Lecture 2:

Explaining Explainable Clustering
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Explainable clustering
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* A threshold tree is a binary tree where each non-leaf node is an axis-aligned
threshold cut

* An explainable k-clustering is one formed by a threshold tree with k leaves
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Price of explainability

 How much more expensive is an optimal explainable clustering?
 Can we find a good explainable clustering efficiently?
 Can we (approximately) find the best possible explainable clustering?

* First introduced and studied theoretically by Moshkovitz, Dasgupta,
Rashtchian, and Frost (ICML'20)



Explaining explainable clustering In four steps

* (General Approach of Moshkovitz, Dasgupta, Rashtchian, and Frost
o TCS-Algorithm
e |deas of analysis

o State-of-the-art and open questions
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Focus on k-median

. Points X in R¢

¢
» Distance £;-norm. That is . o
c s
dist(x,y) = ) |x,—y] b
= N RS ®

* Cost of optimal unconstrained clustering equals sum of dotted edges
OP'=a+b+c+d+e+f
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#{points separated by min-cut} * {distance to farthest away centre} < OPT

TN
N N\
VAR ANWANEA

OPT(Left) + OPT(Right) < OPT

< OPT

Cost increase at each level is at most OPT

a MDRF’20\

Price of explainability is at most the height of tree and hence at most O(k)
\_ Price of explainability of k-means is O(k?) W,

[ There are instances where the price of explainability is €2(log k) MDRF’ZO)
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Well, it's not very complicated
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e While there is a leaf with more than one center, selectamin-cut-
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TCS-Algorithm

e While there is a leaf with more than one center, selectamin-cut-
select a uniformly at random cut
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TCS-Algorithm

e While there is a leaf with more than one center, selectamin-cut-
select a uniformly at random cut

1 "o gL ate S r1 < 0.4
¢ :.ojﬁéﬁ.“ ® /1 \
v * Tw b Fk




TCS-Algorithm

e While there is a leaf with more than one center, selectamin-cut-
select a uniformly at random cut

. ,]#:’5.&:; 1 < 0.4

-
E/\E




The independent works in 2021
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Theorem: The price of explainability is at least (1 — €)In(k) for any € > 0O

+ It is NP-hard to approximate explainable k-median better than O(In k)



ldeas of analysis

 Enough to analyze the cost increase of a single point (by linearity of expectation)

* By translation, we may assume the point is located at the origin
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Two clusters in two dimensions

* Cost of optimal unconstrained clustering equals sum of dotted edges

a+b+chkd+e+f

OPT=a+b+c+d+e+f= m j}S\QK(L1+L2)
1

If we take a separating cut uniformly at random then this is at most the expected
number of clients separated from their closest center
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If a client is separated, it increases its cost by

at most the maximum distance between i
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* A uniformly random cut that separates the two centers increases the cost by at most

E[number separated clients] - (L; + L,) < OPT

* |t follows that there is an explainable clustering of cost at most 2 - oPT

This analysis works if you take the cut that separates the fewest points, which
Is the approach of Moshkovitz et al.
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Special case

* A single point at origin
» Centers at distances d; < d, < ... < d, each along unique dimension

» Cost of unconstrained clustering thus equals d,

¥ Expected cost of explainable clustering determined by following process
d2 d3 ( While there are more than one center \

K. Remove a center | with probability proportional to its distance di j

 What is the expected distance to the last remaining center?
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Balls-and-bin perspective

Equivalent to special case

» k bins of different width 1 =d; <d, < ... <d,

* For k-1 steps, random ball hits one of the remaining bins with probability
promotional to d,

@ .
>+ ds

d, d,

 The expected width of remaining bin = price of explainability in special case



dlzl

 Remaining bin is of width 1

* Price of explainability with one centeris 1...
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d1=1 d2

Pr|d, remains] - d, + Pr|d, remains] - d,

dZ dl
— d1+ ’d2
d, + d, d, + d,

* Price of explainability in special case with two centers is 2...
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Pr[d, remains] - d; + Pr[d, remains] - d, + Pr[d; remains] - d,

<1+ 1/1+1/2)d,

* Price of explainability in special case with two centers is 1+1/1+1/2...
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» The expected width of remaining binis 1 + H,_;

» In special case, price of explainability is 1 + H,_,

. Here, H,_, = 1/1+1/24 ...+ 1/(k— 1) ~ Ink
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We already verified base cases and here is the inductive step

o LetD:d1+d2++dk

* Expected width of remaining bin is

d (dyt..+d) _ dy

Pr[1st ball lands in d,] - E[width of remaining bin in instance (d,, ...d,)] < - p— <
+
k
Z Pr[1st ball lands in d;] - E[width of remaining bin in instance without d ] <1+ H,_5d,

=2
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Open problems

[ What if more than one dimension in threshold cuts? )

C Conjecture: price of explainability for k-means is ®(k) )

Upper bound of O(k log k) [Esfandiari, Mirrokni, Narayanan’21], see also [Charikar and Hu’21]
Lower bound of €2(k)

[What Is the price of explaining clustering using k-dimensions? j

Related to “feature selection” [Boutsidis, Mahoney Drineas’09]

[ What’s the approximability of explainable clustering? j

Resolved for k-median, it is In(k) [GPSY’23], interesting for k-means



Thank you for your attention!



The detaills

* Gupta, Pitty, Svensson, Yuan’23:

Theorem: The price of explainability given by TCS-Algorithmis 1 + H,_,

Theorem: The price of explainability is at least (1 — ¢)In(k) for any € > 0
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. ower bounds via reduction from
the Hitting Set Problem




s-uniform Hitting set problem

» INPUT: Asetsystem ([d], T = {S;,5,,...,5,}) where |S;| = s

« OUTPUT: A subset H C [d] of minimum cardinality that hits every S,, i.e., S, N H # &

d

. Integrality gap: Exist instances so that any hitting set has size — Ink
)

» Feige: it is hard to approximate better than (1 — ¢)In k for any € > 0. Between friends hard to distinguish

d d

between size — and — In k
S S



Reduction

Construct the following explainable instance

» The reference clustering % = {ugy, 4y, - - -» i} Where
* Uy is at the origin and y; is the characteristic vector of the set .

» Infinitely many points at each center in % => Any reasonable clustering must contain one leaf per center

» Plus one point at the location e; for i € [d]

 QObservation 1: the cost of reference clustering is d

« Observation 2: we must separate p, from all other centers and thus these selected threshold cuts form a
hitting set. Each such cut increases the cost of a point from 1 to s

» Hence cost of optimal explainable clusteringis =~ h - s+ (d — s) where h is the size of optimal hitting set



Plugging in known results

d
. Integrality gap: h > —Inkleadstoh-s+(d—s) > dInk
)

» Hardness of approx: Hard to distinguish between < 2d and > dlInk

 Same results hold for k-means: stronger results known for price of
explainability but not for approximability



Analysis via exponential clocks



The setting

* By linearity of expectation, enough to analyze single point which by
translation is at the origin.

» At any point we take a cut S with probability proportional to z

The distance to center i is thus d; = Z 2
S:esS

- We assume by scaling that d; = 1 and for simplicity that z;;, = 1



Exponential clocks

* Nice properties

» Suppose that X; ~ exp(4;) then X; takes min value with probability

A

———— moreover the minimum is distributed as exp( 2 1)
A+ ..+

» Memorylessness: Suppose X ~ exp(4) then
PriX>s+1t| X >t] =Pr[X > s]

« The pdf f,(x) = le™



Exponential clocks

* We can equivalently think of the process of selecting random cuts as using
exponentially random variables

» First sample x; ~ exp(d,) for every §

* Then inspect the cuts in increasing order of their values.

» This is the same process as probability that 7 is next cut is proportional w.r.t dl-
and remaining cuts



When do we pay d.

e 1is last among faraway centers and X; < X; where X;
« Let E; be the event that 1 is last among faraway centers
» Then the payment of d, is at most d; times

« Pr|X; < X; A E;] which by the law of total probability equals

o0

. J PriX, <t AE; | X; = tlfx (D) = J PriX, < 1] - PrlE; | X; = t]fx (1)
0 0



J PriX, <1 - PrlE; | X; = t]fx(?)
0

Let p. = Pr[E;] then the above expression is maximized when £, = 1 for large values of ¢

o0 o0

PrlE; | X; = tlfx (1) = [ Jx (1)

l

That is, p; = J
0

Therefore the above expression is upper bounded by

J PriX, < t]fx(?)

l

Plugging in the cdf and pdf and doing the calculations give us that the total contribution to the cost of center i is
at most p; + p; In(1/p;)

Summing up over all far away centers we get that their total contribution to the cost is at most
k

Y pi+piin(l/p) < 1+In(k— 1)

i=2

Plus the cost of the closest center gives an upper bound of 2 + In(k)



