
Lecture 3 
Algorithms with Predictions



Warm-up

Given a sorted array of integers A[1…n], and a query q check if q 
is in the array. 
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Motivating Example

Given a sorted array of integers A[1…n], and a query q check if q 
is in the array. 

– Look up time: 
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Finding a book in the library…

CORMEN
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Motivating Example

Given a sorted array of integers A[1…n], and a query q check if q 
is in the array. 

– Train a predictor h to learn where q should appear. [Kraska et al.’18]
– Then proceed via doubling binary search 

4 7 11 16 22 37 38 44 88 89 93 94 95 96 97 98

7

2

Slide by Sergei Vassilvitskii



Motivating Example

Given a sorted array of integers A[1…n], and a query q check if q 
is in the array. 

– Train a predictor h to learn where q should appear. [Kraska et al.’18]
– Then proceed via doubling binary search 

4 7 11 16 22 37 38 44 88 89 93 94 95 96 97 98

7

2

h

Slide by Sergei Vassilvitskii



Motivating Example

Given a sorted array of integers A[1…n], and a query q check if q 
is in the array. 

– Train a predictor h to learn where q should appear. [Kraska et al.’18]
– Then proceed via doubling binary search 

4 7 11 16 22 37 38 44 88 89 93 94 95 96 97 98

7

2

h

Slide by Sergei Vassilvitskii



Motivating Example

Given a sorted array of integers A[1…n], and a query q check if q 
is in the array. 

– Train a predictor h to learn where q should appear. [Kraska et al.’18]
– Then proceed via doubling binary search 

4 7 11 16 22 37 38 44 88 89 93 94 95 96 97 98

7

2

h

Slide by Sergei Vassilvitskii



Motivating Example

Given a sorted array of integers A[1…n], and a query q check if q 
is in the array. 

Analysis:
– Let                                                be the absolute error of the predicted position

– Running time:  
• Can be made practical (must worry about speed & accuracy of predictions) 
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⌘1 = |h(q)� opt(q)|

⌘1

O(log ⌘1)

Slide by Sergei Vassilvitskii



More on the analysis

Comparing 
– Classical: 
– Learning augmented: 

Results:
– Consistent: perfect predictions recover optimal (constant) lookup times. 
– Robust: even if predictions are bad, not (much) worse than classical 

O(log n)

O(log ⌘1)
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How it started…

[Snapshot of kraska paper] 
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An inauspicious start.. 
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More on the analysis

Comparing 
– Classical: 
– Learning augmented: 

Results:
– Consistent: perfect predictions recover optimal (constant) lookup times. 
– Robust: even if predictions are bad, not (much) worse than classical 
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Algorithms with Predictions

This is the premise of “Algorithms with Predictions”
– Aka ‘Learning Augmented Algorithms’ 

Today:
– Over 100 interesting papers. Hard to keep up!
– See https://algorithms-with-predictions.github.io/  
– No way to do justice to all the papers, or all the ideas, or all the authors… 
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https://algorithms-with-predictions.github.io/


How it’s going…
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Learning-Augmented Online Algorithms 
and the Primal-Dual Method
Ola Svensson 
Joint work with Etienne Bamas and Andreas Maggiori



• Learning-augmented online algorithms


• Case study: set cover


• Instantiating PDLA for other problems


• Future directions 
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Example: Ski rental  

• At the beginning of each day, decide whether to buy skis at a cost of B or rent skis 
for that day at a cost of 1


• The difficulty is that we do not know the total number of days we will be skiing 

Strategy: 
• If we ski at most B-1 days, we are optimal
• If we ski at least B days, we pay 2B-1 whereas OPT pays B

• Strategy is 2-competitive which is optimal for deterministic algorithms. (e/(e-1) is 
optimal with randomization)

Rent for the first B-1 days and buy at the beginning of day B
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Sunday

“Premier league” searches in UK

International fixtures 


World-cup qualifiers in Europe
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Online Algorithms
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worst-case guarantees
(often) great 

performance in real 
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• Online algorithm with access to predictions about the future


• No assumptions on the predictor

Learning-Augmented Online Algorithms

Online Algorithm augmented with predictions
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• Consistency: if predictions are correct, algorithm gives close to optimal solution 

• Robustness: Even under adversarial predictions, algorithm maintains a worst-
case guarantee (ideally comparable to best known online algorithm)

• Smoothness: Performance degrades nicely in the error of the predictor

Three Desiderata
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• At the beginning of each day, decide whether to buy skis at a cost of B or rent skis for 
that day at a cost of 1


• The difficulty is that we do not know the total number of days we will be skiing 


• Prediction P of number of days

Example: Ski rental
Consistency vs Robustness

No trust Complete trust Balanced trust λ ∈ (0,1)

Can’t do better than 
standard online algorithms


Bad consistency

Excellent consistency but 
what if Prediction is 10B 
and reality is 1


Bad robustness

Wait  days to buy if 
prediction is to buy


Consistency:          
Robustness: 

λB

(1 + λ)
O(1/λ)
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• …

• + courses, workshops…

Emerging and quickly growing line of work

https://algorithms-with-predictions.github.io



Can we adapt powerful frameworks such as the primal-
dual approach to the learning augmented setting?



• Learning-augmented online algorithms


• Case study: set cover 

• Instantiating PDLA for other problems


• Future directions 

Outline
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• decisions are irrevocable = cannot decrease current fractional 
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LP formulation:
• each set has a corresponding variable  
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+ … + xSm
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Completely trusting predictor has 
terrible robustness


Interesting tradeoff between 
consistency and robustness
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1. At each step the increase of primal is  

whereas increase in dual is 
∑i:e∈Si

(xi + 1/ |#sets covering e | ) ≤ 2
1

2.  is a feasible dual solution: y/log(m)

• every time a  variable is updated in a constraint ye ∑e∈Si
ye ≤ 1

• The variable  is doubled in primal which can happen at most  times as its 
starting value is 

xSi
log(m)

1/m

1+2 together with LP-duality implies that algorithm is -competitiveO(log m)
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With prediction, say , should increase that 
variable more aggressively depending on our 
trust 
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General recipe
PDLA

• formulate the LP relaxation of the problem


• solve the problem using the Primal-Dual method


• tweak the rate to which primal variables increase to incorporate 
predictions

Simple analysis

Consistency via a charging argument


Robustness mimicking the original PD method proof

Widely applicable

Ski rental Bahncard TCP-ack

Easy to implement
Good prediction: beat online algorithms

Bad prediction: maintain robustness

(TCP-ack)



• Learning-augmented online algorithms


• Case study: set cover


• Instantiating PDLA for other problems 

• Future directions 

Outline



Ski Rental



primal-dual method, the results of [25]. As in [25] our prediction A will be the total number of
vacation days N pred.

PDLA for ski rental. To simplify the description, we denote an instance of the problem as
I = (N,B) and define the function e(z) = (1 + 1/B)

z·B . Note that if B ! 1, then e(z) ap-
proaches ez hence the choice of notation. In an integral solution, the variable x is 1 to indicate that
the skis are bought and 0 otherwise. In the same spirit fj indicates whether we rent on day j or not.
Buchbinder et al. [5] showed how to easily turn a fractional monotone solution (i.e. it is not permitted
to decrease a variable) to an online randomized algorithm of expected cost equal to the cost of the
fractional solution. Hence we focus only on building online a fractional solution. Algorithm 3 is
due to [5] and uses the Primal-Dual method to solve the problem. Each new day j a new constraint
x+ fj > 1 is revealed. To satisfy this constraint, the algorithm updates the primal and dual variables
while trying to maintain (1) the ratio �P/�D as small as possible and (2) the primal and dual
solutions feasible. As in the online weighted set cover problem, the key idea for extending Algorithm
3 to the learning augmented Algorithm 4 is to use the prediction N

pred in order to adjust the rate
at which each variable is increased. Thus, when N

pred
> B we increase the buying variable more

aggressively than the pure online algorithm. Here, the cost of following blindly the prediction N
pred

is S(N pred
, I) = B · {N pred

> B}+N · {N pred 6 B}.

Algorithm 3 PRIMAL DUAL FOR SKI-
RENTAL [5].

Initialize: x 0, fj  0, 8j
c e(1), c0  1

for each new day j s.t. x+ fj < 1 do
/* Primal Update

fj  1� x

x (1 +
1
B
)x+

1
(c�1)·B

/* Dual Update

yj  c
0

end for

))

Algorithm 4 PDLA FOR SKI-RENTAL.

Input: �, N pred

Initialize: x 0, fj  0, 8j
if N

pred > B then
/* Prediction suggests buying

c e(�), c0  1

else
/* Prediction suggests renting

c e(1/�), c0  �

end if
for each new day j s.t. x+ fj < 1 do

/* Primal Update

fj  1� x

x (1 +
1
B
)x+

1
(c�1)·B

/* Dual Update

yj  c
0

end for

In the following we assume that either �B or B/� is an integer (depending on whether c equals e(�)
or e(1/�) respectively in Algorithm 4). Our results do not change qualitatively by rounding up to the
closest integer. See appendix B for details.

Theorem 2 (PDLA for ski rental). For any � 2 (0, 1], the cost of PDLA for ski rental is bounded as

follows

cPDLA(N
pred

, I,�) 6 min

⇢
�

1� e(��) · S(N
pred

, I), 1

1� e(��) ·OPT(I)
�

Proof sketch. The robustness bound is proved essentially using the same proof as for the original
analysis of Algorithm 3 in [5]. For the consistency bound we first note that after an update the primal
increase is 1+ 1

c�1 , now depending on the value of c we distinguish between two cases. If N pred > B

then Algorithm 4 is always aggressive in buying. In this case it is easy to show that at most �B
updates are made before we get x > 1. Once x > 1, no more updates are needed. Since each
aggressive update costs at most 1 + 1

e(�)�1 =
e(�)

e(�)�1 =
1

1�e(��) we get that the total cost paid by
Algorithm 4 is at most �B

1�e(��) = S(N
pred

, I) · �

1�e(��) . Similarly, in the second case N
pred

< B

and the algorithm increases the buying variable less aggressively. In this case each update costs at
most 1 + 1

e(1/�)�1 =
1

1�e(�1/�) and at most N of these updates are made therefore Algorithm 4

5
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4.1 The PDLA algorithm and its theoretical analysis

Our prediction consists in a collection of times A in which the prediction suggests sending an ack.
Let ↵(t) be the next time t

0 > t when prediction sends an ack. With this definition each packet
j, if the prediction is followed blindly, is acknowledged at time ↵(t(j)) incurring a latency cost
of (↵(t(j))� t(j)) · 1

d
. In the same spirit as for the ski rental problem we adapt the pure online

Algorithm 5 into the learning augmented Algorithm 6. Algorithm 6 adjusts the rate at which we
increase the primal and dual variables according to the prediction A. Thus if a packet j at time t is
"uncovered" (

P
t

k=t(j) xk + fjt < 1) by our fractional solution and "covered" by A (↵(t(j)) 6 t) we
increase xt at a faster rate. To simplify the description of Algorithm 6 we define e(z) = (1 +

1
d
)
z·d.

To get to the continuous time case, we will take the limit d!1 so the reader should think intuitively
as e(z) ⇡ e

z .

Algorithm 5 PRIMAL DUAL METHOD FOR
TCP ACKNOWLEDGEMENT [5].

Initialize: x 0, y  0

for all times t do
for all packages j such thatP

t

k=t(j) xk < 1 do
c � e(1), c0  � 1/d

/* Primal Update

fjt  1�
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end for
end for
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d ·
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k=t(j) xk + 1
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/* Dual Update

yjt  c0

end for
end for

We continue by presenting Algorithm’s 6 guarantees together with a proof sketch. As before I
denotes the TCP ack problem instance which is revealed in an online fashion. The full proof is
deferred to appendix C.
Theorem 5 (PDLA for TCP-ack). For any prediction A, any instance I of the TCP ack problem,

any parameter � 2 (0, 1], and d ! 1: Algorithm 6 outputs a fractional solution of cost at most

cPDLA(A, I,�) 6 min

n
�

1�e�� · S(A, I), 1
1�e�� ·OPT(I)

o

Proof sketch. The two bounds are proven separately. For the robustness bound, while our analysis
is slightly more technical, we use the same idea as the original analysis in [5]. That is, upper
bounding the ratio �P/�D in every iteration and using weak duality. The consistency proof uses
a simple charging scheme that can be seen as a generalization of our consistency proof for the ski
rental problem. We essentially have two cases, big (c = e(�)) and small (c = e(1/�)) updates.
In the case of a small update, a simple calculation reveals that the increase in cost of the solution
is at most �P =

1
d

⇣
1�

P
t

k=t(j) xk

⌘
+

1
d

⇣P
t

k=t(j) xk +
1

e(1/�)�1

⌘
=

1
d

⇣
1 +

1
e(1/�)�1

⌘
=

1
d
·
⇣

1
1�e(�1/�)

⌘
. Notice then whenever Algorithm 6 does a small update at time t due to request j,

prediction A pays a latency cost of 1/d since it has not yet acknowledged request j. Hence the primal
increase of cost which is at most 1

d
· 1
1�e(�1/�) can be charged to the latency cost 1/d paid by A with

a multiplicative factor 1
1�e(�1/�) 6 �

1�e(��) (see Lemma 19, inequality (3)). The case of big updates
is slightly different. Consider a time t0 at which A sends an acknowledgement and consider the big
updates performed by Algorithm 6 for packets j arrived before that time (t(j) 6 t0). We claim that at
most d�de such big updates can be made. Indeed, big updates are more aggressive (i.e. xt increases
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TCP ACKNOWLEDGEMENT [5].

Initialize: x 0, y  0

for all times t do
for all packages j such thatP

t

k=t(j) xk < 1 do
c � e(1), c0  � 1/d

/* Primal Update

fjt  1�
P

t

k=t(j) xk

xt  xt +
1
d
·
⇣P

t

k=t(j) xk +
1

c�1

⌘

/* Dual Update

yjt  c
0

end for
end for

))

Algorithm 6 PDLA FOR TCP ACKNOWLEDGE-
MENT

Input: �, A
Initialize: x 0, y  0
for all times t do

for all packages j such that
Pt

k=t(j) xk < 1 do
if t > ↵(t(j)) then

/* Prediction already acknowledged packet j

c � e(�), c0  � 1/d
else

/* Prediction did not acknowledge packet j yet

c � e(1/�), c0  � �/d
end if
/* Primal Update

fjt  1�
Pt

k=t(j) xk

xt  xt + 1
d ·

⇣Pt
k=t(j) xk + 1

c�1

⌘

/* Dual Update

yjt  c0

end for
end for

We continue by presenting Algorithm’s 6 guarantees together with a proof sketch. As before I
denotes the TCP ack problem instance which is revealed in an online fashion. The full proof is
deferred to appendix C.
Theorem 5 (PDLA for TCP-ack). For any prediction A, any instance I of the TCP ack problem,

any parameter � 2 (0, 1], and d ! 1: Algorithm 6 outputs a fractional solution of cost at most

cPDLA(A, I,�) 6 min

n
�

1�e�� · S(A, I), 1
1�e�� ·OPT(I)

o

Proof sketch. The two bounds are proven separately. For the robustness bound, while our analysis
is slightly more technical, we use the same idea as the original analysis in [5]. That is, upper
bounding the ratio �P/�D in every iteration and using weak duality. The consistency proof uses
a simple charging scheme that can be seen as a generalization of our consistency proof for the ski
rental problem. We essentially have two cases, big (c = e(�)) and small (c = e(1/�)) updates.
In the case of a small update, a simple calculation reveals that the increase in cost of the solution
is at most �P =

1
d

⇣
1�

P
t

k=t(j) xk

⌘
+

1
d

⇣P
t

k=t(j) xk +
1

e(1/�)�1

⌘
=

1
d

⇣
1 +

1
e(1/�)�1

⌘
=

1
d
·
⇣

1
1�e(�1/�)

⌘
. Notice then whenever Algorithm 6 does a small update at time t due to request j,

prediction A pays a latency cost of 1/d since it has not yet acknowledged request j. Hence the primal
increase of cost which is at most 1

d
· 1
1�e(�1/�) can be charged to the latency cost 1/d paid by A with

a multiplicative factor 1
1�e(�1/�) 6 �

1�e(��) (see Lemma 19, inequality (3)). The case of big updates
is slightly different. Consider a time t0 at which A sends an acknowledgement and consider the big
updates performed by Algorithm 6 for packets j arrived before that time (t(j) 6 t0). We claim that at
most d�de such big updates can be made. Indeed, big updates are more aggressive (i.e. xt increases

7

• Robustness 


• Consistency 

eλ

eλ − 1

λeλ

eλ − 1
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independent instance
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PDLA in Action for TCP Ack

Good prediction: beat online algorithms

Experimental setting: • number of packets at each time step follows a Lomax distribution 

• (perturbed ) at each time step with probability p we delete the 

packets of the true instance , and with probability p we add an 
independent instance

I →
Ipred → I

I

Bad prediction: maintain robustness



• Learning-augmented online algorithms


• Case study: set cover


• Instantiating PDLA for other problems


• Future directions 

Outline



• PDLA gives a principled way of extending the primal-dual approach to 
incorporate new predictions


• Simple proofs (using old analysis)


• Unifies and some new results

Summary



• Apply PDLA to problems with packing constraints (e.g. revenue maximization 
in ad-auctions)


• Apply PDLA to problems with covering constraints and non-linear objective 
functions (e.g. speed scaling for energy minimization scheduling)


• Learning augment and try to get tight consistency/robustness guarantees for 
many more covering problems (e.g. load balancing, weighted caching etc.)


• Good advice doesn’t come for free

Future directions



Thank You!


