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Figure 1: Examples of an optimal non-explainable and a costlier explainable clustering of the same
set of points in R2, together with the threshold tree defining the explainable clustering.

Moshkovitz et al. [10] proposed an algorithm that, given an unconstrained (non-explainable) reference36

clustering
1, produces an explainable clustering losing at most a multiplicative factor of O(k) for the37

k-medians objective and O(k2) for k-means, compared to the reference clustering. They also gave38

a lower bound showing that an ⌦(log k) loss is unavoidable, both for the k-medians and k-means39

objective. Later, Laber and Murtinho [7] improved over the upper bounds in a low-dimensional40

regime d  k/ log(k), giving an O(d log k)-approximation algorithm for explainable k-medians and41

an O(dk log k)-approximation algorithm for explainable k-means.42

1.1 Our contributions43

Improved clustering cost. We present a randomized algorithm that, given k centers defining a44

reference clustering and a number p � 1, constructs a threshold tree that defines an explainable clus-45

tering that is, in expectation, worse than the reference clustering by at most a factor of O(kp�1 log2 k)46

for the objective given by the `p-norm. That is O(log2 k) for k-medians and O(k log2 k) for k-means.47

Simple and oblivious algorithm. Our algorithm is remarkably simple. It samples threshold cuts48

uniformly at random (for k-medians; k-means and higher `p-norms need slightly fancier distributions)49

until all centers are separated from each other. In particular, the input to the algorithm includes only50

the centers of a reference clustering and not the data points.51

As a consequence, the algorithm cannot overfit the data (any more than the reference clustering52

possibly already does), and the same expected cost guarantees hold for any future data points not53

known at the time of the clustering construction. Besides, the algorithm is fast; its running time does54

not depend on the number of data points n. A naive implementation runs in time O(dk2), and in55

Section 3.2, we show how to improve it to O(dk log2 k) time, which is near-linear in the input size56

dk of the k reference centers.57

Nearly-tight bounds. We complement our results with a lower bound. We show how to construct58

instances of the clustering problem such that any explainable clustering must be at least ⌦(kp�1)59

times worse than an optimal clustering for the `p-norm objective. In particular, this improves the60

previous ⌦(log k) lower bound for k-means [10] to ⌦(k) .61

In consequence, we give a nearly-tight answer to the question of the price of explainability. We62

leave a log(k) gap for k-medians, and a log2(k) gap for k-means and higher `p-norm objectives. See63

Table 1 for a summary of the upper and lower bounds discussed above.64

1.2 Technical overview65

The theoretical guarantees obtained by Moshkovitz et al. [10] depend on the number of clusters k and66

the height of the threshold tree obtained H . Their algorithm loses, compared to the input reference67

clustering, an O(H) factor for the k-medians cost and O(Hk) for k-means. These approximations68

are achieved by selecting a threshold cut that separates some two centers and minimizes the number69

1A reference clustering can be obtained, e.g., by running a constant-factor approximation algorithm for a
given objective function. Then, the asymptotic upper bounds of the explainable clustering cost compared to the
reference clustering translate identically to the bounds when compared to an optimal clustering.
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• A threshold tree is a binary tree where each non-leaf node is an axis-aligned 
threshold cut


• An explainable k-clustering is one formed by a threshold tree with k leaves
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Price of explainability

• How much more expensive is an optimal explainable clustering?

• Can we find a good explainable clustering efficiently?

• Can we (approximately) find the best possible explainable clustering?

• First introduced and studied theoretically by Moshkovitz, Dasgupta, 
Rashtchian, and Frost (ICML’20)



Explaining explainable clustering in four steps

• General Approach of Moshkovitz, Dasgupta, Rashtchian, and Frost


• TCS-Algorithm  

• Ideas of analysis


• State-of-the-art and open questions 
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OPT = a + b + c + d + e + f
• Cost of optimal unconstrained clustering equals sum of dotted edges
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#{points separated by min-cut} * {distance to farthest away centre}  OPT≤

OPT(Left) + OPT(Right)   OPT≤

          OPT≤

Cost increase at each level is at most OPT

Price of explainability is at most the height of tree and hence at most O(k) 

MDRF’20

Price of explainability of k-means is O(k2)



#{points separated by min-cut} * {distance to farthest away centre}  OPT≤

OPT(Left) + OPT(Right)   OPT≤

          OPT≤

Cost increase at each level is at most OPT

Price of explainability is at most the height of tree and hence at most O(k) 

MDRF’20

There are instances where the price of explainability is Ω(log k) MDRF’20

Price of explainability of k-means is O(k2)
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In 2021, Gamlath, Jia, Polak, Svensson 
proposed TCS-Algorithm 

In 2021, Esfandiari, Mirrokni, Narayanan  
proposed TCS-Algorithm 

How can three different groups independently come up with  same algorithm?≈



Well, it’s not very complicated
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• Probability edge    (    ,    ) cut equals |x(   ) -  x(   )| 


• Expected value of cut = value of LP solution

Θ ∼ [0,1] S = {u ∈ V : xu ≤ θ}
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TCS-Algorithm
• While there is a leaf with more than one center, select a min-cut 


select a uniformly at random cut
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Figure 1: Examples of an optimal non-explainable and a costlier explainable clustering of the same
set of points in R2, together with the threshold tree defining the explainable clustering.

Moshkovitz et al. [10] proposed an algorithm that, given an unconstrained (non-explainable) reference36

clustering
1, produces an explainable clustering losing at most a multiplicative factor of O(k) for the37

k-medians objective and O(k2) for k-means, compared to the reference clustering. They also gave38

a lower bound showing that an ⌦(log k) loss is unavoidable, both for the k-medians and k-means39

objective. Later, Laber and Murtinho [7] improved over the upper bounds in a low-dimensional40

regime d  k/ log(k), giving an O(d log k)-approximation algorithm for explainable k-medians and41

an O(dk log k)-approximation algorithm for explainable k-means.42

1.1 Our contributions43

Improved clustering cost. We present a randomized algorithm that, given k centers defining a44

reference clustering and a number p � 1, constructs a threshold tree that defines an explainable clus-45

tering that is, in expectation, worse than the reference clustering by at most a factor of O(kp�1 log2 k)46

for the objective given by the `p-norm. That is O(log2 k) for k-medians and O(k log2 k) for k-means.47

Simple and oblivious algorithm. Our algorithm is remarkably simple. It samples threshold cuts48

uniformly at random (for k-medians; k-means and higher `p-norms need slightly fancier distributions)49

until all centers are separated from each other. In particular, the input to the algorithm includes only50

the centers of a reference clustering and not the data points.51

As a consequence, the algorithm cannot overfit the data (any more than the reference clustering52

possibly already does), and the same expected cost guarantees hold for any future data points not53

known at the time of the clustering construction. Besides, the algorithm is fast; its running time does54

not depend on the number of data points n. A naive implementation runs in time O(dk2), and in55

Section 3.2, we show how to improve it to O(dk log2 k) time, which is near-linear in the input size56

dk of the k reference centers.57

Nearly-tight bounds. We complement our results with a lower bound. We show how to construct58

instances of the clustering problem such that any explainable clustering must be at least ⌦(kp�1)59

times worse than an optimal clustering for the `p-norm objective. In particular, this improves the60

previous ⌦(log k) lower bound for k-means [10] to ⌦(k) .61

In consequence, we give a nearly-tight answer to the question of the price of explainability. We62

leave a log(k) gap for k-medians, and a log2(k) gap for k-means and higher `p-norm objectives. See63

Table 1 for a summary of the upper and lower bounds discussed above.64

1.2 Technical overview65

The theoretical guarantees obtained by Moshkovitz et al. [10] depend on the number of clusters k and66

the height of the threshold tree obtained H . Their algorithm loses, compared to the input reference67

clustering, an O(H) factor for the k-medians cost and O(Hk) for k-means. These approximations68

are achieved by selecting a threshold cut that separates some two centers and minimizes the number69

1A reference clustering can be obtained, e.g., by running a constant-factor approximation algorithm for a
given objective function. Then, the asymptotic upper bounds of the explainable clustering cost compared to the
reference clustering translate identically to the bounds when compared to an optimal clustering.
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The independent works in 2021

• Makarychev and Shan:
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• Gamlath, Jia, Polak, Svensson:
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• O(min(log k log log k, d log2 d))
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Theorem: The price of explainability given by TCS-Algorithm is 
1 + Hk−1

Theorem: The price of explainability is at least  for any 
(1 − ϵ)ln(k) ϵ > 0

• Gupta, Pitty, Svensson, Yuan’23:


+ It is NP-hard to approximate explainable k-median better than   O(ln k)



Ideas of analysis
• Enough to analyze the cost increase of a single point (by linearity of expectation)


• By translation, we may assume the point is located at the origin
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number of clients separated from their closest center 



a

b

c

de

f

L1

L2



a

b

c

de

f

L1

L2

𝔼[number separated clients] ≤ OPT/(L1 + L2)



a

b

c

de

f

L1

L2

𝔼[number separated clients] ≤ OPT/(L1 + L2)



a

b

c

de

f

L1

L2

𝔼[number separated clients] ≤ OPT/(L1 + L2)

If a client is separated, it increases its cost by 
at most the maximum distance between 
centers which is at most L1 + L2



a

b

c

de

f

L1

L2

𝔼[number separated clients] ≤ OPT/(L1 + L2)

If a client is separated, it increases its cost by 
at most the maximum distance between 
centers which is at most L1 + L2

• A uniformly random cut that separates the two centers increases the cost by at most


• It follows that there is an explainable clustering of cost at most 2 ⋅ OPT

𝔼[number separated clients] ⋅ (L1 + L2) ≤ OPT



a

b

c

de

f

L1

L2
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If a client is separated, it increases its cost by 
at most the maximum distance between 
centers which is at most L1 + L2

• A uniformly random cut that separates the two centers increases the cost by at most


• It follows that there is an explainable clustering of cost at most 2 ⋅ OPT

𝔼[number separated clients] ⋅ (L1 + L2) ≤ OPT

This analysis works if you take the cut that separates the fewest points, which 
is the approach of Moshkovitz et al.  
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Special case

• A single point at origin


• Centers at distances  each along unique dimension


• Cost of unconstrained clustering thus equals 

d1 ≤ d2 ≤ … ≤ dk

d1

d1

d2 d3

Expected cost of explainable clustering determined by following process

• While there are more than one center

• Remove a center i with probability proportional to its distance  di

• What is the expected distance to the last remaining center?
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Balls-and-bin perspective
Equivalent to special case

• k bins of different width 


• For k-1 steps, random ball hits one of the remaining bins with probability  
promotional to 


• The expected width of remaining bin = price of explainability in special case

1 = d1 ≤ d2 ≤ … ≤ dk

di

d1 = 1 d2 d3

w.p. 
d1

d1 + d2 + d3
w.p. 

d3

d2 + d3



One bin

• Remaining bin is of width 1
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• Price of explainability in special case with two centers is 2…
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Pr[d1 remains] ⋅ d1 + Pr[d2 remains] ⋅ d2 + Pr[d3 remains] ⋅ d3

= …

≤ (1 + 1/1 + 1/2)d1

• Price of explainability in special case with two centers is 1+1/1+1/2…
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k-Bins
1 = d1 ≤ d2 ≤ … ≤ dk

• The expected width of remaining bin is 1 + Hk−1

• In special case, price of explainability is 1 + Hk−1

• Here, Hk−1 = 1/1 + 1/2 + … + 1/(k − 1) ≈ ln k



Proof by induction on k
We already verified base cases and here is the inductive step



Proof by induction on k
We already verified base cases and here is the inductive step

• Let  


• Expected width of remaining bin is

D = d1 + d2 + … + dk



Proof by induction on k
We already verified base cases and here is the inductive step

• Let  


• Expected width of remaining bin is

D = d1 + d2 + … + dk

Pr[1st ball lands in d1] ⋅ 𝔼[width of remaining bin in instance (d2, …dk)]



Proof by induction on k
We already verified base cases and here is the inductive step

• Let  


• Expected width of remaining bin is

D = d1 + d2 + … + dk

Pr[1st ball lands in d1] ⋅ 𝔼[width of remaining bin in instance (d2, …dk)]

+



Proof by induction on k
We already verified base cases and here is the inductive step

• Let  


• Expected width of remaining bin is

D = d1 + d2 + … + dk

k

∑
i=2

Pr[1st ball lands in di] ⋅ 𝔼[width of remaining bin in instance without di]

Pr[1st ball lands in d1] ⋅ 𝔼[width of remaining bin in instance (d2, …dk)]

+



Proof by induction on k
We already verified base cases and here is the inductive step

• Let  


• Expected width of remaining bin is

D = d1 + d2 + … + dk

k

∑
i=2

Pr[1st ball lands in di] ⋅ 𝔼[width of remaining bin in instance without di]

Pr[1st ball lands in d1] ⋅ 𝔼[width of remaining bin in instance (d2, …dk)]

+
≤

d1

D
⋅

(d2 + … + dk)
k − 1

≤
d1

k − 1



Proof by induction on k
We already verified base cases and here is the inductive step

• Let  


• Expected width of remaining bin is

D = d1 + d2 + … + dk

k

∑
i=2

Pr[1st ball lands in di] ⋅ 𝔼[width of remaining bin in instance without di]

Pr[1st ball lands in d1] ⋅ 𝔼[width of remaining bin in instance (d2, …dk)]

+
≤

d1

D
⋅

(d2 + … + dk)
k − 1

≤
d1

k − 1

≤ (1 + Hk−2)d1



Proof by induction on k
We already verified base cases and here is the inductive step

• Let  


• Expected width of remaining bin is

D = d1 + d2 + … + dk

k

∑
i=2

Pr[1st ball lands in di] ⋅ 𝔼[width of remaining bin in instance without di]

Pr[1st ball lands in d1] ⋅ 𝔼[width of remaining bin in instance (d2, …dk)]

+
≤

d1

D
⋅

(d2 + … + dk)
k − 1

≤
d1

k − 1

≤ (1 + Hk−2)d1

≤ (1 + Hk−1)d1 = 1 + Hk−1
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 is tight even in the axis aligned case1 + Hk−1

Conjecture: The expected cost of the explainable clustering by TCS-Algorithm 
is at most  times the cost of the input unconstrained clustering
(1 + Hk−1)

d1 = 1

d2 ≠



State-of-the-art and open questions 



The independent works in 2021

• Makarychev and Shan:


• O(log k log log k)

• Gamlath, Jia, Polak, Svensson:


• O(log2 k)

• Esfandiari, Mirrokni, Narayanan:


• O(min(log k log log k, d log2 d))



Theorem: The price of explainability given by TCS-Algorithm is 
1 + Hk−1

• Gupta, Pitty, Svensson, Yuan’23:




Theorem: The price of explainability given by TCS-Algorithm is 
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Theorem: The price of explainability is at least  for any 
(1 − ϵ)ln(k) ϵ > 0

• Gupta, Pitty, Svensson, Yuan’23:
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Open problems
What if more than one dimension in threshold cuts?

Conjecture: price of explainability for k-means is Θ(k)

Upper bound of O(  [Esfandiari, Mirrokni, Narayanan’21], see also [Charikar and Hu’21] k log k)
Lower bound of Ω(k)

What is the price of explaining clustering using k-dimensions?

Related to “feature selection” [Boutsidis, Mahoney, Drineas’09]

What’s the approximability of explainable clustering?

Resolved for k-median, it is ln(k) [GPSY’23], interesting for k-means



Thank you for your attention!



The details

Theorem: The price of explainability given by TCS-Algorithm is 
1 + Hk−1

Theorem: The price of explainability is at least  for any 
(1 − ϵ)ln(k) ϵ > 0

• Gupta, Pitty, Svensson, Yuan’23:




Lower bounds via reduction from 
the Hitting Set Problem



s-uniform Hitting set problem

• INPUT: A set system  where 


• OUTPUT: A subset  of minimum cardinality that hits every , i.e., 


• Integrality gap: Exist instances so that any hitting set has size  


• Feige: it is hard to approximate better than  for any . Between friends hard to distinguish 

between size  and 

([d], T = {S1, S2, …, Sk}) |Si | = s

H ⊆ [d] Si Si ∩ H ≠ ∅

d
s

ln k

(1 − ε)ln k ϵ > 0
d
s

d
s

ln k



Reduction
Construct the following explainable instance

• The reference clustering  where 


•  is at the origin and  is the characteristic vector of the set 


• Infinitely many points at each center in  => Any reasonable clustering must contain one leaf per center


• Plus one point at the location  for 


• Observation 1: the cost of reference clustering is d


• Observation 2: we must separate  from all other centers and thus these selected threshold cuts form a 
hitting set. Each such cut increases the cost of a point from 1 to 


• Hence cost of optimal explainable clustering is    where  is the size of optimal hitting set

𝒰 = {μ0, μ1, …, μk}

μ0 μi Si

𝒰

ei i ∈ [d]

μ0
s

≈ h ⋅ s + (d − s) h



Plugging in known results

• Integrality gap:  leads to 


• Hardness of approx: Hard to distinguish between  and 


• Same results hold for k-means: stronger results known for price of 
explainability but not for approximability

h ≥
d
s

ln k h ⋅ s + (d − s) ≥ d ln k

≤ 2d ≥ d ln k



Analysis via exponential clocks



The setting

• By linearity of expectation, enough to analyze single point which by 
translation is at the origin.


• At any point we take a cut  with probability proportional to 


• The distance to center  is thus  


• We assume by scaling that  and for simplicity that 

S zS

i di = ∑
S:i∈S

zS

d1 = 1 z{1} = 1



Exponential clocks

• Nice properties


• Suppose that  then  takes min value with probability 

 moreover the minimum is distributed as 


• Memorylessness: Suppose  then 



• The pdf   

Xi ∼ exp(λi) Xj
λj

λ1 + …+
exp(∑ λi)

X ∼ exp(λ)
Pr[X ≥ s + t ∣ X ≥ t] = Pr[X ≥ s]

fX(x) = λe−λx



Exponential clocks

• We can equivalently think of the process of selecting random cuts as using 
exponentially random variables


• First sample  for every 


• Then inspect the cuts in increasing order of their values. 


• This is the same process as probability that  is next cut is proportional w.r.t  
and remaining cuts

xi ∼ exp(di) S

i di



When do we pay di

•  is last among faraway centers  and  where 


• Let  be the event that  is last among faraway centers


• Then the payment of  is at most  times


•  which by the law of total probability equals


•

i X1 ≤ Xi Xi

Ei i

di di

Pr[X1 ≤ Xi ∧ Ei]

∫
∞

0
Pr[X1 ≤ t ∧ Ei ∣ Xi = t]fXi

(t) = ∫
∞

0
Pr[X1 ≤ t] ⋅ Pr[Ei ∣ Xi = t]fXi

(t)



• 


• Let  then the above expression is maximized when  for large values of 


• That is, 


• Therefore the above expression  is upper bounded by 


• 


• Plugging in the cdf and pdf and doing the calculations give us that the total contribution to the cost of center  is 
at most 


• Summing up over all far away centers we get that their total contribution to the cost is at most


• 


• Plus the cost of the closest center gives an upper bound of 

∫
∞

0
Pr[X1 ≤ t] ⋅ Pr[Ei ∣ Xi = t] fXi

(t)

pi = Pr[Ei] Ei = 1 t

pi = ∫
∞

0
Pr[Ei ∣ Xi = t] fXi

(t) = ∫
∞

ai

fXi
(t)

∫
∞

ai

Pr[X1 ≤ t] fXi
(t)

i
pi + pi ln(1/pi)

k

∑
i=2

pi + pi ln(1/pi) ≤ 1 + ln(k − 1)

2 + ln(k)


