operate on a worldwide scale. This scale creates additional challenges, because when a system processes ily hand requests, even must be accounted for upfront in the design and architecture of the system. Given the worldwide scope of these systems, we use replication technique scope of these systems, we use repleation techniques ubiquitously tog availability Although replication brings us eloser to our goals, it cannot achieve them in a perfectly
$\left\lvert\, \begin{aligned} & \text { transparent manner, under a number } \\ & \text { of conditions the customers of these }\end{aligned}\right.$ of conditions the customers of these
services will be confronted with the consequences of using replic
techniques inside the sevices. techniques inside the services.
One of the ways in which this fests itself is is ing the which of this mana con-
sistency that is provided, patticully siste
when when many widespread distributed
systems provide an eventual consis-
tency model in the context of dat tency model in the context of data rep-
lication. When designing these large-
scale scailen. stemen at A Amazigning we wese ase a
of guiding principles and of gividing principles and abstractions
related to targesceale data replication
and focus on related to large-scale data replicati
and fous on the trade-ffs betwee
high availability and data consistenc high availability and data consistency.
Here, I present some of the relevant
background that has informed our apHere, I present some of the releva
background that has informed our ap-
proach to deliviering reliable edstrib-
uted systems that must operate on uted systems that must operate o o
global scale. (An earlier vesion of thi globals sale. (ane as a posting on
article appeard
"All Things Distributed" weblo "All Things Distributed" Weblog as
was greatly improved with the help its readers.)
Historical Perspective
Historical Perspective
In an ideal world there would be only one consistency model: when an up-
date is made all obserers wid date is made all observers would see
that update. The first time this sur-
The
is
by
fun
fun

fun
rep
ef te

2
inst
syst
time

 es we
began
ability

Early days

Poor guidelines on how to use the weakly
consistent data stores: are we weakenino
consistency too much, too lif practice
Building reliable distributed systems | between consistency and availability.
By WERNER VOGELS

Eventually Consistent

at the foundation of Amazon's cloud computing are
infrastructure services such as Amazon's S3 (Simple infrastructure services such as Amazon's S3 (Simple
Storage Service), SimpleDB, and EC2 (Elastic Compute Cloud) that provide the resources for constructing Internet-scale computing platforms and a great variety of applications. The requirements placed on these infrastructure services are very strict; they need to score high marks in the areas of security, scalability, availability, performance, and cost-effectiveness, and they need to meet these requirements while serving millions of customers around the globe, continuously. Under the covers these services are massive distributed systems that operate on a worldwide scale. This scale creates additional challenges, because wher a system processes thally have tow pror requests, event of occurrence are now guaranteed to happen and architecture of the system. Given the worldwide scope of these systems, we use replication techni scope of these systems, we use replication teciniques ubiquitously to gailability Although replication brings us closer to our goals, it cannot achieve them in a perfectly
$\left\lvert\, \begin{aligned} & \text { transparent manner; under a number } \\ & \text { of conditions the customers of these } \\ & \text { scrice }\end{aligned}\right.$ of conditions the customers of these
services will be confronted with the consequences of using replic
techniques inside the sevices. techniques inside the services.
One of the ways in which this
 sisten
when when many widespread d districulated
systems provide
tency systems many wide an enead evtual col consis-
tency model in the context of data rep
licition tency model in the context of data rep
lication. When designing these large
scale scale systems at Amamonn, we use a s
of guiding principles and abstraction
reld of gyiding principles and abstractions
related tol argescale data replication
and focus on the related to large-scale data replication
and fous on the trade-offs between
high availability and data consistency.
Here high availability and data consistence
Here, present some of the relevant
background that has informed our ap Here, I present some of the rel
background that has informed our
proach to delivering reliable distrii
uted systems that must operate uted systems that must operate on
global cale. (An earlier version of tisis
gris article appeared as a posting on
all
"All Things Distributed" "All Things Distributed" Weblog
was greaty improved with the help its readers.)
Historical Perspective
Historical Perspective
In an ideal world there would be only one consistency model: when an up-
date is made all obserers woud se date is made all observers would see
that update. The first time this sur-

b | fun |
| :---: |
| rep |
| ef te |

cy
apee
inste

\qquad nd $\begin{aligned} & \text { large } \\ & \text { es we } \\ & \text { began } \\ & \text { abilit }\end{aligned}$

TOWARDS A CLOUD COMPUTING RESEARCH AGENDA

Ken Birman, Gregory Chockler, Robbert van Renesse

This particular example is a good one because, as we'll see shortly, if there was a single overarching theme within the keynote talks, it turns out to be that strong synchronization of the sort provided by a locking service must be avoided like the plague. This doesn't diminish the need for a tool like Chubby; when locking actually can't be avoided, one wants a reliable, standard, provably correct

TOWARDS A CLOUD COMPUTING RESEARCH AGENDA

Ken Birman, Gregory Chockler, Robbert van Renesse

This particular example is a good one because, as we'll see shortly, if there was a single overarching theme within the keynote talks, it turns out to be that strong synchronization of the sort provided by a locking service must be avoided like the plague. This doesn't diminish the need for a tool like Chubby; when locking actually can't be avoided, one wants a reliable, standard, provably correct

F1: A Distributed SQL Database That Scales

Jeff Shute
Chad Whipkey
David Menestrina

Radek Vingralek
Eric Rollins
Stephan Ellner
Traian Stancescu

Bart Samwel
Mircea Oancea
John Cieslewicz
Himani Apte

Google, Inc.
*University of Wisconsin-Madison
consistent and correct data.
Designing applications to cope with concurrency anomalies in their data is very error-prone, timeconsuming, and ultimately not worth the performance gains.

Strong vs weak consistency

- Pay-off from weakening consistency often worth it: higher scalability, lower latency in geo-distribution, offline access
- Both strong and weak systems used in industry
- But programmers need help in using it:
- Programming abstractions for weak consistency
- Methods for reasoning about how weakening consistency affects application correctness

Also centralised SQL databases

Don't provide strong consistency either by default or at all: to exploit single-node concurrency

Microsoft ${ }^{*}$

SQLServer

Also centralised SQL databases

Don't provide strong consistency either by default or at all: to exploit single-node concurrency

Also centralised SQL databases

Don't provide strong consistency either by default or at all: to exploit single-node concurrency

[SIGMOD'I7]

ACIDRain: Concurrency-Related Attacks on Database-Backed Web Applications

Todd Warszawski, Peter Bailis
Stanford InfoLab

Abstract

In theory, database transactions protect application data from corruption and integrity violations. In practice, database transactions frequently execute under weak isolation that exposes programs to a range of concurrency anomalies, and programmers may fail to correctly employ transactions. While low transaction volumes mask many potential concurrency-related errors under normal operation, determined adversaries can exploit them programmatically for fun and profit. In this paper, we formalize a new kind of attack on database-backed applications called an ACIDRain attack, in which an adversary systematically exploits concurrency-related vulnerabilities via programmatically accessible APIs. These attacks are not theoretical: ACIDRain attacks have already occurred in a handful of applications in the wild, including one attack which bankrupted a popular Bitcoin exchange. To proactively detect the potential for ACIDRain attacks, we extend the theory of weak isolation to analyze latent potential for non-serializable behavior under concurrent web API calls. We introduce a language-agnostic method for detecting potential isolation anomalies in web applications, called Abstract Anomaly Detection (2AD), that uses dynamic traces of database accesses to efficiently reason about the space of possible concurrent interleavings. We apply a prototype 2AD analysis tool to 12 popular self-hosted eCommerce applications written in four languages and deployed on over 2 M websites. We identify and verify 22 critical ACIDRain attacks that allow attackers to corrupt store inventory, over-spend gift cards, and steal inventory.


```
def withdraw(amt, user_id):
    bal = readBalance(user_id)
    if (bal >= amt):
        writeBalance(bal - amt, user_id)
def withdraw(amt, user_id):
    beginTxn()
    bal = readBalance(user_id)
    if (bal >= amt):
        writeBalance(bal - amt, user_id)
    commit()
```

Figure 1: (a) A simplified example of code that is vulnerable to an ACIDRain attack allowing overdraft under concurrent access. Two concurrent instances of the withdraw function could both read balance $\$ 100$, check that $\$ 100 \geq \$ 99$, and each allow $\$ 99$ to be withdrawn, resulting $\$ 198$ total withdrawals. (b) Example of how transactions could be inserted to address this error. However, even this code is vulnerable to attack at isolation levels at or below Read Committed, unless explicit locking such as SELECT FOR UPDATE is used. While this scenario closely resembles textbook examples of improper transaction use, in this paper, we show that widely-deployed eCommerce applications are similarly vulnerable to such ACIDRain attacks, allowing corruotion of apolication state and theft of assets.

ACIDRain: Concurrency-Related Attacks on Database-Backed Web Applications

Todd Warszawski, Peter Bailis
Stanford InfoLab

Abstract

In theory, database transactions protect application data from corruption and integrity violations. In practice, database transactions frequently execute under weak isolation that exposes programs to a range of concurrency anomalies, and programmers may fail to correctly employ transactions. While low transaction volumes mask many potential concurrency-related errors under normal operation, determined adversaries can exploit them programmatically for fun and profit. In this paper, we formalize a new kind of attack on database-backed applications called an ACIDRain attack, in which an adversary systematically exploits concurrency-related vulnerabil- theoretical: ACIDRain attacks have already occurred in a handful of applications in the wild, including one attack which bankrupted a popular Bitcoin exchange. To proactively detect the po


```
def withdraw(amt, user_id):
(a) bal = readBalance(user_id)
    if (bal >= amt):
        writeBalance(bal - amt, user_id)
```

```
def withdraw(amt, user_id):
(b)
    beginTxn()
    bal = readBalance(user_id)
    if (bal >= amt):
        writeBalance(bal - amt, user_id)
    commit()
``` ACIDRain attacks, we extend the theory of weak isolation t latent potential for non-serializable behavior under concu API calls. We introduce a language-agnostic method for potential isolation anomalies in web applications, called Anomaly Detection (2AD), that uses dynamic traces of accesses to efficiently reason about the space of possible c interleavings. We apply a prototype 2 AD analysis tool to 1 self-hosted eCommerce applications written in four lang deployed on over 2 M websites. We identify and verify 2 ACIDRain attacks that allow attackers to corrupt store over-spend gift cards, and steal inventory.

\section*{No! E-commerce applications can be hacked by exploiting weak consistency of back-end databases}

\section*{Weak shared-memory models}
- Multicore processors: x86,ARM

Multiprocessor ~ distributed system
- Programming languages: C/C++, Java

Due to compiler optimisations

\section*{This course}
- Programming abstractions for weak consistency
- Methods for specification
- Methods and tools for reasoning about application correctness and consistency needs
- Implementing strong consistency

\section*{Strong consistency and the CAP theorem}

\section*{Data model}
- Database system manages a set of objects: Obj \(=\{x, y, z . .\).
- Objects associated with types Type \(=\{T, \ldots\}\)
- For each type \(\mathbf{T} \in\) Type:
- Set of operations \(\mathrm{OP}_{\mathrm{T}}\), including arguments
- Return values:Val \({ }_{T}\)

\section*{Data model}
- Integer register
- Opintreg \(=\{\) read, write \((k) \mid k \in \mathbb{Z}\}\)
- \(\mathrm{Val}_{\text {intreg }}=\mathbb{Z} \cup\{\mathrm{ok}\}\)
- Counter:
- Ppcounter \(=\{\) read, \(\operatorname{add}(k) \mid k \in \mathbb{N}\}\)
- \(\mathrm{Val}_{\text {counter }}=\mathbb{N} \cup\{\) ok \(\}\)

\section*{Sequential semantics}
- Semantics in an ordinary programming language
- For each type \(\mathbf{T} \in\) Type: set of states State \(_{\mathrm{T}}\), initial state \(\sigma_{0} \in\) State \(_{\text {T }}\)
- State \(_{\text {intreg }}=\mathbb{Z}\)
- State \(_{\text {counter }}=\mathbb{N}\)
- Semantics of an operation op:
- \(\llbracket \mathrm{op} \rrbracket_{\mathrm{val}} \in\) State \(_{T} \rightarrow\) Value \(_{T}\)
- \(\llbracket\) op \(\rrbracket_{\text {state }} \in\) State \(_{T} \rightarrow\) State \(_{T}\)

\section*{Register semantics}
- State \(=\mathbb{Z}\)
- \(\llbracket w r i t e(k) \rrbracket_{\text {state }}(\sigma)=k\)
- 【write】 \(\rrbracket_{\text {val }}(\sigma)=o k\)
- \(\llbracket r e a d \rrbracket_{\text {state }}(\sigma)=\sigma\)
- \(\llbracket r e a d \rrbracket_{v a l}(\sigma)=\sigma\)

\section*{Counter semantics}
- State \(=\mathbb{N}\)
- \(\llbracket \operatorname{add}(\mathrm{k}) \rrbracket_{\text {state }}(\sigma)=\sigma+\mathrm{k}\)
- \(\llbracket \operatorname{add}(\mathrm{k}) \rrbracket_{\mathrm{val}}(\sigma)=\mathrm{ok}\)
- \(\llbracket r e a d \rrbracket_{\text {state }}(\sigma)=\sigma\)
- \(\llbracket r e a d \rrbracket_{v a l}(\sigma)=\sigma\)

\section*{Counter semantics}
- State \(=\mathbb{N}\)
- \(\llbracket \operatorname{add}(\mathrm{k}) \rrbracket_{\text {state }}(\sigma)=\sigma+\mathrm{k}\)
- \(\llbracket \operatorname{add}(\mathrm{k}) \rrbracket_{\mathrm{val}}(\sigma)=\mathrm{ok}\)
- \(\llbracket r e a d \rrbracket_{\text {state }}(\sigma)=\sigma\)
- \(\llbracket r e a d \rrbracket_{\text {val }}(\sigma)=\sigma\)

\section*{Counter semantics}
- State \(=\mathbb{N}\)
- \(\llbracket \operatorname{add}(\mathrm{k}) \rrbracket_{\text {state }}(\sigma)=\sigma+\mathrm{k}\)

\section*{update operation}
- \(\llbracket \operatorname{add}(\mathrm{k}) \rrbracket_{\mathrm{val}}(\sigma)=\mathrm{ok}\)
- \(\llbracket r e a d \rrbracket_{\text {state }}(\sigma)=\sigma\)
- \(\llbracket r e a d \rrbracket_{\text {val }}(\sigma)=\sigma\)
\[
\begin{aligned}
& \text { read-only operation: } \\
& \mathbb{\circ o p} \rrbracket_{\text {state }}(\sigma)=\sigma
\end{aligned}
\]

\section*{Consistency specification}

Clients issue requests and get responses: history records the interactions in a single execution

\section*{Consistency specification}

Assume every request yields a response No next request until the previous one responded

\section*{Consistency specification}

Assume every request yields a response No next request until the previous one responded

\section*{Consistency specification}

Assume every request yields a response No next request until the previous one responded

\section*{Consistency specification}

\section*{Consistency specification}

> session
> \((=\) process, thread \()\)

Session order so: the order in which events are issued: union of total per-client total orders

\section*{Consistency specification}

Session order so: the order in which events are issued: union of total per-client total orders

\section*{Consistency specification}

History H = (E, so)

\section*{Consistency specification}

Consistency model - a set of histories \(\mathscr{H}\) : the set of allowed database behaviours

\section*{Visualising histories}

\section*{Visualising histories}

\section*{Using a consistency model}
- Consistency model \(\mathscr{H}\) : behaviour of the database under arbitrary clients

\section*{Using a consistency model}
- Consistency model \(\mathscr{H}\). behaviour of the database under arbitrary clients
- Program \(P \rightarrow\) set of all executions \(\llbracket P \rrbracket\) under arbitrary behaviour of the database

\section*{Using a consistency model}
- Consistency model \(\mathscr{H}\). behaviour of the database under arbitrary clients
- Program \(P \rightarrow\) set of all executions \(\llbracket P \rrbracket\) under arbitrary behaviour of the database
- Semantics of P when using \(\mathscr{H}\).
\(\llbracket \mathrm{P}, \mathscr{H} \rrbracket=\{\mathrm{X} \in \llbracket \mathrm{P} \rrbracket \mid\) history \((\mathrm{X}) \in \mathscr{H}\}\)

\section*{Using a consistency model}
- Consistency model \(\mathscr{H}\). behaviour of the database under arbitrary clients
- Program \(P \rightarrow\) set of all executions \(\llbracket P \rrbracket\) under arbitrary behaviour of the database
- Semantics of P when using \(\mathscr{H}\).
\(\llbracket \mathrm{P}, \mathscr{H} \rrbracket=\{\mathrm{X} \in \llbracket \mathrm{P} \rrbracket \mid\) history \((\mathrm{X}) \in \mathscr{H}\}\)

P:
rl = x.read();
r2 = x.read();
y.write(rl==r2);

\section*{Using a consistency model}
- Consistency model \(\mathscr{H}\). behaviour of the database under arbitrary clients
- Program \(P \rightarrow\) set of all executions \(\llbracket P \rrbracket\) under arbitrary behaviour of the database
- Semantics of P when using \(\mathscr{H}\). \(\llbracket \mathrm{P}, \mathscr{H} \rrbracket=\{\mathrm{X} \in \llbracket \mathrm{P} \rrbracket \mid\) history \((\mathrm{X}) \in \mathscr{H}\}\)
\[
\begin{array}{lll}
\text { P: } & \llbracket P \rrbracket: & \\
r l=x . \operatorname{read}() ; & \text { x.read(): 42; } & \text { x.read(): 42; } \\
\text { r2 }=x . \operatorname{read}() ; & \text { x.read():42; } & \text { x.read(): 43; } \\
\text { y.write(rl }==r 2) ; & \text { y.write(I); } & \text { y.write(0); }
\end{array}
\]

\section*{Using a consistency model}
- Consistency model \(\mathscr{H}\). behaviour of the database under arbitrary clients
- Program \(P \rightarrow\) set of all executions \(\llbracket P \rrbracket\) under arbitrary behaviour of the database
- Semantics of P when using \(\mathscr{H}\). \(\llbracket \mathrm{P}, \mathscr{H} \rrbracket=\{\mathrm{X} \in \llbracket \mathrm{P} \rrbracket \mid\) history \((\mathrm{X}) \in \mathscr{H}\}\)
\[
\llbracket P, \mathscr{H} \rrbracket:
\]
P:
【P】:
rl = x.read();
x.read(): 42; x.read()/42;
r2 = x.read();
y.write(rl==r2);
x.read(): 42; x.reaf(): 43;
y.write(I); y.yrite(0);

\section*{Defining a consistency model}
- Operational specification: by an idealised implementation
- Axiomatic specification: more declarative

\section*{Strong consistency operationally}

- Server with a single copy of all objects
- Clients send request to the server and wait for a reply
- Server processes operation sequentually in the receipt order

\section*{Strong consistency operationally}

- Server with a single copy of all objects
- Clients send request to the server and wait for a reply
- Server processes operation sequentually in the receipt order

\section*{Strong consistency operationally}

- Server with a single copy of all objects
- Clients send request to the server and wait for a reply
- Server processes operation sequentually in the receipt order

\section*{Strong consistency operationally}

- Server with a single copy of all objects
- Clients send request to the server and wait for a reply
- Server processes operation sequentually in the receipt order

\section*{Strong consistency operationally}

- Server with a single copy of all objects
- Clients send request to the server and wait for a reply
- Server processes operation sequentually in the receipt order

\section*{Strong consistency operationally}

- Server with a single copy of all objects
- Clients send request to the server and wait for a reply
- Server processes operation sequentually in the receipt order

\section*{Strong consistency operationally}

Could write a formal operational semantics: maintain the state of the database, clients and sets of messages between them

\section*{Strong consistency operationally}

- Consistency model \(=\{\mathrm{H} \mid \exists\) execution with history H produced by the abstract implementation \(\}\)
- Sequential consistency: one form of strong consistency
- Weaker than linearizability: takes into acount the duration of operations

\section*{Operational specifications}
- Let one understand intuitions behind implementations
- May become unwieldy for weaker consistency models
- Sometimes overspecify behaviour

\section*{Axiomatic specifications}
- Choose a set of relations over events: \(\mathrm{r}_{1}, \ldots, \mathrm{r}_{\mathrm{n}}\) Abstractly specify essential information about how operations are processed inside the system
- Abstract execution \(\left(H, r_{1}, \ldots, r_{n}\right)=\left(E\right.\), so, \(\left.r_{1}, \ldots, r_{n}\right)\)
- Choose a set of axioms \(\mathscr{A}\) constraining abstract executions
- Consistency model \(=\left\{\mathrm{H} \mid \exists \mathrm{r}_{1}, \ldots, \mathrm{r}_{\mathrm{n}}\left(\mathrm{H}, \mathrm{r}_{\mathrm{l}}, \ldots, \mathrm{r}_{\mathrm{n}}\right) \vDash \mathscr{A}\right\}\)

\section*{Axiomatic specifications}
- Choose a set of relations over events: \(\mathrm{r}_{1}, \ldots, \mathrm{r}_{\mathrm{n}}\) Abstractly specify essential information about how operations are processed inside the system
- Abstract execution \(\left(H, r_{1}, \ldots, r_{n}\right)=\left(E\right.\), so, \(\left.r_{1}, \ldots, r_{n}\right)\)
- Choose a set of axioms \(\mathscr{A}\) constraining abstract executions
- Consistency model \(=\left\{\mathrm{H} \mid \exists \mathrm{r}_{1}, \ldots, \mathrm{r}_{\mathrm{n}}\left(\mathrm{H}, \mathrm{r}_{\mathrm{l}}, \ldots, \mathrm{r}_{\mathrm{n}}\right) \vDash \mathscr{A}\right\}\)
vs Consistency model \(=\{\mathrm{H} \mid \exists\) execution with history H produced by the abstract implementation \(\}\)

\section*{Axiomatic specifications}
- Choose a set of relations over events: \(\mathrm{r}_{1}, \ldots, \mathrm{r}_{\mathrm{n}}\) Abstractly specify essential information about how operations are processed inside the system
- Abstract execution \(\left(H, r_{1}, \ldots, r_{n}\right)=\left(E\right.\), so, \(\left.r_{1}, \ldots, r_{n}\right)\)
- Choose a set of axioms \(\mathscr{A}\) constraining abstract executions
- Consistency model \(=\left\{\mathrm{H} \mid \exists \mathrm{r}_{1}, \ldots, \mathrm{r}_{\mathrm{n}} .\left(\mathrm{H}, \mathrm{r}_{\mathrm{l}}, \ldots, \mathrm{r}_{\mathrm{n}}\right) \vDash \mathscr{A}\right\}\)
vs Consistency model \(=\{\mathrm{H} \mid \exists\) execution with history H produced by the abstract implementation \(\}\)

\section*{Axiomatic specifications}
- Choose a set of relations over events: \(\mathrm{r}_{1}, \ldots, \mathrm{r}_{\mathrm{n}}\) Abstractly specify essential information about how operations are processed inside the system
- Abstract execution \(\left(H, r_{1}, \ldots, r_{n}\right)=\left(E\right.\), so, \(\left.r_{1}, \ldots, r_{n}\right)\)
- Choose a set of axioms \(\mathscr{A}\) constraining abstract executions
- Consistency model \(=\left\{H \mid \exists r_{1}, \ldots, r_{n} .\left(H, r_{1}, \ldots, r_{n}\right) \vDash \mathscr{A}\right\}\)
vs Consistency model \(=\{\mathrm{H} \mid \exists\) execution with history H produced by the abstract implementation

\section*{Sequential consistency axiomatically}

An SC history can be explained by a total order over all events: the order in which the server processes client operations

\section*{Sequential consistency axiomatically}

An SC history can be explained by a total order over all events: the order in which the server processes client operations

Abstract execution: \((H\), to \()=(E\), so, to \()\), where to \(\subseteq E \times E\)
\[
\mathrm{SC}=\{(\mathrm{E}, \mathrm{so}) \mid \exists \text { total order to. }(\mathrm{E}, \mathrm{so}, \mathrm{to}) \models \mathscr{A} \mathrm{sc}\}
\]
\((\mathrm{E}\), so, to \() \vDash \mathscr{A}\) sc iff
I. so \(\subseteq\) to
2. The return value of each operation in E is computed from a state obtained by executing all operations on the same object preceding it in to
\((\mathrm{E}\), so, to \() \vDash \mathscr{A}\) sc iff
I. so \(\subseteq\) to
2. The return value of each operation in \(E\) is computed from a state obtained by executing all operations on the same object preceding it in to
\[
\forall \mathrm{E} \in \mathrm{E} . \operatorname{type}(\mathrm{obj}(\mathrm{e}))=\left(\sigma_{0}, \mathbb{I}-\mathbb{I}_{\mathrm{val}}, \mathbb{I}-\mathbb{I}_{\text {state }}\right)
\]
\((\mathrm{E}\), so, to \() \vDash \mathscr{A}\) sc iff
I. so \(\subseteq\) to
2. The return value of each operation in \(E\) is computed from a state obtained by executing all operations on the same object preceding it in to
\[
\begin{aligned}
& \forall \mathrm{e} \in \mathrm{E} \cdot \operatorname{type}(\mathrm{obj}(\mathrm{e}))=\left(\sigma_{0}, \mathbb{I}-\mathbb{l}_{\text {val }}, \mathbb{I}-\mathbb{\rrbracket}_{\text {state }}\right) \\
& \operatorname{rval}(\mathrm{e})=\mathbb{\operatorname { o o p } (\mathrm { e }) \mathbb { \rrbracket } _ { \mathrm { val } } (\sigma)}
\end{aligned}
\]
\((\mathrm{E}, \mathrm{so}\), to \() \vDash \mathscr{A}\) sc iff
I. so \(\subseteq\) to
2. The return value of each operation in E is computed from a state obtained by executing all operations on the same object preceding it in to
\[
\begin{aligned}
& \forall \mathrm{E} \in \mathrm{E} . \operatorname{type}(\mathrm{obj}(\mathrm{e}))=\left(\sigma_{0}, \mathbb{I}-\mathbb{I}_{\text {val }}, \mathbb{I}-\mathbb{I}_{\text {state }}\right) \\
& \text { rval(e) }=\llbracket o p(e) \rrbracket_{\mathrm{val}}(\sigma) \\
& \sigma=\llbracket \mathrm{op}\left(\mathrm{e}_{\mathrm{n}}\right) \rrbracket_{\mathrm{state}}\left(\ldots . . \llbracket \mathrm{op}\left(\mathrm{e}_{\mathrm{I}}\right) \rrbracket_{\mathrm{state}}\left(\sigma_{0}\right)\right) \\
& e_{1}, \ldots, e_{n}=\text { to-l}^{-1}(e) \cdot \operatorname{select}(o b j(e)) \cdot \operatorname{sort}(t o)
\end{aligned}
\]
\((\mathrm{E}, \mathrm{so}, \mathrm{to}) \vDash \mathscr{A}\) sc iff
I. so \(\subseteq\) to
2. The return value of each operation in \(E\) is computed from a state obtained by executing all operations on the same object preceding it in to
\[
\begin{aligned}
& \forall \mathrm{E} \in \mathrm{E} . \operatorname{type}(\mathrm{obj}(\mathrm{e}))=\left(\sigma_{0}, \mathbb{I}-\mathbb{I}_{\mathrm{val}}, \mathbb{I}-\mathbb{I}_{\text {state }}\right) \\
& \text { rval(e) }=\llbracket o p(e) \rrbracket_{\text {val }}(\sigma) \\
& \sigma=\llbracket \mathrm{op}\left(\mathrm{e}_{\mathrm{n}}\right) \rrbracket_{\mathrm{state}}\left(\ldots . . \llbracket \mathrm{op}\left(\mathrm{e}_{\mathrm{I}}\right) \rrbracket_{\mathrm{state}}\left(\sigma_{0}\right)\right) \\
& e_{1}, \ldots, e_{n}=\text { to-l}^{-1}(e) \cdot \operatorname{select}(\text { obj(e)).sort(to) }
\end{aligned}
\]

Integer registers: a read returns the value written by the last preceding event in to (or 0 if there are none)
x.write(0); x.write(42); x.read: 42
\((\mathrm{E}, \mathrm{so}\), to \() \vDash \mathscr{A}\) sc iff
```

SC={(E, so)| \existsto. (E, so, to) \models\mathscr{A}\textrm{lc}}

```
I. so \(\subseteq\) to
2. The return value of each operation in E is computed from a state obtained by executing all operations on the same object preceding it in to
\[
\begin{aligned}
& \forall \mathrm{e} \in \mathrm{E} . \operatorname{type}(\mathrm{obj}(\mathrm{e}))=\left(\sigma_{0}, \mathbb{[}-\mathbb{\rrbracket}_{\text {val }}, \mathbb{I}-\rrbracket_{\text {state }}\right) \\
& \text { rval(e) }=\llbracket o p(e) \rrbracket_{\text {val }}(\sigma) \\
& \sigma=\llbracket \mathrm{op}\left(\mathrm{e}_{\mathrm{n}}\right) \rrbracket_{\mathrm{state}}\left(\ldots . . \llbracket \mathrm{op}\left(\mathrm{e}_{\mathrm{I}}\right) \rrbracket_{\mathrm{state}}\left(\sigma_{0}\right)\right) \\
& e_{1}, \ldots, e_{n}=\text { to-l}^{-1}(e) \cdot \operatorname{select}(o b j(e)) \cdot \operatorname{sort}(t o)
\end{aligned}
\]

Integer registers: a read returns the value written by the last preceding event in to (or 0 if there are none)
x.write(0); x.write(42); x.read: 42

\section*{SC example}
\[
S C=\{(E, s o) \mid \exists t \mathrm{t} .(\mathrm{E}, \mathrm{so}, \mathrm{to}) \models \mathscr{A} \mathrm{sc}\}
\]
x.read: 0

y.write(I)

z.write(2)
\(\downarrow\) so
c.add(I)

10
c.add(I)
x.write(1)
\(\downarrow{ }^{\text {so }}\)
c.add(I)
\({ }_{\downarrow}\) so
c.read: I
\(\downarrow\) so
z.read: 2

\section*{SC example}
\[
S C=\{(E, s o) \mid \exists t o .(E, s o, t o) \models \mathscr{A} s c\}
\]

\section*{Operational vs axiomatic}

- Got rid of messages between clients and the server, but didn't go far from the operational spec
- There's more difference for weaker models: complex processing can be concisely specified by axioms

\section*{Process A: \\ Process B: \\ y.write(I) \\ if (x.read() \(==0\)) \\ print "B wins"}

\section*{Dekker example}
```

Process A:
Process B:
x.write(I)
y.write(I)
if (y.read() == 0)
print "A wins"
if (x.read() == 0)
print "B wins"

```

Claim: under sequential consistency, there can be at most one winner
```

Process A:
Process B:
x.write(I)
y.write(I)
if (y.read() == 0)
print "A wins"

```

\section*{Process B:}
```

if (x.read() == 0)
print "B wins"

```

Assume there are two winners. Then there must exist an abstract execution for the history:

y.write(I)
x.read(): 0

Need to construct a total order to
```

Process A:
Process B:
x.write(I)
if (y.read() == 0)
print "A wins"

```

\section*{Process B:}

\section*{x.write(I)}
```

if $(y \cdot r e a d()==0)$ print "A wins"

```
```

y.write(I)

```
y.write(I)
```

if (x.read() == 0)

```
if (x.read() == 0)
 print "B wins"
```

    print "B wins"
    ```

Assume there are two winners. Then there must exist an abstract execution for the history:

so \(\subseteq\) to
```

Process A:
Process B:
x.write(I)
if (y.read() == 0)
print "A wins"

```

\section*{Process B:}

\section*{x.write(I)}
```

if $(y \cdot r e a d()==0)$
print "A wins"

```
```

y.write(I)

```
y.write(I)
```

if (x.read() == 0)

```
if (x.read() == 0)
 print "B wins"
```

    print "B wins"
    ```

Assume there are two winners. Then there must exist an abstract execution for the history:

y.write(I) so, to
x.read(): 0
```

Process A:
Process B:
x.write(I)
if (y.read() == 0)
print "A wins"

```

\section*{Process B:}

\section*{x.write(I)}
```

if $(y \cdot r e a d()==0)$ print "A wins"

```
```

y.write(I)

```
y.write(I)
```

if (x.read() == 0)

```
if (x.read() == 0)
 print "B wins"
```

    print "B wins"
    ```

Assume there are two winners. Then there must exist an abstract execution for the history:

```

Process A:
x.write(I)
if (y.read() == 0)
print "A wins"

```
```

Process B:

```
Process B:
y.write(I)
y.write(I)
```

if (x.read() == 0)

```
if (x.read() == 0)
 print "B wins"
```

    print "B wins"
    ```

Assume there are two winners. Then there must exist an abstract execution for the history:

Reads return the most recent write in to, but this read doesn't see the write
```

Process A:
x.write(I)
if (y.read() == 0)
print "A wins"

```
```

Process B:

```
Process B:
```

y.write(I)

```
y.write(I)
if (x.read() == 0)
if (x.read() == 0)
 print "B wins"
```

    print "B wins"
    ```

Assume there are two winners. Then there must exist an abstract execution for the history:

Reads return the most recent write in to, but this read doesn't see the write
```

Process A:
x.write(I)
if (y.read() == 0)
print "A wins"

```
```

Process B:

```
Process B:
```

y.write(I)

```
y.write(I)
if (x.read() == 0)
if (x.read() == 0)
 print "B wins"
```

    print "B wins"
    ```

Assume there are two winners. Then there must exist an abstract execution for the history:

Reads return the most recent write in to, but this read doesn't see the write
```

Process A:
x.write(I)
if (y.read() == 0)
print "A wins"

```
```

Process B:

```
Process B:
```

y.write(I)

```
y.write(I)
if (x.read() == 0)
if (x.read() == 0)
 print "B wins"
```

    print "B wins"
    ```

Assume there are two winners. Then there must exist an abstract execution for the history:

Reads return the most recent write in to, but this read doesn't see the write
```

Process A:
x.write(I)
if (y.read() == 0)
print "A wins"

```
```

Process B:

```
Process B:
y.write(I)
y.write(I)
```

if (x.read() == 0)

```
if (x.read() == 0)
 print "B wins"
```

    print "B wins"
    ```

Assume there are two winners. Then there must exist an abstract execution for the history:

But to must be acyclic, so no such total order exists - QED.

\section*{CAP theorem}

\section*{No system with at least 2 processes can implement a read-write register with strong consistency, availability, and partition tolerance}
- strong consistency \(=\) sequential consistency
- availability \(=\) all operations eventually complete
- partition tolerance \(=\) system continues to function under permanent network partitions
(processes in different partitions can no longer communicate in any way)

\section*{CAP proof}

No system with at least 2 processes can implement a read-write register with strong consistency, availability, and partition tolerance
- By contradiction: assume the desired system exists
- Run some experiments with the Dekker program
- Network is partitioned between the two processes
\begin{tabular}{|ll|}
\hline Process A: & Process B: \\
x.write(I) & y.write(I) \\
if \((y \cdot r e a d()==0)\) & if \((\times \cdot r e a d()==0)\) \\
print "A wins" & print "B wins" \\
\hline
\end{tabular}
```

Process A
x.write(I)
if (y.read() == 0)
print "A wins"

```

Process B
- Process A runs its code, process B is idle

- Process A runs its code, process \(B\) is idle
- Availability \(\Longrightarrow\) A must terminate and produce an execution \(X_{A}\)

- Process A runs its code, process B is idle
- Availability \(\Longrightarrow\) A must terminate and produce an execution \(X_{A}\)
- Sequential consistency \(\Longrightarrow X_{A}\) must print "A wins"

- Process B runs its code, process A is idle
- Availability \(\Longrightarrow B\) must terminate and produce an execution \(X_{B}\)
- Sequential consistency \(\Longrightarrow X_{B}\) must print " \(B\) wins"

\section*{Process A}
execution \(X_{A}\) x.write(I) if \((y \cdot r e a d()==0)\) print "A wins"

\section*{Process B} y.write(I) if (x.read() \(==0\))
execution \(X_{B}\) print "B wins"
- Network is partitioned in both experiments: processes didn't receive any messages
- \(X_{A} ; X_{B}\) is an execution of \(A|\mid B\), i.e., Dekker
- \(X_{A} ; X_{B}\) not \(S C \Longrightarrow\) contradiction, QED

\section*{Process A}

\section*{execution \(X_{A}\) x.write(I)}
if \((y . r e a d()==0)\)
print "A wins"

\section*{Process B} y.write(I)
if \((x . r e a d()==0)\)
execution \(X_{B}\) of process \(B\) print "B wins"
- Processes have to talk to each other (synchronise) to guarantee strong consistency

\section*{Eventual consistency and replicated data types, operationally}

\section*{System model}

- Database system consisting of multiple replicas (= data centre, machine, mobile device)
- Each replica stores a copy of all objects

\section*{System model}

- Replicas can communicate via channels
- Asynchronous: no bound on how quickly a message will be delivered
(in particular, because of network partitions)
- Reliable: every message is eventually delivered (so every partition eventually heals)
- For now: replicas are reliable too

\section*{High availability}

- Clients connect to a replica of their choice
- Clients connect to a replica of their choice

- Clients connect to a replica of their choice
- Replica has to respond to operations immediately, without communicating with others

- Clients connect to a replica of their choice
- Replica has to respond to operations immediately, without communicating with others
- Propagate effects to other replicas later

- Clients connect to a replica of their choice
- Replica has to respond to operations immediately, without communicating with others
- Propagate effects to other replicas later
- Always available, low latency, but may not be strongly consistent

- Quiescent consistency: if no new updates are made to the database, then replicas will eventually converge to the same state
- Later more precise and stronger formulations of eventual consistency

\section*{Replicated data types}
- Need a new kind of replicated data type: object state now lives at multiple replicas
- Aka CRDTs: commutative, convergent, conflict-free Just one type: operation-based replicated data types
- Object \(\rightarrow\) Type \(\rightarrow\) Operation signature For now fix a single object and type

\section*{Sequential semantics recap}
- Set of states State
- Initial state \(\sigma_{0} \in\) State
- \(\llbracket 0 p \rrbracket_{\text {val }} \in\) State \(\rightarrow\) Value
- \(\llbracket \mathrm{op} \rrbracket_{\text {state }} \in\) State \(\rightarrow\) State

\section*{Replicated data types}

Object state at a replica: \(\sigma \in\) State

\section*{Replicated data types}

Object state at a replica: \(\sigma \in\) State
Return value: \(\llbracket 0 p \rrbracket_{\mathrm{val}} \in\) State \(\rightarrow\) Value

\section*{Replicated data types}

Object state at a replica: \(\sigma \in\) State
Return value: \(\llbracket o p \rrbracket_{\mathrm{val}} \in\) State \(\rightarrow\) Value
The operation affects a different state \(\sigma^{\prime}\) !

\section*{Replicated data types}

Object state at a replica: \(\sigma \in\) State
Return value: \(\llbracket o p \rrbracket_{\mathrm{val}} \in\) State \(\rightarrow\) Value
Effector: \(\llbracket 0 \mathrm{op} \rrbracket_{\text {eff }} \in\) State \(\rightarrow\) (State \(\rightarrow\) State \()\)

\section*{Replicated data types}

Object state at a replica: \(\sigma \in\) State
Return value: \(\llbracket 0 p \rrbracket_{\text {val }} \in\) State \(\rightarrow\) Value
Effector: \(\llbracket 0 \mathrm{op} \rrbracket_{\text {eff }} \in\) State \(\rightarrow\) (State \(\rightarrow\) State \()\)

\section*{Replicated data types}

Object state at a replica: \(\sigma \in\) State
Return value: \(\llbracket 0 p \rrbracket_{\text {val }} \in\) State \(\rightarrow\) Value
Effector: \(\llbracket 0 \mathrm{op} \rrbracket_{\text {eff }} \in\) State \(\rightarrow(\) State \(\rightarrow\) State \()\)

\section*{Replicated data types}

Object state at a replica: \(\sigma \in\) State
Return value: \(\llbracket 0 p \rrbracket_{\text {val }} \in\) State \(\rightarrow\) Value
Effector: \(\llbracket 0 \mathrm{op} \rrbracket_{\text {eff }} \in\) State \(\rightarrow\) (State \(\rightarrow\) State \()\)

\section*{Counter}

\footnotetext{
State \(=\mathbb{N}\)
\(\llbracket \operatorname{read}() \rrbracket_{\mathrm{va}}(\sigma)=\sigma\)
\(\llbracket \operatorname{read}() \rrbracket_{\mathrm{eff}}(\sigma)=\lambda \sigma . \sigma\)
}

\section*{Counter}

\(\llbracket o p \rrbracket_{\mathrm{eff}}(\sigma)\left(\sigma^{\prime}\right)\)
\(\llbracket \operatorname{add}(100) \rrbracket_{\mathrm{eff}}(\sigma)=\lambda \sigma^{\prime} .\left(\sigma^{\prime}+I 00\right)\)

\section*{Counter}

\(\llbracket o p \rrbracket_{\mathrm{eff}}(\sigma)\left(\sigma^{\prime}\right)\)
\(\llbracket \operatorname{add}(100) \rrbracket_{\mathrm{eff}}(\sigma)=\lambda \sigma^{\prime} .\left(\sigma^{\prime}+I 00\right)\)

\section*{Counter}

\(\llbracket \operatorname{add}(100) \rrbracket_{\text {eff }}(\sigma)=\lambda \sigma^{\prime} .\left(\sigma^{\prime}+100\right)\)

\section*{Counter}

\[
\text { count }=0
\]

count \(=0\)

count \(=0\)

count \(=0\)
\(\lambda \sigma^{\prime} .200 \quad \operatorname{add}(200)\)
count \(=200\)

Quiescent consistency violated: all updates have been delivered, yet replicas will never converge

\section*{Ensuring quiescent consistency}
－Effectors have to commute：
\[
\begin{aligned}
& \forall \mathrm{OP}, \mathrm{OP}_{2}, \sigma_{1}, \sigma_{2} \text {. } \llbracket \mathrm{OP} \rrbracket_{\mathrm{eff}}\left(\sigma_{1}\right) ; \llbracket \mathrm{OP}_{2} \rrbracket_{\mathrm{eff}}\left(\sigma_{2}\right)= \\
& \text { 【op2】eff }\left(\sigma_{2}\right) ; \llbracket O p 1 \rrbracket_{\text {eff }}\left(\sigma_{1}\right)
\end{aligned}
\]
－Convergence：replicas that received the same sets of updates end up in the same state
（even when messages are received in different orders）

\section*{Ensuring quiescent consistency}
- Effectors have to commute:
\[
\begin{aligned}
& \forall \mathrm{OP}, \mathrm{OP}_{2}, \sigma_{1}, \sigma_{2} \text {. } \llbracket \mathrm{OP} \rrbracket_{\mathrm{eff}}\left(\sigma_{1}\right) ; \llbracket \mathrm{OP}_{2} \rrbracket_{\mathrm{eff}}\left(\sigma_{2}\right)= \\
& \llbracket O P 2 \rrbracket_{\mathrm{eff}}\left(\sigma_{2}\right) ; \llbracket O P 1 \rrbracket_{\mathrm{eff}}\left(\sigma_{।}\right)
\end{aligned}
\]
- Convergence: replicas that received the same sets of updates end up in the same state (even when messages are received in different orders)
- Quiescent consistency: if no new updates are made to the database, then replicas will eventually converge to the same state
(because update get eventually delivered)

\section*{Replicated data types}
- Counter
- Last-writer-wins register
- Multi-valued register
- Add-wins set
- Remove-wins set
- List

\section*{Read-write register}

write(I)

write(2)

\section*{Read-write register}

\section*{Read-write register}

\section*{Read-write register}

- No right or wrong solutions: depends on the application requirements
- E.g., could report the conflict to the user: multi-valued register

\section*{Last-writer-wins register}

- Shared memory: an arbitrary write will win
- Conflict arbitrated using timestamps: last write wins
- Link to shared-memory consistency models

\section*{Last-writer-wins register}

write(I)

State \(=\) Value \(\times\) Timestamp
\(\llbracket \operatorname{read}() \rrbracket_{\mathrm{val}}(\mathrm{v}, \mathrm{t})=\mathrm{v}\)

\section*{Last-writer-wins register}

write(I)

【write \(\left(v_{\text {new }}\right) \rrbracket_{\text {eff }}(v, t)=\)
let \(\mathrm{t}_{\text {new }}=\) newUniqueTS () in
\(\lambda\left(v^{\prime}, t^{\prime}\right)\). if \(t_{\text {new }}>t^{\prime}\) then \(\left(v_{\text {new }}, t_{\text {new }}\right)\) else \((v, t)\)

\section*{Last-writer-wins register}

【write \(\left(\mathrm{v}_{\text {new }}\right) \rrbracket_{\text {eff }}(\mathrm{v}, \mathrm{t})=\)
let \(\mathrm{t}_{\text {new }}=\) newUniqueTS () in
\(\lambda\left(v^{\prime}, t^{\prime}\right)\). if \(t_{\text {new }}>t^{\prime}\) then \(\left(v_{\text {new }}, t_{\text {new }}\right)\) else \((v, t)\)

\section*{Last-writer-wins register}

【write \(\left(\mathrm{v}_{\text {new }}\right) \rrbracket_{\text {eff }}(\mathrm{v}, \mathrm{t})=\)
let \(\mathrm{t}_{\text {new }}=\) newUniqueTS () in
\(\lambda\left(v^{\prime}, t^{\prime}\right)\). if \(t_{\text {new }}>t^{\prime}\) then \(\left(v_{\text {new }}, t_{\text {new }}\right)\) else \((v, t)\)

\section*{Last-writer-wins register}

【write \(\left(\mathrm{v}_{\text {new }}\right) \rrbracket_{\text {eff }}(\mathrm{v}, \mathrm{t})=\)
let \(\mathrm{t}_{\text {new }}=\) newUniqueTS () in
\(\lambda\left(v^{\prime}, t^{\prime}\right)\). if \(t_{\text {new }}>t^{\prime}\) then \(\left(v_{\text {new }}, t_{\text {new }}\right)\) else \((v, t)\)

\section*{Last-writer-wins register}

【write \(\left(v_{\text {new }}\right) \rrbracket_{\text {eff }}(\mathrm{v}, \mathrm{t})=\)
let \(\mathrm{t}_{\text {new }}=\) newUniqueTS () in
\(\lambda\left(v^{\prime}, t^{\prime}\right)\). if \(t_{\text {new }}>t^{\prime}\) then \(\left(v_{\text {new }}, t_{\text {new }}\right)\) else \((v, t)\)

\section*{Last-writer-wins register}

let \(\mathrm{t}_{\text {new }}=\) newUniqueTS () in
\(\lambda\left(v^{\prime}, t^{\prime}\right)\). if \(\mathrm{t}_{\text {new }}>\mathrm{t}^{\prime}\) then \(\left(\mathrm{v}_{\text {new }}, \mathrm{t}_{\text {new }}\right)\) else \((\mathrm{v}, \mathrm{t})\)

\section*{Last-writer-wins register}

【write \(\left(V_{\text {new }}\right) \rrbracket_{\text {eff }}(v, t)=\)
let \(\mathrm{t}_{\text {new }}=\) newUniqueTS () in
\(\lambda\left(v^{\prime}, t^{\prime}\right)\). if \(t_{\text {new }}>t^{\prime}\) then \(\left(v_{\text {new }}, t_{\text {new }}\right)\) else \((v, t)\)

\section*{Last-writer-wins register}

Effectors are commutative: the write with the highest timestamp wins regardless of the order of application

\section*{Generating timestamps}
- Can use wall-clock time at the machine

- But can lead to strange results when clocks are out of sync

\section*{!}
write(2)

\(t_{1}>t_{2}\)
read: I
\(\vdots\)
write(2)

\(\mathrm{t}_{1}>\mathrm{t}_{2}\)
read: I
\(\vdots\)
write(2)

- Undesirable: 2 was meant to supersede I

- Undesirable: 2 was meant to supersede I
- Use logical (Lamport) clocks instead

\section*{Lamport clock}

Replica maintains a counter, incremented on each operation:

\section*{Lamport clock}

Replica maintains a counter, incremented on each operation:

\section*{Lamport clock}

Replica maintains a counter, incremented on each operation:

\section*{Lamport clock}

Replica maintains a counter, incremented on each operation:

\section*{Lamport clock}

Replica maintains a counter, incremented on each operation:

Timestamps need to be unique: ts \(=(\) CounterValue, ReplicaID \()\)

\section*{Lamport clock}

Replica maintains a counter, incremented on each operation:

Timestamps need to be unique: ts \(=(\) CounterValue, ReplicaID \()\)

\section*{Lamport clock}

Replica maintains a counter, incremented on each operation:

Timestamps need to be unique: ts \(=\) (CounterValue, ReplicaID)
\[
\left(c_{1}, r_{1}\right)<\left(c_{2}, r_{2}\right) \Longleftrightarrow c_{1}<c_{2} \vee\left(c_{1}=c_{2} \wedge r_{1}<r_{2}\right)
\]

\section*{Lamport clock}

Replica maintains a counter, incremented on each operation:

Timestamps need to be unique: ts \(=\) (CounterValue, ReplicaID)
\[
\left(c_{1}, r_{1}\right)<\left(c_{2}, r_{2}\right) \Longleftrightarrow c_{1}<c_{2} \vee\left(c_{1}=c_{2} \wedge r_{1}<r_{2}\right)
\]
time \(=\mathrm{t}_{\mathrm{l}}\) write(I)
time \(=t_{1}\)
write(I)
(\(t_{1}, r_{1}\))
time \(=\mathrm{t}_{\mathrm{l}}+\mathrm{l}\)
time \(=t_{1}\)

time \(=t_{1}\)

When receiving an effector, bump up your clock above its timestamp

When receiving an effector, bump up your clock above its timestamp
\[
\text { time }=t_{1}
\]
\[
\text { time }=\mathrm{t}_{1}+\mathrm{l}
\]

read: I
```

t}>>\mp@subsup{t}{2}{

```
```

t}>>\mp@subsup{t}{2}{

```
\(\vdots\)
write(2)
\[
\left(t_{1}+l, r_{2}\right)
\]

When receiving an effector, bump up your clock above its timestamp
\[
\text { time }=t_{1}
\]

\[
\text { write }(1) \xlongequal{(1)} \quad \text { time }=t_{2}
\]
\[
\text { time }=t_{1}+1
\]

\section*{Replicated set}

cart \(=\{\) book \(\}\)
cart.remove(book)

\section*{Replicated set}

cart \(=\{\) book \(\}\)
cart.add(book)
Conflict!
cart.remove(book)

\section*{Replicated set}
cart \(=\{\) book \(\}\)

Conflict!
cart.remove(book)

Should the remove cancel the concurrent add?
Depends on application requirements

\section*{Replicated set}

\section*{cart \(=\{\) book \(\}\)}
cart.add(book)
Conflict! cart.remove(book)

Last writer wins: choose based on operation time-stamps

Remove wins: \(\quad\) cart \(=\varnothing\)
Add wins:
cart \(=\{\) book \(\}\)

\section*{Add-wins set}

\section*{Add-wins set}

- remove() acts differently wrt add() depending on whether it's concurrent or not
- Each addition creates a new instance: State \(=\) set of pairs (element, unique id)

\(\{(\) book, I) \(\}\)
\(\vdots\)
add(book)

Each add() creates a new element instance:
\(\llbracket \operatorname{add}(\mathrm{v}) \rrbracket_{\text {eff }}(\sigma)=\lambda \sigma^{\prime} .\left(\sigma^{\prime} \cup\{(\mathrm{v}\right.\), uniqueid ()\(\})\)

Each add() creates a new element instance:
\(\llbracket \operatorname{add}(\mathrm{v}) \rrbracket_{\mathrm{eff}}(\sigma)=\lambda \sigma^{\prime} \cdot\left(\sigma^{\prime} \cup\{(\mathrm{v}\right.\), uniqueid ()\(\})\)

\{(book, I)\}
\(\vdots\)
\(\operatorname{add}(\) book \()\)
\{(book, I), (book,2) \}

Instance ids ignored when reading the set:
\[
\llbracket \operatorname{read}() \rrbracket_{\mathrm{val}}(\sigma)=\{\mathrm{v} \mid\{\exists \mathrm{id} .(\mathrm{v}, \mathrm{id})\} \in \sigma)
\]

\{(book, I)\}
\(\vdots\)
\(\operatorname{add}(\) book \()\)
\{(book, I), (book,2)\}

\{(book, I)\}

add(book)
\{(book, I), (book,2)\}

remove(book)
remove(\(v\)) removes all currently present instances of \(x\) :
\(\llbracket \operatorname{remove}(\mathrm{v}) \rrbracket_{\text {eff }}(\sigma)=\lambda \sigma^{\prime} .\left(\sigma^{\prime} \backslash\{(\mathrm{v}, \mathrm{id}) \in \sigma\}\right)\)

remove(\(v\)) removes all currently present instances of \(x\) :
\(\llbracket \operatorname{remove}(\mathrm{v}) \rrbracket_{\text {eff }}(\sigma)=\lambda \sigma^{\prime} .\left(\sigma^{\prime} \backslash\{(\mathrm{v}, \mathrm{id}) \in \sigma\}\right)\)

remove(v) removes all currently present instances of \(x\) :
\(\llbracket \operatorname{remove}(\mathrm{v}) \rrbracket_{\text {eff }}(\sigma)=\lambda \sigma^{\prime} .\left(\sigma^{\prime} \backslash\{(\mathrm{v}, \mathrm{id}) \in \sigma\}\right)\)

\{(book, I)\}
\(!\)
\(\vdots\)
\(\vdots\)
\(!\)
add(book)
\{(book, I), (book,2) \}
\{(book,2)\}

Effectors commutative \(\rightarrow\) replicas converge

\section*{Take-aways}
- Need to ensure commutativity to guarantee quiescent consistency
- Need to make choices about how to resolve conflicts

\section*{Replicated data type uses}
- Provided by some data stores:

- Implemented by programmers on their own:

\section*{Operational specification}
- Given a database with a set of objects of replicated data types
- Eventual consistency model = set of all histories produced by arbitrary client interactions with the data type implementations (with any allowed message deliveries)
- Implies quiescent consistency: if no new updates are made to the database, then replicas will eventually converge to the same state

\section*{Eventual consistency and replicated data types, axiomatically}

\section*{Anomalies}

\section*{Anomalies}

\section*{Anomalies}

Can be disallowed if the client sticks to the same replica: Read Your Writes guarantee

\section*{Anomalies}

access.write(all)
access.write(noboss)
post.write(photo)

\section*{Anomalies}

\section*{Anomalies}

\section*{Anomalies}

\section*{Anomalies}

Causality violation: disallowed by causal consistency

\section*{mongo omalies}

access.write(all)
access.write(noboss)

post.write(photo)
post.read() : photo

access.read() : all

Causality violation: disallowed by causal consistency

\section*{Specification}
- Lots of replicated data type implementations: e.g., can send snapshots of object states instead of operations
- Lots of message delivery guarantees: different implementations of causal consistency
- Want specifications that abstract from implementation details: both replicated data types and anomalies

\section*{Axiomatic specifications}
- Choose a set of relations over events: \(\mathrm{r}_{\mathrm{l}}, \ldots, \mathrm{r}_{\mathrm{n}}\) Abstractly specify essential information about how operations are processed inside the system
- Abstract execution (\(\mathrm{H}, \mathrm{r}_{1}, \ldots, \mathrm{r}_{\mathrm{n}}\))
- Choose a set of axioms \(\mathscr{A}\) constraining abstract executions
- Consistency model \(=\left\{\mathrm{H} \mid \exists \mathrm{r}_{1}, \ldots, \mathrm{r}_{\mathrm{n}}\left(\mathrm{H}, \mathrm{r}_{\mathrm{l}}, \ldots, \mathrm{r}_{\mathrm{n}}\right) \vDash \mathscr{A}\right\}\)

\section*{Sequential consistency}
\((E, s o) \mid \exists\) total order to. (E, so, to) satisfies:
I. so \(\subseteq\) to
2. The return value of each operation in E is computed from a state obtained by executing all operations on the same object preceding it in to

\section*{Sequential consistency}

\section*{Partial orders}
(E,so) | \(\exists\) total order to. (E, so, to) satisfies:
I. so \(\subseteq\) to
2. The return value of each operation in E is computed from a state obtained by executing all operations on the same object preceding it in to

\section*{Sequential consistency}

\section*{Partial orders}
\((E, s o) \mid \exists\) total order to. (E, so, to) satisfies:

2. The return value of each operation in \(E\) is computed from a state obtained by executing all operations on the same object preceding it in to

\section*{Sequential consistency}

\section*{Partial orders}
\((E, s o) \mid \exists\) total order to. (E, so, to) satisfies:

2. The return value of each operation in \(E\) is computed from a state obtained by executing all operations on the same object preceding it in to

> Return value axiom: replicated data types

\section*{Execution: (E, so, vis, ar)}
access.write(all)

\section*{Execution: (E, so, vis, ar)}

Object \(\because\) Op

\section*{Events}

Return
, value

\section*{Execution: (E, so, vis, ar)}

The order of requests by the same session

\section*{Execution: (E, so, vis, ar)}

\author{
access.write(all) \\ \\ post.write(photo)
}
access.write(noboss) \({ }^{\text {ppost.read() }}\) : photo

Declaratively specify ways in which the database processes requests

access.write(all)
access.write(noboss)
post.write(photo)
post.read() : photo access.read() : all

Delivered?
access.write(all) \(\longrightarrow\)
access.write(noboss)
post.read(): photo

\section*{Execution: (E, so, vis, ar)}

\section*{Execution: (E, so, vis, ar)}

vis is irreflexive and acyclic

\section*{Execution: (E, so, vis, ar)}

vis is irreflexive and acyclic

System includes a time-stamping mechanism that can be used in conflict resolution

System includes a time-stamping mechanism that can be used in conflict resolution

\section*{Execution: (E, so, vis, ar)}

System includes a time-stamping mechanism that can be used in conflict resolution

\section*{Execution: (E, so, vis, ar)}

System includes a time-stamping mechanism that can be used in conflict resolution ar is total on \(E\) and vis \(\subseteq\) ar

\section*{Data type specification}
- How do I compute the return value of an event e?
- Only actions on the same object visible to e are important: have been delivered to the replica performing e
access.write(all)
access.write(nobo

\section*{Data type specification}
- How do I compute the return value of an event e?
- Only actions on the same object visible to e are important: have been delivered to the replica performing e

\section*{Data type specification}

\section*{F: context of \(\mathrm{e} \rightarrow\) return value of e}
\[
\forall \mathrm{e} \in \mathrm{E} . \operatorname{rval}(\mathrm{e})=\mathrm{F}_{\text {type(obj(e)) }}(\operatorname{context}(\mathrm{e}))
\]
access.write(all)
access.write(noboss)

\section*{Data type specification}

\section*{F: context of \(\mathrm{e} \rightarrow\) return value of e}
\[
\forall \mathrm{e} \in \mathrm{E} . \operatorname{rval}(\mathrm{e})=\mathrm{F}_{\text {type(obj(e) })}(\operatorname{context}(\mathrm{e}))
\]
access.write(all)
access.write(noboss)

F for Last-Writer-Wins registers:
sort all actions according to ar and return the last value written

\section*{Data type specification}

\section*{F: context of \(\mathrm{e} \rightarrow\) return value of e}
\(\forall e \in E . r v a l(e)=F_{\text {type(obj(e)) }}(\) context \((e))\)
access.write(all)
access.write(nobo

What gets taken into account depends only on vis

\section*{Counter}

\section*{F: context of \(\mathrm{e} \rightarrow\) return value of e}

F: reads return the sum of all additions in the context

\section*{Counter}

\section*{F: context of \(\mathrm{e} \rightarrow\) return value of e}

Relations between events in the context don't matter

\section*{Counter with decrements}

F: context of \(\mathrm{e} \rightarrow\) return value of e

F: reads return additions minus subtractions

\section*{Multi-valued register}

\section*{F: context of \(\mathrm{e} \rightarrow\) return value of e}
x.write(I)
x.write(2)
 x.write(3)

x.read(): ?

F: reads return the set of all conflicting writes

\section*{Multi-valued register}

\section*{F: context of \(\mathrm{e} \rightarrow\) return value of e}

F: reads return the set of all conflicting writes

\section*{Multi-valued register}

\section*{F: context of \(\mathrm{e} \rightarrow\) return value of e}
x.write(I)关.write(2)
 x.write(3)

x.read(): ?

F: reads return the set of all conflicting writes

\section*{Multi-valued register}

\section*{F: context of \(\mathrm{e} \rightarrow\) return value of e}

F: reads return the set of all conflicting writes

\section*{Multi-valued register}

\section*{F: context of \(\mathrm{e} \rightarrow\) return value of e}
x.write(I)

※.write(2)
 x.write(3)

x.read(): \(\{1,3\}\)

\section*{Multi-valued register}

\section*{F: context of \(\mathrm{e} \rightarrow\) return value of e}
x.write(I)

x.read(): \(\{1,3\}\)

F: discard all writes seen by a write

\section*{Multi-valued register}

\section*{F: context of \(\mathrm{e} \rightarrow\) return value of e}

F: discard all writes seen by a write

\section*{Add-wins set}

\section*{F: context of \(\mathrm{e} \rightarrow\) return value of e}
set.add(book)

\section*{Add-wins set}

\section*{F: context of \(\mathrm{e} \rightarrow\) return value of e}

\section*{Add-wins set}

\section*{F: context of \(\mathrm{e} \rightarrow\) return value of e}

\section*{Add-wins set}

\section*{F: context of \(\mathrm{e} \rightarrow\) return value of e}

\section*{Add-wins set}

\section*{F: context of \(\mathrm{e} \rightarrow\) return value of e}

\section*{Add-wins set}

\section*{F: context of \(\mathrm{e} \rightarrow\) return value of e}

F: cancel all adds seen by a remove

\section*{Add-wins set}

\section*{F: context of \(\mathrm{e} \rightarrow\) return value of e}

F: cancel all adds seen by a remove

\section*{Data type specification}

\section*{F: context of \(\mathrm{e} \rightarrow\) return value of e}
\(\forall e \in E . r v a l(e)=F_{\text {type(obj(e) })}(\) context \((e))\)

\section*{"No causal cycles" axiom}

- so \(u\) vis is acyclic: no causal cycles/out-of-thin-air values
- so and vis consistent with execution order

\section*{"No causal cycles" axiom}

- so \(u\) vis is acyclic: no causal cycles/out-of-thin-air values
- so and vis consistent with execution order
- Could result from speculative execution, uncommon in distributed systems

\section*{"No causal cycles" axiom}

- so \(u\) vis is acyclic: no causal cycles/out-of-thin-air values
- so and vis consistent with execution order
- Could result from speculative execution, uncommon in distributed systems
- Some forms allowed by shared-memory models (ARM, C++, Java): defining semantics is an open problem

\section*{Eventual visibility}
x.write(42)
\begin{tabular}{|c|}
\hline \multirow[t]{7}{*}{} \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline
\end{tabular}
\(\forall e \in E . e \xrightarrow{\text { vis }} f\) for all but finitely many \(f \in E\)

\section*{Eventual visibility}
x.write(42)
\(\forall e \in E . e \xrightarrow{\text { vis }} f\) for all but finitely many \(f \in E\)

\section*{Eventual consistency summary}

The set of histories (E, so) such that for some vis, ar:
- Return values consistent with data type specs:
\(\forall e \in E . r v a l(e)=F_{\text {type(obi(e) })}(\) context \((e))\)
- No causal cycles: so \(u\) vis is acyclic
- Eventual visibility:
\(\forall e \in E . e \xrightarrow{\text { vis }} f\) for all but finitely many \(f \in E\)

\section*{Eventual consistency summary}

The set of histories (E, so) such that for some vis, ar:
- Return values consistent with data type specs: \(\forall \mathrm{e} \in \mathrm{E} . \operatorname{rval}(\mathrm{e})=\mathrm{F}_{\text {type(obi(e)) }}(\) (context(e) \()\)
- No causal cycles: so \(u\) vis is acyclic
- Eventual visibility: \(\forall e \in E . e \xrightarrow{\text { vis }} f\) for all but finitely many \(f \in E\)

Quiescent consistency: if no new updates are made to the database, then replicas will eventually converge to the same state

Quiescent consistency: if no new updates are made to the database, then replicas will eventually converge to the same state

Quiescent consistency: if no new updates are made to the database, then replicas will eventually converge to the same state
- Convergence: events with the same context return the same value: \(\forall \mathrm{e} \in \mathrm{E}\). rval(e) \(=\mathrm{F}_{\text {type(obj(e) })(\text { context }(\mathrm{e}))}\)

Quiescent consistency: if no new updates are made to the database, then replicas will eventually converge to the same state
- Convergence: events with the same context return the same value: \(\forall \mathrm{e} \in \mathrm{E}\). rval(e) \(=\mathrm{F}_{\text {type(obj(e) })(\text { context }(\mathrm{e}))}\)
- Assumption: deleting read-only operations from the context doesn't change the return value: \(F(X)=F(X\)-ReadOnlyEvents)

Quiescent consistency: if no new updates are made to the database, then replicas will eventually converge to the same state
- Convergence: events with the same context return the same value: \(\forall \mathrm{e} \in \mathrm{E}\). rval(e) \(=\mathrm{F}_{\text {type(obj(e) })}(\) context \((\mathrm{e}))\)
- Assumption: deleting read-only operations from the context doesn't change the return value: \(F(X)=F(X\)-ReadOnlyEvents)

c.read(): 3
c.add(I)
c.add(2)

Quiescent consistency: if no new updates are made to the database, then replicas will eventually converge to the same state
- Convergence: events with the same context return the same value: \(\forall \mathrm{e} \in \mathrm{E}\). rval(e) \(=\mathrm{F}_{\text {type(obj(e) })(\text { context }(\mathrm{e}))}\)
- Assumption: deleting read-only operations from the context doesn't change the return value: \(F(X)=F(X\)-ReadOnlyEvents)

Quiescent consistency: if no new updates are made to the database, then replicas will eventually converge to the same state
- Convergence: events with the same context return the same value: \(\forall \mathrm{e} \in \mathrm{E}\). rval(e) \(=\mathrm{F}_{\text {type(obj(e) })}(\) context(e) \()\)
- Assumption: deleting read-only operations from the context doesn't change the return value: \(F(X)=F(X\)-ReadOnlyEvents)
- Convergence': two operations with the same context projection to updates return the same value

Quiescent consistency: if no new updates are made to the database, then replicas will eventually converge to the same state
- Convergence: events with the same context return the same value: \(\forall \mathrm{e} \in \mathrm{E}\). rval(e) \(=\mathrm{F}_{\text {type(obj(e) })(\text { context }(\mathrm{e}))}\)
- Assumption: deleting read-only operations from the context doesn't change the return value: \(F(X)=F(X\)-ReadOnlyEvents)
- Convergence': two operations with the same context projection to updates return the same value
- Eventual visibility: each update is seen by all but finitely many ops

Quiescent consistency: if no new updates are made to the database, then replicas will eventually converge to the same state
- Convergence: events with the same context return the same value: \(\forall \mathrm{e} \in \mathrm{E}\). rval(e) \(=\mathrm{F}_{\text {type(obj(e) })(\text { context }(\mathrm{e}))}\)
- Assumption: deleting read-only operations from the context doesn't change the return value: \(F(X)=F(X\)-ReadOnlyEvents)
- Convergence': two operations with the same context projection to updates return the same value
- Eventual visibility: each update is seen by all but finitely many ops
- Assuming finitely many updates, all but finitely many ops will see all of these updates

Quiescent consistency: if no new updates are made to the database, then replicas will eventually converge to the same state
- Convergence: events with the same context return the same value: \(\forall \mathrm{e} \in \mathrm{E}\). rval(e) \(=\mathrm{F}_{\text {type(obj(e) })}(\) context \((\mathrm{e}))\)
- Assumption: deleting read-only operations from the context doesn't change the return value: \(F(X)=F(X\)-ReadOnlyEvents)
- Convergence': two operations with the same context projection to updates return the same value
- Eventual visibility: each update is seen by all but finitely many ops
- Assuming finitely many updates, all but finitely many ops will see all of these updates
- Quiescent consistency: assuming finitely many updates, all but finitely many operations on a given object return values computed based on the same context: same op \(\Longrightarrow\) same rval

\section*{Eventual consistency summary}

The set of histories (E, so) such that for some vis, ar:
- Return values consistent with data type specs:
\(\forall e \in E . r v a l(e)=F_{\text {type(obi(e) })}(\) context \((e))\)
- No causal cycles: so \(u\) vis is acyclic
- Eventual visibility:
\(\forall e \in E . e \xrightarrow{\text { vis }} f\) for all but finitely many \(f \in E\)

\section*{Eventual consistency summary}

The set of histories (E, so) such that for some vis, ar:
- Return values consistent with data type specs: \(\forall \mathrm{e} \in \mathrm{E} . \operatorname{rval}(\mathrm{e})=\mathrm{F}_{\text {type(obi(e)) }}(\) (context(e) \()\)
- No causal cycles: so \(u\) vis is acyclic
- Eventual visibility: \(\forall e \in E . e \xrightarrow{\text { vis }} f\) for all but finitely many \(f \in E\)

Stronger than quiescent consistency, but still weak
Strengthen consistency by adding additional axioms on vis and ar

\section*{Why is this spec sound wrt implementations? mmary}

The set of histories (\(\mathrm{E}, \mathrm{so}\)) such that for some vis, ar:
- Return values consistent with data type specs: \(\forall \mathrm{e} \in \mathrm{E} . \operatorname{rval}(\mathrm{e})=\mathrm{F}_{\text {type(obi(e)) }}(\) (context(e) \()\)
- No causal cycles: so \(u\) vis is acyclic
- Eventual visibility: \(\forall e \in E . e \xrightarrow{\text { vis }} f\) for all but finitely many \(f \in E\)

Stronger than quiescent consistency, but still weak
Strengthen consistency by adding additional axioms on vis and ar

\section*{Specification soundness}

The set of all histories (\(\mathrm{E}, \mathrm{so}\)) such that for some vis, ar the abstract execution (E , so, vis, ar) satisfies consistency axioms \(\mathscr{A}\)

\section*{Specification soundness}

The set of all histories (E , so) such that for some vis, ar the abstract execution (E , so, vis, ar) satisfies consistency axioms \(\mathscr{A}\)

The set of all histories (E, so) produced by arbitrary client interactions with the data type implementations with any allowed message deliveries

\section*{Specification soundness}

The set of all histories (E , so) such that for some vis, ar the abstract execution (E , so, vis, ar) satisfies consistency axioms \(\mathscr{A}\)

The set of all histories (E, so) produced by arbitrary client interactions with the data type implementations with any allowed message deliveries

\section*{Specification soundness}

The set of all histories (E , so) such that for some vis, ar the abstract execution (E , so, vis, ar) satisfies consistency axioms \(\mathscr{A}\)

\section*{〇}

The set of all histories (E, so) produced by arbitrary client interactions with the data type implementations with any allowed message deliveries
- \(\forall\) concrete execution of the implementation with a history (\(\mathrm{E}, \mathrm{so}\))
- \(\exists\) vis, ar. (E, so, vis, ar) satisfies the axioms \(\mathscr{A}\)

\section*{Specification soundness}
- Proofs depend on replicated data types
- Example: replicated counters and last-writer-wins registers
- There are also generic proof techniques that work for whole classes of data types
- \(\forall\) concrete execution of the implementation with a history (\(\mathrm{E}, \mathrm{so}\))
- \(\exists\) vis, ar. (E, so, vis, ar) satisfies the axioms \(\mathscr{A}\)

\section*{Specification soundness}
- Proofs depend on replicated data types
- Example: replicated counters and last-writer-wins registers
- There are also generic proof techniques that work for whole classes of data types
- \(\forall\) concrete execution of the implementation with a history (\(\mathrm{E}, \mathrm{so}\))
- \(\exists\) vis, ar. (E, so, vis, ar) satisfies the axioms \(\mathscr{A}\)

\section*{Constructing vis}

\(\mathrm{e} \xrightarrow{\text { vis }} \mathrm{f} \Longleftrightarrow\) effector of e delivered to replica of f before \(f\) is executed

\section*{Constructing vis}

\(e \xrightarrow{\text { vis }} f \Longleftrightarrow\) effector of \(e\) delivered to replica of \(f\) before \(f\) is executed

\section*{Constructing vis}

\(\mathrm{e} \xrightarrow{\text { vis }} \mathrm{f} \Longleftrightarrow\) effector of e delivered to replica of f before \(f\) is executed

\section*{so \(u\) vis is acyclic?}

\(e \xrightarrow{\text { vis }} f \Longleftrightarrow\) effector of \(e\) delivered to replica of \(f\) before \(f\) is executed

\section*{so \(u\) vis is acyclic?}

\(e \xrightarrow{\text { vis }} f \vee e \xrightarrow{\text { so }} f \Longrightarrow e\) was issued before \(f\) in the operational execution
\(\forall e \in E . e \xrightarrow{\text { vis }} f\) for all but finitely many \(f \in E\)

\section*{\(\forall e \in E . e \xrightarrow{\text { vis }} f\) for all but finitely many \(f \in E\)}

\section*{\(\forall e \in E . e \xrightarrow{\text { vis }} f\) for all but finitely many \(f \in E\)}

\(r_{2}\)

\section*{\(\forall e \in E . e \xrightarrow{\text { vis }} f\) for all but finitely many \(f \in E\)}

- Channels are reliable (every partition eventually heals) \(\Longrightarrow\) the effector of \(e\) is eventually delivered to \(r_{2}\)

\section*{\(\forall e \in E . e \xrightarrow{\text { vis }} f\) for all but finitely many \(f \in E\)}

- Channels are reliable (every partition eventually heals) \(\Longrightarrow\) the effector of \(e\) is eventually delivered to \(r_{2}\)
- From some point on, all events \(f_{i}\) at the replica \(r_{2}\) see \(e\)

\section*{\(\forall e \in E . e \xrightarrow{\text { vis }} f\) for all but finitely many \(f \in E\)}

- Channels are reliable (every partition eventually heals) \(\Longrightarrow\) the effector of \(e\) is eventually delivered to \(r_{2}\)
- From some point on, all events \(f_{i}\) at the replica \(r_{2}\) see e
- True for any replica \(\Longrightarrow\) only finitely many events don't see e

\section*{Correctness of counters}
\(\forall \mathrm{e} \in \mathrm{E} . \operatorname{rval}(\mathrm{e})=\mathrm{F}_{\text {type(obi(e)) }}(\) context(e) \()\)

c.add(2)

c.read(): 6

F: reads return the sum of all additions in the context

\section*{Correctness of counters}

\section*{Correctness of counters}

A read returns the value of the counter at the replica: \(\llbracket \operatorname{read}() \rrbracket_{\mathrm{va}}(\sigma)=\sigma\)

\section*{Correctness of counters}

Invariant: the value of a counter at a replica is the sum of all increments of the counter delivered to it

\section*{Correctness of counters}

Invariant: the value of a counter at a replica is the sum of all increments of the counter delivered to it
\(\llbracket \operatorname{add}(v) \rrbracket_{\text {eff }}(\sigma)=\lambda \sigma^{\prime} .\left(\sigma^{\prime}+v\right)\)

\section*{Correctness of counters}

Invariant: the value of a counter at a replica is the sum of all increments of the counter delivered to it
\(\llbracket \operatorname{add}(v) \rrbracket_{\text {eff }}(\sigma)=\lambda \sigma^{\prime} .\left(\sigma^{\prime}+v\right)\)

\section*{Correctness of counters}

Invariant: the value of a counter at a replica is the sum of all increments of the counter delivered to it
\(=\) increments visible to the read, QED.

\section*{Constructing ar}

Every event e gets assigned a timestamp \(t_{e}\) from a logical Lamport clock
\[
\mathrm{e} \xrightarrow{\mathrm{ar}} \mathrm{f} \Longleftrightarrow \mathrm{t}_{\mathrm{e}}<\mathrm{t}_{\mathrm{f}}
\]

\section*{vis \(\subseteq\) ar}

Every event e gets assigned a timestamp \(t_{e}\) from a logical Lamport clock
\[
\mathrm{e} \xrightarrow{\mathrm{ar}} \mathrm{f} \Longleftrightarrow \mathrm{t}_{\mathrm{e}}<\mathrm{t}_{\mathrm{f}}
\]

\section*{vis \(\subseteq\) ar}

Every event e gets assigned a timestamp \(t_{e}\) from a logical Lamport clock
\[
\mathrm{e} \xrightarrow{\mathrm{ar}} \mathrm{f} \Longleftrightarrow \mathrm{t}_{\mathrm{e}}<\mathrm{t}_{\mathrm{f}}
\]

\section*{vis \(\subseteq\) ar}

Every event e gets assigned a timestamp \(t_{e}\) from a logical Lamport clock
\(\mathrm{e} \xrightarrow{\mathrm{ar}} \mathrm{f} \Longleftrightarrow \mathrm{t}_{\mathrm{e}}<\mathrm{t}_{\mathrm{f}}\)

\section*{vis \(\subseteq\) ar}

Every event e gets assigned a timestamp \(t_{e}\) from a logical Lamport clock
\(\mathrm{e} \xrightarrow{\text { ar }} \mathrm{f} \Longleftrightarrow \mathrm{t}_{\mathrm{e}}<\mathrm{t}_{\mathrm{f}}\)

\section*{vis \(\subseteq\) ar}

Every event e gets assigned a timestamp \(t_{e}\) from a logical Lamport clock
\(e \xrightarrow{\text { ar }} \mathrm{f} \Longleftrightarrow \mathrm{t}_{\mathrm{e}}<\mathrm{t}_{\mathrm{f}}\)

\section*{Correctness of registers}
\(\forall \mathrm{e} \in \mathrm{E} . \operatorname{rval}(\mathrm{e})=\mathrm{F}_{\text {type(obj(e) })}(\) context \((\mathrm{e}))\)

F: reads return the last value in ar

\section*{Correctness of registers}

x.read: ?

\section*{Correctness of registers}

A read returns the value part of the register at the replica:
\(\llbracket \operatorname{read}() \rrbracket_{\mathrm{val}}(\mathrm{v}, \mathrm{t})=\mathrm{v}\)

\section*{Correctness of registers}

Invariant: the value of a register at a replica is the one with the highest timestamp out of all delivered writes

\section*{Correctness of registers}

Invariant: the value of a register at a replica is the one with the highest timestamp out of all delivered writes
\(\llbracket w r i t e\left(v_{\text {new }}\right) \rrbracket_{\text {eff }}(\mathrm{v}, \mathrm{t})=\) let \(\left(\mathrm{t}_{\text {new }}=\right.\) newUniqueTS ()\()\) in \(\lambda\left(v^{\prime}, t^{\prime}\right)\). if \(t_{\text {new }}>t^{\prime}\) then \(\left(v_{\text {new }}, t_{\text {new }}\right)\) else \((v, t)\)

\section*{Correctness of registers}

Invariant: the value of a register at a replica is the one with the highest timestamp out of all delivered writes
\(\llbracket w r i t e\left(v_{\text {new }}\right) \rrbracket_{\text {eff }}(\mathrm{v}, \mathrm{t})=\) let \(\left(\mathrm{t}_{\text {new }}=\right.\) newUniqueTS ()\()\) in \(\lambda\left(v^{\prime}, t^{\prime}\right)\). if \(t_{\text {new }}>t^{\prime}\) then \(\left(v_{\text {new }}, t_{\text {new }}\right)\) else \((v, t)\)

\section*{Correctness of registers}

Invariant: the value of a register at a replica is the one with the highest timestamp out of all delivered writes

【write \(\left(v_{\text {new }}\right) \rrbracket_{\text {eff }}(v, t)=\operatorname{let}\left(t_{\text {new }}=\right.\) newUniqueTS ()\()\) in \(\lambda\left(v^{\prime}, t^{\prime}\right)\). if \(t_{\text {new }}>t^{\prime}\) then \(\left(v_{\text {new }}, t_{\text {new }}\right)\) else \((v, t)\)

\section*{Correctness of registers}

Invariant: the value of a register at a replica is the one with the highest timestamp out of all delivered writes
\(\llbracket w r i t e\left(v_{\text {new }}\right) \rrbracket_{\text {eff }}(\mathrm{v}, \mathrm{t})=\) let \(\left(\mathrm{t}_{\text {new }}=\right.\) newUniqueTS ()\()\) in \(\lambda\left(v^{\prime}, t^{\prime}\right)\). if \(t_{\text {new }}>t^{\prime}\) then \(\left(v_{\text {new }}, t_{\text {new }}\right)\) else \((v, t)\)

\section*{Correctness of registers}

Invariant: the value of a register at a replica is the one with the highest timestamp out of all delivered writes
\(=\) the last write in arbitration out of the ones visible to the read, QED.

\section*{Proof technique summary}
- \(\forall\) concrete execution of the implementation with a history (\(\mathrm{E}, \mathrm{so}\))
- \(\exists\) vis, ar. (E, so, vis, ar) satisfies the axioms \(\mathscr{A}\)

\section*{Proof technique summary}
- \(\forall\) concrete execution of the implementation with a history (\(\mathrm{E}, \mathrm{so}\))
- \(\exists\) vis, ar. (E, so, vis, ar) satisfies the axioms \(\mathscr{A}\)
- Construct vis from message deliveries and ar from timestamps

\section*{Proof technique summary}
- \(\forall\) concrete execution of the implementation with a history (\(\mathrm{E}, \mathrm{so}\))
- \(\exists\) vis, ar. (E, so, vis, ar) satisfies the axioms \(\mathscr{A}\)
- Construct vis from message deliveries and ar from timestamps
- Prove invariants relating replica state with message deliveries: the value of a counter at a replica is the sum of all increments of the counter delivered to it

\section*{Proof technique summary}
- \(\forall\) concrete execution of the implementation with a history (\(\mathrm{E}, \mathrm{so}\))
- \(\exists\) vis, ar. (E, so, vis, ar) satisfies the axioms \(\mathscr{A}\)
- Construct vis from message deliveries and ar from timestamps
- Prove invariants relating replica state with message deliveries: the value of a counter at a replica is the sum of all increments of the counter delivered to it
- Use the invariants to prove that return values of operations correspond to data type specs

\section*{In-between eventual and strong consistency}

\section*{Eventual consistency summary}

The set of histories (E, so) such that for some vis, ar:
- Return values consistent with data type specs:
\(\forall e \in E . r v a l(e)=F_{\text {type(obi(e) })}(\) context \((e))\)
- No causal cycles: so \(u\) vis is acyclic
- Eventual visibility:
\(\forall e \in E . e \xrightarrow{\text { vis }} f\) for all but finitely many \(f \in E\)

\section*{Eventual consistency summary}

The set of histories (E, so) such that for some vis, ar:
- Return values consistent with data type specs: \(\forall \mathrm{e} \in \mathrm{E} . \operatorname{rval}(\mathrm{e})=\mathrm{F}_{\text {type(obi(e)) }}(\) (context(e) \()\)
- No causal cycles: so \(u\) vis is acyclic
- Eventual visibility: \(\forall e \in E . e \xrightarrow{\text { vis }} f\) for all but finitely many \(f \in E\)

Stronger than quiescent consistency, but still weak
Strengthen consistency by adding additional axioms on vis and ar

\title{
Consistency zoo
}

\section*{Eventual consistency}

Session guarantees

Causal consistency

Prefix consistency

Sequential consistency

\section*{Consistency zoo}

\author{
Eventual consistency \\ Session guarantees \\ Causal consistency \\ Prefix consistency \\ Sequential consistency
}

Keep soundness justifications informal: can be shown using previous techniques

\section*{ReadYourWrites}

\section*{Read Your Writes}

c.add(100)

\section*{ReadYourWrites}

\section*{Read Your Writes}

- An operation sees all prior operations by the same process
- Session guarantees: clients only accumulate information

\section*{Read Your Writes}

\[
\text { so } \subseteq \text { vis }
\]
- An operation sees all prior operations by the same process
- Session guarantees: clients only accumulate information
- Implementation: client sticks to the same replica

\section*{Monotonic Reads}

\section*{Monotonic Reads}

- An operation sees what prior operations by the same session see

\section*{Monotonic Reads}

- An operation sees what prior operations by the same session see
- Implementation: client sticks to the same replica

\section*{Causal consistency}

Disallows causality violation anomaly

\section*{Causal consistency}
access.write(all)
ar \(\|_{\text {so }}\)
access.write(noboss) \(\quad\) post.read() : photo
so
post.write(photo)

Unintuitive: chain of so and vis edges from write(noboss) to the read: write happened before the read

Mandate that all actions that happened before an action be visible to it

\section*{Causal consistency}

Unintuitive: chain of so and vis edges from write(noboss) to the read: write happened before the read

Mandate that all actions that happened before an action be visible to it

\section*{Causal consistency}

Unintuitive: chain of so and vis edges from write(noboss) to the read: write happened before the read

Mandate that all actions that happened before an action be visible to it

\section*{Causal consistency}

Implies session guarantees: so \(\subseteq\) vis and vis; so \(\subseteq\) vis

access.write(all)
access.write(noboss)
post.write(photo)

Clients stick to the same replica

Clients stick to the same replica

Clients stick to the same replica

Cannot deliver an operation before delivering its causal dependencies

Replica order ro: the order in which operations are issued at a replica

Delivery order del: one operation got delivered before another was issued
\[
\text { hb = (ro } \cup \mathrm{del})^{+}
\]
access.write(all)

post.write(photo)
post.read() : photo
\(\vdots\)
access.read () : all
- Causal dependencies of \(\mathrm{e}: \mathrm{hb}^{-1}(\mathrm{e})\)
- An op can only be delivered after all its causal dependencies
- Implementations summarise dependencies concisely

\section*{Dekker example}

y.write(I)

x.read(): 0

\section*{Dekker example}

Implementations: updates delivered later

\section*{Independent reads of independent writes (IRIW)}

\section*{Independent reads of independent writes (IRIW)}

\section*{Independent reads of independent writes (IRIW)}

Implementations: no causal dependency between the two writes \(\rightarrow\) can be delivered in different orders at different replicas

\section*{Independent reads of independent writes (IRIW)}

\section*{Independent reads of independent writes (IRIW)}

Not sequentially consistent

\section*{Independent reads of independent writes (IRIW)}

Not sequentially consistent

\section*{Sequential consistency}
- so \(\subseteq\) vis and vis is total
- vis \(\subseteq\) ar \(\Longrightarrow\) can equivalently require so \(\subseteq\) vis \(=\) ar
- Every operation sees the effect of all operations preceding it in vis
- Like the original definition with to \(=\) vis \(=\) ar

\section*{Dekker example}

y.write(I)

x.read(): 0

\section*{Dekker example}

\section*{Dekker example}

\section*{Dekker example}

No execution with such history

\section*{Consistency zoo}
- Eventual consistency
- Session guarantees: Dekker, IRIW, causality violation so \(\subseteq\) vis, vis; so \(\subseteq\) vis
- Causal consistency: Dekker, IRIW (so \(\cup\) vis) \({ }^{+} \subseteq\) vis
- Prefix consistency: Dekker ar; (vis \(\backslash \mathrm{so}) \subseteq\) vis
- Sequential consistency vis \(=a r\)

\title{
Shared-memory models
}
- Sequential consistency first proposed in the context of shared memory (1979)
- Processors and languages don't provide sequential consistency: weak memory models, due to processor and compiler optimisations
- Our specifications similar to weak memory model definitions
- Consistency axioms for last-writer-wins registers ~ shared-memory models

\section*{Consistency zoo}
- Eventual consistency
- Session guarantees: Dekker, IRIW, causality violation so \(\subseteq\) vis, vis; so \(\subseteq\) vis
- Causal consistency: Dekker, IRIW (so \(\cup\) vis) \({ }^{+} \subseteq\) vis
for last-writer-wins \(=\)
C++ release/acquire
- Prefix consistency: Dekker ar; (vis \(\backslash \mathrm{so}) \subseteq\) vis
- Sequential consistency vis \(=a r\)

\section*{Theoretical results}
- Eventual consistency
- Session guarantees so \(\subseteq\) vis, vis; so \(\subseteq\) vis
- Causal consistency (so \(u\) vis) \({ }^{+} \subseteq\) vis
- Prefix consistency ar; (vis \so) \(\subseteq\) vis
- Sequential consistency vis \(=a r\)

\section*{Theoretical results}
- Eventual consistency
- Session guarantees so \(\subseteq\) vis, vis; so \(\subseteq\) vis
- Causal consistency (so \(\cup\) vis) \({ }^{+} \subseteq\) vis
- What's the best we can do while staying available under network partitionings?
- Causal consistency is a strongest such model [Attiya et al., 2015]
- Prefix consistency ar; (vis \so) \(\subseteq\) vis
- Sequential consistency vis \(=a r\)

\section*{Theoretical results}
- Eventual consistency
- Session guarantees so \(\subseteq\) vis, vis; so \(\subseteq\) vis
- Causal consistency (so \(\cup\) vis) \({ }^{+} \subseteq\) vis
- Prefix consistency ar; (vis \so) \(\subseteq\) vis
- Sequential consistency vis \(=\mathrm{ar}\)
- What's the best we can do while staying available under network partitionings?
- Causal consistency is a strongest such model [Attiya et al., 2015]

Terms and conditions apply:
- for a certain version of CC and a certain class of implementations
- a strongest model: cannot be strengthened, but can be other alternative incomparable models

\section*{Theoretical results}
- Application of eventual consistency - collaborative editing: Google Docs, Office Online
- At the core: list data type (of formatted characters)
- List data type has an inherently high metadata overhead: can't discard a character when deleting it from a Google Docs document! [Attiya et al., 2016]
- Discarding may allow previously deleted elements to reappear

\section*{Determining the right level of consistency}

\section*{Application correctness}
- Does an application satisfy a particular correctness property?

Integrity invariants: account balance is non-negative
- Is an application robust against a particular consistency model?

Application behaves the same as when using a strongly consistent database

\section*{Application correctness}
- Does an application satisfy a particular correctness property?

Integrity invariants: account balance is non-negative
- Is an application robust against a particular consistency model?

Application behaves the same as when using a strongly consistent database

\section*{Challenge}

Vanilla weak consistency often too weak to preserve correctness

Need to strengthen consistency in parts of the application

\section*{Deposits}

\(\llbracket o p \rrbracket_{\mathrm{eff}}(\sigma)\left(\sigma^{\prime}\right)\)
\(\llbracket \operatorname{add}(100) \rrbracket_{\mathrm{eff}}(\sigma)=\lambda \sigma^{\prime} \cdot\left(\sigma^{\prime}+I 00\right)\)

\section*{Withdrawals}

【withdraw \((100) \rrbracket_{\text {eff }}(\sigma)=\)
if \(\sigma \geq 100\) then \(\left(\lambda \sigma^{\prime} . \sigma^{\prime}-100\right)\) else \(\left(\lambda \sigma^{\prime} . \sigma^{\prime}\right)\)

\section*{Withdrawals}

【withdraw \((100) \rrbracket_{\text {eff }}(\sigma)=\)
if \(\sigma \geq 100\) then \(\left(\lambda \sigma^{\prime} . \sigma^{\prime}-100\right)\) else \(\left(\lambda \sigma^{\prime} . \sigma^{\prime}\right)\)

\section*{Withdrawals}

【withdraw(100) \(\rrbracket_{\text {eff }}(\sigma)=\)
if \(\sigma \geq 100\) then \(\left(\lambda \sigma^{\prime} . \sigma^{\prime}-100\right)\) else \(\left(\lambda \sigma^{\prime} . \sigma^{\prime}\right)\)

\section*{Withdrawals}

【withdraw \((100) \rrbracket_{\text {eff }}(\sigma)=\)
if \(\sigma \geq 100\) then \(\left(\lambda \sigma^{\prime} . \sigma^{\prime}-100\right)\) else \(\left(\lambda \sigma^{\prime} . \sigma^{\prime}\right)\)
balance \(=100\)
balance \(=100\)

\section*{withdraw(I00): \(\boldsymbol{V}\)}

【withdraw \((100) \rrbracket_{\text {eff }}(\sigma)=\)
if \(\sigma \geq 100\) then \(\left(\lambda \sigma^{\prime} . \sigma^{\prime}-100\right)\) else \(\left(\lambda \sigma^{\prime} . \sigma^{\prime}\right)\)

balance \(=100\)
balance \(=100\)

【withdraw \((100) \rrbracket_{\text {eff }}(\sigma)=\)
if \(\sigma \geq 100\) then \(\left(\lambda \sigma^{\prime} . \sigma^{\prime}-100\right)\) else \(\left(\lambda \sigma^{\prime} . \sigma^{\prime}\right)\)

\section*{Strengthening consistency}

- Baseline model: causal consistency
- Problem: withdrawals are causally independent

\section*{Strengthening consistency}

- Symmetric conflict relation on operations: \(\bowtie \subseteq O p \times O p\), e.g., withdraw \(\bowtie\) withdraw
- Conflicting operations cannot be causally independent:
\[
\forall e, f \in E . o p(e) \bowtie o p(f) \Longrightarrow e \xrightarrow{\text { vis }} f \vee f \xrightarrow{\text { vis }} e
\]

\section*{Strengthening consistency}

- Symmetric conflict relation on operations: \(\bowtie \subseteq O p \times O p\), e.g., withdraw \(\bowtie\) withdraw
- Conflicting operations cannot be causally independent:
\[
\forall e, f \in E . o p(e) \bowtie o p(f) \Longrightarrow e \xrightarrow{\text { vis }} f \vee f \xrightarrow{\text { vis }} e
\]

\section*{Strengthening consistency}

- Symmetric conflict relation on operations: \(\bowtie \subseteq O p \times O p\), e.g., withdraw \(\bowtie\) withdraw
- Conflicting operations cannot be causally independent:
\(\forall e, f \in E . o p(e) \bowtie o p(f) \Longrightarrow e \xrightarrow{\text { vis }} f \vee f \xrightarrow{\text { vis }} e\)
- No constraints on additions: \(\neg\) (add \(\bowtie\) op)

\section*{Strengthening consistency}

- Implementation requires replicas executing withdraw() to synchronise
- add() doesn't need synchronisation
withdraw \(\bowtie\) withdraw: as if withdraw grabs an exclusive lock (mutex) on the account

withdraw \(\bowtie\) withdraw: as if withdraw grabs an exclusive lock (mutex) on the account

withdraw \(\bowtie\) withdraw: as if withdraw grabs an exclusive lock (mutex) on the account

balance \(=100\)
withdraw(100):V

withdraw \(\bowtie\) withdraw: as if withdraw grabs an exclusive lock (mutex) on the account

Acquiring the lock requires bringing all operations the replica holding it knows about
withdraw \(\bowtie\) withdraw: as if withdraw grabs an exclusive lock (mutex) on the account

withdraw \(\bowtie\) withdraw: as if withdraw grabs an exclusive lock (mutex) on the account

\(\neg(\) add \(\bowtie\) op): no locks,
so no synchronisation

\section*{Consistency choices}
- Databases with multiple consistency levels:
- Commercial:Amazon DynamoDB, Microsoft DocumentDB
- Research: Li+ OSDI'I2;Terry \({ }^{+}\)SOSP' 13 ; Balegas \({ }^{+}\)EuroSys' 15 ; Li+ USENIX ATC'I8
- Stronger operations require synchronisation between replicas
- Pay for stronger semantics with latency, possible unavailability and money

\section*{Consistency choices}
- Hard to figure out the minimum consistency level necessary to maintain correctness
- Reason about all possible abstract executions?
- Abstract from some of implementation details, but still describe behaviour of the whole system
- Number of possible executions is exponential: e.g., choices of vis = order of message deliveries
- Need verification techniques that limit the exponential blow-up

\section*{Verification problem}

Given
- a set of operations: withdraw(), deposit(), ...
- a conflict relation: withdraw \(\bowtie\) withdraw

Do the operations always preserve a given integrity invariant?

I = (balance \(\geq 0)\)

\section*{Verification problem}

Given
- a set of operations: withdraw(), deposit(), ...
- a conflict relation: withdraw \(\Perp\) withdraw

Do the operations always preserve a given integrity invariant?

I = (balance \(\geq 0\))
Later: operations \(\rightarrow\) whole transactions

\section*{\(\sigma \in I \longleftarrow\) Assume invariant holds OP \\ Check it's preserved after executing op}

Single check: no state-space explosion from concurrency

Effect applied in a different state!

【op \(\rrbracket_{\text {eff }}(\sigma)=\) if \(P(\sigma)\) then \(f(\sigma)\) else if...

【withdraw \((100) \rrbracket_{\text {eff }}(\sigma)=\)
if \(\sigma \geq 100\) then \(\left(\lambda \sigma^{\prime} . \sigma^{\prime}-100\right)\) else \(\left(\lambda \sigma^{\prime} . \sigma^{\prime}\right)\)
\(\sigma \in I\)
\(\mathrm{op} \quad \llbracket \mathrm{op} \rrbracket_{\text {eff }}(\sigma)\)
\[
\llbracket o p \rrbracket \text { eff }(\sigma)\left(\sigma^{\prime}\right) \in I ?
\]

【op \(\rrbracket_{\text {eff }}(\sigma)=\) if \(P(\sigma)\) then \(f(\sigma)\) else if...
I. Effector safety: \(f(\sigma)\) preserves I when executed in any state satisfying \(P:\{\mid \wedge P\} f(\sigma)\{I\}\)
\(\sigma \in I\)
\(\mathrm{op} \quad\) [op \(\rrbracket_{\text {eff }}(\sigma)\)
\[
\llbracket o p \rrbracket_{\mathrm{eff}}(\sigma)\left(\sigma^{\prime}\right) \in \mathrm{l} \text { ? }
\]

【op \(\rrbracket_{\text {eff }}(\sigma)=\) if \(P(\sigma)\) then \(f(\sigma)\) else if...
I. Effector safety: \(f(\sigma)\) preserves I when executed in any state satisfying \(P:\{\mid \wedge P\} f(\sigma)\{I\}\)
\(\{\) bal \(\geq 0 \wedge\) bal \(\geq 100\}\) bal \(:=\) bal- \(100\{\) bal \(\geq 0\}\)
\(\sigma \in I\)
\(\mathrm{op} \quad \llbracket \mathrm{op} \rrbracket_{\text {eff }}(\sigma)\)
\[
\llbracket o p \rrbracket_{\mathrm{eff}}(\sigma)\left(\sigma^{\prime}\right) \in \mathrm{l} \text { ? }
\]

【op \(\rrbracket_{\text {eff }}(\sigma)=\) if \(P(\sigma)\) then \(f(\sigma)\) else if...
I. Effector safety: \(f(\sigma)\) preserves I when executed in any state satisfying \(P:\{\mid \wedge P\} f(\sigma)\{I\}\)
\(\{\) bal \(\geq 0 \wedge\) bal \(\geq 100\}\) bal \(:=\) bal- \(100\{\) bal \(\geq 0\}\)
\(\sigma \in I\)
\(\mathrm{op} \quad \llbracket \mathrm{op} \rrbracket_{\text {eff }}(\sigma)\)
\[
\llbracket o p \rrbracket_{\mathrm{eff}}(\sigma)\left(\sigma^{\prime}\right) \in \mathrm{l} \text { ? }
\]

【op \(\rrbracket_{\text {eff }}(\sigma)=\) if \(P(\sigma)\) then \(f(\sigma)\) else if...
I. Effector safety: \(f(\sigma)\) preserves I when executed in any state satisfying \(P:\{\mid \wedge P\} f(\sigma)\{I\}\)
\(\{\) bal \(\geq 0 \wedge\) bal \(\geq \mid 00\}\) bal \(:=\) bal- \(100\{\) bal \(\geq 0\}\)
\(\sigma \in I\)
\(\mathrm{op} \quad \llbracket \mathrm{op} \rrbracket_{\text {eff }}(\sigma)\)
\[
\llbracket o p \rrbracket_{\mathrm{eff}}(\sigma)\left(\sigma^{\prime}\right) \in \mathrm{l} \text { ? }
\]

【op \(\rrbracket_{\text {eff }}(\sigma)=\) if \(P(\sigma)\) then \(f(\sigma)\) else if...
I. Effector safety: \(f(\sigma)\) preserves I when executed in any state satisfying \(P:\{\mid \wedge P\} f(\sigma)\{I\}\)
\(\{\) bal \(\geq 0 \wedge\) bal \(\geq 100\}\) bal \(:=\) bal- \(100\{\) bal \(\geq 0\}\)
\(\sigma \in I\)
\(\mathrm{op} \quad \llbracket \mathrm{op} \rrbracket_{\text {eff }}(\sigma)\)
\[
\llbracket o p \rrbracket_{\mathrm{eff}}(\sigma)\left(\sigma^{\prime}\right) \in \mathrm{l} \text { ? }
\]

【op \(\rrbracket_{\text {eff }}(\sigma)=\) if \(P(\sigma)\) then \(f(\sigma)\) else if...
I. Effector safety: \(f(\sigma)\) preserves I when executed in any state satisfying \(P:\{\mid \wedge P\} f(\sigma)\{I\}\)
\(\{\) bal \(\geq 0 \wedge\) bal \(\geq 100\}\) bal \(:=\) bal- \(100\{\) bal \(\geq 0\}\)
\(\sigma \in I\)
op \(\quad\) Op \(\rrbracket_{\text {eff }}(\sigma)\)
\[
\llbracket \circ p \rrbracket_{\mathrm{eff}}(\sigma)\left(\sigma^{\prime}\right) \in \mathrm{I} \downarrow
\]

【op \(\rrbracket_{\text {eff }}(\sigma)=\) if \(P(\sigma)\) then \(f(\sigma)\) else if...
I. Effector safety: \(f(\sigma)\) preserves I when executed in any state satisfying \(P:\{\mid \wedge P\} f(\sigma)\{1\}\)
\(\{\) bal \(\geq 0 \wedge\) bal \(\geq 100\}\) bal \(:=\) bal- \(100\{\) bal \(\geq 0\}\)

【op \(\rrbracket_{\text {eff }}(\sigma)=\) if \(P(\sigma)\) then \(f(\sigma)\) else if...
I. Effector safety: \(f(\sigma)\) preserves I when executed in any state satisfying \(P:\{\mid \wedge P\} f(\sigma)\{I\}\)
\(\{\) bal \(\geq 0 \wedge\) bal \(\geq 100\}\) bal \(:=\) bal- \(100\{\) bal \(\geq 0\}\)

\(\llbracket o p \rrbracket_{\text {eff }}(\sigma)=\) if \(P(\sigma)\) then \(f(\sigma)\) else if...
I. Effector safety: \(f(\sigma)\) preserves I when executed in any state satisfying \(P:\{I \wedge P\} f(\sigma)\{I\}\)
2. Precondition stability: \(P\) will hold when \(f(\sigma)\) is applied at any replica

\section*{\(\sigma \in I\)}

- Causal consistency \(\rightarrow\) receive op's causal dependencies before receiving op
- Causal consistency \(\rightarrow\) receive op's causal dependencies before receiving op
- But can have additional effectors of operations concurrent with op: f, g, ...
- Effectors commute, so \(\sigma^{\prime}=(f ; g ; \ldots)(\sigma)\)

- Causal consistency \(\rightarrow\) receive op's causal dependencies before receiving op
- But can have additional effectors of operations concurrent with op: f, g, ...
- Effectors commute, so \(\sigma^{\prime}=(f ; g ; \ldots)(\sigma)\)

Precondition stability: P is preserved by any effector \(f\) of any operation: \(\{P\} f\{P\}\)

Precondition stability: P is preserved by any effector \(f\) of any operation: \(\{P\} f\{P\}\)
\(\{\) bal \(\geq 100\}\) bal \(:=\) bal \(+100\{\) bal \(\geq 100\}\)

Precondition stability: P is preserved by any effector \(f\) of any operation: \(\{P\} f\{P\}\)
\(\{\) bal \(\geq 100\}\) bal \(:=\) bal \(+100\{\) bal \(\geq 100\}\)

Precondition stability: P is preserved by any effector \(f\) of any operation: \(\{P\} f\{P\}\)
\(\{\) bal \(\geq 100\}\) bal \(:=\) bal \(+100\{\) bal \(\geq 100\}\)

Precondition stability: \(P\) is preserved by any effector \(f\) of any operation: \(\{P\} f\{P\}\)
\(\{\) bal \(\geq \mid 00\}\) bal \(:=\) bal \(+100\{\) bal \(\geq 100\}\)
\(\{\) bal \(\geq 100\}\) bal \(:=\) bal- \(100\{\) bal \(\geq 100\}\)

Precondition stability: P is preserved by any effector \(f\) of any operation: \(\{P\} f\{P\}\)
\(\{\) bal \(\geq 100\}\) bal \(:=\) bal \(+100\{\) bal \(\geq 100\}\)
\(\{\) bal \(\geq 100\}\) bal \(:=\) bal- \(100\{\) bal \(\geq 100\}\)

Precondition stability: P is preserved by any effector \(f\) of any operation: \(\{P\} f\{P\}\)
\(\{\) bal \(\geq 100\}\) bal \(:=\) bal \(+100\{\) bal \(\geq 100\}\)
\(\{\) bal \(\geq 100\}\) bal \(:=\) bal- \(100\{\) bal \(\geq 100\} x\)

withdraw' is a causal dependency of op

Precondition stability: \(P\) is preserved by any effector \(f\) of any non-conflicting operation: \(\{P\} f\{P\}\)
withdraw \(\bowtie\) withdraw; \(\neg(\) add \(\bowtie\) withdraw)

withdraw' delivered before op: causality violated

Precondition stability: \(P\) is preserved by any effector \(f\) of any non-conflicting operation: \(\{P\} f\{P\}\)
withdraw \(\bowtie\) withdraw; \(\neg(\) add \(\bowtie\) withdraw)

Precondition stability: \(P\) is preserved by any effector \(f\) of any non-conflicting operation: \(\{P\} f\{P\}\)
withdraw \(\bowtie\) withdraw; \(\neg(\) add \(\bowtie\) withdraw)

Precondition stability: \(P\) is preserved by any effector \(f\) of any non-conflicting operation: \(\{P\} f\{P\}\)

Only requires checking each pair of operations: no exponential explosion!

Can infer the conflict relation \(\bowtie\) : opı \(\bowtie\) op2 if the precondition of opı unstable under the effector of op2

Pre of withdraw under effector of add:
\(\{\) bal \(\geq 100\}\) bal \(:=\) bal \(+100\{\) bal \(\geq 100\} \quad \wedge\), no \(\bowtie\)

Can infer the conflict relation \(\bowtie\) : opı \(\bowtie\) op2 if the precondition of opı unstable under the effector of op2

Pre of withdraw under effector of withdraw:
\(\{\) bal \(\geq \mid 00\}\) bal \(:=\) bal-I00 \(\{\) bal \(\geq \mid 00\} \quad x\), need \(\bowtie\)

\section*{Correct Eventual Consistency Tool}
- Developed by Sreeja Nair (UPMC, Paris)
- Model application in a domain-specific language, including replicated data type libraries
- Model compiled into a Boogie program encoding the conditions of the proof rule
- Discharged using SMT
- Automatically infers a conflict relation
https://github.com/LightKone/correct-eventual-consistency-tool

\section*{Demo}

Transactions

\section*{Transactions}
- Fundamental abstraction in databases
- Allow clients to group operations to be processed indivisibly
- Provided by virtually any single-node SQL database
- NoSQL data stores: starting to reappear

\section*{set.add(photo)}

\section*{set.read() Э photo}

SO
reg.read() : \(\varnothing\)

set.add(photo)
 reg.write(post)
reg.read() : \(\varnothing^{X}\)

set.add(photo)
\(\underset{\downarrow}{\mid \text { so }}\)
reg.write(post) \(\longrightarrow \longrightarrow \begin{gathered}\text { set.read() } \ni \text { photo } \\ \text { reg.read() }: \varnothing X\end{gathered}\)

Causal consistency isn't enough

set.add(photo)
\(\downarrow\) so
reg.write(post) \(\longrightarrow\) reg.read() : post

\section*{set.add(photo)}

\section*{set.read() Э photo}

SO
reg.read() : post

\section*{set.add(photo)}

\section*{set.read() Э photo}

SO
reg.read() : post
- Consistency model = set of histories (E, so, ~)

- Consistency model \(=\) set of histories (E, so, \(\sim\))
- \(\sim\) : equivalence relation that groups events from the same transaction: transitive, symmetric, reflexive

- Consistency model \(=\) set of histories \((E\), so, \(\sim)\)
- \(\sim\) : equivalence relation that groups events from the same transaction: transitive, symmetric, reflexive
- For simplicity, assume every transaction completes

- Consistency model \(=\) set of histories (E, so, \(\sim\))
- \(\sim\) : equivalence relation that groups events from the same transaction: transitive, symmetric, reflexive
- For simplicity, assume every transaction completes
- Transaction T: equivalence class of events of \(\sim\)

\section*{set.read() э photo \\ SO \\ reg.read() : post}

A session is a sequence of transactions: events from the same transaction contiguous in so
\[
\begin{aligned}
& \forall e, f, g \in E . e \xrightarrow{s o} f \xrightarrow{s o} g \wedge e \sim g \\
& \Longrightarrow e \sim f \sim g
\end{aligned}
\]

\section*{Strongly consistent transactions}

Sequential consistency \(\sim\) serializability

\section*{Serializability operationally}

- Server with a single copy of all objects
- Clients send txs to the server and wait for a reply
- Server processes txs atomically in the receipt order

\section*{Serializability operationally}

- Server with a single copy of all objects
- Clients send txs to the server and wait for a reply
- Server processes txs atomically in the receipt order

\section*{Serializability operationally}

- Server with a single copy of all objects
- Clients send txs to the server and wait for a reply
- Server processes txs atomically in the receipt order

\section*{Serializability operationally}

- Server with a single copy of all objects
- Clients send txs to the server and wait for a reply
- Server processes txs atomically in the receipt order

\section*{Serializability operationally}

- Server with a single copy of all objects
- Clients send txs to the server and wait for a reply
- Server processes txs atomically in the receipt order

\section*{Serializability operationally}

Serializability \(=\{\mathrm{H} \mid \exists\) execution with history H produced by the abstract implementation\}

\section*{Sequential consistency}
\((E, s o) \mid \exists\) total order to. (E, so, to) satisfies:
I. so \(\subseteq\) to
2. The return value of each operation in \(E\) is computed from a state obtained by executing all operations on the same object preceding it in to

\section*{Serializability}
(E,so, \(\sim) \mid \exists\) total order to. (E, so, \(\sim\), to) satisfies:
I. so \(\subseteq\) to
2. The return value of each operation in \(E\) is computed from a state obtained by executing all operations on the same object preceding it in to
3. Operations from the same transaction are contiguous in to

\section*{set.add(photo)}
\(\underset{\downarrow_{\text {so }}}{\left.\text { reg.write }^{\text {(post) }}\right)}\)

\section*{set.read() Э photo \\ SO \\ reg.read() : post}

Operations from the same transaction are contiguous in to

set.add(photo) \(\underset{\text { reg.write(post) }}{\downarrow_{\text {so }}}\)

reg.read() : post
set.add(photo2)
Operations from the same transaction are contiguous in to

Induces a total to/ ~ on whole tx

\section*{Weakening consistency}
- Even single-node databases don't provide serializability either by default or at all: read committed, snapshot isolation, ...

\section*{Weakening consistency}
- Even single-node databases don't provide serializability either by default or at all: read committed, snapshot isolation, ...
- To better exploit single-node parallelism

\section*{Eventually consistent transactions}
- Single-node consistency models also applicable in distributed setting
- But many still require some synchronisation between replicas: unavailability, high latency
- Want eventually consistent transactions: always available, low latency
- Preserve some aspects of the invisibility abstraction

\section*{System model recap}
- Database system consisting of multiple reliable replicas
- Each replica stores a copy of all objects of replicated data types
- Replicas can communicate via asynchronous reliable channels
- A client connects to a replica and issues transactions
```

x.write(post)
y.write(comment)
x.read : post

```
- High availability: the transaction commits immediately, without communication with other replicas, no aborts!
- A client connects to a replica and issues transactions
```

x.write(post)
y.write(comment)
x.read : post

```
```

x.read : post
y.read : comment

```
- High availability: the transaction commits immediately, without communication with other replicas, no aborts!
- Replica processes transactions sequentially: anomalies arising from single-node concurrency covered by the absence of inter-node synchronisation
- A client connects to a replica and issues transactions
```

x.write(post)
y.write(comment)
x.read : post

```
\(\qquad\)
x.read : post
y.read :comment
- High availability: the transaction commits immediately, without communication with other replicas, no aborts!
- Replica processes transactions sequentially: anomalies arising from single-node concurrency covered by the absence of inter-node synchronisation
- Reads are indivisible: access a fixed snapshot of the database (plus own writes)
```

x.write(post)
y.write(comment)
x.read : post

```

Upon commit: send the effectors of all tx operations to other replicas together

```

x.write(post) y.write(comment) x.read : post

```
```

x.write(post)
y.write(comment)

```
```

x.read : post y.read : comment

```

Upon commit: send the effectors of all tx operations to other replicas together

Receive in between txs: incorporate all the updates together
```

x.write(post)
y.write(comment)
x.read : post

```
- Writes are indivisible
- Reads are indivisible
- Reads+writes: no!

Upon commit: send the effectors of all tx operations to other replicas together

> x.read : post y.read : comment

Receive in between txs: incorporate all the updates together

\section*{Reads/writes indivisibility}

set.read() Э photo

reg.read() : post

\section*{No reads+writes indivisibility}
reg: last-writer-wins register, initially 0
\(v=\operatorname{reg} \cdot \operatorname{read}() / / 0\)
reg.write \((\mathrm{v}+\mathrm{I})\)
so // I
\[
\begin{aligned}
& v=\operatorname{reg} \cdot \operatorname{read}() / / 0 \\
& \left.\right|_{\text {so }} \\
& \text { reg.write(v+l) // I }
\end{aligned}
\]

\section*{No reads+writes indivisibility}
reg: last-writer-wins register, initially 0
\(v=\operatorname{reg} \cdot \operatorname{read}() / / 0\)
\(\downarrow_{\text {so }}\)
reg.write \((v+1) / / ~ I\)
\(\mathrm{v}=\) reg.read ()\(/ / 0\)
so
reg.write(v+I) // I
reg.read() : I

\section*{No reads+writes indivisibility}
reg: last-writer-wins register, initially 0

Lost update anomaly

\section*{Use appropriate data type}
counter: replicated counter, accumulates increments initially 0

counter.add(I)

\section*{Operational specification}
- Eventual consistency with transactions = the set of all histories produced by arbitrary client interactions with the data type implementations (with any allowed message deliveries)
- Implies quiescent consistency: if no new updates are made to the database, then replicas will eventually converge to the same state

\section*{Axiomatic specification}
- Serializability: operations from the same transaction are contiguous in the total order to
- Approach: require the same of vis and ar

\section*{Serializability: (E, so, ~, to)}

\section*{set.add(photo)}
set.read() \(\ni\) photo
```

|so

```

Operations from the same transaction are contiguous in to:
\(\forall e, f, e^{\prime}, f . e \nsim f \wedge e^{\prime} \sim e \xrightarrow{\text { to }} f \sim f \Longrightarrow e^{\prime} \xrightarrow{\text { to }} f^{\prime}\)

\section*{Serializability: (E, so, ~, to)}

Operations from the same transaction are contiguous in to:
\(\forall e, f, e^{\prime}, f . e \times f \wedge e^{\prime} \sim e \xrightarrow{\text { to }} f \sim f^{\prime} \Longrightarrow e^{\prime} \xrightarrow{\text { to }} f^{\prime}\)

\section*{Serializability: (E, so, ~, to)}

Operations from the same transaction are contiguous in to:
\(\forall e, f, e^{\prime}, f, e \times f \wedge e^{\prime} \sim e \xrightarrow{\text { to }} f \sim f \Longrightarrow e^{\prime} \xrightarrow{\text { to }} f^{\prime}\)

\section*{Serializability: (E, so, ~, to)}

Operations from the same transaction are contiguous in to:
\(\forall e, f, e^{\prime}, f, e \times f \wedge e^{\prime} \sim e \xrightarrow{\text { to }} f \sim f \Longrightarrow e^{\prime} \xrightarrow{\text { to }} f^{\prime}\)

\section*{Serializability: (E, so, ~, to)}

Operations from the same transaction are contiguous in to:
\(\forall e, f, e^{\prime}, f^{\prime} . e \times f \wedge e^{\prime} \sim e \xrightarrow{\text { to }} f \sim f^{\prime} \Longrightarrow e^{\prime} \xrightarrow{\text { to }} f^{\prime}\)

\section*{Serializability: (E, so, ~, to)}

Operations from the same transaction are contiguous in to:
\(\forall e, f, e^{\prime}, f^{\prime} . e \times f \wedge e^{\prime} \sim e \xrightarrow{\text { to }} f \sim f^{\prime} \Longrightarrow e^{\prime} \xrightarrow{\text { to }} f^{\prime}\)
to treats events in a transaction uniformly

\section*{Execution: (E, so, ~, vis, ar)}

\section*{set.add(photo)}

\section*{set.read() \(\ni\) photo \\ \\ reg.read() : \(\varnothing\)}
vis, ar treat events in a transaction uniformly:
\(\forall e, f, e^{\prime}, f . e \times f \wedge e^{\prime} \sim e \xrightarrow{\text { vis }} f \sim f^{\prime} \Longrightarrow e^{\prime} \xrightarrow{\text { vis }} f^{\prime}\)
\(\forall e, f, e^{\prime}, f, e \times f \wedge e^{\prime} \sim e \xrightarrow{\text { ar }} f \sim f^{\prime} \Longrightarrow e^{\prime} \xrightarrow{a r} f^{\prime}\)

\section*{Execution: (E, so, ~, vis, ar)}

vis, ar treat events in a transaction uniformly:
\(\forall e, f, e^{\prime}, f . e \times f \wedge e^{\prime} \sim e \xrightarrow{\text { vis }} f \sim f^{\prime} \Longrightarrow e^{\prime} \xrightarrow{\text { vis }} f^{\prime}\)
\(\forall e, f, e^{\prime}, f . e \times f \wedge e^{\prime} \sim e \xrightarrow{\text { ar }} f \sim f^{\prime} \Longrightarrow e^{\prime} \xrightarrow{a r} f^{\prime}\)

\section*{Execution: (E, so, ~, vis, ar)}

vis, ar treat events in a transaction uniformly:
\(\forall e, f, e^{\prime}, f . e \times f \wedge e^{\prime} \sim e \xrightarrow{\text { vis }} f \sim f^{\prime} \Longrightarrow e^{\prime} \xrightarrow{\text { vis }} f^{\prime}\)
\(\forall e, f, e^{\prime}, f . e \times f \wedge e^{\prime} \sim e \xrightarrow{\text { ar }} f \sim f^{\prime} \Longrightarrow e^{\prime} \xrightarrow{a r} f^{\prime}\)

\section*{Execution: (E, so, ~, vis, ar)}

vis, ar treat events in a transaction uniformly:
\(\forall e, f, e^{\prime}, f . e \times f \wedge e^{\prime} \sim e \xrightarrow{\text { vis }} f \sim f^{\prime} \Longrightarrow e^{\prime} \xrightarrow{\text { vis }} f^{\prime}\)
\(\forall e, f, e^{\prime}, f, e \times f \wedge e^{\prime} \sim e \xrightarrow{\text { ar }} f \sim f^{\prime} \Longrightarrow e^{\prime} \xrightarrow{a r} f^{\prime}\)

\section*{Execution: (E, so, ~, vis, ar)}

vis, ar treat events in a transaction uniformly:
\(\forall e, f, e^{\prime}, f . e \times f \wedge e^{\prime} \sim e \xrightarrow{\text { vis }} f \sim f^{\prime} \Longrightarrow e^{\prime} \xrightarrow{\text { vis }} f^{\prime}\)
\(\forall e, f, e^{\prime}, f . e \times f \wedge e^{\prime} \sim e \xrightarrow{\text { ar }} f \sim f^{\prime} \Longrightarrow e^{\prime} \xrightarrow{a r} f^{\prime}\)

\section*{Execution: (E, so, ~, vis, ar)}

vis, ar induce acyclic vis \(/ \sim\), ar/ \(\sim\) on whole txs:
\(T \xrightarrow{\text { vis } / \sim} S \Longleftrightarrow \exists e \in T, f \in S . e \xrightarrow{\text { vis }} f\)
\(\mathrm{T} \xrightarrow{\mathrm{ar} / \sim} \mathrm{S} \Longleftrightarrow \exists \mathrm{e} \in \mathrm{T}, \mathrm{f} \in \mathrm{S} . \mathrm{e} \xrightarrow{\mathrm{ar}} \mathrm{f}\)

\section*{Eventually consistent transactions}

The set of histories (E, so, \(\sim\)) such that for some vis, ar:
- Return values consistent with data type specs:
\(\forall e \in E . r v a l(e)=F_{\text {type(obj(e) })}(\operatorname{context}(e))\)
- No causal cycles: so \(u\) vis is acyclic
- Eventual visibility:
\(\forall e \in E . e \xrightarrow{\text { vis }} f\) for all but finitely many \(f \in E\)
- Transaction indivisibility:
\[
\begin{aligned}
& \forall e, f, e^{\prime}, f . e \times f \wedge e^{\prime} \sim e \xrightarrow{\text { vis }} f \sim f^{\prime} \Longrightarrow e^{\prime} \xrightarrow{\text { vis }} f^{\prime} \\
& \forall e, f, e^{\prime}, f^{\prime} . e \times f \wedge e^{\prime} \sim e \xrightarrow{\text { ar }} f \sim f^{\prime} \Longrightarrow e^{\prime} \xrightarrow{\text { ar }} f^{\prime}
\end{aligned}
\]

Define transactional variants of other consistency models

\section*{sistent transactions} by just adding prior axioms

\section*{Serializability: vis = ar}
- Return values consistent with data type specs:
\(\forall \mathrm{e} \in \mathrm{E} . \operatorname{rval}(\mathrm{e})=\mathrm{F}_{\text {type(obj(e) })}(\) context \((\mathrm{e}))\)
- No causal cycles: so \(u\) vis is acyclic
- Eventual visibility:
\(\forall e \in E . e \xrightarrow{\text { vis }} f\) for all but finitely many \(f \in E\)
- Transaction indivisibility:
\[
\begin{aligned}
& \forall e, f, e^{\prime}, f . e \nsim f \wedge e^{\prime} \sim e \xrightarrow{\text { vis }} f \sim f^{\prime} \Longrightarrow e^{\prime} \xrightarrow{\text { vis }} f^{\prime} \\
& \forall e, f, e^{\prime}, f . e \propto f \wedge e^{\prime} \sim e \xrightarrow{\text { ar }} f \sim f^{\prime} \Longrightarrow e^{\prime} \xrightarrow{\text { ar }} f^{\prime}
\end{aligned}
\]

\section*{Session guarantees}

set.add(photo)
so \(\subseteq\) vis

Transactions in the same session only accumulate information
reg.read(): ?

\section*{Session guarantees}

set.add(photo)
so \(\subseteq\) vis

Transactions in the same session only accumulate information

\section*{Causal consistency}

\section*{(so \(u\) vis) \({ }^{+} \subseteq\) vis}

\section*{Causal consistency}

\section*{set.add(photo) so \\ reg.write(post)}

\section*{\((\text { so } \cup \text { vis })^{+} \subseteq\) vis}

\section*{Causal consistency}

(so \(u\) vis) \({ }^{+} \subseteq\) vis

\section*{Causal consistency}

\section*{Causal consistency}

\section*{Causal consistency}

\section*{Causal consistency}

\section*{Concurrent withdrawals}
c: counter with decrements, initially 100
\[
\begin{aligned}
& v=\text { c.read }() \\
& \text { if }(v \geq 100) \downarrow_{\text {so }} \\
& \text { c.subtract }(100)
\end{aligned}
\]
\[
\begin{aligned}
& v=\text { c.read }() \\
& \text { if }(v \geq 100) \\
& \text { c.subtract }(100)
\end{aligned}
\]

\section*{Concurrent withdrawals}
c: counter with decrements, initially 100
\[
\begin{gathered}
v=\text { c.read }() \quad / / l 00 \\
\text { if }(v \geq 100) \downarrow \\
\text { s.subtract }(100) / / 0
\end{gathered}
\]
\[
\begin{aligned}
& v=\text { c.read }() \\
& \text { if }(v \geq 100) \mid / 100 \\
& \text { c.subtract }(100) / / 0
\end{aligned}
\]

\section*{Concurrent withdrawals}
c: counter with decrements, initially 100
\[
\begin{gathered}
v=\text { c.read }() \\
\text { if }(v \geq 100) \downarrow \text { so } \\
\text { c.subtract }(100) / / 0
\end{gathered}
\]

Both transactions decremented successfully synchronisation needed!

\section*{Recap: strengthening consistency}
withdraw(100): \(V\)
withdraw(100): \(\boldsymbol{V}\)
- Baseline model: causal consistency
- Symmetric conflict relation on operations: \(\bowtie \subseteq O p \times\) Op, e.g., withdraw \(\bowtie\) withdraw
- Conflicting operations cannot be causally independent:
\[
\forall e, f \in E . o p(e) \bowtie o p(f) \Longrightarrow e \xrightarrow{\text { vis }} f \vee f \xrightarrow{\text { vis }} e
\]

\section*{Recap: strengthening consistency}
withdraw \((100): \boldsymbol{V} \longrightarrow\) vis withdraw \((100): X\)
- Baseline model: causal consistency
- Symmetric conflict relation on operations: \(\bowtie \subseteq O p \times\) Op, e.g., withdraw \(\bowtie\) withdraw
- Conflicting operations cannot be causally independent:
\[
\forall e, f \in E . o p(e) \bowtie o p(f) \Longrightarrow e \xrightarrow{\text { vis }} f \vee f \xrightarrow{\text { vis }} e
\]

\section*{Strengthening transactions}
\[
\begin{aligned}
& v=\text { c.read }() \quad / / 100 \\
& \text { if }(v \geq 100) \downarrow \text { so } \\
& \text { c.subtract }(100) / / 0
\end{aligned}
\]
\[
\begin{aligned}
& v=\text { c.read }() \quad / / 100 \\
& \text { if }(v \geq 100) \downarrow \text { so } \\
& \text { c.subtract }(100) / / 0
\end{aligned}
\]
- Baseline model: causal consistency
- Symmetric conflict relation on operations: \(\bowtie \subseteq O p \times O p\), e.g., subtract \(\bowtie\) subtract
- Conflicting operations cannot be causally independent:
\(\forall e, f \in E . \operatorname{op}(e) \bowtie \operatorname{op}(f) \Longrightarrow e \xrightarrow{\text { vis }} f \vee f \xrightarrow{\text { vis }} e\)

\section*{Strengthening transactions}
\[
\begin{aligned}
& v=\text { c.read }() \quad / / 100 \\
& \text { if }(v \geq 100) \downarrow_{\text {so }} \\
& \text { c.subtract }(100) / / 0
\end{aligned}
\]
- Baseline model: causal consistency
- Symmetric conflict relation on operations: \(\bowtie \subseteq O p \times O p\), e.g., subtract \(\bowtie\) subtract
- Conflicting operations cannot be causally independent:
\(\forall e, f \in E . \operatorname{op}(e) \bowtie \operatorname{op}(f) \Longrightarrow e \xrightarrow{\text { vis }} f \vee f \xrightarrow{\text { vis }} e\)

\section*{Strengthening transactions}
\[
\begin{aligned}
& v=\text { c.read }() \quad / / 100 \\
& \text { if }(\mathrm{v} \geq 100) \downarrow \text { so } \\
& \text { c.subtract }(100)
\end{aligned}
\]
- Baseline model: causal consistency
- Symmetric conflict relation on operations: \(\bowtie \subseteq O p \times O p\), e.g., subtract \(\bowtie\) subtract
- Conflicting operations cannot be causally independent:
\(\forall e, f \in E . \operatorname{op}(e) \bowtie \operatorname{op}(f) \Longrightarrow e \xrightarrow{\text { vis }} f \vee f \xrightarrow{\text { vis }} e\)

\section*{Strengthening transactions}
\[
\begin{aligned}
& \mathrm{v}=\text { c.read }() \quad / / 100 \\
& \text { if }(\mathrm{v} \geq 100) \downarrow \text { so } \\
& \text { c.subtract }(100)
\end{aligned}
\]
- Baseline model: causal consistency
- Symmetric conflict relation on operations: \(\bowtie \subseteq\) Op \(\times\) Op, e.g., subtract \(\bowtie\) subtract
- Conflicting operations cannot be causally independent:
\(\forall e, f \in E . \operatorname{op}(e) \bowtie \operatorname{op}(f) \Longrightarrow e \xrightarrow{\text { vis }} f \vee f \xrightarrow{\text { vis }} e\)

\section*{Strengthening transactions}

\section*{c.add(I00)}
c.add(I00)
\(\neg(\) add \(\bowtie \mathrm{op})\)
- Baseline model: causal consistency
- Symmetric conflict relation on operations: \(\bowtie \subseteq O p \times O p\), e.g., subtract \(\bowtie\) subtract
- Conflicting operations cannot be causally independent:
\[
\forall e, f \in E . o p(e) \bowtie o p(f) \Longrightarrow e \xrightarrow{\text { vis }} f \vee f \xrightarrow{\text { vis }} e
\]

\section*{Recap: implementation}

c.withdraw(100): \(\downarrow\)

c. withdraw(I00) :?
- withdraw \(\bowtie\) withdraw: as if withdraw grabs an exclusive lock on the account
- Acquiring the lock requires bringing all operations the replica holding it knows about

\section*{Recap: implementation}

- withdraw \(\bowtie\) withdraw: as if withdraw grabs an exclusive lock on the account
- Acquiring the lock requires bringing all operations the replica holding it knows about

\section*{Recap: implementation}

c.withdraw(IO0):V c.withdraw(IOO):X
- withdraw \(\bowtie\) withdraw: as if withdraw grabs an exclusive lock on the account
- Acquiring the lock requires bringing all operations the replica holding it knows about

\section*{Implementation for transactions}

\section*{Implementation for transactions}

- Need to incorporate the effector of the previous transaction

\section*{Implementation for transactions}

- Need to incorporate the effector of the previous transaction
- Recall: transactions execute on a fixed snapshot
- Too late: effectors from other replicas only get applied inbetween transactions
- Have to abort the transaction and re-execute it

\section*{Implementation for transactions}

- Need to incorporate the effector of the previous transaction
- Recall: transactions execute on a fixed snapshot
- Too late: effectors from other replicas only get applied inbetween transactions
- Have to abort the transaction and re-execute it

\section*{Implementation for transactions}

- Need to incorporate the effector of the previous transaction
- Recall: transactions execute on a fixed snapshot
- Too late: effectors from other replicas only get applied inbetween transactions
- Have to abort the transaction and re-execute it

\section*{Chosing \(\bowtie\)}
- Want to choose \(\bowtie\) to preserve application invariants
- Previous proof rule for checking invariants applies
- Instead of an effector of a single operation, consider a sequential composition of effectors of all operations in a transaction
- Can also fix \(\bowtie\) so that it's easier to program: new consistency models, disallowing some classes of anomalies

\section*{Write-conflict detection}
- Operations updating the same object conflict, so cannot be causally independent:
\(\forall e, f \in E . \operatorname{obj}(e)=o b j(f) \wedge\) update \((o p(e)) \wedge\) update \((o p(f))\)
\(\Longrightarrow e \xrightarrow{\text { vis }} f \vee f \xrightarrow{\text { vis }} e\)

\section*{Write-conflict detection}
- Operations updating the same object conflict, so cannot be causally independent:
\(\forall e, f \in E\). obj \((e)=o b j(f) \wedge\) update \((o p(e)) \wedge\) update \((o p(f))\)
\(\Longrightarrow e \xrightarrow{\text { vis }} f \vee f \xrightarrow{\text { vis }} e\)
- No overdrafts:
```

v=c.read() // I00
if (v\geq100) \so
c.subtract(100) // 0

```
\[
\begin{array}{llll}
\begin{array}{lll}
v=c . r e a d \\
() & \quad / / & 100 \\
\text { if }(v \geq 100) & \downarrow \text { so } & \\
\text { c.subtract }(100) & / / & 0
\end{array}
\end{array}
\]

\section*{Write-conflict detection}
- Operations updating the same object conflict, so cannot be causally independent:
```

\foralle,f\inE.obj(e) = obj(f) ^ update(op(e)) ^ update(op(f))
e vis}f\veef\xrightarrow{}{vis}

```
- No overdrafts:
\[
\begin{aligned}
& \begin{array}{l}
v=c . r e a d() \\
\text { if }(v \geq 100) \downarrow \\
\text { c.so } \\
\text { c.subtract }(100)
\end{array} / / / 00
\end{aligned}
\]
\(\begin{array}{lllll}v=c . r e a d() & / / & 100 \\ \text { if }(v \geq 100) & \text { so } & \\ \text { c.subtract }(100) & / / 0\end{array}\)

\section*{Write-conflict detection}
- Operations updating the same object conflict, so cannot be causally independent:
\[
\begin{aligned}
& \forall e, f \in E . \text { obj }(e)=o b j(f) \wedge \text { update }(o p(e)) \wedge \text { update }(o p(f)) \\
& \Longrightarrow e \xrightarrow{\text { vis }} f \vee f \xrightarrow{\text { vis }} e
\end{aligned}
\]
- No overdrafts:

\section*{Write-conflict detection}
- Operations updating the same object conflict, so cannot be causally independent:
\[
\begin{aligned}
& \forall e, f \in E . \text { obj }(e)=o b j(f) \wedge \text { update }(o p(e)) \wedge \text { update }(o p(f)) \\
& \Longrightarrow e \xrightarrow{\text { vis }} f \vee f \xrightarrow{\text { vis }} e
\end{aligned}
\]
- No overdrafts:
\[
\begin{aligned}
& v=\text { c.read() } / / 100 \\
& \text { if }(v \geq 100) \downarrow^{\text {so }} \\
& \text { c.subtract(I00) // } 0 \\
& v=\text { c.read() } / / 100 \\
& \text { if }(v \geq 100) \downarrow \text { so } \\
& \text { c.subtract(I00) // } 0
\end{aligned}
\]

\section*{Write-conflict detection}
- Operations updating the same object conflict, so cannot be causally independent:
\(\forall e, f \in E . \operatorname{obj}(e)=o b j(f) \wedge\) update \((o p(e)) \wedge\) update \((o p(f))\)
\(\Longrightarrow e \xrightarrow{\text { vis }} f \vee f \xrightarrow{\text { vis }} e\)
- No lost updates:
\[
\mathrm{v}=\operatorname{reg} . \operatorname{read}() \quad / / 0
\]
\[
v=\text { reg.read }() \quad / / 0
\]
so
reg.write(v+l) // I

\section*{Write-conflict detection}
- Operations updating the same object conflict, so cannot be causally independent:
\(\forall e, f \in E . \operatorname{obj}(e)=o b j(f) \wedge\) update \((o p(e)) \wedge\) update \((o p(f))\)
\(\Longrightarrow e \xrightarrow{\text { vis }} f \vee f \xrightarrow{\text { vis }} e\)
- No lost updates:
\[
\begin{gathered}
v=\operatorname{reg} \cdot \mathrm{read}() \quad / / 0 \\
\underset{\downarrow \mathrm{vo}}{\text { sog.write }(\mathrm{v}+\mathrm{I})}
\end{gathered}
\]
\(\mathrm{v}=\mathrm{reg} . \mathrm{read}() \quad / / 0\)
so
\(\rightarrow\) reg.write \((v+1) / / I\)

\section*{Write-conflict detection}
- Operations updating the same object conflict, so cannot be causally independent:
```

\foralle,f\inE.obj(e) = obj(f) ^ update(op(e)) ^ update(op(f))
\Longrightarrow e \xrightarrow { v i s } f \vee f \xrightarrow { v i s } e

```
- No lost updates:

\section*{Write-conflict detection}
- Operations updating the same object conflict, so cannot be causally independent:
```

\foralle,f\inE.obj(e) = obj(f) ^ update(op(e)) ^ update(op(f))
\Longrightarrow e \xrightarrow { v i s } f \vee f \xrightarrow { v i s } e

```
- No lost updates:

\section*{Write-conflict detection}
- Operations updating the same object conflict, so cannot be causally independent:
\(\forall e, f \in E\). obj \((e)=o b j(f) \wedge\) update \((o p(e)) \wedge\) update \((o p(f))\)
\(\Longrightarrow e \xrightarrow{\text { vis }} f \vee f \xrightarrow{\text { vis }} e\)
- Updates on different accounts can go in parallel:
```

v = reg.read() // 0

```
v = reg'.read() // 0
 so
reg'.write(v+l) // I

\section*{Write-conflict detection}
- Operations updating the same object conflict, so cannot be causally independent:
\[
\begin{aligned}
& \forall e, f \in E . \operatorname{Ebj}(e)=o b j(f) \wedge \text { update }(o p(e)) \wedge \text { update }(o p(f)) \\
& \Longrightarrow e \xrightarrow{\text { vis }} f \vee f \xrightarrow{\text { vis }} e
\end{aligned}
\]
- Visibility totally orders transactions updating the same object \(\Longrightarrow\) don't need replicated data types, don't need ar

\section*{Write-conflict detection}
- Operations updating the same object conflict, so cannot be causally independent:
\[
\begin{aligned}
& \forall e, f \in E . \operatorname{Ebj}(e)=o b j(f) \wedge \text { update }(o p(e)) \wedge \text { update }(o p(f)) \\
& \Longrightarrow e \xrightarrow[\text { vis }]{ } f \vee f \xrightarrow{\text { vis }} e
\end{aligned}
\]
- Visibility totally orders transactions updating the same object \(\Longrightarrow\) don't need replicated data types, don't need ar
- Can use sequential data types: from now on just sequential read-write registers

\section*{Transactional consistency zoo}

\section*{Transactional consistency zoo}

\section*{Robustness}

\section*{Application correctness}
- Does an application satisfy a particular correctness property?

Integrity invariants: account balance is non-negative
- Is an application robust against a particular consistency model?

Application behaves the same as when using a strongly consistent database

\section*{Application correctness}
- Does an application satisfy a particular correctness property?

Integrity invariants: account balance is non-negative
- Is an application robust against a particular consistency model?

Application behaves the same as when using a strongly consistent database

\section*{Parallel shapshot isolation}
- Database with only sequential read-write registers
- Assume there is an implicit transaction writing initial values to all registers

PSI \(=\) the set of histories \((E, s o, \sim)\) such that for some vis:
- No causal cycles: so \(u\) vis is acyclic
- Eventual visibility: \(\forall e \in E . e \xrightarrow{\text { vis }} f\) for all but finitely many \(f \in E\)
- Transaction indivisibility:
\[
\forall e, f, e^{\prime}, f . e \neq f \wedge e^{\prime} \sim e \xrightarrow{\text { vis }} f \sim f^{\prime} \Longrightarrow e^{\prime} \xrightarrow{\text { vis }} f^{\prime}
\]
- Causality preservation: (so \(\cup\) vis \()^{+} \subseteq\) vis
- Write-conflict detection: \(\forall e, f \in E . o b j(e)=o b j(f) \wedge o p(e)=\) write \((-) \wedge o p(f)=\) write \((-)\) \(\Longrightarrow e \xrightarrow{\text { vis }} f \vee f \xrightarrow{\text { vis }} e\)
- A read event returns the value written by the last preceding write in vis

PSI \(=\) the set of histories \((E, s o, \sim)\) such that for some vis:
- No causal cycles: so \(u\) vis is acyclic
- Eventual visibility: \(\forall e \in E\). \(e \xrightarrow{\text { vis }} f\) for all but finitely many \(f \in E\)
- Transaction indivisibility:
\[
\forall e, f, e^{\prime}, f . e \times f \wedge e^{\prime} \sim e \xrightarrow{\text { vis }} f \sim f^{\prime} \Longrightarrow e^{\prime} \xrightarrow{\text { vis }} f^{\prime}
\]
- Causality preservation: (so \(\cup\) vis \()^{+} \subseteq\) vis
- Write-conflict detection: \(\forall e, f \in E . o b j(e)=o b j(f) \wedge o p(e)=\) write \((-) \wedge o p(f)=\) write \((-)\) \(\Longrightarrow e \xrightarrow{\text { vis }} f \vee f \xrightarrow{\text { vis }} e\)
- A read event returns the value written by the last preceding write in vis

Well-formed because of write-conflict detection

\section*{Dekker example}

y.write(I)
so \(\downarrow \downarrow\) vis
x.read(): 0

\section*{Dekker example}

\section*{Dekker example}

y.write(I)
so \(\downarrow \downarrow\) vis
x.read(): 0

\section*{Transactional Dekker = write skew}

\section*{Transactional Dekker = write skew}

Not serializable, allowed by transactional causal consistency and parallel snapshot isolation

\section*{Transactional Dekker = write skew}

\section*{Transactional Dekker = write skew}

\section*{Independent reads of independent writes (IRIW)}

\section*{Independent reads of independent writes (IRIW)}

\section*{Independent reads of independent writes (IRIW)}

Implementations: no causal dependency between the two writes \(\rightarrow\) can be delivered in different orders at different replicas

\section*{Transactional IRIW = long fork}

\section*{Transactional IRIW = long fork}

Not serializable, allowed by transactional causal consistency and parallel snapshot isolation

\section*{Robustness}
- Is an application robust against a particular consistency model?

Application behaves the same as when using a strongly consistent database

Application behaves the same whether using a PSI or a serializable database: \(\llbracket \mathrm{A} \rrbracket_{\mathrm{PSI}}=\llbracket \mathrm{A} \rrbracket_{\mathrm{SER}}\)

\section*{Robustness}
- Application: set of transactional programs \(\left\{\mathrm{P}_{\mathrm{l}}, \ldots, \mathrm{P}_{\mathrm{n}}\right\}\)

```

tx deposit(n) {
acct.bal += n
}

```
- Every program can generate multiple transactions at run time
- Simplification: every program is in its own session

\section*{Robustness}
- Application: set of transactional programs \(\left\{\mathrm{P}_{\mathrm{I}}, \ldots, \mathrm{P}_{\mathrm{n}}\right\}\)

```

tx deposit(n) {
acct.bal += n
}

```
- Every program can generate multiple transactions at run time
- Simplification: every program is in its own session
- Checking robustness via static analysis: over-approximate the set of program behaviours

\section*{Application}

\(\cdots \quad \mathrm{D}_{\mathrm{n}}\)

\section*{Application}

\(\forall\) PSI execution

\section*{Application}

\(\forall\) PSI execution

\section*{Application}

\(\forall\) PSI execution

\(\exists\) serial execution

Each read returns the value written by the last write

\section*{Application}
\(\forall\) PSI execution

\(\exists\) serial execution

Each read returns the value written by the last write

First determine if a given PSI execution is serializable
\(\forall\) PSI execution

Each read returns the value written by the last write

Build constraints on the serial order: relations on \(\mathrm{E} / \sim\) that should be included into to/~ - transactional dependencies
\(\forall\) PSI execution
\(\exists\) serial execution

Each read returns the value written by the last write

\section*{Write-read dependency (wr)}

Given a PSI execution (\(\mathrm{E}, \sim\), vis) and \(\mathrm{T}, \mathrm{S} \in \mathrm{E} / \sim\)

\(\mathrm{T} \xrightarrow{\mathrm{wr}} \mathrm{S} \Longleftrightarrow \mathrm{S}\) reads a value written by T

\section*{Write-read dependency (wr)}

Given a PSI execution (\(\mathrm{E}, \sim\), vis) and \(\mathrm{T}, \mathrm{S} \in \mathrm{E} / \sim\)

\(\mathrm{T} \xrightarrow{\mathrm{wr}} \mathrm{S} \Longleftrightarrow \mathrm{S}\) reads a value written by T

\section*{Write-read dependency (wr)}

Given a PSI execution \((\mathrm{E}, \sim\), vis \()\) and \(T, S \in E / \sim\)

\(\mathrm{T} \xrightarrow{\mathrm{wr}} \mathrm{S} \Longleftrightarrow \mathrm{S}\) reads a value written by T
\(T \xrightarrow{\mathrm{wr}} \mathrm{S} \Longleftrightarrow T \neq S \wedge T\) contains the most recent write of an object \(x\) visible to a read from \(x\) in \(S\) according to vis

\section*{Write-write dependency (wr)}

Given a PSI execution (\(\mathrm{E}, \sim\), vis) and \(\mathrm{T}, \mathrm{S} \in \mathrm{E} / \sim\)

\(\mathrm{T} \xrightarrow{\mathrm{ww}} \mathrm{S} \Longleftrightarrow \mathrm{S}\) overwrites a value written by T

\section*{Write-write dependency (wr)}

Given a PSI execution (\(\mathrm{E}, \sim\), vis) and \(\mathrm{T}, \mathrm{S} \in \mathrm{E} / \sim\)

\(\mathrm{T} \xrightarrow{\mathrm{ww}} \mathrm{S} \Longleftrightarrow \mathrm{S}\) overwrites a value written by T

\section*{Write-write dependency (wr)}

Given a PSI execution \((\mathrm{E}, \sim\), vis \()\) and \(T, S \in E / \sim\)

\(\mathrm{T} \xrightarrow{\mathrm{ww}} \mathrm{S} \Longleftrightarrow \mathrm{S}\) overwrites a value written by T
\(\mathrm{T} \xrightarrow{\mathrm{WW}} \mathrm{S} \Longleftrightarrow \mathrm{T}\) and S contain writes to the same object \(x\) and \(T \xrightarrow{\text { vis/~ } S}\)

\section*{Read-write dependency (rw)}

\(\mathrm{T} \xrightarrow{\mathrm{rw}} \mathrm{S} \Longleftrightarrow \mathrm{T} \neq \mathrm{S} \wedge \mathrm{S}\) overwrites a value read by T
\[
\mathrm{T} \xrightarrow{\mathrm{rw}} \mathrm{~S} \Longleftrightarrow \mathrm{~T} \neq \mathrm{S} \wedge \exists \mathrm{Q} \cdot \mathrm{Q} \xrightarrow{\mathrm{wr}} \mathrm{~T} \wedge \mathrm{Q} \xrightarrow{\mathrm{ww}} \mathrm{~S}
\]

\section*{Read-write dependency (rw)}

\(T \xrightarrow{\mathrm{rw}} \mathrm{S} \Longleftrightarrow \mathrm{T} \neq \mathrm{S} \wedge \mathrm{S}\) overwrites a value read by T
\[
\mathrm{T} \xrightarrow{\mathrm{rw}} \mathrm{~S} \Longleftrightarrow \mathrm{~T} \neq \mathrm{S} \wedge \exists \mathrm{Q} \cdot \mathrm{Q} \xrightarrow{\mathrm{wr}} \mathrm{~T} \wedge \mathrm{Q} \xrightarrow{\mathrm{ww}} \mathrm{~S}
\]

\section*{Read-write dependency (rw)}

\(T \xrightarrow{\mathrm{rw}} \mathrm{S} \Longleftrightarrow \mathrm{T} \neq \mathrm{S} \wedge \mathrm{S}\) overwrites a value read by T
\[
\mathrm{T} \xrightarrow{\mathrm{rw}} \mathrm{~S} \Longleftrightarrow \mathrm{~T} \neq \mathrm{S} \wedge \exists \mathrm{Q} \cdot \mathrm{Q} \xrightarrow{\mathrm{wr}} \mathrm{~T} \wedge \mathrm{Q} \xrightarrow{\mathrm{ww}} \mathrm{~S}
\]

\section*{Read-write dependency (rw)}

\(T \xrightarrow{\mathrm{rw}} \mathrm{S} \Longleftrightarrow \mathrm{T} \neq \mathrm{S} \wedge \mathrm{S}\) overwrites a value read by T
\[
\mathrm{T} \xrightarrow{\mathrm{rw}} \mathrm{~S} \Longleftrightarrow \mathrm{~T} \neq \mathrm{S} \wedge \exists \mathrm{Q} \cdot \mathrm{Q} \xrightarrow{\mathrm{wr}} \mathrm{~T} \wedge \mathrm{Q} \xrightarrow{\mathrm{ww}} \mathrm{~S}
\]

\section*{Read-write dependency (rw)}

\(\mathrm{T} \xrightarrow{\mathrm{rw}} \mathrm{S} \Longleftrightarrow \mathrm{T} \neq \mathrm{S} \wedge \mathrm{S}\) overwrites a value read by T
\[
\mathrm{T} \xrightarrow{\mathrm{rw}} \mathrm{~S} \Longleftrightarrow \mathrm{~T} \neq \mathrm{S} \wedge \exists \mathrm{Q} \cdot \mathrm{Q} \xrightarrow{\mathrm{wr}} \mathrm{~T} \wedge \mathrm{Q} \xrightarrow{\mathrm{ww}} \mathrm{~S}
\]

\section*{Read-write dependency (rw)}

\(\mathrm{T} \xrightarrow{\mathrm{rw}} \mathrm{S} \Longleftrightarrow \mathrm{T} \neq \mathrm{S} \wedge \mathrm{S}\) overwrites a value read by T
\[
\mathrm{T} \xrightarrow{\mathrm{rw}} \mathrm{~S} \Longleftrightarrow \mathrm{~T} \neq \mathrm{S} \wedge \exists \mathrm{Q} \cdot \mathrm{Q} \xrightarrow{\mathrm{wr}} \mathrm{~T} \wedge \mathrm{Q} \xrightarrow{\mathrm{ww}} \mathrm{~S}
\]

\section*{Read-write dependency (rw)}

\(\mathrm{T} \xrightarrow{\mathrm{rw}} \mathrm{S} \Longleftrightarrow \mathrm{T} \neq \mathrm{S} \wedge \mathrm{S}\) overwrites a value read by T
\[
\mathrm{T} \xrightarrow{\mathrm{rw}} \mathrm{~S} \Longleftrightarrow \mathrm{~T} \neq \mathrm{S} \wedge \exists \mathrm{Q} \cdot \mathrm{Q} \xrightarrow{\mathrm{wr}} \mathrm{~T} \wedge \mathrm{Q} \xrightarrow{\mathrm{ww}} \mathrm{~S}
\]

\section*{Dependency graphs}
- PSI execution (\(\mathrm{E}, \sim\), vis) \(\rightarrow\) dependency graph (E/~, wr, ww, rw)
- Theorem: If the dependency graph is acyclic, then the execution is serializable

If (\(w r \cup w w \cup w r\)) is acyclic, then there is a total order on \(\mathrm{E} / \sim\) containing it [order-extension principle] \(\rightarrow\) the desired order to

If (\(w r \cup w w \cup w r\)) is acyclic, then there is a total order on \(\mathrm{E} / \sim\) containing it [order-extension principle] \(\rightarrow\) the desired order to

wr \(\cup W W \cup W r\)
\[
\text { to } / \sim \rightarrow \text { to }
\]

Each read returns the value written by the last write in to?
\(\mathrm{T} \xrightarrow{\mathrm{Wr}} \mathrm{S} \Longleftrightarrow \mathrm{T} \neq \mathrm{S} \wedge \mathrm{T}\) contains the most recent write of an object x visible to a read from \(x\) in \(S\) according to vis

\(\mathrm{T} \xrightarrow{\mathrm{ww}} \mathrm{S} \Leftrightarrow \mathrm{T}\) and S contain writes to the same object x and \(\mathrm{T} \xrightarrow{\text { vis } / \sim} \mathrm{S}\)

\(\mathrm{T} \xrightarrow{\mathrm{rw}} \mathrm{S} \Longleftrightarrow \mathrm{T} \neq \mathrm{S} \wedge \exists \mathrm{Q} \cdot \mathrm{Q} \xrightarrow{\mathrm{wr}} \mathrm{T} \wedge \mathrm{Q} \xrightarrow{\mathrm{wW}} \mathrm{S}\)

If the dependency graph (\(\mathrm{E} / \sim, \mathrm{wr}, \mathrm{ww}, \mathrm{rw}\)) of a PSI execution (\(\mathrm{E}, \sim, \sim\) vis) is acyclic, then the execution is serializable

If the dependency graph (\(\mathrm{E} / \sim\), wr, ww, rw) of a PSI execution \((\mathrm{E}, \sim, \mathrm{vis})\) is acyclic, then the execution is serializable

\section*{Transactional programs \(\mathrm{P}_{1}, \mathrm{P}_{2}, \ldots, \mathrm{P}_{\mathrm{n}}\)}
\(\downarrow\)
Set of all their PSI executions \((E, \sim\), vis)

If the dependency graph (\(\mathrm{E} / \sim\), wr, ww, rw) of a PSI execution \((\mathrm{E}, \sim, \mathrm{vis})\) is acyclic, then the execution is serializable

\section*{Transactional programs \(\mathrm{P}_{1}, \mathrm{P}_{2}, \ldots, \mathrm{P}_{\mathrm{n}}\)}
\(\downarrow\)
Set of all their PSI executions (\(\mathrm{E}, \sim\), vis)
,
Set of corresponding dependency graphs (\(\mathrm{E} / \sim, \mathrm{wr}, \mathrm{ww}, \mathrm{rw}\))

If the dependency graph (\(\mathrm{E} / \sim\), wr, ww, rw) of a PSI execution \((\mathrm{E}, \sim, \mathrm{vis})\) is acyclic, then the execution is serializable

\section*{Transactional programs \(\mathrm{P}_{1}, \mathrm{P}_{2}, \ldots, \mathrm{P}_{\mathrm{n}}\)}

\section*{\(\downarrow\)}

Set of all their PSI executions (\(\mathrm{E}, \sim\), vis)
\[
\downarrow
\]

Set of corresponding dependency graphs (\(\mathrm{E} / \sim, \mathrm{wr}, \mathrm{ww}, \mathrm{rw}\))
\(\square\)
Check \(w r u w w u w r\) is acyclic in each graph

If the dependency graph (\(\mathrm{E} / \sim\), wr, ww, rw) of a PSI execution \((\mathrm{E}, \sim, \mathrm{vis})\) is acyclic, then the execution is serializable

\section*{Transactional programs \(\mathrm{P}_{1}, \mathrm{P}_{2}, \ldots, \mathrm{P}_{\mathrm{n}}\)}

\section*{\(\downarrow\)}

Set of all their PSI executions (\(\mathrm{E}, \sim\), vis)

\section*{\(\downarrow\)}

Set of corresponding dependency graphs (\(\mathrm{E} / \sim\), wr, ww, rw)
\(\square\)
Check wr \(\cup w w \cup w r\) is acyclic in each graph

Over-approximate the set of possible dependency graphs from the program text

\section*{Static dependency graphs}

- Nodes: transactional programs
- Edges: over-approximations of dependencies wr\({ }^{\#}, w^{\#}, r w^{\#}\)

\section*{Static dependency graphs}

- Nodes: transactional programs
- Edges: over-approximations of dependencies \(w r^{\#}, w^{\#}, r w^{\#}\)
\(\bullet \mathrm{T} \xrightarrow{\mathrm{wr}} \mathrm{S} \Longleftrightarrow \exists \mathrm{x}\). writes \((\mathrm{T}, \mathrm{x}) \wedge\) reads \((\mathrm{T}, \mathrm{x})\) : over-approximated by static analyses (or even by hand)

\section*{Static dependency graphs}

- Nodes: transactional programs
- Edges: over-approximations of dependencies wr\({ }^{\#}, w^{\#}, r w^{\#}\)
- \(\mathrm{T} \xrightarrow{\mathrm{wr} r^{\#}} \mathrm{~S} \Longleftrightarrow \exists \mathrm{x}\). writes \((\mathrm{T}, \mathrm{x}) \wedge \operatorname{reads}(\mathrm{T}, \mathrm{x})\) : over-approximated by static analyses (or even by hand)
- Represents an over-approximation of all dynamic dependency graphs that can be produced by the programs

Dynamic dependency graph \(\rightarrow\) a subgraph of the static dependency graph

Dynamic dependency graph \(\rightarrow\) a subgraph of the static dependency graph

Dynamic dependency graph \(\rightarrow\) a subgraph of the static dependency graph

Transactions arising from the same program map to the same node

Dynamic dependency graph \(\rightarrow\) a subgraph of the static dependency graph

Edge in the dynamic graph \(\rightarrow\) corresponding edge in the static graph

Dynamic dependency graph \(\rightarrow\) a subgraph of the static dependency graph

Edge in the dynamic graph \(\rightarrow\) corresponding edge in the static graph

Dynamic dependency graph \(\rightarrow\) a subgraph of the static dependency graph

Edge in the dynamic graph \(\rightarrow\) corresponding edge in the static graph

Dynamic dependency graph \(\rightarrow\) a subgraph of the static dependency graph

Edge in the dynamic graph \(\rightarrow\) corresponding edge in the static graph

Dynamic dependency graph \(\rightarrow\) a subgraph of the static dependency graph

Cycle in the dynamic graph \(\rightarrow\) cycle in the static graph If the static graph is acyclic, so is the dynamic one

We're considering PSI executions: uubgraph of the static some cycles can't occur

Cycle in the dynamic graph \(\rightarrow\) cycle in the static graph If the static graph is acyclic, so is the dynamic one

T x.write(val) wr x.read : val S
\(\mathrm{T} \xrightarrow{\mathrm{Wr}} \mathrm{S} \Longleftrightarrow \mathrm{T} \neq \mathrm{S} \wedge \mathrm{T}\) contains the most recent write of an object x visible to a read from x in S according to vis

\(\mathrm{T} \xrightarrow{\mathrm{WW}} \mathrm{S} \Longleftrightarrow \mathrm{T}\) and S contain writes to the same object x and \(T \xrightarrow{\text { vis } / \sim} S\)
\(T \xrightarrow{\text { x.write }(\text { val })} \mathrm{wr}\) x.read : val S
\(\mathrm{T} \xrightarrow{\mathrm{Wr}} \mathrm{S} \Longleftrightarrow \mathrm{T} \neq \mathrm{S} \wedge \mathrm{T}\) contains the most recent write of an object x visible to a read from x in S according to vis

\(\mathrm{T} \xrightarrow{\mathrm{WW}} \mathrm{S} \Longleftrightarrow \mathrm{T}\) and S contain writes to the same object x and \(T \xrightarrow{\text { vis } / \sim} S\)
\(w r \cup w w \subseteq\) vis \(/ \sim\) - acyclic
\(\mathrm{T} \xrightarrow{\mathrm{Wr}} \mathrm{S} \Longleftrightarrow \mathrm{T} \neq \mathrm{S} \wedge \mathrm{T}\) contains the most recent write of an object x visible to a read from x in S according to vis

\(\mathrm{T} \xrightarrow{\mathrm{WW}} \mathrm{S} \Longleftrightarrow \mathrm{T}\) and S contain writes to the same object x and \(T \xrightarrow{\text { vis/~ } S}\)
\[
w r \cup w w \subseteq \text { vis } / \sim-a c y c l i c
\]

PSI allows only cycles in (\(w r \cup w w \cup r w\)) with at least one rw edge

Dynamic dependency graph \(\rightarrow\) a subgraph of the static dependency graph

- Dynamic cycles with no rw edges aren't PSI \(\rightarrow\) don't represent robustness violations

- Dynamic cycles with no rw edges aren't PSI \(\rightarrow\) don't represent robustness violations
- Enough to check no cycles in (\(w r \cup w w \cup r w\)) with \(\geq I r w\)

- Dynamic cycles with no rw edges aren't PSI \(\rightarrow\) don't represent robustness violations
- Enough to check no cycles in (\(w r \cup w w \cup r w\)) with \(\geq I r w\)
- Enough to check no cycles in (\(w r^{\#} \cup w w^{\#} \cup r w^{\#}\)) with \(\geq I r w^{\#}\)

\section*{Tightening up the criterion}

PSI allows only cycles in (\(w r \cup w w u w r\)) with at least two distinct rw edges

\section*{Tightening up the criterion}

PSI allows only cycles in (\(w r \cup w w u w r\)) with at least two distinct rw edges

\section*{Tightening up the criterion}

PSI allows only cycles in (\(w r \cup w w u w r\)) with at least two distinct rw edges

\section*{Tightening up the criterion}

PSI allows only cycles in (\(w r \cup w w u w r\)) with at least two distinct rw edges

\section*{Tightening up the criterion}

PSI allows only cycles in (\(w r \cup w w u w r\)) with at least two distinct rw edges

\section*{\(\downarrow\)}

If (\(w r u w w u w r\)) for a PSI execution contains a cycle, then it also contains one:
- with at least two rw edges, and
- where all rw edges are due to distinct objects

\section*{Transactional Dekker = write skew}

Cycle with 2 rw on different objects: allowed by PSI

\section*{Transactional IRIW = long fork}

\section*{x.write(I)}
```

x.read:I
y.read: 0

```
y.read: 1
x.read :0

\section*{Transactional IRIW = long fork}

y.write(I)

\section*{Transactional IRIW = long fork}

\section*{Transactional IRIW = long fork}

\section*{Transactional IRIW = long fork}

Cycle with 2 rw on different objects: allowed by PSI

\section*{Lost update anomaly}

Not a valid PSI execution: violates write-conflict detection

\section*{Lost update anomaly}

Not a valid PSI execution: violates write-conflict detection

\section*{Lost update anomaly}

Not a valid PSI execution: violates write-conflict detection

\section*{Lost update anomaly}

Not a valid PSI execution: violates write-conflict detection

\section*{Lost update anomaly}

Not a valid PSI execution: violates write-conflict detection

\section*{Lost update anomaly}

Not a valid PSI execution: violates write-conflict detection
The 2 rw edges are due to the same object

\section*{Static robustness criterion}

If a dependency graph of a PSI execution contains a cycle, then it also contains one:
- with at least two rw edges, and
- where all rw edges are due to distinct objects

\section*{Static robustness criterion}

If a dependency graph of a PSI execution contains a cycle, then it also contains one:
- with at least two rw edges, and
- where all rw edges are due to distinct objects

No cycles in \(w r^{\#} \cup w^{\#} \cup r w^{\#}\) with all \(r w^{\#}\) on different objects

\section*{Static robustness criterion}

If a dependency graph of a PSI execution contains a cycle, then it also contains one:
- with at least two rw edges, and
- where all rw edges are due to distinct objects

No cycles in \(w r^{\#} \cup w^{\#} \cup r w^{\#}\) with all \(r w^{\#}\) on different objects
\(\Longrightarrow\) no such cycles in \(w r \cup w w \cup r w\)

\section*{Static robustness criterion}

If a dependency graph of a PSI execution contains a cycle, then it also contains one:
- with at least two rw edges, and
- where all rw edges are due to distinct objects

No cycles in \(w r^{\#} \cup w^{\#} \cup r w^{\#}\) with all \(r w^{\#}\) on different objects
\(\Longrightarrow\) no such cycles in \(w r \cup w w \cup r w\)
\(\Longrightarrow\) application is serializable

\section*{Non-robustness}

\section*{\(\operatorname{deposit}(I, € \mid 00)\)}
lookupAll :
I/€I00, 2/€0
\(\operatorname{deposit}(2, € \mid 00)\)

> lookupAll :
> I/€0, \(2 / € 100\)

\section*{Automatic robustness checking}
- Methods for other consistency models are similar
- Basis for practical tools [Warszawski et al., SIGMOD' I7, Brutschy et al., PLDI' I8; Nagar et al., CONCUR'I8]
- Static criterion on graphs sometimes used to prune the search space before a more expensive analysis with more semantic information
- Can be used for bug-finding in the absence of specifications

\title{
Automatic robustness checking
}

\title{
ACIDRain: Concurrency-Related Attacks on Database-Backed Web Applications
}

\author{
Todd Warszawski, Peter Bailis \\ Stanford InfoLab
}

\begin{abstract}
In theory, database transactions protect application data from corruption and integrity violations. In practice, database transactions frequently execute under weak isolation that exposes programs to a range of concurrency anomalies, and programmers may fail to correctly employ transactions. While low transaction volumes mask many potential concurrency-related errors under normal operation, determined adversaries can exploit them programmatically for fun and profit. In this paper, we formalize a new kind of attack on database-backed applications called an ACIDRain attack, in which an adversary systematically exploits concurrency-related vulnerabilities via programmatically accessible APIs. These attacks are not theoretical: ACIDRain attacks have already occurred in a handful of applications in the wild, including one attack which bankrupted a popular Bitcoin exchange. To proactively detect the potential for ACIDRain attacks, we extend the theory of weak isolation to analyze latent potential for non-serializable behavior under concurrent web API calls. We introduce a language-agnostic method for detecting potential isolation anomalies in web applications, called Abstract Anomaly Detection (2AD), that uses dynamic traces of database accesses to efficiently reason about the space of possible concurrent interleavings. We apply a prototype 2 AD analysis tool to 12 popular self-hosted eCommerce applications written in four languages and
\end{abstract}
```

def withdraw(amt, user_id):
bal = readBalance(user_id)
if (bal >= amt):
writeBalance(bal - amt, user_id)
def withdraw(amt, user_id):
beginTxn()
bal = readBalance(user_id)
if (bal >= amt):
writeBalance(bal - amt, user_id)
commit()

```

Figure 1: (a) A simplified example of code that is vulnerable to an ACIDRain attack allowing overdraft under concurrent access. Two concurrent instances of the withdraw function could both read balance \(\$ 100\), check that \(\$ 100 \geq \$ 99\), and each allow \(\$ 99\) to be withdrawn, resulting \(\$ 198\) total withdrawals. (b) Example of how transactions could be inserted to address this error. However, even this code is vulnerable to attack at isolation levels at or below Read Committed, unless explicit locking such as SFI FCT FOR UIPDATF is used. While this scenario closely re-

\section*{Implementing strong consistency}

\section*{Designing consistency protocols}
- So far implementations have been lightweight: "an operation can only be delivered after all its causal dependencies"
- In reality, designing consistency protocols and proving them correct is very difficult!
- Even more so for strong consistency protocols

\section*{Strong consistency}

c.withdraw(I00) :?

c.withdraw(I00) :?

\section*{Strong consistency}

c.withdraw(100): \(\downarrow\)

c.withdraw(I00):?

Sombody has to order commands

\section*{Strong consistency}

Single server, clients send commands to the server

\section*{Strong consistency}

\[
r_{1}, r_{2}, r_{3}
\]

Server totally orders commands and computes the sequence of results

\section*{Strong consistency}

\(r_{1}, r_{2}, r_{3}\)

Servers can crash! Need a fault-tolerant solution

\section*{State machine replication}

\(C_{3}, C_{2}, C_{1}\)
\(C_{1}, C_{2}, C_{3}\)
C2, C1, C3

Clients send commands to all replicas
Replicas may receive commands in different orders

\section*{State machine replication}

A distributed protocol totally order commands: needs synchronisation

\section*{State machine replication}

Operations are deterministic \(\Longrightarrow\) replicas compute the same sequence of results

\section*{State machine replication}

Implements sequential consistency (in fact, linearizability)

\section*{State machine replication}

SMR requires solving a sequence of consensus instances: agree on the next command to execute

\section*{Consensus}

CI

\(\mathrm{C}_{2}\)

- Several nodes, which can crash
- Each proposes a value

\section*{Consensus}

- Several nodes, which can crash
- Each proposes a value
- All non-crashed nodes agree on a single value

\section*{Consensus}

- Challenge: asynchronous channels \(\Longrightarrow\) can't tell a crashed node from a slow one!
- Assume only a minority of nodes can crash: a majority reach an agreement

\section*{The zoo of consensus protocols}
- Viewstamped replication (1988)
- Paxos (1998)
- Disk Paxos (2003)
- Cheap Paxos (2004)
- Generalized Paxos (2004)
- Paxos Commit (2004)
- Fast Paxos (2006)
- Stoppable Paxos (2008)
- Mencius (2008)
- Vertical Paxos (2009)
- ZAB (2009)
- Ring Paxos (2010)
- Egalitarian Paxos (2013)
- Raft (2014)
- M2Paxos (2016)
- Flexible Paxos (2016)
- Caesar (20I7)

\section*{The zoo of consensus protocols}
- Viewstamped replication (1988)
- Paxos (1998)
- Disk Paxos (2003)
- Cheap Paxos (2004)
- Generalized Paxos (2004)
- Paxos Commit (2004)
- Fast Paxos (2006)
- Stoppable Paxos (2008)
- Mencius (2008)
- Vertical Paxos (2009)
- ZAB (2009)
- Ring Paxos (2010)
- Egalitarian Paxos (2013)
- Raft (2014)
- M2Paxos (2016)
- Flexible Paxos (2016)
- Caesar (20I7)

\section*{The zoo of co}

Complex protocols: constant fight for better performance
- Viewstamped replication (1988)
- Paxos (1998)
- Disk Paxos (2003)
- Cheap Paxos (2004)
- Generalized Paxos (2004)
- Paxos Commit (2004)
- Fast Paxos (2006)
- Stoppable Paxos (2008)
- Mencius (2008)
- Vertical Paxos (2009)
- ZAB (2009)
- Ring Paxos (2010)
- Egalitarian Paxos (2013)
- Raft (2014)
- M2Paxos (2016)
- Flexible Paxos (2016)
- Caesar (20I7)

\title{
The Part-Time Parliament
}

\author{
LESLIE LAMPORT \\ Digital Equipment Corporation
}

Recent archaeological discoveries on the island of Paxos reveal that the parliament functioned despite the peripatetic propensity of its part-time legislators. The legislators maintained consistent copies of the parliamentary record, despite their frequent forays from the chamber and the forgetfulness of their messengers. The Paxon parliament's protocol provides a new way of implementing the state-machine approach to the design of distributed systems.
Categories and Subject Descriptors: C2.4 [Computer-Communications Networks]: Distributed Systems—Network operating systems; D4.5 [Operating Systems]: Reliability—Fault-tolerance; J. 1 [Administrative Data Processing]: Government

General Terms: Design, Reliability
Additional Key Words and Phrases: State machines, three-phase commit, voting

This submission was recently discovered behind a filing cabinet in the TOCS editorial office. Despite its age, the editor-in-chief felt that it was worth publishing. Because the author is currently doing field work in the Greek isles and cannot be reached, I was asked to prepare it for publication.

The author appears to be an archeologist with only a passing interest in computer science. This is unfortunate; even though the obscure ancient Paxon civilization he describes is of little interest to most computer scientists, its legislative system is an excellent model for how to implement a distributed computer system in an asynchronous environment. Indeed, some of the refinements the Paxons made to their protocol appear to be unknown in the systems literature.

\section*{The Part-Time Parliament}

\section*{LESLIE LAMPORT}

Digital Equipment Corporation

\section*{Paxos Made Simple}

\author{
Leslie Lamport
}

\section*{Abstract}

The Paxos algorithm, when presented in plain English, is very simple.

\section*{The Part-Time Parliament}

LESLIE LAMPORT
Digital Equipment Corporation

\section*{Paxos Made Simple}

\section*{Paxos Made Moderately Complex}

ROBBERT VAN RENESSE and DENIZ ALTINBUKEN, Cornell University

This article explains the full reconfigurable multidecree Paxos (or multi-Paxos) protocol. Paxos is by no means a simple protocol, even though it is based on relatively simple invariants. We provide pseudocode and explain it guided by invariants. We initially avoid optimizations that complicate comprehension. Next we discuss liveness, list various optimizations that make the protocol practical, and present variants of the protocol.
Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks]: Distributed Systems—Network operating systems; D.4.5 [Operating Systems]: Reliability—Fault-tolerance

General Terms: Design, Reliability
Additional Key Words and Phrases: Replicated state machines, consensus, voting

\section*{ACM Reference Format:}

Robbert van Renesse and Deniz Altinbuken. 2015. Paxos made moderately complex. ACM Comput. Surv. 47, 3, Article 42 (February 2015), 36 pages.
DOI: http://dx.doi.org/10.1145/2673577

\section*{The Part-Time Parliament}

LESLIE LAMPORT
Digital Equipment Corporation

\section*{Paxos Made Simple}

\section*{Paxos Made Moderately Complex}

\section*{In Search of an Understandable Consensus Algorithm}

\author{
Diego Ongaro and John Ousterhout Stanford University
}

\begin{abstract}
Raft is a consensus algorithm for managing a replicated log. It produces a result equivalent to (multi-)Paxos, and it is as efficient as Paxos, but its structure is different from Paxos; this makes Raft more understandable than Paxos and also provides a better foundation for building practical systems. In order to enhance understandability, Raft separates the key elements of consensus, such as leader election, log replication, and safety, and it enforces a stronger degree of coherency to reduce the number of states that must be considered. Results from a user study demonstrate that Raft is easier for students to learn than Paxos. Raft also includes a new mechanism for changing the cluster membershin which uses overlannino maiori-
\end{abstract}
to understand than Paxos: after learning both algorithms, 33 of these students were able to answer questions about Raft better than questions about Paxos.

Raft is similar in many ways to existing consensus algorithms (most notably, Oki and Liskov's Viewstamped Replication [27, 20]), but it has several novel features:
- Strong leader: Raft uses a stronger form of leadership than other consensus algorithms. For example, log entries only flow from the leader to other servers. This simplifies the management of the replicated \(\log\) and makes Raft easier to understand.
- Leader election: Raft uses randomized timers to elect leaders. This adds only a small amount of mechanism to the heartheats already required for any consensus al-

\section*{The Part-Time Parliament}

LESLIE LAMPORT
Digital Equipment Corporation

\section*{Paxos Made Simple}

\section*{Paxos Made Moderately Complex}

\section*{In Search of an Understandable Consensus Algorithm}

\section*{Abstract}

Raft is a consensus algorithm for n log. It produces a result equivalent \(t\) it is as efficient as Paxos, but its s from Paxos; this makes Raft more Paxos and also provides a better \(f\) c ing practical systems. In order to enh ity, Raft separates the key elements o leader election, log replication, and s a stronger degree of coherency to re states that must be considered. Resu demonstrate that Raft is easier for st Paxos. Raft also includes a new mec the cluster membershin which uses

Untortunateiy, Paxos has two signiticant drawbacks. The first drawback is that Paxos is exceptionally difficult to understand. The full explanation [15] is notoriously opaque; few people succeed in understanding it, and only with great effort. As a result, there have been several attempts to explain Paxos in simpler terms [16, 20, 21]. These explanations focus on the single-decree subset, yet they are still challenging. In an informal survey of attendees at NSDI 2012, we found few people who were comfortable with Paxos, even among seasoned researchers. We struggled with Paxos ourselves; we were not able to understand the complete protocol until after reading several simplified explanations and designing our own alter-

\title{
Paxos Made Live - An Engineering Perspective (2006 Invited Talk)
}

\author{
Tushar Chandra, Robert Griesemer, and Joshua Redstone
}

Google Inc.

\section*{ABSTRACT}

We describe our experience in building a fault-tolerant database using the Paxos consensus algorithm. Despite the existing literature in the field, building such a database proved to be non-trivial. We describe selected algorithmic and engineering problems encountered, and the solutions we found for them. Our measurements indicate that we have built a competitive system.

\section*{Categories and Subject Descriptors}
D.4.5 [Operating systems]: Reliability-Fault-tolerance;
B.4.5 [Input/output and data communications]: Reliability, Testing, and Fault-Tolerance-Redundant design

\section*{General Terms}

Experimentation, Performance, Reliability

\section*{Keywords}

Experiences, Fault-tolerance, Implementation, Paxos
database is just an example. As a result, the consensus problem has been studied extensively over the past two decades. There are several well-known consensus algorithms that operate within a multitude of settings and which tolerate a variety of failures. The Paxos consensus algorithm [8] has been discussed in the theoretical [16] and applied community \([10,11,12]\) for over a decade.

We used the Paxos algorithm ("Paxos") as the base for a framework that implements a fault-tolerant log. We then relied on that framework to build a fault-tolerant database. Despite the existing literature on the subject, building a production system turned out to be a non-trivial task for a variety of reasons:
- While Paxos can be described with a page of pseudocode, our complete implementation contains several thousand lines of \(\mathrm{C}++\) code. The blow-up is not due simply to the fact that we used \(\mathrm{C}++\) instead of pseudo notation, nor because our code style may have been verbose. Converting the algorithm into a practical, production-ready system involved implementing many features and optimizations - some published in the lit-

\title{
Paxos Made Live - An Engineering Perspective (2006 Invited Talk)
}

\author{
Tushar Chandra, Robert Griesemer, and Joshua Redstone
}

\author{
Google Inc.
}

\section*{ABSTRACT}

We describe our experience in building a fault-1 base using the Paxos consensus algorithm. D isting literature in the field, building such a dat to be non-trivial. We describe selected algorit gineering problems encountered, and the solut: for them. Our measurements indicate that w \(\epsilon\) competitive system.

\section*{Categories and Subject Descriptors}
D.4.5 [Operating systems]: Reliability-Fault-tolerance;
B.4.5 [Input/output and data communications]: Reliability, Testing, and Fault-Tolerance-Redundant design

\section*{General Terms}

Experimentation, Performance, Reliability

\section*{Keywords}

Experiences, Fault-tolerance, Implementation, Paxos
- There are significant gaps between the description of the Paxos algorithm and the needs of a real-world system. In order to build a real-world system, an expert needs to use numerous ideas scattered in the literature and make several relatively small protocol extensions. The cumulative effort will be substantial and the final system will be based on an unproven protocol.
a iramework unai impiements a raut-tonerant log. vve unen relied on that framework to build a fault-tolerant database. Despite the existing literature on the subject, building a production system turned out to be a non-trivial task for a variety of reasons:
- While Paxos can be described with a page of pseudocode, our complete implementation contains several thousand lines of \(\mathrm{C}++\) code. The blow-up is not due simply to the fact that we used \(\mathrm{C}++\) instead of pseudo notation, nor because our code style may have been verbose. Converting the algorithm into a practical, production-ready system involved implementing many features and optimizations - some published in the lit-

\title{
Paxos Made Live
\((201\)
}

\author{
Tushar Chandra, Rok
}

\section*{ABSTRACT}

We describe our experience in building a fault-tolera base using the Paxos consensus algorithm. Despit isting literature in the field, building such a databas to be non-trivial. We describe selected algorithmic gineering problems encountered, and the solutions i for them. Our measurements indicate that we hav competitive system.

\section*{Categories and Subject Descriptors}
D.4.5 [Operating systems]: Reliability—Fault-tc B.4.5 [Input/output and data communication ability, Testing, and Fault-Tolerance-Redundant d

\section*{General Terms}

Experimentation, Performance, Reliability

\section*{Keywords}

Experiences, Fault-tolerance, Implementation, Paxos

\subsection*{5.1 Handling disk corruption}

Replicas witness disk corruption from time to time. A disk may be corrupted due to a media failure or due to an operator error (an operator may accidentally erase critical data). When a replica's disk is corrupted and it loses its persistent state, it may renege on promises it has made to other replicas in the past. This violates a key assumption in the Paxos algorithm. We use the following mechanism to address this problem [14].

Disk corruptions manifest themselves in two ways. Either file(s) contents may change or file(s) may become inaccessible. To detect the former, we store the checksum of the contents of each file in the file \({ }^{2}\). The latter may be indistinguishable from a new replica with an empty disk - we detect this case by having a new replica leave a marker in GFS after start-up. If this replica ever starts again with an empty disk, it will discover the GFS marker and indicate that it has a corrupted disk.

A replica with a corrupted disk rebuilds its state as follows. It participates in Paxos as a non-voting member; meaning that it uses the catch-up mechanism to catch up but does not respond with promise or acknowledgment messages. It remains in this state until it observes one complete instance of Paxos that was started after the replica started rebuilding its state. By waiting for the extra instance of Paxos, we ensure that this replica could not have reneged on an earlier promise.

\title{
Paxos Made Live \\ (20C
}

\author{
Tushar Chandra, Rok
}

\section*{ABSTRACT}

We describe our experience in building a fault-tolera base using the Paxos consensus algorithm. Despitt isting literature in the field, building such a databas to be non-trivial. We describe selected algorithmic gineering problems encountered, and the solutions i for them. Our measurements indicate that we hav competitive system.

\section*{Categories and Subject Descriptors}
D.4.5 [Operating systems]: Reliability—Fault-tc B.4.5 [Input/output and data communication ability, Testing, and Fault-Tolerance-Redundant d

\section*{General Terms}

Experimentation, Performance, Reliability

\section*{Keywords}

Experiences, Fault-tolerance, Implementation, Paxos

\subsection*{5.1 Handling disk corruption}

Replicas witness disk corruption from time to time. A disk may be corrupted due to a media failure or due to an operator error (an operator may accidentally erase critical data). When a replica's disk is corrupted and it loses its persistent state, it may renege on promises it has made to other replicas in the past. This violates a key assumption in the Paxos algorithm. We use the following mechanism to address this problem [14].

Disk corruptions manifest themselves in two ways. Either file(s) contents may change or file(s) may become inaccessible. To detect the former, we store the checksum of the contents of each file in the file \({ }^{2}\). The latter may be indistinguishable from a new replica with an empty disk - we detect this case by having a new replica leave a marker in GFS empty Broken [Michael et al., DISC' 16] that it

A replica with a corrupted disk rebuilds its state as follows. It participates in Paxos as a non-voting member; meaning that it uses the catch-up mechanism to catch up but does not respond with promise or acknowledgment messages. It remains in this state until it observes one complete instance of Paxos that was started after the replica started rebuilding its state. By waiting for the extra instance of Paxos, we ensure that this replica could not have reneged on an earlier promise.

\section*{Another application: blockchain}
\begin{tabular}{|c|}
\hline\(c 1\) \\
\hline\(c 2\) \\
\hline\(c 3\) \\
\hline\(c 4\) \\
\hline\(\ldots\) \\
\hline
\end{tabular}
- Blockchain = using consensus to agree on a sequence of blocks in a ledger
- Tolerates malicious behaviour: some nodes may deviate from the protocol
- Many protocols descended from Paxos

\section*{\begin{tabular}{|l|l|l|l|l|l|l|l|l|}
\hline \(\mathbf{B}\) & \(\mathbf{B}\) & \(\mathbf{C}\) & Your account & News & Sport & Weather & Shop & Reel \\
Travel & Mor \\
\hline
\end{tabular} NEWS}

\section*{Technology}

\section*{Facebook's Libra pitches to be the future of money}

Rory Cellan-Jones
Technology correspondent
@BBCRoryC
(1) 18 June 2019

It is a hugely ambitious - some might say megalomaniacal - project to create a new global currency. Facebook's David Marcus tells me it is about giving billions of people more freedom with money and "righting the many wrongs of the present system".

The message is this is not some little side project a small team at the Facebook's

\section*{Technology}

Facebook's Libra pitches to be the future of mone

It is a hugely an a new global cu billions of peop of the present s

The message is

\title{
HotStuff: BFT Consensus with Linearity and Responsiveness
}

\author{
Maofan Yin Maofan Yin
Cornell University VMware Research
}

\author{
Dahlia Malkhi \\ VMware Research
}

\author{
Michael K. Reiter \\ UNC-Chapel Hill \\ VMware Research
}

\author{
Guy Golan Gueta \\ VMware Research
}

\author{
Ittai Abraham \\ VMware Research
}

\begin{abstract}
We present HotStuff, a leader-based Byzantine fault-tolerant replication protocol for the partially synchronous model. Once network communication becomes synchronous, HotStuff enables a correct leader to drive the protocol to consensus at the pace of actual (vs. maximum) network delay-a property called responsiveness-and with communication complexity that is linear in the number of replicas. To our knowledge, HotStuff is the first partially synchronous BFT replication protocol exhibiting these combined properties. Its simplicity enables it to be further pipelined and simplified into a practical, concise protocol for building large-scale replication services.
\end{abstract}

\section*{CCS CONCEPTS}
- Software and its engineering \(\rightarrow\) Software fault tolerance; • Security and privacy \(\rightarrow\) Distributed systems security.

\section*{KEYWORDS}

Byzantine fault tolerance; consensus; responsiveness; scalability; blockchain
stabilization time (GST). In this model, \(n \geq 3 f+1\) is required for non-faulty replicas to agree on the same commands in the same order (e.g., [12]) and progress can be ensured deterministically only after GST [27].

When BFT SMR protocols were originally conceived, a typical target system size was \(n=4\) or \(n=7\), deployed on a local-area network. However, the renewed interest in Byzantine fault-tolerance brought about by its application to blockchains now demands solutions that can scale to much larger \(n\). In contrast to permissionless blockchains such as the one that supports Bitcoin, for example, so-called permissioned blockchains involve a fixed set of replicas that collectively maintain an ordered ledger of commands or, in other words, that support SMR. Despite their permissioned nature, numbers of replicas in the hundreds or even thousands are envisioned (e.g., [30, 42]). Additionally, their deployment to wide-area networks requires setting \(\Delta\) to accommodate higher variability in communication delays.

The scaling challenge. Since the introduction of PBFT [20], the first practical BFT replication solution in the partial synchrony model, numerous BFT solutions were built around its core two-

Technology
Facebook's Libra pitches to be the future of mone

It is a hugely an a new global cu billions of peop of the present s

The message is

\title{
HotStuff: BFT Consensus with Linearity and Responsiveness
}

\author{
Maofan Yin Cornell University \\ Dahlia Malkhi \\ VMware Research
} VMware Research

\author{
Michael K. Reiter \\ UNC-Chapel Hill
}

Guy Golan Gueta
VMware Research

\author{
Ittai Abraham \\ VMware Research
}

\begin{abstract}
nous BFT replication protocol exhibiting Its simplicity enables it to be further pi] a practical, concise protocol for build services.

\section*{CCS CONCEPTS}
- Software and its engineering \(\rightarrow\) Sc Security and privacy \(\rightarrow\) Distributed
\end{abstract}

We present HotStuff, a leader-based Byzantine fault-tolerant replication protocol for the partially synchronous model. Once network communication becomes synchronous, HotStuff enables a correct leader to drive the protocol to consensus at the pace of actual (vs. maximum) network delay-a property called responsiveness-and with communication complexity that is linear in the number of replicas. To our knowledge, HotStuff is the first partially synchro-

\section*{KEYWORDS}

\section*{ACKNOWLEDGMENTS} version posted to the ArXiv of this manuscript.

We are thankful to Mathieu Baudet, Avery Ching, George Danezis, François Garillot, Zekun Li, Ben Maurer, Kartik Nayak, Dmitri Perelman, and Ling Ren, for many deep discussions of HotStuff, and to Mathieu Baudet for exposing a subtle error in a previous
stabilization time (GST). In this model, \(n \geq 3 f+1\) is required for non-faulty replicas to agree on the same commands in the same order (e.g., [12]) and progress can be ensured deterministically only after GST [27].

When BFT SMR protocols were originally conceived, a typical target system size was \(n=4\) or \(n=7\), deployed on a local-area network. However, the renewed interest in Byzantine fault-tolerance brought about by its application to blockchains now demands solu-
 blockchain
model, numerous BFT solutions were built around its core two-

V2

- \(2 f+I\) nodes, at most \(f\) can crash
- Each node proposes a value
- All non-crashed nodes agree on a single value

V2

V3

\section*{V3}

Acceptor
- Acceptors = members of parliament: can vote to accept a value, majority (quorum) wins

- Acceptors = members of parliament: can vote to accept a value, majority (quorum) wins
- Leader = parliament speaker: proposes its value to vote on
- Good for state-machine replication: can elect the leader once and get it to process multiple commands

\section*{Leader ?}
- Phase I: a prospective leader convinces a quorum of acceptors to accept its authority

\section*{Leader\#: 2}
- Phase I: a prospective leader convinces a quorum of acceptors to accept its authority

Leader\#: 2
Leader\#: 2
- Phase I: a prospective leader convinces a quorum of acceptors to accept its authority

Leader\#: 2

Leader\#: 2
- Phase I: a prospective leader convinces a quorum of acceptors to accept its authority

\section*{Leader\#: 2}

Leader\#: 2
- Phase I: a prospective leader convinces a quorum of acceptors to accept its authority
- Phase 2: the leader gets a quorum of acceptors to accept its value and replies to the client

Leader\#: 2

\section*{Leader\#: \(2 \boldsymbol{V}\)}
- Phase I: a prospective leader convinces a quorum of acceptors to accept its authority
- Phase 2: the leader gets a quorum of acceptors to accept its value and replies to the client

Leader\#: 2
Leader\#: 2 ป
Accepted: v2
- Phase I: a prospective leader convinces a quorum of acceptors to accept its authority
- Phase 2: the leader gets a quorum of acceptors to accept its value and replies to the client

Leader\#: 2
Accepted: v2

Leader\#: 2
Accepted: v2
- Phase I: a prospective leader convinces a quorum of acceptors to accept its authority
- Phase 2: the leader gets a quorum of acceptors to accept its value and replies to the client

Leader\#: 2
Accepted: v2

\section*{Leader\#: 2}

Accepted: \(v_{2} \checkmark\)
Reply \(\mathrm{V}_{2}\) to client
- Phase I: a prospective leader convinces a quorum of acceptors to accept its authority
- Phase 2: the leader gets a quorum of acceptors to accept its value and replies to the client

Leader\#: 2
Accepted: v2

3

Leader\#: 2
Accepted: \(\mathrm{v}_{2} \boldsymbol{V}\)
Reply \(\mathrm{v}_{2}\) to client
- Phase I: a prospective leader convinces a quorum of acceptors to accept its authority
- Phase 2: the leader gets a quorum of acceptors to accept its value and replies to the client

Leader\#: 3
Accepted: v3

Leader\#: 2
Accepted: \(v_{2} \sim\)
Reply \(\mathrm{v}_{2}\) to client Reply \(\mathrm{v}_{3}\) to client
- Problem: node 3 may wake up, form a quorum of \(I\) and 3 , and accept value \(v_{3}\)

Leader\#: 3
Accepted: v3

Leader\#: 2
Accepted: \(\mathrm{v}_{2} \boldsymbol{V}\)
Reply \(\mathrm{v}_{2}\) to client

\section*{3}

Leader\#: 3
- Problem: node 3 may wake up, form a quorum of \(I\) and 3 , and accept value \(v_{3}\)
- Need to ensure once a value is chosen by a quorum, it can't be changed
- Use ballot numbers to distinguish different votes: unique for each potential leader

Leader\#: ?
Ballot\#: 0
Accepted: ?

Leader\#: ?
Ballot\#: 0
Accepted: ?

Leader\#: ?
Ballot\#: 0
Accepted: ?
- Phase I: a prospective leader choses a ballot \(b\) and convinces a quorum of acceptors to switch to \(b\)
- Acceptor switches only if it's current ballot is smaller

Leader\#:?
Ballot\#: 0
Accepted:?

Leader\#: 2
Ballot\#:b
Accepted:?

Leader\#:?
Ballot\#: 0
Accepted:?
- Phase I: a prospective leader choses a ballot \(b\) and convinces a quorum of acceptors to switch to \(b\)
- Acceptor switches only if it's current ballot is smaller

- Phase I: a prospective leader choses a ballot \(b\) and convinces a quorum of acceptors to switch to \(b\)
- Acceptor switches only if it's current ballot is smaller

- Phase 2: the leader sends its value tagged with its ballot number
- Acceptor only accepts a value tagged with the ballot it is in

- Phase 2: the leader sends its value tagged with its ballot number
- Acceptor only accepts a value tagged with the ballot it is in

Leader\#: 2
Ballot\#: b
Accepted: v2@b

Leader\#: \(2 \boldsymbol{\checkmark}\)
Ballot\#: b
Accepted: v2@bv
Reply \(\mathrm{v}_{2}\) to client

3

Leader\#: ?
Ballot\#: 0
Accepted: ?

Leader\#: 2
Ballot\#: b
Accepted: v2@b

Leader\#: \(2 \checkmark\)
Ballot\#: b
Accepted: v2@bv
Reply \(\mathrm{v}_{2}\) to client

Leader\#: ?
Ballot\#: 0 Accepted: ?
- Need to ensure once a value is chosen by a quorum, it can't be changed
- Need do change Phase I to restrict which values can be proposed

Leader\#: 2
Ballot\#: b
Accepted: v2@b

Leader\#: 2 人
Ballot\#: b
Accepted: v2@b Accepted:? Reply \(\mathrm{v}_{2}\) to client

\section*{3}

Leader\#: 3
Ballot\#: \(\mathrm{b}^{\prime}>\mathrm{b}\)

- Phase I: acceptor sends to the prospective leader its value and the ballot it was accepted at
- If some acceptor has accepted a value, the leader proposes the value accepted at the highest ballot number

Leader\#: 3
Ballot\#: b'
Accepted: v2@b

Leader\#: 2 V
Ballot\#:b
Accepted: \(\mathrm{v}_{2} @ b \boldsymbol{V}\)
Reply \(\mathrm{v}_{2}\) to client
ok, v2@b

Leader\#: 3
Ballot\#: b'
Accepted: \(v_{2} @ b^{\prime}\)
- Phase I: acceptor sends to the prospective leader its value and the ballot it was accepted at
- If some acceptor has accepted a value, the leader proposes the value accepted at the highest ballot number

Leader\#: 3
Ballot\#: b'
Accepted: v2@b

Leader\#: \(2 \boldsymbol{V}\)
Ballot\#:b
Accepted: \(\mathrm{v}_{2} @ b\),
Reply \(\mathrm{v}_{2}\) to client
ok, v2@b

Leader\#: 3
Ballot\#: b'
Accepted: \(v_{2} @ b^{\prime}\)
- Phase I: acceptor sends to the prospective leader its value and the ballot it was accepted at
- If some acceptor has accepted a value, the leader proposes the value accepted at the highest ballot number
- Ensures the value chosen will not be changed \(\Longrightarrow\) nodes don't disagree about the chosen value

Leader\#: 3
Ballot\#: b'
Accepted: v2@b

Leader\#: \(2 \boldsymbol{V}\)
Ballot\#:b
Accepted: \(\mathrm{v}_{2} @ b \boldsymbol{V}\)
Reply \(\mathrm{v}_{2}\) to client

Leader\#: 3
Ballot\#: b'
Accepted: \(v_{2} @ b^{\prime}\)

Key invariant: If a quorum Q accepted a value v at ballot \(b\), then any leader of \(a\) ballot \(b^{\prime}>b\) will also propose \(v\)
- Ensures the value chosen will not be changed \(\Longrightarrow\) nodes don't disagree about the chosen value

\section*{Proof of the key invariant}
- Invariant: If a quorum Q accepted a value v at ballot b , then any leader of a ballot \(\mathrm{b}^{\prime}>\mathrm{b}\) may only propose v

\section*{Proof of the key invariant}
- Invariant: If a quorum Q accepted a value v at ballot b , then any leader of a ballot \(\mathrm{b}^{\prime}>\mathrm{b}\) may only propose v
- Fix an execution of a protocol and assume that in this execution Q accepted \(\mathrm{v@b}\).

\section*{Proof of the key invariant}
- Invariant: If a quorum \(Q\) accepted \(a\) value \(v\) at ballot \(b\), then any leader of a ballot \(\mathrm{b}^{\prime}>\mathrm{b}\) may only propose v
- Fix an execution of a protocol and assume that in this execution Q accepted v @b.
- We prove by induction on \(b^{\prime}\) that: for any \(b^{\prime}>b\), leader \(\left(b^{\prime}\right)\) may only propose v .

\section*{Proof of the key invariant}
- Invariant: If a quorum Q accepted a value v at ballot b , then any leader of a ballot \(\mathrm{b}^{\prime}>\mathrm{b}\) may only propose v
- Fix an execution of a protocol and assume that in this execution Q accepted \(\mathrm{v@b}\).
- We prove by induction on \(b^{\prime}\) that: for any \(b^{\prime}>b\), leader \(\left(b^{\prime}\right)\) may only propose v .
- Consider \(\mathrm{b}^{\prime}>\mathrm{b}\) and assume leader(\(\mathrm{b}^{\prime \prime}\)) may only propose v if \(\mathrm{b}<\mathrm{b}^{\prime \prime}<\mathrm{b}^{\prime}\). We prove that leader(\(\mathrm{b}^{\prime}\)) may only propose v .
- Q accepted \(\mathrm{v} @ b\)
- \(b^{\prime}>b\)
- leader(\(\mathrm{b}^{\prime \prime}\)) may only propose v if \(\mathrm{b}<\mathrm{b}^{\prime \prime}<\mathrm{b}^{\prime}\)
- Q accepted \(\mathrm{v@b}\)
- \(b^{\prime}>b\)
- leader(\(\mathrm{b}^{\prime \prime}\)) may only propose v if \(\mathrm{b}<\mathrm{b}^{\prime \prime}<\mathrm{b}^{\prime}\)
- leader(\(\mathrm{b}^{\prime}\)) gets support from a quorum \(\mathrm{Q}^{\prime}\) before proposing
- Q accepted \(\mathrm{v} @ b\)
- \(b^{\prime}>b\)
- leader(\(\mathrm{b}^{\prime \prime}\)) may only propose v if \(\mathrm{b}<\mathrm{b}^{\prime \prime}<\mathrm{b}^{\prime}\)
- leader \(\left(\mathrm{b}^{\prime}\right)\) gets support from a quorum \(\mathrm{Q}^{\prime}\) before proposing
- \(\mathrm{Q} \cap \mathrm{Q}^{\prime} \neq \varnothing \Longrightarrow \exists\) process \(\mathrm{p} \in \mathrm{Q} \cap \mathrm{Q}^{\prime}\) which both voted for leader(\(\mathrm{b}^{\prime}\)) and accepted \(\mathrm{v@b}\)
- Q accepted \(\mathrm{v} @ b\)
- \(b^{\prime}>b\)
- leader(\(\mathrm{b}^{\prime \prime}\)) may only propose v if \(\mathrm{b}<\mathrm{b}^{\prime \prime}<\mathrm{b}^{\prime}\)
- leader \(\left(b^{\prime}\right)\) gets support from a quorum \(\mathrm{Q}^{\prime}\) before proposing
- \(\mathrm{Q} \cap \mathrm{Q}^{\prime} \neq \varnothing \Longrightarrow \exists\) process \(\mathrm{p} \in \mathrm{Q} \cap \mathrm{Q}^{\prime}\) which both voted for leader(\(\mathrm{b}^{\prime}\)) and accepted \(\mathrm{v@b}\)
- p couldn't accept \(\mathrm{v} @ \mathrm{~b}\) after voting for leader(\(\mathrm{b}^{\prime}\)): after voting, p joins \(\mathrm{b}^{\prime}\) and rejects all messages with ballot \(\mathrm{b}<\mathrm{b}^{\prime}\)
- Q accepted \(\mathrm{v} @ b\)
- \(b^{\prime}>b\)
- leader(\(\mathrm{b}^{\prime \prime}\)) may only propose v if \(\mathrm{b}<\mathrm{b}^{\prime \prime}<\mathrm{b}^{\prime}\)
- leader \(\left(b^{\prime}\right)\) gets support from a quorum \(Q^{\prime}\) before proposing
- \(\mathrm{Q} \cap \mathrm{Q}^{\prime} \neq \varnothing \Longrightarrow \exists\) process \(\mathrm{p} \in \mathrm{Q} \cap \mathrm{Q}^{\prime}\) which both voted for leader(\(\mathrm{b}^{\prime}\)) and accepted \(\mathrm{v@b}\)
- p couldn't accept \(\mathrm{v} @ b\) after voting for leader(\(\mathrm{b}^{\prime}\)): after voting, p joins \(\mathrm{b}^{\prime}\) and rejects all messages with ballot \(\mathrm{b}<\mathrm{b}^{\prime}\)
- p accepted \(\mathrm{v} @ b\) before voting for leader(b')
- Q accepted \(\mathrm{v} @ b\)
- \(b^{\prime}>b\)
- leader(\(\mathrm{b}^{\prime \prime}\)) may only propose v if \(\mathrm{b}<\mathrm{b}^{\prime \prime}<\mathrm{b}^{\prime}\)
- leader(\(\mathrm{b}^{\prime}\)) gets support from a quorum \(\mathrm{Q}^{\prime}\) before proposing
- \(\mathrm{Q} \cap \mathrm{Q}^{\prime} \neq \varnothing \Longrightarrow \exists\) process \(\mathrm{p} \in \mathrm{Q} \cap \mathrm{Q}^{\prime}\) which both voted for leader(\(\mathrm{b}^{\prime}\)) and accepted \(\mathrm{v@b}\)
- p couldn't accept \(\mathrm{v} @ b\) after voting for leader(\(\mathrm{b}^{\prime}\)): after voting, p joins \(\mathrm{b}^{\prime}\) and rejects all messages with ballot \(\mathrm{b}<\mathrm{b}^{\prime}\)
- p accepted \(\mathrm{v} @ b\) before voting for leader(\(\mathrm{b}^{\prime}\))
- p's ballot when voting for leader(\(b^{\prime}\)) is \(b_{p} \geq b>0\), and it will reply with \(v^{\prime} @ b_{p}\) for some value \(v^{\prime}\)
- Q accepted \(\mathrm{v} @ b\)
- \(b^{\prime}>b\)
- leader(\(\mathrm{b}^{\prime \prime}\)) may only propose v if \(\mathrm{b}<\mathrm{b}^{\prime \prime}<\mathrm{b}^{\prime}\)
- leader(\(\mathrm{b}^{\prime}\)) gets support from a quorum \(\mathrm{Q}^{\prime}\) before proposing
- \(\mathrm{Q} \cap \mathrm{Q}^{\prime} \neq \varnothing \Longrightarrow \exists\) process \(\mathrm{p} \in \mathrm{Q} \cap \mathrm{Q}^{\prime}\) which both voted for leader(\(\mathrm{b}^{\prime}\)) and accepted \(\mathrm{v@b}\)
- p couldn't accept \(\mathrm{v} @ \mathrm{~b}\) after voting for leader(\(\mathrm{b}^{\prime}\)): after voting, p joins \(\mathrm{b}^{\prime}\) and rejects all messages with ballot \(\mathrm{b}<\mathrm{b}^{\prime}\)
- p accepted \(\mathrm{v} @ b\) before voting for leader(\(\mathrm{b}^{\prime}\))
- p's ballot when voting for leader(\(b^{\prime}\)) is \(b_{p} \geq b>0\), and it will reply with \(\mathrm{v}^{\prime} @ b_{p}\) for some value \(\mathrm{v}^{\prime}\)
- leader(b') can't propose its own value, has to pick one accepted at the highest ballot \(b_{\text {max }} \geq b\) in the votes it got
- Q accepted \(\mathrm{v} @ b\)
- \(b^{\prime}>b\)
- leader(\(b^{\prime \prime}\)) may only propose v if \(\mathrm{b}<\mathrm{b}^{\prime \prime}<\mathrm{b}^{\prime}\)
- \(b_{\text {max }} \geq b\)
\[
b_{\max }=b:
\]
- Q accepted \(\mathrm{v} @ b\)
- \(b^{\prime}>b\)
- leader(\(\mathrm{b}^{\prime \prime}\)) may only propose v if \(\mathrm{b}<\mathrm{b}^{\prime \prime}<\mathrm{b}^{\prime}\)
- \(b_{\text {max }} \geq b\)
\(\mathrm{b}_{\text {max }}=\mathrm{b}:\)
- A leader makes a single proposal per ballot, and Q accepted \(\mathrm{v} @ \mathrm{~b} \Longrightarrow\) any vote \(\mathrm{v}^{\prime} @ \mathrm{~b}_{\text {max }}\) for leader(\(\mathrm{b}^{\prime}\)) must have \(\mathrm{v}^{\prime}=\mathrm{v}\)
- Q accepted \(\mathrm{v} @ b\)
- \(b^{\prime}>b\)
- leader(\(\mathrm{b}^{\prime \prime}\)) may only propose v if \(\mathrm{b}<\mathrm{b}^{\prime \prime}<\mathrm{b}^{\prime}\)
- \(b_{\text {max }} \geq b\)
\(\mathrm{b}_{\text {max }}=\mathrm{b}:\)
- A leader makes a single proposal per ballot, and Q accepted \(\mathrm{v} @ \mathrm{~b} \Longrightarrow\) any vote \(\mathrm{v}^{\prime} @ b_{\text {max }}\) for leader \(\left(\mathrm{b}^{\prime}\right)\) must have \(\mathrm{v}^{\prime}=\mathrm{v}\)
- leader(b') has to choose v, QED.
- Q accepted \(\mathrm{v@b}\)
- \(b^{\prime}>b\)
- leader(\(b^{\prime \prime}\)) may only propose v if \(\mathrm{b}<\mathrm{b}^{\prime \prime}<\mathrm{b}^{\prime}\)
- \(b_{\text {max }} \geq b\)
\(b_{\text {max }}>b:\)
- Q accepted \(\mathrm{v@b}\)
- \(b^{\prime}>b\)
- leader(\(b^{\prime \prime}\)) may only propose v if \(\mathrm{b}<\mathrm{b}^{\prime \prime}<\mathrm{b}^{\prime}\)
- \(b_{\text {max }} \geq b\)
\(b_{\text {max }}>b:\)
- \(b_{\max }<b^{\prime}\), since processes only vote for leaders of higher ballots
- Q accepted \(\mathrm{v} @ b\)
- \(b^{\prime}>b\)
- leader(\(\mathrm{b}^{\prime \prime}\)) may only propose v if \(\mathrm{b}<\mathrm{b}^{\prime \prime}<\mathrm{b}^{\prime}\)
- \(b_{\text {max }} \geq b\)
\(b_{\text {max }}>b:\)
- \(\mathrm{b}_{\text {max }}<\mathrm{b}^{\prime}\), since processes only vote for leaders of higher ballots
- By induction hypothesis leader \(\left(\mathrm{b}_{\max }\right)\) could only propose v
- Q accepted \(\mathrm{v} @ b\)
- \(b^{\prime}>b\)
- leader(\(\mathrm{b}^{\prime \prime}\)) may only propose v if \(\mathrm{b}<\mathrm{b}^{\prime \prime}<\mathrm{b}^{\prime}\)
- \(b_{\text {max }} \geq b\)
\(b_{\text {max }}>b:\)
- \(\mathrm{b}_{\text {max }}<\mathrm{b}^{\prime}\), since processes only vote for leaders of higher ballots
- By induction hypothesis leader \(\left(\mathrm{b}_{\max }\right)\) could only propose v
- Processes that accepted a value at \(b_{\text {max }}\) could only accept \(v\)
- Q accepted \(\mathrm{v} @ b\)
- \(b^{\prime}>b\)
- leader(\(b^{\prime \prime}\)) may only propose v if \(\mathrm{b}<\mathrm{b}^{\prime \prime}<\mathrm{b}^{\prime}\)
- \(b_{\max } \geq b\)
\(b_{\text {max }}>b:\)
- \(\mathrm{b}_{\text {max }}<\mathrm{b}^{\prime}\), since processes only vote for leaders of higher ballots
- By induction hypothesis leader \(\left(\mathrm{b}_{\max }\right)\) could only propose v
- Processes that accepted a value at \(b_{\text {max }}\) could only accept \(v\)
- Any vote \(\mathrm{v}^{\prime} @ \mathrm{~b}_{\max }\) for leader(\(\mathrm{b}^{\prime}\)) must have \(\mathrm{v}^{\prime}=\mathrm{v}\)
- Q accepted \(\mathrm{v} @ b\)
- \(b^{\prime}>b\)
- leader(\(\mathrm{b}^{\prime \prime}\)) may only propose v if \(\mathrm{b}<\mathrm{b}^{\prime \prime}<\mathrm{b}^{\prime}\)
- \(b_{\max } \geq b\)
\(b_{\text {max }}>b:\)
- \(\mathrm{b}_{\text {max }}<\mathrm{b}^{\prime}\), since processes only vote for leaders of higher ballots
- By induction hypothesis leader \(\left(\mathrm{b}_{\max }\right)\) could only propose v
- Processes that accepted a value at \(b_{\text {max }}\) could only accept \(v\)
- Any vote \(\mathrm{v}^{\prime} @ b_{\max }\) for leader(\(\mathrm{b}^{\prime}\)) must have \(\mathrm{v}^{\prime}=\mathrm{v}\)
- leader(\(\mathrm{b}^{\prime}\)) has to choose \(\mathrm{v}, \mathrm{QED}\).

Key invariant: If a quorum Q accepted a value v at ballot \(b\), then any leader of \(a\) ballot \(b^{\prime}>b\) will also propose \(v\)

Ensures nodes don't disagree about the chosen value

\section*{Multi-Paxos}

State machine replication requires solving a sequence of consensus instances
\(C_{3}, C_{2}, C_{1}\)
\(\mathrm{Cl}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}\)
\(\mathrm{C}_{2}, \mathrm{Cl}, \mathrm{C}_{3}\)

\(\mathrm{C}_{2}, \mathrm{C} \mid, \mathrm{C}_{3}\)
\(\mathrm{C}_{2}, \mathrm{Cl}, \mathrm{C}_{3}\)

\section*{Multi-Paxos}

State machine replication requires solving a sequence of consensus instances
\(C_{3}, C_{2}, C_{1}\)
\(\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}\)
\(\mathrm{C}_{2}, \mathrm{Cl}_{1}, \mathrm{C}_{3}\)

\(\mathrm{C}_{2}, \mathrm{Cl}_{1}, \mathrm{C}_{3}\)
\(\mathrm{C}_{2}, \mathrm{Cl}_{1}, \mathrm{C}_{3}\)
- Naive solution: execute a separate Paxos instance for each sequence element
- Multi-Paxos: execute Phase I once for multiple sequence elements

\section*{Paxos verification}
- Lots of work on formally verifying Paxos-like protocols in theorem provers or semi-automatic systems
- Fully automatic verification is an open problem

\section*{The end}
- Spectrum of data consistency models in distributed systems
- Downsides of weakening consistency can be mitigated by verification techniques and programming abstractions: replicated data types, transactions
- Proving correctness of consistency protocols is a verification challenge```

