Lecture 3
Algorithms with Predictions
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— Look up time: O(logn)
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Motivating Example

Given a sorted array of integers A[1...n], and a query q check if g
IS in the array.

— Train a predictor h to learn where q should appear. [Kraska et al.’18]
— Then proceed via doubling binary search
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Motivating Example

Given a sorted array of integers A[1...n], and a query q check if g
IS in the array.
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Analysis:
—Let 1 = |h(q) — OPT(q)| be the absolute error of the predicted position

— Running time: O(logn)
- Can be made practical (must worry about speed & accuracy of predictions)
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More on the analysis

Comparing
— Classical: O(logn)
— Learning augmented: O(logn;)

Results:
— Consistent: perfect predictions recover optimal (constant) lookup times.
— Robust: even if predictions are bad, not (much) worse than classical
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How It started...

The Case for Learned Index Structures

Tim Kraska* Alex Beutel Ed H. Chi
MIT Google, Inc. Google, Inc.
Cambridge, MA Mountain View, CA Mountain View, CA
kraska@mit.edu alexbeutel@google.com edchi@google.com

Jeffrey Dean Neoklis Polyzotis
Google, Inc. Google, Inc.
Mountain View, CA Mountain View, CA
jeffl@google.com npolyzofis@aoogle. conm

.....
........
------

Abstract

Indexes are models: a B-Tree-Index can be seen as a model S | ides fro m my tal k in yeste rd ay's M L Syste ms

within a sorted array, a Hash-Index as a model to map a key to ¢
array, and a BitMap-Index as a model to indicate if a data record jRV\V[ @] rkS h (0] p are now u p at
paper, we start from this premise and posit that all existing indq
types of models, including deep-learning models, which we te
a model can learn the sort order or structure of lookup keys a
the position or existence of records. We theoretically analyze
outperform traditional index structures and describe the mai
structures. Our initial results show, that by using neural nets we
B-Trees by up to 70% in speed while saving an order-of-magni
data sets. More importantly though, we believe that the idea of replacing core components of a data
management system through learned models has far reaching implications for future systems designs and
that this work just provides a glimpse of what might be possible.
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An inauspicious start..

[deleted] - 5yr. ago

So essentially, tailor made indexes are better than generic data structures.......

who would have ever thought that was the case..........
The Case for Learne

G 24 @ D Reply Share Report Save Follow

Tim Kraska* Alex Beutel Ed H. Chi
MIT Google, Inc. Google, Inc.
Cambridge, MA Mountain View, CA Mountain View, CA
kraska@mit.edu alexbeutel@google.com edchi@google.com

Jeffrey Dean Neoklis Polyzotis

(Gonagle Ine (Gnnale Ine
A anonacct37 on Dec 11, 2017 | prev | next [-]

This seems interesting but to me there is a flaw near the beginning. They state a btree assumes worst case distribution. That's a feature . Much better than a "this will be fast, if you're lucky"
distribution.

But who knows, maybe for read heavy apalvtical workloads this will be an interesting wav of improvinag performance or reducing space usaage.

[deleted] - 5yr. ago - edited 5 yr. ago

This is not a new idea at all. When you start learning about topology and the
Indexes are models: a B problem of taking high dimensional spaces equipped with a metric, and mapping

within a sorted array, a Has} them into low dimensional spaces that respect the metric, you realize this idea is

array, and a BitMap-Index as | but | ™ itin all of h ) h |

paper, we start from this pre not only not new, but is a really important motif in all of mathematics. The neura

types of models, including ¢ networks have an added bonus that they can map seemingly related objects to

a model can learn the sort ¢ "nearby" indexes. The fun part is you really don't even need a neural network, as

th iti ist f : _ _ , ,
o PORIION OF Sri eTer O there are plenty of methods that exist to embed high dimensional spaces into low
outperform traditional inde

ctrnotnrac Ohnr initial racult dimensional indexes eallinned with a metric
A Asdfbla on Dec 11, 2017 | prev | next [-]

Sounds like an interesting approach, but just that I understand the scope or impact of the paper right: Surely data-aware indexing can't be the novel part, right? Or was it always so complicated
to model the data distribution that no one managed to do it until now? It seems natural to try to adapt your index to the type of data you see more often than not.

Very cool idea though.




Slide by Sergei Vassilvitskii

More on the analysis

Comparing
— Classical: O(logn)
— Learning augmented: O(logn;)

Results:

— Consistent: perfect predictions recover optimal (constant) lookup times.

— Robust: even if predictions are bad, not (much) worse than classical
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Algorithms with Predictions

This is the premise of “Algorithms with Predictions”
— Aka ‘Learning Augmented Algorithms’

Today:
— Over 100 interesting papers. Hard to keep up!

— See https://algorithms-with-predictions.github.io/
— No way to do justice to all the papers, or all the ideas, or all the authors...


https://algorithms-with-predictions.github.io/
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How it’s going...

& — C & algorithms-with-predictions.github.io LI * GRS

Algorithms with Predictions PAPERLIST ~ FURTHER MATERIAL  HOW TO CONTRIBUTE ~ ABOUT

F—__ﬁ

Newest first ¥ 127 papers
07 '09 10 "17 "18 19 20 21 '22 '23

Portfolios cover problems

Private Algorithms with Private Predictions  Amin, Dick, Khodak, Vassilvitskii arXiv'22 ) @IEEERESY S (£ AP
data-driven

Speed-Oblivious Online Scheduling: Knowing (Precise) Speeds is not Lindermayr, Megow, arXiv '23 m m
Rethinking Warm-Starts with Predictions: Learning Predictions Close to Sets of Optimal Sakaue, arXiv '23 m m
Solutions for Faster L-/L-Convex Function Minimization Oki
AGT
Minimalistic Predictions to Schedule Jobs with Online Lassota, Lindermayr, Megow, iv '
. . y g il m m differential privacy
Precedence Constraints Schloter
prior/related work
Renyi-Ulam Games and Online Computation with Angelopoulos, arXiv '23 @
Imperfect Advice Kamali
Graph Searching with Predictions  Banerjee, Cohen-Addad, Gupta, Li arXiv'22 ) (e m @ m
Scheduling with Predictions  Cho, Henderson, Shmoys arXiv '22 m scheduling beyond NP hardness
. . . _— . - . : bidding
Mechanism Design With Predictions for Obnoxious Facility Location  Istrate, Bonchis arXiv '22 @
caching/paging
On the Power of Learning-Augmented BSTs  Chen, Chen arXiv '22 :
Algorithms with Dinitz, Im, Lavastida, arXiv'22 ) QEELILEIESNT) multiple predictions m m convex body chasing
Prediction Moseley, Vassilvitskii —

™ ' eal N v s P L Y L . el L 4N = T DX T I D T . ™ 1 _ 1 S A, 2.



Learning-Augmented Online Algorithms
and the Primal-Dual Method

Ola Svensson
Joint work with Etienne Bamas and Andreas Maggiori

=PrL
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Learning-augmented online algorithms
Case study: set cover
Instantiating PDLA for other problems

Future directions
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for that day at a cost of 1
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Learning-Augmented Online Algorithms

* Online algorithm with access to predictions about the future

 No assumptions on the predictor

Online Algorithm augmented with predictions
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e Consistency: if predictions are correct, algorithm gives close to optimal solution

 Robustness: Even under adversarial predictions, algorithm maintains a worst-
case guarantee (ideally comparable to best known online algorithm)

 Smoothness: Performance degrades nicely in the error of the predictor
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Consistency vs Robustness
Example: Ski rental 3«”

=

» At the beginning of each day, decide whether to buy skis at a cost of B or rent skis for
that day at a cost of 1

* The difficulty is that we do not know the total number of days we will be skiing

* Prediction P of number of days

No trust Complete trust Balanced trust 4 € (0,1)

Excellent consistency but Wait AB days to buy if
what if Prediction is 10B prediction is to buy
and reality is 1

Can’t do better than
standard online algorithms

Consistency: (1 + A)

Bad consistency Bad robustness Robustness: O(1/1)
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Emerging and quickly growing line of work

« Ad allocation by Mahdian, Nazerzadeh, Saberi, EC’07

« Competitive caching (Lykouris and Vassilvitskii ICML 2018, Rohatgi SODA 2020)
e Skirental (Kumar et al. NeurlPS 2018, Gollapudi and Panigrahi ICML 2019)

* Bloom filters (Mitzenmacher NeurlPS 2018)

« Metrical task systems (Antoniadis et al. ICML 2020)

* Frequency estimation in data streams (Hsu et al. ICLR 2019)

 Scheduling (Lattanzi et al. SODA 2020, Bamas et al. NeurlPS 2020)

e + courses, workshops...
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2007 2017 2018 2019 2020 2021 2022

Learning-Augmented Algorithms for Online TSP on the Line  Gouleakis, Lakis, Shahkarami m data structure
A Universal Error Measure for Input Predictions Applied Bernardini, Lindermayr, Marchetti-Spaccamela, m m

to Online Graph Problems Megow, Stougie, Sweering running time

Mechanism Design with Predictions  Xu, Lu scheduling AGT
Discrete-Convex-Analysis-Based Framework for Warm-Starting Algorithms with Sakaue, m

Predictions Oki auctions

Online Algorithms with Multiple Predictions  Anand, Ge, Kumar, Panigrahi multiple predictions m bidding

Scheduling with Speed Predictions  Balkanski, Ou, Stein, Wei m m caching/paging
Faster Fundamental Graph Algorithms via Learned Predictions  Chen, Silwal, Vakilian, Zhang

Newest first ¥ 95 papers

data-driven
Learning-Augmen Mechanism Design: Leveraging Predictions for Facilit Agrawal, Balkanski, Gkatzelis, Ou, iv'

exploration

Online Unit Profit Knapsack with Untrusted Predictions  Boyar, Favrholdt, Larsen @ m
Permutation Predictions for Non-Clairvoyant Scheduling  Lindermayr, Megow m scheduling
Single-Leg Revenue Management with Advice  Balseiro, Kroer, Kumar arXiv '22 linear quadratic control
Learning Predictions for Algorithms with Predictions  Khodak, Balcan, Talwalkar, Vassilvitskii @ m load balancing
Parsimonious Learning-Augmented Caching  Im, Kumar, Petety, Purohit caching/paging m

matroid intersection
Lazy Lagrangians with Predictions for Online Learning  Anderson, losifidis, Leith @ m MTS

Machine Learning Advised Ski Rental Problem with a Discount  Bhattacharya, Das WALCOM '22 m rent-or-buy multiple predictions

k-server

Dnahiiet | nad Ralannina with Manrhina | aarnad Aduina Dann Ahmadian Eefandiari Mirralni ATV AT ANTTA. AT network design

https://algorithms-with-predictions.github.io



Can we adapt powerful frameworks such as the primal-
dual approach to the learning augmented setting?



Outline

Learning-augmented online algorithms
Case study: set cover
Instantiating PDLA for other problems

Future directions
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Goal: * cover fractionally every newly arrived element

e decisions are irrevocable = cannot decrease current fractional
solution

* minimize the sum of fractionally selected sets
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Fractional online set cover problem

xg = 1/2

LP formulation:

« each set has a corresponding variable

- at every new element e arrival a new constraint 2 Xg = 1 needs to be satisfied

« mMinimize EXS'
l
i

i:e€S;
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Difficult instance

Current solution O(log m)

xs = 1Um xg=1m—1) xs=1/(m=2) .. xszl/ OPT = 1

Constraints

Which can be shown to
Xg +Xg +Xg + ...+ xg 21 be a lower bound on the
" performance of any

X +xg. + ... +xg 21 online algorithm

Xg,+ ... +xg 21
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Current solution

XS1:1 XSZZI XS3:1 oo xszl /

Constraints

cost = m
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Xg, +Xg, + ...+ xg 21
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. Completely trusting predictor has
i : terrible robustness

Interesting tradeoff between
consistency and robustness
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With prediction, say S5, should increase that
variable more aggressively depending on our

trust A = [0,1]
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General recipe

e formulate the LP relaxation of the problem
e solve the problem using the Primal-Dual method
e tweak the rate to which primal variables increase to incorporate

predictions

Simple analysis Widely applicable

¥ 7
I | “ ’vd"
A

Ski rental Bahncard TCP-ack

Consistency via a charging argument

Robustness mimicking the original PD method proof

Easy to implement (TCP-ack)

Good prediction: beat online algorithms

Bad prediction: maintain robustness




Outline

Learning-augmented online algorithms
Case study: set cover
Instantiating PDLA for other problems

Future directions
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Algorithm 4 PDL A FOR SKI-RENTAL.

Input: )\, NP
Initialize: x < 0, f; < 0,V
if NPed > B then
/* Prediction suggests buying
c+—e(N),d 1
else
/* Prediction suggests renting
c+e(1/N),d + A
end if
for eachnew day js.t. z + f; <1 do
/* Primal Update
fj +—1—x
/* Dual Update
y;
end for

Recovering
the results of

Kumar et al.
NeurlPS 2018

PDLA for Ski rental:
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Outline

Learning-augmented online algorithms
Case study: set cover
Instantiating PDLA for other problems

Future directions



Summary

 PDLA gives a principled way of extending the primal-dual approach to
Incorporate new predictions

« Simple proofs (using old analysis)

 Unifies and some new results



Future directions

 Apply PDLA to problems with packing constraints (e.g. revenue maximization
in ad-auctions)

e Apply PDLA to problems with covering constraints and non-linear objective
functions (e.g. speed scaling for energy minimization scheduling)

e |earning augment and try to get tight consistency/robustness guarantees for
many more covering problems (e.g. load balancing, weighted caching etc.)

* Good advice doesn’t come for free



Thank You!



