Algorithms for perturbation
resilient problems
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Need to solve combinatorial
optimization and clustering
problems

Multiway Cut k-means



Theory

Many of these problems are NP-hard and cannot be
solved exactly in polynomial time.

Traditional approach
* Don’t make any assumptions about the input.

* Design an approximation algorithm for the worst
case.

Recall: an algorithm has an a-approximation if

ALG = OPT/a for a maximization problem
ALG < a OPT  for a minimization problem



Beyond-Worst-Case Analysis

* Real-life instances appear to be much easier than
worst-case instances.

* Heuristics used in practice often get much better
approximation than it is theoretically possible for
worst-case instances.

» Why is it the case?

» Create good models for real-life instances.

» Design algorithms that solve instances from these
models.



Two Approaches to Modelling
Real-life Instances

Assume that an instance satisfies certain structural
properties:

B ¢ Perturbation Resilience

* Assumptions of the graph, weights, etc

Generative models. Assume that an instance is
generated in a certain way:

* Random models: e.g. G is a G(n,p) graph

e Semirandom models: random + adversarial choices



Perturbation Resilience
Bilu and Linial ‘10



Warm up

Cluster the following data set.
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Warm up
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“Clustering is difficult only when it
does not matter.”

Daniely, Linial, Saks



When do solutions matter?

Bilu and Linial ‘10:

Optimal solutions matter when they are unique and
stand out among other solutions.



When do solutions matter?

Bilu and Linial *10:
Optimal solutions matter when they are unique and
stand out among other solutions.

An instance of a problem is perturbation resilient if

the optimal solution remains the same when
we perturb the instance.



Perturbation-resilient Instance

Cluster the following data set in 4 groups.
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Non-PR Instance

Cluster the following data set in 3 groups.
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Perturbation-resilience

» Consider an instance J of an optimization or
clustering problem. Assume that it has a number of
parameters

D1y ey Py > 0

The parameters may be edge, vertex, or constraint
weights, or distances between points.

> J'is a y-perturbation of J if it can be obtained
from J by “perturbing the parameters” —
multiplying each p; by a number from 1 to y.

Pi <P <V pi



Perturbation-resilience

[Bilu and Linial ‘10] An instance J of an optimization
or clustering problem is y-perturbation-resilient if the
optimal solution remains the same when we perturb
the instance:

every Y-perturbation 7' has the same optimal
solution as J

(the value /cost of the solution may be different)



Perturbation-resilience

Every y-perturbation 7' has the same optimal solution
as J.

* Empirical evidence shows: the optimal solution often
“stands out” among all other solutions [Bilu, Linial]

* In ML, we want to find the “true” solution.

* Make many somewhat arbitrary choices; e.g. choose
one similarity function among several options

* If the instance is not p.r., the optimal solution will be
different from the true solution.



Weak perturbation-resilience

[Makarychev, M, Vijayaraghavan ‘14]

An instance J of an optimization or clustering problem
is Y-weakly perturbation-resilient if the optimal
solution for every y-perturbation ' of 7 is “close” to
the optimal solution for J.



Goal: €xact algorithms

» Design exact algorithms for y-perturbation resilient
instances.

» Design an algorithm that finds a solution “close” to
an optimal solution for weakly y-perturbation
resilient instances.

» We want Y to be small.



k-means and k-median

Given a set of points X, distance d(-,-) on X, and k

Partition X into k clusters Cy, ..., C;, and find a

“center” ¢; in each (; so as to minimize
k

Z Z d(u,c;) (k-median)

=1 UEC;
k

Z Z d(u, c;)? (k-means)

=1 uecC;




Results



Results (clustering)

y = 3 l’::e'::: [Awasthi, Blum, Sheffet
k-median | 2]
k-center,
y = 1+ \/E Il:_-me:ps, [Balcan, Liang " 13]
Balcan, Haghtalab
> sym. /asym. [ ' '
y — 2 k-center White "1 6]

) Angelidakis
= k mea.ns, [ '
)/ = 2 k-median quqrychev, M "1 7]




Results (optimization)

Yy =cn Max cot  [Bily, Linial *10]
[Bilu, Daniely, Linial,
> Max Cu
V = C\/ﬁ t Saks “13]

[Makarychev, M,
Max Cu
Y = c/lognloglogn ' Vijayaraghavan " 13]

‘y 2 2 —_ Z/k Multiway [AMM 1 7]




Results (optimization)

Our algorithms are robust.
* Find the optimal solution, if the instance is p.r.

* Find an optimal solution or detects that the instance is
not p.r., otherwise.

* Never output an incorrect answer.

Solve weakly p.r. instances.



Algorithm for Clustering
Problems



Plan [AMM *17]

i.  Y-perturbation resilience = y-center proximity

ii. 2-center proximity = each cluster is a subtree of
the MST

iii. use single-linkage + DP to find (4, ..., C



Center proximity property

[Awasthi, Blum, Sheffet *12] A clustering Cy, ..., Cy

with centers ¢, ..., Cj satisfies the center proximity
property if for every p € (;j:

d(p, Cj) >y d(p' Ci)



Perturbation resilience = center
pProximity

Perturbation resilience: the optimal clustering doesn’t
change when we perturb the distances.

dlu,v)/y <d'(u,v) < d(u,v)

[ABS “12] d'(:,) doesn’t have to be a metric
[AMM “171d'(:,") is a metric

Metric perturbation resilience is a more natural notion.



Perturbation resilience = center
proximity [ABS 12, AMM "17]

Assume center proximity doesn’t hold.

Then d(p, cj) <yd(p,c;).



Perturbation resilience = center
proximity [ABS 12, AMM "17]

Assume center proximity doesn’t hold.
letd'(p,c;) = d(p,c;) =y~ 1d(p, c;).
* Don’t «

e Consic

This is a y-perturbation.




Perturbation resilience = center
proximity [ABS 12, AMM "17]

Distances inside clusters C; and C; don’t change.
Consider u, v € (;.

d’'(u,v) = min ( d(u,v), )

d(u,p) + d'(p, c]-) + d(cj, v)



Perturbation resilience = center
proximity [ABS 12, AMM "17]

Distances inside clusters C; and C; don’t change.
Consider u, v € C
d(u,v),
d(u p)+d (p, c]) + d(cj,v)

d'(u,v) = min



Perturbation resilience = center
proximity [ABS 12, AMM "17]

Since the instance is y-p.r., C4, ..., C;, must be the unique
optimal solution for distance d'.

Still, ¢; and ¢; are optimal centers for C; and (;.

d'(p,c;) =d'(p, C]-) = can move p from C; to (;



€ach cluster is a subtree of MST

[ABS " 12] 2-center proximity =
every U € (; is closer to ¢; than to any v & (;

Assume the path from u € C; to ¢; in MST, leaves (;.

-



€ach cluster is a subtree of MST

[ABS " 12] 2-center proximity =
every U € (; is closer to ¢; than to any v & (;

Assume the path from u € C; to ¢; in MST, leaves (;.




Dyunamic programming algorithm

Root MST at some 7. T(u) is the subtree rooted at u.

cost,, (J, ¢): the cost of partitioning T (1)
*into J clusters (subtrees)

*so that C is the center of the cluster containing u.

r

T(u)



Dyunamic programming algorithm

Fill out the DP table bottom-up.
Example: k-median, 1 has 2 children u; and u,.
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Dyunamic programming algorithm

Fill out the DP table bottom-up.
Example: k-median, 1 has 2 children u; and u,.




Dyunamic programming algorithm

U, Uq, U, lie in the same cluster
costy, (j, ¢) = d(u, ¢) + cost,_(jy,¢) + costy, (jz, ¢)
where j1 +j, =]+ 1

U, Uq, U, lie in different clusters
cost, (j, ¢) = d(u, c) + costy_(j1,¢1) + costy, (jz, C2)
where j; +j, =j—1,¢1 € T(uy), ¢, € T(u,)

U, U4 lie in the same clusters, U, in a different
costy, (j, ¢) = d(u, c) + costy, (j,¢) + costy,, (1, ¢2)
where j; + j, = j, ¢, € T(uy)



Multiway Cut

Given
agraph G = (V,E,w)

*a set of terminals t4, ..., t}

Find a partition of I/ into sets 5S4, ..., S, that minimizes
the weight of cut edges s.t. t; € S;.



Algorithms for Max Cut and Multiway
Cut [MMV "13]

Write an SDP or LP relaxation for the problem.
Show that it is integral if the instance is y-p.r.

solve the relaxation

if the SDP/LP solution is integral
return the solution

else
return that the instance is not y-p.r.

The algorithm is robust: it never returns an incorrect
answetr.



Multiway Cut

Write the relaxation for Multiway Cut by
Calinescu, Karloff, and Rabani [CKR 98]

To get an a-approximation, we would design a
rounding scheme with

Pr{(u,v) is cut] < ad(u,v)

Then

[E[weight of cut edges] < « z wypd(u, v)
(u,v)EE



Multiway Cut: complementary objective

If we want to maximize the weight of uncut edges,
we would we would design a rounding scheme
with

Pr|(u,v)isnotcut] = B (1 —d(u,v))

Then
E|wt. of uncut edges] = 8 Z wy, (1 —d(u, v))

(u,v)EE



General approach to solving p.r.
instances of graph partitioning

Write an LP or SDP relaxation for the problem.

Design a rounding procedure s.t.

Pr
Pr

or

Pr
Pr

(u,v)iscut] < ad(u,v) minimization

(u, v) is not cut] > ,8(1 — d(u, v))

(u,v) is cut] = B d(u,v) maximization

(u, v) is not cut] < a(l — d(u, v))

! Then the relaxation for y-p.r. is integral, wheny = a/f3




Solving Max Cut [MMVIV "13]

Use the Goemans—Williamson SDP relaxation with
£5-triangle inequalities.

Design a rounding procedure with

a

7= 0 (\/@loglogn),

which is a combination of two algorithms:

* the algorithm for Sparsest Cut with Nonuniform Demands
by Arora, Lee, and Naor "08,

* the algorithm for Min Uncut by Agarwal, Charikar,
Makarychev, M "05



Solving Multiway Cut [AMM "17]

Rounding procedures for Multiway Cut by
* Sharma and Vondrdak "14
* Buchbinder, Schwartz, and Weizman 17

are highly non-trivial.

We need a rounding procedure only for LP solutions
that are almost integral.

Design a simple rounding procedure with

Ezz_z_

B K



Summary

* Algorithms for 2-perturbation-resilient instances of
problems with a natural center-based objective:
k-means, k-median, facility location.

* Robust algorithms for O (w/logn log log Tl)-p.r.

instanced of Max Cut and (2 — %)-p.r. instances of
Multiway Cut.

* Negative results for p.r. instances of Max Cut,
Multiway Cut, Max k-Cut, Multi Cut, Set Cover,
Vertex Cover, Min 2-Horn Deletion.
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