
Lecture 3
Algorithms with Predictions

Warm-up

Given a sorted array of integers A[1…n], and a query q check if q
is in the array.

4 7 11 16 22 37 38 44 88 89 93 94 95 96 97 98

7

2

Slide by Sergei Vassilvitskii

Motivating Example

Given a sorted array of integers A[1…n], and a query q check if q
is in the array.

4 7 11 16 22 37 38 44 88 89 93 94 95 96 97 98

7

2

Slide by Sergei Vassilvitskii

Motivating Example

Given a sorted array of integers A[1…n], and a query q check if q
is in the array.

4 7 11 16 22 37 38 44 88 89 93 94 95 96 97 98

7

2

Slide by Sergei Vassilvitskii

Motivating Example

Given a sorted array of integers A[1…n], and a query q check if q
is in the array.

4 7 11 16 22 37 38 44 88 89 93 94 95 96 97 98

7

2 4

Slide by Sergei Vassilvitskii

Motivating Example

Given a sorted array of integers A[1…n], and a query q check if q
is in the array.

– Look up time:

4 7 11 16 22 37 38 44 88 89 93 94 95 96 97 98

7

2 4

O(log n)

Slide by Sergei Vassilvitskii

Finding a book in the library…
Slide by Sergei Vassilvitskii

Finding a book in the library…
Slide by Sergei Vassilvitskii

Finding a book in the library…

CORMEN

Slide by Sergei Vassilvitskii

Motivating Example

Given a sorted array of integers A[1…n], and a query q check if q
is in the array.

– Train a predictor h to learn where q should appear. [Kraska et al.’18]
– Then proceed via doubling binary search

4 7 11 16 22 37 38 44 88 89 93 94 95 96 97 98

7

2

Slide by Sergei Vassilvitskii

Motivating Example

Given a sorted array of integers A[1…n], and a query q check if q
is in the array.

– Train a predictor h to learn where q should appear. [Kraska et al.’18]
– Then proceed via doubling binary search

4 7 11 16 22 37 38 44 88 89 93 94 95 96 97 98

7

2

h

Slide by Sergei Vassilvitskii

Motivating Example

Given a sorted array of integers A[1…n], and a query q check if q
is in the array.

– Train a predictor h to learn where q should appear. [Kraska et al.’18]
– Then proceed via doubling binary search

4 7 11 16 22 37 38 44 88 89 93 94 95 96 97 98

7

2

h

Slide by Sergei Vassilvitskii

Motivating Example

Given a sorted array of integers A[1…n], and a query q check if q
is in the array.

– Train a predictor h to learn where q should appear. [Kraska et al.’18]
– Then proceed via doubling binary search

4 7 11 16 22 37 38 44 88 89 93 94 95 96 97 98

7

2

h

Slide by Sergei Vassilvitskii

Motivating Example

Given a sorted array of integers A[1…n], and a query q check if q
is in the array.

Analysis:
– Let be the absolute error of the predicted position

– Running time:
• Can be made practical (must worry about speed & accuracy of predictions)

4 7 11 16 22 37 38 44 88 89 93 94 95 96 97 98

7

2

h

⌘1 = |h(q)� opt(q)|

⌘1

O(log ⌘1)

Slide by Sergei Vassilvitskii

More on the analysis

Comparing
– Classical:
– Learning augmented:

Results:
– Consistent: perfect predictions recover optimal (constant) lookup times.
– Robust: even if predictions are bad, not (much) worse than classical

O(log n)

O(log ⌘1)

Slide by Sergei Vassilvitskii

How it started…

[Snapshot of kraska paper]

Slide by Sergei Vassilvitskii

An inauspicious start..
Slide by Sergei Vassilvitskii

More on the analysis

Comparing
– Classical:
– Learning augmented:

Results:
– Consistent: perfect predictions recover optimal (constant) lookup times.
– Robust: even if predictions are bad, not (much) worse than classical

O(log n)

O(log ⌘1)

Slide by Sergei Vassilvitskii

Algorithms with Predictions

This is the premise of “Algorithms with Predictions”
– Aka ‘Learning Augmented Algorithms’

Today:
– Over 100 interesting papers. Hard to keep up!
– See https://algorithms-with-predictions.github.io/
– No way to do justice to all the papers, or all the ideas, or all the authors…

Slide by Sergei Vassilvitskii

https://algorithms-with-predictions.github.io/

How it’s going…
Slide by Sergei Vassilvitskii

Learning-Augmented Online Algorithms
and the Primal-Dual Method
Ola Svensson
Joint work with Etienne Bamas and Andreas Maggiori

• Learning-augmented online algorithms

• Case study: set cover

• Instantiating PDLA for other problems

• Future directions

Outline

• Learning-augmented online algorithms

• Case study: set cover

• Instantiating PDLA for other problems

• Future directions

Outline

Online algorithms

best graduate school

best graduate school

best graduate school

Ad allocated by online
matching algorithm
(matching ads to search results)

Instance
Arrive
Online

Immediate
Decisions

Competitive ratio
Evaluating online algorithms

An algorithm is c-competitive if, for any input sequence, it finds a solution with

Competitive ratio
Evaluating online algorithms

An algorithm is c-competitive if, for any input sequence, it finds a solution with
<latexit sha1_base64="fjVcLLPtbIwTuCvSnPNlw4KTXxE=">AAACJ3icbVDLSgMxFM34tr6qLt0Eq6CbMtOFupKiG3dWsFXoFMlkMhrMY5rcEevQv3Hjr7gRVESX/olpOwtfBwIn59x7k3uiVHALvv/hjY1PTE5Nz8yW5uYXFpfKyystqzNDWZNqoc15RCwTXLEmcBDsPDWMyEiws+j6cOCf3TBjuVan0EtZR5JLxRNOCTjporxPtYUtq0U2uG/jjVCwLqY4pLGGUEb6Nj9unPY3cNjtZiTGPMGSKy75XTGg4lf9IfBfEhSkggo0LsrPYaxpJpkCKoi17cBPoZMTA5wK1i+FmWUpodfkkrUdVUQy28mHe/bxplNinGjjjgI8VL935ERa25ORq5QEruxvbyD+57UzSPY6OVdpBkzR0UNJJjBoPAgNx9wwCqLnCKGGu79iekUMoeCiLbkQgt8r/yWtWjXYqdZOapX6QRHHDFpD62gLBWgX1dERaqAmougePaIX9Oo9eE/em/c+Kh3zip5V9APe5xcEEqYO</latexit>

cost(solution)  c ·OPT if minimization

Competitive ratio
Evaluating online algorithms

An algorithm is c-competitive if, for any input sequence, it finds a solution with
<latexit sha1_base64="fjVcLLPtbIwTuCvSnPNlw4KTXxE=">AAACJ3icbVDLSgMxFM34tr6qLt0Eq6CbMtOFupKiG3dWsFXoFMlkMhrMY5rcEevQv3Hjr7gRVESX/olpOwtfBwIn59x7k3uiVHALvv/hjY1PTE5Nz8yW5uYXFpfKyystqzNDWZNqoc15RCwTXLEmcBDsPDWMyEiws+j6cOCf3TBjuVan0EtZR5JLxRNOCTjporxPtYUtq0U2uG/jjVCwLqY4pLGGUEb6Nj9unPY3cNjtZiTGPMGSKy75XTGg4lf9IfBfEhSkggo0LsrPYaxpJpkCKoi17cBPoZMTA5wK1i+FmWUpodfkkrUdVUQy28mHe/bxplNinGjjjgI8VL935ERa25ORq5QEruxvbyD+57UzSPY6OVdpBkzR0UNJJjBoPAgNx9wwCqLnCKGGu79iekUMoeCiLbkQgt8r/yWtWjXYqdZOapX6QRHHDFpD62gLBWgX1dERaqAmougePaIX9Oo9eE/em/c+Kh3zip5V9APe5xcEEqYO</latexit>

cost(solution)  c ·OPT if minimization
<latexit sha1_base64="Gf1kh117o6ZGU/gvVvRrlSzixjk=">AAACKHicbVBNTxsxEPVSSiEUGtpjLxYBCS7Rbg60N1C5cCOVEkDKRmjWOxss7PXGHxHpKj+HC3+FC0KtKq78EpxkD3w9aaSn92bsmZcUghsbhg/BwofFj0uflldqq5/X1r/UN76eGOU0wy5TQumzBAwKnmPXcivwrNAIMhF4mlweTv3TEWrDVd6x4wL7EgY5zzgD66Xz+v4IhMMdo4SbCrt0Kx7gkDIas1TZWCbqqjxudyZbNB4OHaSUZ1TCFZf8T/VCI2yGM9C3JKpIg1Ron9fv41QxJzG3TIAxvSgsbL8EbTkTOKnFzmAB7BIG2PM0B4mmX84OndBtr6Q0U9pXbulMfT5RgjRmLBPfKcFemNfeVHzP6zmb/eyXPC+cxZzNP8qcoFbRaWo05RqZFWNPgGnud6XsAjQw67Ot+RCi1ye/JSetZrTXbP1uNQ5+VXEsk+9kk+yQiPwgB+SItEmXMHJNbslf8i+4Ce6C/8HDvHUhqGa+kRcIHp8A1DemeQ==</latexit>

value(solution) � c ·OPT if maximization

Competitive ratio
Evaluating online algorithms

An algorithm is c-competitive if, for any input sequence, it finds a solution with
<latexit sha1_base64="fjVcLLPtbIwTuCvSnPNlw4KTXxE=">AAACJ3icbVDLSgMxFM34tr6qLt0Eq6CbMtOFupKiG3dWsFXoFMlkMhrMY5rcEevQv3Hjr7gRVESX/olpOwtfBwIn59x7k3uiVHALvv/hjY1PTE5Nz8yW5uYXFpfKyystqzNDWZNqoc15RCwTXLEmcBDsPDWMyEiws+j6cOCf3TBjuVan0EtZR5JLxRNOCTjporxPtYUtq0U2uG/jjVCwLqY4pLGGUEb6Nj9unPY3cNjtZiTGPMGSKy75XTGg4lf9IfBfEhSkggo0LsrPYaxpJpkCKoi17cBPoZMTA5wK1i+FmWUpodfkkrUdVUQy28mHe/bxplNinGjjjgI8VL935ERa25ORq5QEruxvbyD+57UzSPY6OVdpBkzR0UNJJjBoPAgNx9wwCqLnCKGGu79iekUMoeCiLbkQgt8r/yWtWjXYqdZOapX6QRHHDFpD62gLBWgX1dERaqAmougePaIX9Oo9eE/em/c+Kh3zip5V9APe5xcEEqYO</latexit>

cost(solution)  c ·OPT if minimization
<latexit sha1_base64="Gf1kh117o6ZGU/gvVvRrlSzixjk=">AAACKHicbVBNTxsxEPVSSiEUGtpjLxYBCS7Rbg60N1C5cCOVEkDKRmjWOxss7PXGHxHpKj+HC3+FC0KtKq78EpxkD3w9aaSn92bsmZcUghsbhg/BwofFj0uflldqq5/X1r/UN76eGOU0wy5TQumzBAwKnmPXcivwrNAIMhF4mlweTv3TEWrDVd6x4wL7EgY5zzgD66Xz+v4IhMMdo4SbCrt0Kx7gkDIas1TZWCbqqjxudyZbNB4OHaSUZ1TCFZf8T/VCI2yGM9C3JKpIg1Ron9fv41QxJzG3TIAxvSgsbL8EbTkTOKnFzmAB7BIG2PM0B4mmX84OndBtr6Q0U9pXbulMfT5RgjRmLBPfKcFemNfeVHzP6zmb/eyXPC+cxZzNP8qcoFbRaWo05RqZFWNPgGnud6XsAjQw67Ot+RCi1ye/JSetZrTXbP1uNQ5+VXEsk+9kk+yQiPwgB+SItEmXMHJNbslf8i+4Ce6C/8HDvHUhqGa+kRcIHp8A1DemeQ==</latexit>

value(solution) � c ·OPT if maximization

Example: Ski rental

• At the beginning of each day, decide whether to buy skis at a cost of B or rent skis
for that day at a cost of 1

• The difficulty is that we do not know the total number of days we will be skiing

Competitive ratio
Evaluating online algorithms

An algorithm is c-competitive if, for any input sequence, it finds a solution with
<latexit sha1_base64="fjVcLLPtbIwTuCvSnPNlw4KTXxE=">AAACJ3icbVDLSgMxFM34tr6qLt0Eq6CbMtOFupKiG3dWsFXoFMlkMhrMY5rcEevQv3Hjr7gRVESX/olpOwtfBwIn59x7k3uiVHALvv/hjY1PTE5Nz8yW5uYXFpfKyystqzNDWZNqoc15RCwTXLEmcBDsPDWMyEiws+j6cOCf3TBjuVan0EtZR5JLxRNOCTjporxPtYUtq0U2uG/jjVCwLqY4pLGGUEb6Nj9unPY3cNjtZiTGPMGSKy75XTGg4lf9IfBfEhSkggo0LsrPYaxpJpkCKoi17cBPoZMTA5wK1i+FmWUpodfkkrUdVUQy28mHe/bxplNinGjjjgI8VL935ERa25ORq5QEruxvbyD+57UzSPY6OVdpBkzR0UNJJjBoPAgNx9wwCqLnCKGGu79iekUMoeCiLbkQgt8r/yWtWjXYqdZOapX6QRHHDFpD62gLBWgX1dERaqAmougePaIX9Oo9eE/em/c+Kh3zip5V9APe5xcEEqYO</latexit>

cost(solution)  c ·OPT if minimization
<latexit sha1_base64="Gf1kh117o6ZGU/gvVvRrlSzixjk=">AAACKHicbVBNTxsxEPVSSiEUGtpjLxYBCS7Rbg60N1C5cCOVEkDKRmjWOxss7PXGHxHpKj+HC3+FC0KtKq78EpxkD3w9aaSn92bsmZcUghsbhg/BwofFj0uflldqq5/X1r/UN76eGOU0wy5TQumzBAwKnmPXcivwrNAIMhF4mlweTv3TEWrDVd6x4wL7EgY5zzgD66Xz+v4IhMMdo4SbCrt0Kx7gkDIas1TZWCbqqjxudyZbNB4OHaSUZ1TCFZf8T/VCI2yGM9C3JKpIg1Ron9fv41QxJzG3TIAxvSgsbL8EbTkTOKnFzmAB7BIG2PM0B4mmX84OndBtr6Q0U9pXbulMfT5RgjRmLBPfKcFemNfeVHzP6zmb/eyXPC+cxZzNP8qcoFbRaWo05RqZFWNPgGnud6XsAjQw67Ot+RCi1ye/JSetZrTXbP1uNQ5+VXEsk+9kk+yQiPwgB+SItEmXMHJNbslf8i+4Ce6C/8HDvHUhqGa+kRcIHp8A1DemeQ==</latexit>

value(solution) � c ·OPT if maximization

Example: Ski rental

• At the beginning of each day, decide whether to buy skis at a cost of B or rent skis
for that day at a cost of 1

• The difficulty is that we do not know the total number of days we will be skiing

Strategy:

Competitive ratio
Evaluating online algorithms

An algorithm is c-competitive if, for any input sequence, it finds a solution with
<latexit sha1_base64="fjVcLLPtbIwTuCvSnPNlw4KTXxE=">AAACJ3icbVDLSgMxFM34tr6qLt0Eq6CbMtOFupKiG3dWsFXoFMlkMhrMY5rcEevQv3Hjr7gRVESX/olpOwtfBwIn59x7k3uiVHALvv/hjY1PTE5Nz8yW5uYXFpfKyystqzNDWZNqoc15RCwTXLEmcBDsPDWMyEiws+j6cOCf3TBjuVan0EtZR5JLxRNOCTjporxPtYUtq0U2uG/jjVCwLqY4pLGGUEb6Nj9unPY3cNjtZiTGPMGSKy75XTGg4lf9IfBfEhSkggo0LsrPYaxpJpkCKoi17cBPoZMTA5wK1i+FmWUpodfkkrUdVUQy28mHe/bxplNinGjjjgI8VL935ERa25ORq5QEruxvbyD+57UzSPY6OVdpBkzR0UNJJjBoPAgNx9wwCqLnCKGGu79iekUMoeCiLbkQgt8r/yWtWjXYqdZOapX6QRHHDFpD62gLBWgX1dERaqAmougePaIX9Oo9eE/em/c+Kh3zip5V9APe5xcEEqYO</latexit>

cost(solution)  c ·OPT if minimization
<latexit sha1_base64="Gf1kh117o6ZGU/gvVvRrlSzixjk=">AAACKHicbVBNTxsxEPVSSiEUGtpjLxYBCS7Rbg60N1C5cCOVEkDKRmjWOxss7PXGHxHpKj+HC3+FC0KtKq78EpxkD3w9aaSn92bsmZcUghsbhg/BwofFj0uflldqq5/X1r/UN76eGOU0wy5TQumzBAwKnmPXcivwrNAIMhF4mlweTv3TEWrDVd6x4wL7EgY5zzgD66Xz+v4IhMMdo4SbCrt0Kx7gkDIas1TZWCbqqjxudyZbNB4OHaSUZ1TCFZf8T/VCI2yGM9C3JKpIg1Ron9fv41QxJzG3TIAxvSgsbL8EbTkTOKnFzmAB7BIG2PM0B4mmX84OndBtr6Q0U9pXbulMfT5RgjRmLBPfKcFemNfeVHzP6zmb/eyXPC+cxZzNP8qcoFbRaWo05RqZFWNPgGnud6XsAjQw67Ot+RCi1ye/JSetZrTXbP1uNQ5+VXEsk+9kk+yQiPwgB+SItEmXMHJNbslf8i+4Ce6C/8HDvHUhqGa+kRcIHp8A1DemeQ==</latexit>

value(solution) � c ·OPT if maximization

Example: Ski rental

• At the beginning of each day, decide whether to buy skis at a cost of B or rent skis
for that day at a cost of 1

• The difficulty is that we do not know the total number of days we will be skiing

Strategy: Rent for the first B-1 days and buy at the beginning of day B

Competitive ratio
Evaluating online algorithms

An algorithm is c-competitive if, for any input sequence, it finds a solution with
<latexit sha1_base64="fjVcLLPtbIwTuCvSnPNlw4KTXxE=">AAACJ3icbVDLSgMxFM34tr6qLt0Eq6CbMtOFupKiG3dWsFXoFMlkMhrMY5rcEevQv3Hjr7gRVESX/olpOwtfBwIn59x7k3uiVHALvv/hjY1PTE5Nz8yW5uYXFpfKyystqzNDWZNqoc15RCwTXLEmcBDsPDWMyEiws+j6cOCf3TBjuVan0EtZR5JLxRNOCTjporxPtYUtq0U2uG/jjVCwLqY4pLGGUEb6Nj9unPY3cNjtZiTGPMGSKy75XTGg4lf9IfBfEhSkggo0LsrPYaxpJpkCKoi17cBPoZMTA5wK1i+FmWUpodfkkrUdVUQy28mHe/bxplNinGjjjgI8VL935ERa25ORq5QEruxvbyD+57UzSPY6OVdpBkzR0UNJJjBoPAgNx9wwCqLnCKGGu79iekUMoeCiLbkQgt8r/yWtWjXYqdZOapX6QRHHDFpD62gLBWgX1dERaqAmougePaIX9Oo9eE/em/c+Kh3zip5V9APe5xcEEqYO</latexit>

cost(solution)  c ·OPT if minimization
<latexit sha1_base64="Gf1kh117o6ZGU/gvVvRrlSzixjk=">AAACKHicbVBNTxsxEPVSSiEUGtpjLxYBCS7Rbg60N1C5cCOVEkDKRmjWOxss7PXGHxHpKj+HC3+FC0KtKq78EpxkD3w9aaSn92bsmZcUghsbhg/BwofFj0uflldqq5/X1r/UN76eGOU0wy5TQumzBAwKnmPXcivwrNAIMhF4mlweTv3TEWrDVd6x4wL7EgY5zzgD66Xz+v4IhMMdo4SbCrt0Kx7gkDIas1TZWCbqqjxudyZbNB4OHaSUZ1TCFZf8T/VCI2yGM9C3JKpIg1Ron9fv41QxJzG3TIAxvSgsbL8EbTkTOKnFzmAB7BIG2PM0B4mmX84OndBtr6Q0U9pXbulMfT5RgjRmLBPfKcFemNfeVHzP6zmb/eyXPC+cxZzNP8qcoFbRaWo05RqZFWNPgGnud6XsAjQw67Ot+RCi1ye/JSetZrTXbP1uNQ5+VXEsk+9kk+yQiPwgB+SItEmXMHJNbslf8i+4Ce6C/8HDvHUhqGa+kRcIHp8A1DemeQ==</latexit>

value(solution) � c ·OPT if maximization

Example: Ski rental

• At the beginning of each day, decide whether to buy skis at a cost of B or rent skis
for that day at a cost of 1

• The difficulty is that we do not know the total number of days we will be skiing

Strategy:
• If we ski at most B-1 days, we are optimal

Rent for the first B-1 days and buy at the beginning of day B

Competitive ratio
Evaluating online algorithms

An algorithm is c-competitive if, for any input sequence, it finds a solution with
<latexit sha1_base64="fjVcLLPtbIwTuCvSnPNlw4KTXxE=">AAACJ3icbVDLSgMxFM34tr6qLt0Eq6CbMtOFupKiG3dWsFXoFMlkMhrMY5rcEevQv3Hjr7gRVESX/olpOwtfBwIn59x7k3uiVHALvv/hjY1PTE5Nz8yW5uYXFpfKyystqzNDWZNqoc15RCwTXLEmcBDsPDWMyEiws+j6cOCf3TBjuVan0EtZR5JLxRNOCTjporxPtYUtq0U2uG/jjVCwLqY4pLGGUEb6Nj9unPY3cNjtZiTGPMGSKy75XTGg4lf9IfBfEhSkggo0LsrPYaxpJpkCKoi17cBPoZMTA5wK1i+FmWUpodfkkrUdVUQy28mHe/bxplNinGjjjgI8VL935ERa25ORq5QEruxvbyD+57UzSPY6OVdpBkzR0UNJJjBoPAgNx9wwCqLnCKGGu79iekUMoeCiLbkQgt8r/yWtWjXYqdZOapX6QRHHDFpD62gLBWgX1dERaqAmougePaIX9Oo9eE/em/c+Kh3zip5V9APe5xcEEqYO</latexit>

cost(solution)  c ·OPT if minimization
<latexit sha1_base64="Gf1kh117o6ZGU/gvVvRrlSzixjk=">AAACKHicbVBNTxsxEPVSSiEUGtpjLxYBCS7Rbg60N1C5cCOVEkDKRmjWOxss7PXGHxHpKj+HC3+FC0KtKq78EpxkD3w9aaSn92bsmZcUghsbhg/BwofFj0uflldqq5/X1r/UN76eGOU0wy5TQumzBAwKnmPXcivwrNAIMhF4mlweTv3TEWrDVd6x4wL7EgY5zzgD66Xz+v4IhMMdo4SbCrt0Kx7gkDIas1TZWCbqqjxudyZbNB4OHaSUZ1TCFZf8T/VCI2yGM9C3JKpIg1Ron9fv41QxJzG3TIAxvSgsbL8EbTkTOKnFzmAB7BIG2PM0B4mmX84OndBtr6Q0U9pXbulMfT5RgjRmLBPfKcFemNfeVHzP6zmb/eyXPC+cxZzNP8qcoFbRaWo05RqZFWNPgGnud6XsAjQw67Ot+RCi1ye/JSetZrTXbP1uNQ5+VXEsk+9kk+yQiPwgB+SItEmXMHJNbslf8i+4Ce6C/8HDvHUhqGa+kRcIHp8A1DemeQ==</latexit>

value(solution) � c ·OPT if maximization

Example: Ski rental

• At the beginning of each day, decide whether to buy skis at a cost of B or rent skis
for that day at a cost of 1

• The difficulty is that we do not know the total number of days we will be skiing

Strategy:
• If we ski at most B-1 days, we are optimal
• If we ski at least B days, we pay 2B-1 whereas OPT pays B

Rent for the first B-1 days and buy at the beginning of day B

Competitive ratio
Evaluating online algorithms

An algorithm is c-competitive if, for any input sequence, it finds a solution with
<latexit sha1_base64="fjVcLLPtbIwTuCvSnPNlw4KTXxE=">AAACJ3icbVDLSgMxFM34tr6qLt0Eq6CbMtOFupKiG3dWsFXoFMlkMhrMY5rcEevQv3Hjr7gRVESX/olpOwtfBwIn59x7k3uiVHALvv/hjY1PTE5Nz8yW5uYXFpfKyystqzNDWZNqoc15RCwTXLEmcBDsPDWMyEiws+j6cOCf3TBjuVan0EtZR5JLxRNOCTjporxPtYUtq0U2uG/jjVCwLqY4pLGGUEb6Nj9unPY3cNjtZiTGPMGSKy75XTGg4lf9IfBfEhSkggo0LsrPYaxpJpkCKoi17cBPoZMTA5wK1i+FmWUpodfkkrUdVUQy28mHe/bxplNinGjjjgI8VL935ERa25ORq5QEruxvbyD+57UzSPY6OVdpBkzR0UNJJjBoPAgNx9wwCqLnCKGGu79iekUMoeCiLbkQgt8r/yWtWjXYqdZOapX6QRHHDFpD62gLBWgX1dERaqAmougePaIX9Oo9eE/em/c+Kh3zip5V9APe5xcEEqYO</latexit>

cost(solution)  c ·OPT if minimization
<latexit sha1_base64="Gf1kh117o6ZGU/gvVvRrlSzixjk=">AAACKHicbVBNTxsxEPVSSiEUGtpjLxYBCS7Rbg60N1C5cCOVEkDKRmjWOxss7PXGHxHpKj+HC3+FC0KtKq78EpxkD3w9aaSn92bsmZcUghsbhg/BwofFj0uflldqq5/X1r/UN76eGOU0wy5TQumzBAwKnmPXcivwrNAIMhF4mlweTv3TEWrDVd6x4wL7EgY5zzgD66Xz+v4IhMMdo4SbCrt0Kx7gkDIas1TZWCbqqjxudyZbNB4OHaSUZ1TCFZf8T/VCI2yGM9C3JKpIg1Ron9fv41QxJzG3TIAxvSgsbL8EbTkTOKnFzmAB7BIG2PM0B4mmX84OndBtr6Q0U9pXbulMfT5RgjRmLBPfKcFemNfeVHzP6zmb/eyXPC+cxZzNP8qcoFbRaWo05RqZFWNPgGnud6XsAjQw67Ot+RCi1ye/JSetZrTXbP1uNQ5+VXEsk+9kk+yQiPwgB+SItEmXMHJNbslf8i+4Ce6C/8HDvHUhqGa+kRcIHp8A1DemeQ==</latexit>

value(solution) � c ·OPT if maximization

Example: Ski rental

• At the beginning of each day, decide whether to buy skis at a cost of B or rent skis
for that day at a cost of 1

• The difficulty is that we do not know the total number of days we will be skiing

Strategy:
• If we ski at most B-1 days, we are optimal
• If we ski at least B days, we pay 2B-1 whereas OPT pays B

• Strategy is 2-competitive which is optimal for deterministic algorithms. (e/(e-1) is
optimal with randomization)

Rent for the first B-1 days and buy at the beginning of day B

Competitive ratio
Evaluating online algorithms

An algorithm is c-competitive if, for any input sequence, it finds a solution with
<latexit sha1_base64="fjVcLLPtbIwTuCvSnPNlw4KTXxE=">AAACJ3icbVDLSgMxFM34tr6qLt0Eq6CbMtOFupKiG3dWsFXoFMlkMhrMY5rcEevQv3Hjr7gRVESX/olpOwtfBwIn59x7k3uiVHALvv/hjY1PTE5Nz8yW5uYXFpfKyystqzNDWZNqoc15RCwTXLEmcBDsPDWMyEiws+j6cOCf3TBjuVan0EtZR5JLxRNOCTjporxPtYUtq0U2uG/jjVCwLqY4pLGGUEb6Nj9unPY3cNjtZiTGPMGSKy75XTGg4lf9IfBfEhSkggo0LsrPYaxpJpkCKoi17cBPoZMTA5wK1i+FmWUpodfkkrUdVUQy28mHe/bxplNinGjjjgI8VL935ERa25ORq5QEruxvbyD+57UzSPY6OVdpBkzR0UNJJjBoPAgNx9wwCqLnCKGGu79iekUMoeCiLbkQgt8r/yWtWjXYqdZOapX6QRHHDFpD62gLBWgX1dERaqAmougePaIX9Oo9eE/em/c+Kh3zip5V9APe5xcEEqYO</latexit>

cost(solution)  c ·OPT if minimization
<latexit sha1_base64="Gf1kh117o6ZGU/gvVvRrlSzixjk=">AAACKHicbVBNTxsxEPVSSiEUGtpjLxYBCS7Rbg60N1C5cCOVEkDKRmjWOxss7PXGHxHpKj+HC3+FC0KtKq78EpxkD3w9aaSn92bsmZcUghsbhg/BwofFj0uflldqq5/X1r/UN76eGOU0wy5TQumzBAwKnmPXcivwrNAIMhF4mlweTv3TEWrDVd6x4wL7EgY5zzgD66Xz+v4IhMMdo4SbCrt0Kx7gkDIas1TZWCbqqjxudyZbNB4OHaSUZ1TCFZf8T/VCI2yGM9C3JKpIg1Ron9fv41QxJzG3TIAxvSgsbL8EbTkTOKnFzmAB7BIG2PM0B4mmX84OndBtr6Q0U9pXbulMfT5RgjRmLBPfKcFemNfeVHzP6zmb/eyXPC+cxZzNP8qcoFbRaWo05RqZFWNPgGnud6XsAjQw67Ot+RCi1ye/JSetZrTXbP1uNQ5+VXEsk+9kk+yQiPwgB+SItEmXMHJNbslf8i+4Ce6C/8HDvHUhqGa+kRcIHp8A1DemeQ==</latexit>

value(solution) � c ·OPT if maximization

Competitive ratio
Evaluating online algorithms

An algorithm is c-competitive if, for any input sequence, it finds a solution with
<latexit sha1_base64="fjVcLLPtbIwTuCvSnPNlw4KTXxE=">AAACJ3icbVDLSgMxFM34tr6qLt0Eq6CbMtOFupKiG3dWsFXoFMlkMhrMY5rcEevQv3Hjr7gRVESX/olpOwtfBwIn59x7k3uiVHALvv/hjY1PTE5Nz8yW5uYXFpfKyystqzNDWZNqoc15RCwTXLEmcBDsPDWMyEiws+j6cOCf3TBjuVan0EtZR5JLxRNOCTjporxPtYUtq0U2uG/jjVCwLqY4pLGGUEb6Nj9unPY3cNjtZiTGPMGSKy75XTGg4lf9IfBfEhSkggo0LsrPYaxpJpkCKoi17cBPoZMTA5wK1i+FmWUpodfkkrUdVUQy28mHe/bxplNinGjjjgI8VL935ERa25ORq5QEruxvbyD+57UzSPY6OVdpBkzR0UNJJjBoPAgNx9wwCqLnCKGGu79iekUMoeCiLbkQgt8r/yWtWjXYqdZOapX6QRHHDFpD62gLBWgX1dERaqAmougePaIX9Oo9eE/em/c+Kh3zip5V9APe5xcEEqYO</latexit>

cost(solution)  c ·OPT if minimization
<latexit sha1_base64="Gf1kh117o6ZGU/gvVvRrlSzixjk=">AAACKHicbVBNTxsxEPVSSiEUGtpjLxYBCS7Rbg60N1C5cCOVEkDKRmjWOxss7PXGHxHpKj+HC3+FC0KtKq78EpxkD3w9aaSn92bsmZcUghsbhg/BwofFj0uflldqq5/X1r/UN76eGOU0wy5TQumzBAwKnmPXcivwrNAIMhF4mlweTv3TEWrDVd6x4wL7EgY5zzgD66Xz+v4IhMMdo4SbCrt0Kx7gkDIas1TZWCbqqjxudyZbNB4OHaSUZ1TCFZf8T/VCI2yGM9C3JKpIg1Ron9fv41QxJzG3TIAxvSgsbL8EbTkTOKnFzmAB7BIG2PM0B4mmX84OndBtr6Q0U9pXbulMfT5RgjRmLBPfKcFemNfeVHzP6zmb/eyXPC+cxZzNP8qcoFbRaWo05RqZFWNPgGnud6XsAjQw67Ot+RCi1ye/JSetZrTXbP1uNQ5+VXEsk+9kk+yQiPwgB+SItEmXMHJNbslf8i+4Ce6C/8HDvHUhqGa+kRcIHp8A1DemeQ==</latexit>

value(solution) � c ·OPT if maximization

Competitive ratio
Evaluating online algorithms

An algorithm is c-competitive if, for any input sequence, it finds a solution with
<latexit sha1_base64="fjVcLLPtbIwTuCvSnPNlw4KTXxE=">AAACJ3icbVDLSgMxFM34tr6qLt0Eq6CbMtOFupKiG3dWsFXoFMlkMhrMY5rcEevQv3Hjr7gRVESX/olpOwtfBwIn59x7k3uiVHALvv/hjY1PTE5Nz8yW5uYXFpfKyystqzNDWZNqoc15RCwTXLEmcBDsPDWMyEiws+j6cOCf3TBjuVan0EtZR5JLxRNOCTjporxPtYUtq0U2uG/jjVCwLqY4pLGGUEb6Nj9unPY3cNjtZiTGPMGSKy75XTGg4lf9IfBfEhSkggo0LsrPYaxpJpkCKoi17cBPoZMTA5wK1i+FmWUpodfkkrUdVUQy28mHe/bxplNinGjjjgI8VL935ERa25ORq5QEruxvbyD+57UzSPY6OVdpBkzR0UNJJjBoPAgNx9wwCqLnCKGGu79iekUMoeCiLbkQgt8r/yWtWjXYqdZOapX6QRHHDFpD62gLBWgX1dERaqAmougePaIX9Oo9eE/em/c+Kh3zip5V9APe5xcEEqYO</latexit>

cost(solution)  c ·OPT if minimization
<latexit sha1_base64="Gf1kh117o6ZGU/gvVvRrlSzixjk=">AAACKHicbVBNTxsxEPVSSiEUGtpjLxYBCS7Rbg60N1C5cCOVEkDKRmjWOxss7PXGHxHpKj+HC3+FC0KtKq78EpxkD3w9aaSn92bsmZcUghsbhg/BwofFj0uflldqq5/X1r/UN76eGOU0wy5TQumzBAwKnmPXcivwrNAIMhF4mlweTv3TEWrDVd6x4wL7EgY5zzgD66Xz+v4IhMMdo4SbCrt0Kx7gkDIas1TZWCbqqjxudyZbNB4OHaSUZ1TCFZf8T/VCI2yGM9C3JKpIg1Ron9fv41QxJzG3TIAxvSgsbL8EbTkTOKnFzmAB7BIG2PM0B4mmX84OndBtr6Q0U9pXbulMfT5RgjRmLBPfKcFemNfeVHzP6zmb/eyXPC+cxZzNP8qcoFbRaWo05RqZFWNPgGnud6XsAjQw67Ot+RCi1ye/JSetZrTXbP1uNQ5+VXEsk+9kk+yQiPwgB+SItEmXMHJNbslf8i+4Ce6C/8HDvHUhqGa+kRcIHp8A1DemeQ==</latexit>

value(solution) � c ·OPT if maximization

Competitive ratio
Evaluating online algorithms

An algorithm is c-competitive if, for any input sequence, it finds a solution with
<latexit sha1_base64="fjVcLLPtbIwTuCvSnPNlw4KTXxE=">AAACJ3icbVDLSgMxFM34tr6qLt0Eq6CbMtOFupKiG3dWsFXoFMlkMhrMY5rcEevQv3Hjr7gRVESX/olpOwtfBwIn59x7k3uiVHALvv/hjY1PTE5Nz8yW5uYXFpfKyystqzNDWZNqoc15RCwTXLEmcBDsPDWMyEiws+j6cOCf3TBjuVan0EtZR5JLxRNOCTjporxPtYUtq0U2uG/jjVCwLqY4pLGGUEb6Nj9unPY3cNjtZiTGPMGSKy75XTGg4lf9IfBfEhSkggo0LsrPYaxpJpkCKoi17cBPoZMTA5wK1i+FmWUpodfkkrUdVUQy28mHe/bxplNinGjjjgI8VL935ERa25ORq5QEruxvbyD+57UzSPY6OVdpBkzR0UNJJjBoPAgNx9wwCqLnCKGGu79iekUMoeCiLbkQgt8r/yWtWjXYqdZOapX6QRHHDFpD62gLBWgX1dERaqAmougePaIX9Oo9eE/em/c+Kh3zip5V9APe5xcEEqYO</latexit>

cost(solution)  c ·OPT if minimization
<latexit sha1_base64="Gf1kh117o6ZGU/gvVvRrlSzixjk=">AAACKHicbVBNTxsxEPVSSiEUGtpjLxYBCS7Rbg60N1C5cCOVEkDKRmjWOxss7PXGHxHpKj+HC3+FC0KtKq78EpxkD3w9aaSn92bsmZcUghsbhg/BwofFj0uflldqq5/X1r/UN76eGOU0wy5TQumzBAwKnmPXcivwrNAIMhF4mlweTv3TEWrDVd6x4wL7EgY5zzgD66Xz+v4IhMMdo4SbCrt0Kx7gkDIas1TZWCbqqjxudyZbNB4OHaSUZ1TCFZf8T/VCI2yGM9C3JKpIg1Ron9fv41QxJzG3TIAxvSgsbL8EbTkTOKnFzmAB7BIG2PM0B4mmX84OndBtr6Q0U9pXbulMfT5RgjRmLBPfKcFemNfeVHzP6zmb/eyXPC+cxZzNP8qcoFbRaWo05RqZFWNPgGnud6XsAjQw67Ot+RCi1ye/JSetZrTXbP1uNQ5+VXEsk+9kk+yQiPwgB+SItEmXMHJNbslf8i+4Ce6C/8HDvHUhqGa+kRcIHp8A1DemeQ==</latexit>

value(solution) � c ·OPT if maximization

“Premier league” searches in UK

Sunday

“Premier league” searches in UK

ML Algorithms

ML Algorithm

Excellent guarantee
normal days

But no worst-case
guarantees

ML Algorithm

Excellent guarantee
normal days

But no worst-case
guarantees

ML Algorithm

Excellent guarantee
normal days

But no worst-case
guarantees

ML Algorithm

Excellent guarantee
normal days

But no worst-case
guarantees

ML Algorithm

Excellent guarantee
normal days

But no worst-case
guarantees

Sunday

“Premier league” searches in UK

Sunday

“Premier league” searches in UK

Sunday

“Premier league” searches in UK

Sunday

“Premier league” searches in UK

International fixtures

World-cup qualifiers in Europe

Learning-Augmented
Online Algorithms

Online Algorithms ∩ ML = Learning Augmented Algorithms

Online Algorithms ∩ ML = Learning Augmented Algorithms

worst-case guarantees
(often) great

performance in real
world

Online Algorithms

ML

Learning Augmented
Algorithms

Online Algorithms ∩ ML = Learning Augmented Algorithms

worst-case guarantees
(often) great

performance in real
world

Online Algorithms

ML

Learning Augmented
Algorithms

😁

Online Algorithms ∩ ML = Learning Augmented Algorithms

worst-case guarantees
(often) great

performance in real
world

Online Algorithms

ML

Learning Augmented
Algorithms

😩😁

Online Algorithms ∩ ML = Learning Augmented Algorithms

worst-case guarantees
(often) great

performance in real
world

Online Algorithms

ML

Learning Augmented
Algorithms

😩😁

😩

Online Algorithms ∩ ML = Learning Augmented Algorithms

worst-case guarantees
(often) great

performance in real
world

Online Algorithms

ML

Learning Augmented
Algorithms

😩😁

😩 😁

Online Algorithms ∩ ML = Learning Augmented Algorithms

worst-case guarantees
(often) great

performance in real
world

Online Algorithms

ML

Learning Augmented
Algorithms

😩😁

😩 😁

😎

Online Algorithms ∩ ML = Learning Augmented Algorithms

worst-case guarantees
(often) great

performance in real
world

Online Algorithms

ML

Learning Augmented
Algorithms

😩😁

😩 😁

😎😎

• Online algorithm with access to predictions about the future

• No assumptions on the predictor

Learning-Augmented Online Algorithms

Online Algorithm augmented with predictions

Three Desiderata

• Consistency: if predictions are correct, algorithm gives close to optimal solution

Three Desiderata

• Consistency: if predictions are correct, algorithm gives close to optimal solution

• Robustness: Even under adversarial predictions, algorithm maintains a worst-
case guarantee (ideally comparable to best known online algorithm)

Three Desiderata

• Consistency: if predictions are correct, algorithm gives close to optimal solution

• Robustness: Even under adversarial predictions, algorithm maintains a worst-
case guarantee (ideally comparable to best known online algorithm)

• Smoothness: Performance degrades nicely in the error of the predictor

Three Desiderata

• At the beginning of each day, decide whether to buy skis at a cost of B or rent skis for
that day at a cost of 1

• The difficulty is that we do not know the total number of days we will be skiing

• Prediction P of number of days

Example: Ski rental
Consistency vs Robustness

• At the beginning of each day, decide whether to buy skis at a cost of B or rent skis for
that day at a cost of 1

• The difficulty is that we do not know the total number of days we will be skiing

• Prediction P of number of days

Example: Ski rental
Consistency vs Robustness

No trust

Can’t do better than
standard online algorithms

Bad consistency

• At the beginning of each day, decide whether to buy skis at a cost of B or rent skis for
that day at a cost of 1

• The difficulty is that we do not know the total number of days we will be skiing

• Prediction P of number of days

Example: Ski rental
Consistency vs Robustness

No trust Complete trust

Can’t do better than
standard online algorithms

Bad consistency

Excellent consistency but
what if Prediction is 10B
and reality is 1

Bad robustness

• At the beginning of each day, decide whether to buy skis at a cost of B or rent skis for
that day at a cost of 1

• The difficulty is that we do not know the total number of days we will be skiing

• Prediction P of number of days

Example: Ski rental
Consistency vs Robustness

No trust Complete trust Balanced trust λ ∈ (0,1)

Can’t do better than
standard online algorithms

Bad consistency

Excellent consistency but
what if Prediction is 10B
and reality is 1

Bad robustness

Wait days to buy if
prediction is to buy

Consistency:
Robustness:

λB

(1 + λ)
O(1/λ)

Emerging and quickly growing line of work

• Ad allocation by Mahdian, Nazerzadeh, Saberi, EC’07

Emerging and quickly growing line of work

• Ad allocation by Mahdian, Nazerzadeh, Saberi, EC’07

• Competitive caching (Lykouris and Vassilvitskii ICML 2018, Rohatgi SODA 2020)

Emerging and quickly growing line of work

• Ad allocation by Mahdian, Nazerzadeh, Saberi, EC’07

• Competitive caching (Lykouris and Vassilvitskii ICML 2018, Rohatgi SODA 2020)

• Ski rental (Kumar et al. NeurIPS 2018, Gollapudi and Panigrahi ICML 2019)

• Bloom filters (Mitzenmacher NeurIPS 2018)

• Metrical task systems (Antoniadis et al. ICML 2020)

• Frequency estimation in data streams (Hsu et al. ICLR 2019)

• Scheduling (Lattanzi et al. SODA 2020, Bamas et al. NeurIPS 2020)

• …

• + courses, workshops…

Emerging and quickly growing line of work

• Ad allocation by Mahdian, Nazerzadeh, Saberi, EC’07

• Competitive caching (Lykouris and Vassilvitskii ICML 2018, Rohatgi SODA 2020)

• Ski rental (Kumar et al. NeurIPS 2018, Gollapudi and Panigrahi ICML 2019)

• Bloom filters (Mitzenmacher NeurIPS 2018)

• Metrical task systems (Antoniadis et al. ICML 2020)

• Frequency estimation in data streams (Hsu et al. ICLR 2019)

• Scheduling (Lattanzi et al. SODA 2020, Bamas et al. NeurIPS 2020)

• …

• + courses, workshops…

Emerging and quickly growing line of work

https://algorithms-with-predictions.github.io

Can we adapt powerful frameworks such as the primal-
dual approach to the learning augmented setting?

• Learning-augmented online algorithms

• Case study: set cover

• Instantiating PDLA for other problems

• Future directions

Outline

Fractional Online Set Cover

Fractional online set cover problem

Fractional online set cover problem

S1

S2

Fractional online set cover problem

Goal:

S1

S2

Fractional online set cover problem

Goal: • cover fractionally every newly arrived element

S1

S2

Fractional online set cover problem

Goal: • cover fractionally every newly arrived element

• decisions are irrevocable = cannot decrease current fractional
solution

S1

S2

Fractional online set cover problem

Goal: • cover fractionally every newly arrived element

• decisions are irrevocable = cannot decrease current fractional
solution

• minimize the sum of fractionally selected sets

S1

S2

Fractional online set cover problem

S1

S2

LP formulation:
• each set has a corresponding variable

• at every new element e arrival a new constraint needs to be satisfied

• minimize

∑
i:e∈Si

xSi
≥ 1

∑
i

xSi

Fractional online set cover problem

LP formulation:
• each set has a corresponding variable

• at every new element e arrival a new constraint needs to be satisfied

• minimize

∑
i:e∈Si

xSi
≥ 1

∑
i

xSi

S1

S2

Fractional online set cover problem

LP formulation:
• each set has a corresponding variable

• at every new element e arrival a new constraint needs to be satisfied

• minimize

∑
i:e∈Si

xSi
≥ 1

∑
i

xSi

S1

S2

xS1
+ xS2

≥ 1

Fractional online set cover problem

LP formulation:
• each set has a corresponding variable

• at every new element e arrival a new constraint needs to be satisfied

• minimize

∑
i:e∈Si

xSi
≥ 1

∑
i

xSi

S1

S2

xS1
+ xS2

≥ 1

xS1
= 1/2

xS2
= 1/2

Fractional online set cover problem

LP formulation:
• each set has a corresponding variable

• at every new element e arrival a new constraint needs to be satisfied

• minimize

∑
i:e∈Si

xSi
≥ 1

∑
i

xSi

S1

S2

xS1
+ xS2

≥ 1

xS1
= 1/2

xS2
= 1/2

Fractional online set cover problem

LP formulation:
• each set has a corresponding variable

• at every new element e arrival a new constraint needs to be satisfied

• minimize

∑
i:e∈Si

xSi
≥ 1

∑
i

xSi

S1

S2

xS1
+ xS2

≥ 1

xS1
= 1/2

xS2
= 1/2

xS2
≥ 1

Fractional online set cover problem

LP formulation:
• each set has a corresponding variable

• at every new element e arrival a new constraint needs to be satisfied

• minimize

∑
i:e∈Si

xSi
≥ 1

∑
i

xSi

S1

S2

xS1
+ xS2

≥ 1

xS1
= 1/2

xS2
= 1

xS2
≥ 1

Difficult instance

Difficult instance

xS1
= 0 xS2

= 0 xS3
= 0 … xSm

= 0

Current solution

Constraints

Difficult instance

xS1
+ xS2

+ xS3
+ … + xSm

≥ 1

xS1
= 0 xS2

= 0 xS3
= 0 … xSm

= 0

Current solution

Constraints

Difficult instance

xS1
+ xS2

+ xS3
+ … + xSm

≥ 1

xS1
= 1/m xS2

= 1/m xS3
= 1/m … xSm

= 1/m

Current solution

Constraints

Difficult instance

xS1
+ xS2

+ xS3
+ … + xSm

≥ 1

xS1
= 1/m xS2

= 1/m xS3
= 1/m … xSm

= 1/m

Current solution

Constraints

xS2
+ xS3

+ … + xSm
≥ 1

Difficult instance

xS1
+ xS2

+ xS3
+ … + xSm

≥ 1

xS1
= 1/m xS2

= 1/(m − 1) xS3
= 1/(m − 1) … xSm

= 1/(m − 1)

Current solution

Constraints

xS2
+ xS3

+ … + xSm
≥ 1

Difficult instance

xS1
+ xS2

+ xS3
+ … + xSm

≥ 1

xS1
= 1/m xS2

= 1/(m − 1) xS3
= 1/(m − 1) … xSm

= 1/(m − 1)

Current solution

Constraints

xS2
+ xS3

+ … + xSm
≥ 1

xS3
+ … + xSm

≥ 1

Difficult instance

xS1
+ xS2

+ xS3
+ … + xSm

≥ 1

xS1
= 1/m xS2

= 1/(m − 1) xS3
= 1/(m − 2) … xSm

= 1/(m − 2)

Current solution

Constraints

xS2
+ xS3

+ … + xSm
≥ 1

xS3
+ … + xSm

≥ 1

Difficult instance

xS1
+ xS2

+ xS3
+ … + xSm

≥ 1

xS1
= 1/m xS2

= 1/(m − 1) xS3
= 1/(m − 2) … xSm

= 1/(m − 2)

Current solution

Constraints

xS2
+ xS3

+ … + xSm
≥ 1

xS3
+ … + xSm

≥ 1
⋮

xSm
≥ 1

Difficult instance

xS1
+ xS2

+ xS3
+ … + xSm

≥ 1

xS1
= 1/m xS2

= 1/(m − 1) xS3
= 1/(m − 2) … xSm

= 1

Current solution

Constraints

xS2
+ xS3

+ … + xSm
≥ 1

xS3
+ … + xSm

≥ 1
⋮

xSm
≥ 1

Difficult instance

xS1
+ xS2

+ xS3
+ … + xSm

≥ 1

xS1
= 1/m xS2

= 1/(m − 1) xS3
= 1/(m − 2) … xSm

= 1

Current solution

Constraints

xS2
+ xS3

+ … + xSm
≥ 1

xS3
+ … + xSm

≥ 1
⋮

xSm
≥ 1

O(log m)

Difficult instance

xS1
+ xS2

+ xS3
+ … + xSm

≥ 1

xS1
= 1/m xS2

= 1/(m − 1) xS3
= 1/(m − 2) … xSm

= 1

Current solution

Constraints

xS2
+ xS3

+ … + xSm
≥ 1

xS3
+ … + xSm

≥ 1
⋮

xSm
≥ 1

O(log m)

OPT = 1

Difficult instance

xS1
+ xS2

+ xS3
+ … + xSm

≥ 1

xS1
= 1/m xS2

= 1/(m − 1) xS3
= 1/(m − 2) … xSm

= 1

Current solution

Constraints

xS2
+ xS3

+ … + xSm
≥ 1

xS3
+ … + xSm

≥ 1
⋮

xSm
≥ 1

O(log m)

OPT = 1

Which can be shown to
be a lower bound on the
performance of any
online algorithm

Difficult instance with a prediction

xS1
= 0 xS2

= 0 xS3
= 0 … xSm

= 0

Current solution

Constraints

Difficult instance with a prediction

xS1
+ xS2

+ xS3
+ … + xSm

≥ 1

xS1
= 0 xS2

= 0 xS3
= 0 … xSm

= 0

Current solution

Constraints

Difficult instance with a prediction

xS1
+ xS2

+ xS3
+ … + xSm

≥ 1

xS1
= 0 xS2

= 0 xS3
= 0 … xSm

= 0

Current solution

Constraints

Difficult instance with a prediction

xS1
+ xS2

+ xS3
+ … + xSm

≥ 1

xS1
= 0 xS2

= 0 xS3
= 0 … xSm

= 1

Current solution

Constraints

Difficult instance with a prediction

xS1
+ xS2

+ xS3
+ … + xSm

≥ 1

xS1
= 0 xS2

= 0 xS3
= 0 … xSm

= 1

Current solution

Constraints

xS2
+ xS3

+ … + xSm
≥ 1

xS3
+ … + xSm

≥ 1
⋮

xSm
≥ 1

Difficult instance with a prediction

xS1
+ xS2

+ xS3
+ … + xSm

≥ 1

xS1
= 0 xS2

= 0 xS3
= 0 … xSm

= 1

Current solution

Constraints

xS2
+ xS3

+ … + xSm
≥ 1

xS3
+ … + xSm

≥ 1
⋮

xSm
≥ 1

cost = OPT = 1

Difficult instance with a prediction

xS1
+ xS2

+ xS3
+ … + xSm

≥ 1

xS1
= 0 xS2

= 0 xS3
= 0 … xSm

= 1

Current solution

Constraints

xS2
+ xS3

+ … + xSm
≥ 1

xS3
+ … + xSm

≥ 1
⋮

xSm
≥ 1

cost = OPT = 1

Difficult instance with a prediction

xS1
+ xS2

+ xS3
+ … + xSm

≥ 1

xS1
= 0 xS2

= 0 xS3
= 0 … xSm

= 1

Current solution

Constraints

xS2
+ xS3

+ … + xSm
≥ 1

xS3
+ … + xSm

≥ 1
⋮

xSm
≥ 1

cost = OPT = 1 👍

Difficult instance with a prediction

xS1
+ xS2

+ xS3
+ … + xSm

≥ 1

xS1
= 0 xS2

= 0 xS3
= 0 … xSm

= 0

Current solution

Constraints

Difficult instance with a prediction

xS1
+ xS2

+ xS3
+ … + xSm

≥ 1

xS1
= 0 xS2

= 0 xS3
= 0 … xSm

= 0

Current solution

Constraints

Difficult instance with a prediction

xS1
+ xS2

+ xS3
+ … + xSm

≥ 1

xS1
= 1 xS2

= 0 xS3
= 0 … xSm

= 0

Current solution

Constraints

Difficult instance with a prediction

xS1
+ xS2

+ xS3
+ … + xSm

≥ 1

xS1
= 1 xS2

= 0 xS3
= 0 … xSm

= 0

Current solution

Constraints

xS2
+ xS3

+ … + xSm
≥ 1

Difficult instance with a prediction

xS1
+ xS2

+ xS3
+ … + xSm

≥ 1

xS1
= 1 xS2

= 0 xS3
= 0 … xSm

= 0

Current solution

Constraints

xS2
+ xS3

+ … + xSm
≥ 1

Difficult instance with a prediction

xS1
+ xS2

+ xS3
+ … + xSm

≥ 1

xS1
= 1 xS2

= 1 xS3
= 0 … xSm

= 0

Current solution

Constraints

xS2
+ xS3

+ … + xSm
≥ 1

Difficult instance with a prediction

xS1
+ xS2

+ xS3
+ … + xSm

≥ 1

xS1
= 1 xS2

= 1 xS3
= 0 … xSm

= 0

Current solution

Constraints

xS2
+ xS3

+ … + xSm
≥ 1

xS3
+ … + xSm

≥ 1

Difficult instance with a prediction

xS1
+ xS2

+ xS3
+ … + xSm

≥ 1

xS1
= 1 xS2

= 1 xS3
= 0 … xSm

= 0

Current solution

Constraints

xS2
+ xS3

+ … + xSm
≥ 1

xS3
+ … + xSm

≥ 1

Difficult instance with a prediction

xS1
+ xS2

+ xS3
+ … + xSm

≥ 1

xS1
= 1 xS2

= 1 xS3
= 1 … xSm

= 0

Current solution

Constraints

xS2
+ xS3

+ … + xSm
≥ 1

xS3
+ … + xSm

≥ 1

Difficult instance with a prediction

xS1
+ xS2

+ xS3
+ … + xSm

≥ 1

xS1
= 1 xS2

= 1 xS3
= 1 … xSm

= 1

Current solution

Constraints

xS2
+ xS3

+ … + xSm
≥ 1

xS3
+ … + xSm

≥ 1
⋮

xSm
≥ 1

Difficult instance with a prediction

xS1
+ xS2

+ xS3
+ … + xSm

≥ 1

xS1
= 1 xS2

= 1 xS3
= 1 … xSm

= 1

Current solution

Constraints

xS2
+ xS3

+ … + xSm
≥ 1

xS3
+ … + xSm

≥ 1
⋮

xSm
≥ 1

cost = m

Difficult instance with a prediction

xS1
+ xS2

+ xS3
+ … + xSm

≥ 1

xS1
= 1 xS2

= 1 xS3
= 1 … xSm

= 1

Current solution

Constraints

xS2
+ xS3

+ … + xSm
≥ 1

xS3
+ … + xSm

≥ 1
⋮

xSm
≥ 1

cost = m ☠

Difficult instance with a prediction

xS1
+ xS2

+ xS3
+ … + xSm

≥ 1

xS1
= 1 xS2

= 1 xS3
= 1 … xSm

= 1

Current solution

Constraints

xS2
+ xS3

+ … + xSm
≥ 1

xS3
+ … + xSm

≥ 1
⋮

xSm
≥ 1

cost = m ☠

Completely trusting predictor has
terrible robustness

Interesting tradeoff between
consistency and robustness

The Primal-Dual Approach

Primal

minimize

subject to for every element e

∑
i

xSi

∑
i:e∈Si

xSi
≥ 1

Primal

minimize

subject to for every element e

∑
i

xSi

∑
i:e∈Si

xSi
≥ 1

Dual

maximize

subject to for every set

∑
e

ye

∑
e∈Si

ye ≤ 1 Si

Primal

minimize

subject to for every element e

∑
i

xSi

∑
i:e∈Si

xSi
≥ 1

Dual

maximize

subject to for every set

∑
e

ye

∑
e∈Si

ye ≤ 1 Si

Algorithm

Upon arrival of a new primal constraint and the
corresponding dual variable

- If then

- For each ,

-

∑
i:e∈Si

xSi
≥ 1

ye

∑
i:e∈Si

xSi
< 1

i : e ∈ Si XSi
← 2 ⋅ xSi

+
1

|#sets covering e|
ye ← ye + 1

Primal

minimize

subject to for every element e

∑
i

xSi

∑
i:e∈Si

xSi
≥ 1

Dual

maximize

subject to for every set

∑
e

ye

∑
e∈Si

ye ≤ 1 Si

Example Algorithm

Upon arrival of a new primal constraint and the
corresponding dual variable

- If then

- For each ,

-

∑
i:e∈Si

xSi
≥ 1

ye

∑
i:e∈Si

xSi
< 1

i : e ∈ Si XSi
← 2 ⋅ xSi

+
1

|#sets covering e|
ye ← ye + 1

Primal

minimize

subject to for every element e

∑
i

xSi

∑
i:e∈Si

xSi
≥ 1

Dual

maximize

subject to for every set

∑
e

ye

∑
e∈Si

ye ≤ 1 Si

Example

S1

S2

S3

Algorithm

Upon arrival of a new primal constraint and the
corresponding dual variable

- If then

- For each ,

-

∑
i:e∈Si

xSi
≥ 1

ye

∑
i:e∈Si

xSi
< 1

i : e ∈ Si XSi
← 2 ⋅ xSi

+
1

|#sets covering e|
ye ← ye + 1

Primal

minimize

subject to for every element e

∑
i

xSi

∑
i:e∈Si

xSi
≥ 1

Dual

maximize

subject to for every set

∑
e

ye

∑
e∈Si

ye ≤ 1 Si

Example

S1

S2

S3

xS1
= 1/3

xS2
= 1/3

xS3
= 1/3

Algorithm

Upon arrival of a new primal constraint and the
corresponding dual variable

- If then

- For each ,

-

∑
i:e∈Si

xSi
≥ 1

ye

∑
i:e∈Si

xSi
< 1

i : e ∈ Si XSi
← 2 ⋅ xSi

+
1

|#sets covering e|
ye ← ye + 1

Primal

minimize

subject to for every element e

∑
i

xSi

∑
i:e∈Si

xSi
≥ 1

Dual

maximize

subject to for every set

∑
e

ye

∑
e∈Si

ye ≤ 1 Si

Example

S1

S2

S3

xS1
= 1/3

xS2
= 1/3

xS3
= 1/3

Algorithm

Upon arrival of a new primal constraint and the
corresponding dual variable

- If then

- For each ,

-

∑
i:e∈Si

xSi
≥ 1

ye

∑
i:e∈Si

xSi
< 1

i : e ∈ Si XSi
← 2 ⋅ xSi

+
1

|#sets covering e|
ye ← ye + 1

Primal

minimize

subject to for every element e

∑
i

xSi

∑
i:e∈Si

xSi
≥ 1

Dual

maximize

subject to for every set

∑
e

ye

∑
e∈Si

ye ≤ 1 Si

Example

S1

S2

S3

xS1
= 7/6

xS2
= 1/3

xS3
= 7/6

Algorithm

Upon arrival of a new primal constraint and the
corresponding dual variable

- If then

- For each ,

-

∑
i:e∈Si

xSi
≥ 1

ye

∑
i:e∈Si

xSi
< 1

i : e ∈ Si XSi
← 2 ⋅ xSi

+
1

|#sets covering e|
ye ← ye + 1

Primal

minimize

subject to for every element e

∑
i

xSi

∑
i:e∈Si

xSi
≥ 1

Dual

maximize

subject to for every set

∑
e

ye

∑
e∈Si

ye ≤ 1 Si

Example

S1

S2

S3

xS1
= 7/6

xS2
= 1/3

xS3
= 7/6

Algorithm

Upon arrival of a new primal constraint and the
corresponding dual variable

- If then

- For each ,

-

∑
i:e∈Si

xSi
≥ 1

ye

∑
i:e∈Si

xSi
< 1

i : e ∈ Si XSi
← 2 ⋅ xSi

+
1

|#sets covering e|
ye ← ye + 1

Analysis

Analysis
1. At each step the increase of primal is

whereas increase in dual is
∑i:e∈Si

(xi + 1/ |#sets covering e |) ≤ 2
1

Analysis
1. At each step the increase of primal is

whereas increase in dual is
∑i:e∈Si

(xi + 1/ |#sets covering e |) ≤ 2
1

2. is a feasible dual solution: y/log(m)

Analysis
1. At each step the increase of primal is

whereas increase in dual is
∑i:e∈Si

(xi + 1/ |#sets covering e |) ≤ 2
1

2. is a feasible dual solution: y/log(m)

• every time a variable is updated in a constraint ye ∑e∈Si
ye ≤ 1

Analysis
1. At each step the increase of primal is

whereas increase in dual is
∑i:e∈Si

(xi + 1/ |#sets covering e |) ≤ 2
1

2. is a feasible dual solution: y/log(m)

• every time a variable is updated in a constraint ye ∑e∈Si
ye ≤ 1

• The variable is doubled in primal which can happen at most times as its
starting value is

xSi
log(m)

1/m

Analysis
1. At each step the increase of primal is

whereas increase in dual is
∑i:e∈Si

(xi + 1/ |#sets covering e |) ≤ 2
1

2. is a feasible dual solution: y/log(m)

• every time a variable is updated in a constraint ye ∑e∈Si
ye ≤ 1

• The variable is doubled in primal which can happen at most times as its
starting value is

xSi
log(m)

1/m

1+2 together with LP-duality implies that algorithm is -competitiveO(log m)

Making it Learning-Augmented

S1

S2

S3

S4

S1

S2

S3

S4

S1

S2

S3

S4

Without prediction all sets are equally likely to be
good => hedge uniformly

xS1
= xS2

= xS3
= xS4

= 1/4

S1

S2

S3

S4

Learning Augmented

λ
|#sets covering e |

+
1 − λ

|#sets covering e in prediction |

S1

S2

S3

S4

Learning Augmented

λ
|#sets covering e |

+
1 − λ

|#sets covering e in prediction |

S1

S2

S3

S4

With prediction, say , should increase that
variable more aggressively depending on our
trust

S3

λ = [0,1]

xS1
= xS2

= xS4
= λ/4

xS3
= λ/4 + 1 − λ

Analysis and guarantees

Analysis and guarantees

Good prediction : competitive

proof via a charging argument +

increase of correct primal variables >> increase of incorrect
primal variables

Bad prediction : competitive

proof via a primal-dual argument essentially the same
proof as in the purely online case

O (1
1 − λ)

O (log
m
λ)

Analysis and guarantees

Good prediction : competitive

proof via a charging argument +

increase of correct primal variables >> increase of incorrect
primal variables

Bad prediction : competitive

proof via a primal-dual argument essentially the same
proof as in the purely online case

O (1
1 − λ)

O (log
m
λ)

Analysis and guarantees

Good prediction : competitive

proof via a charging argument +

increase of correct primal variables >> increase of incorrect
primal variables

Bad prediction : competitive

proof via a primal-dual argument essentially the same
proof as in the purely online case

O (1
1 − λ)

O (log
m
λ)

🆚 competitive

with no prediction
O (log m)

Analysis and guarantees

Good prediction : competitive

proof via a charging argument +

increase of correct primal variables >> increase of incorrect
primal variables

Bad prediction : competitive

proof via a primal-dual argument essentially the same
proof as in the purely online case

O (1
1 − λ)

O (log
m
λ)

🆚 competitive

with no prediction
O (log m)

PDLA for Online set cover:

Analysis and guarantees

Good prediction : competitive

proof via a charging argument +

increase of correct primal variables >> increase of incorrect
primal variables

Bad prediction : competitive

proof via a primal-dual argument essentially the same
proof as in the purely online case

O (1
1 − λ)

O (log
m
λ)

🆚 competitive

with no prediction
O (log m)

PDLA for Online set cover: ✅

General recipe
PDLA

General recipe
PDLA

• formulate the LP relaxation of the problem

• solve the problem using the Primal-Dual method

• tweak the rate to which primal variables increase to incorporate
predictions

General recipe
PDLA

• formulate the LP relaxation of the problem

• solve the problem using the Primal-Dual method

• tweak the rate to which primal variables increase to incorporate
predictions

Simple analysis

Consistency via a charging argument

Robustness mimicking the original PD method proof

General recipe
PDLA

• formulate the LP relaxation of the problem

• solve the problem using the Primal-Dual method

• tweak the rate to which primal variables increase to incorporate
predictions

Simple analysis

Consistency via a charging argument

Robustness mimicking the original PD method proof

Widely applicable

Ski rental Bahncard TCP-ack

General recipe
PDLA

• formulate the LP relaxation of the problem

• solve the problem using the Primal-Dual method

• tweak the rate to which primal variables increase to incorporate
predictions

Simple analysis

Consistency via a charging argument

Robustness mimicking the original PD method proof

Widely applicable

Ski rental Bahncard TCP-ack

Easy to implement
Good prediction: beat online algorithms

Bad prediction: maintain robustness

(TCP-ack)

• Learning-augmented online algorithms

• Case study: set cover

• Instantiating PDLA for other problems

• Future directions

Outline

Ski Rental

primal-dual method, the results of [25]. As in [25] our prediction A will be the total number of
vacation days N pred.

PDLA for ski rental. To simplify the description, we denote an instance of the problem as
I = (N,B) and define the function e(z) = (1 + 1/B)

z·B . Note that if B ! 1, then e(z) ap-
proaches ez hence the choice of notation. In an integral solution, the variable x is 1 to indicate that
the skis are bought and 0 otherwise. In the same spirit fj indicates whether we rent on day j or not.
Buchbinder et al. [5] showed how to easily turn a fractional monotone solution (i.e. it is not permitted
to decrease a variable) to an online randomized algorithm of expected cost equal to the cost of the
fractional solution. Hence we focus only on building online a fractional solution. Algorithm 3 is
due to [5] and uses the Primal-Dual method to solve the problem. Each new day j a new constraint
x+ fj > 1 is revealed. To satisfy this constraint, the algorithm updates the primal and dual variables
while trying to maintain (1) the ratio �P/�D as small as possible and (2) the primal and dual
solutions feasible. As in the online weighted set cover problem, the key idea for extending Algorithm
3 to the learning augmented Algorithm 4 is to use the prediction N

pred in order to adjust the rate
at which each variable is increased. Thus, when N

pred
> B we increase the buying variable more

aggressively than the pure online algorithm. Here, the cost of following blindly the prediction N
pred

is S(N pred
, I) = B · {N pred

> B}+N · {N pred 6 B}.

Algorithm 3 PRIMAL DUAL FOR SKI-
RENTAL [5].

Initialize: x 0, fj 0, 8j
c e(1), c0 1

for each new day j s.t. x+ fj < 1 do
/* Primal Update

fj 1� x

x (1 +
1
B
)x+

1
(c�1)·B

/* Dual Update

yj c
0

end for

))

Algorithm 4 PDLA FOR SKI-RENTAL.

Input: �, N pred

Initialize: x 0, fj 0, 8j
if N

pred > B then
/* Prediction suggests buying

c e(�), c0 1

else
/* Prediction suggests renting

c e(1/�), c0 �

end if
for each new day j s.t. x+ fj < 1 do

/* Primal Update

fj 1� x

x (1 +
1
B
)x+

1
(c�1)·B

/* Dual Update

yj c
0

end for

In the following we assume that either �B or B/� is an integer (depending on whether c equals e(�)
or e(1/�) respectively in Algorithm 4). Our results do not change qualitatively by rounding up to the
closest integer. See appendix B for details.

Theorem 2 (PDLA for ski rental). For any � 2 (0, 1], the cost of PDLA for ski rental is bounded as

follows

cPDLA(N
pred

, I,�) 6 min

⇢
�

1� e(��) · S(N
pred

, I), 1

1� e(��) ·OPT(I)
�

Proof sketch. The robustness bound is proved essentially using the same proof as for the original
analysis of Algorithm 3 in [5]. For the consistency bound we first note that after an update the primal
increase is 1+ 1

c�1 , now depending on the value of c we distinguish between two cases. If N pred > B

then Algorithm 4 is always aggressive in buying. In this case it is easy to show that at most �B
updates are made before we get x > 1. Once x > 1, no more updates are needed. Since each
aggressive update costs at most 1 + 1

e(�)�1 =
e(�)

e(�)�1 =
1

1�e(��) we get that the total cost paid by
Algorithm 4 is at most �B

1�e(��) = S(N
pred

, I) · �

1�e(��) . Similarly, in the second case N
pred

< B

and the algorithm increases the buying variable less aggressively. In this case each update costs at
most 1 + 1

e(1/�)�1 =
1

1�e(�1/�) and at most N of these updates are made therefore Algorithm 4

5

primal-dual method, the results of [25]. As in [25] our prediction A will be the total number of
vacation days N pred.

PDLA for ski rental. To simplify the description, we denote an instance of the problem as
I = (N,B) and define the function e(z) = (1 + 1/B)

z·B . Note that if B ! 1, then e(z) ap-
proaches ez hence the choice of notation. In an integral solution, the variable x is 1 to indicate that
the skis are bought and 0 otherwise. In the same spirit fj indicates whether we rent on day j or not.
Buchbinder et al. [5] showed how to easily turn a fractional monotone solution (i.e. it is not permitted
to decrease a variable) to an online randomized algorithm of expected cost equal to the cost of the
fractional solution. Hence we focus only on building online a fractional solution. Algorithm 3 is
due to [5] and uses the Primal-Dual method to solve the problem. Each new day j a new constraint
x+ fj > 1 is revealed. To satisfy this constraint, the algorithm updates the primal and dual variables
while trying to maintain (1) the ratio �P/�D as small as possible and (2) the primal and dual
solutions feasible. As in the online weighted set cover problem, the key idea for extending Algorithm
3 to the learning augmented Algorithm 4 is to use the prediction N

pred in order to adjust the rate
at which each variable is increased. Thus, when N

pred
> B we increase the buying variable more

aggressively than the pure online algorithm. Here, the cost of following blindly the prediction N
pred

is S(N pred
, I) = B · {N pred

> B}+N · {N pred 6 B}.

Algorithm 3 PRIMAL DUAL FOR SKI-
RENTAL [5].

Initialize: x 0, fj 0, 8j
c e(1), c0 1

for each new day j s.t. x+ fj < 1 do
/* Primal Update

fj 1� x

x (1 +
1
B
)x+

1
(c�1)·B

/* Dual Update

yj c
0

end for

))

Algorithm 4 PDLA FOR SKI-RENTAL.

Input: �, N pred

Initialize: x 0, fj 0, 8j
if N

pred > B then
/* Prediction suggests buying

c e(�), c0 1

else
/* Prediction suggests renting

c e(1/�), c0 �

end if
for each new day j s.t. x+ fj < 1 do

/* Primal Update

fj 1� x

x (1 +
1
B
)x+

1
(c�1)·B

/* Dual Update

yj c
0

end for

In the following we assume that either �B or B/� is an integer (depending on whether c equals e(�)
or e(1/�) respectively in Algorithm 4). Our results do not change qualitatively by rounding up to the
closest integer. See appendix B for details.

Theorem 2 (PDLA for ski rental). For any � 2 (0, 1], the cost of PDLA for ski rental is bounded as

follows

cPDLA(N
pred

, I,�) 6 min

⇢
�

1� e(��) · S(N
pred

, I), 1

1� e(��) ·OPT(I)
�

Proof sketch. The robustness bound is proved essentially using the same proof as for the original
analysis of Algorithm 3 in [5]. For the consistency bound we first note that after an update the primal
increase is 1+ 1

c�1 , now depending on the value of c we distinguish between two cases. If N pred > B

then Algorithm 4 is always aggressive in buying. In this case it is easy to show that at most �B
updates are made before we get x > 1. Once x > 1, no more updates are needed. Since each
aggressive update costs at most 1 + 1

e(�)�1 =
e(�)

e(�)�1 =
1

1�e(��) we get that the total cost paid by
Algorithm 4 is at most �B

1�e(��) = S(N
pred

, I) · �

1�e(��) . Similarly, in the second case N
pred

< B

and the algorithm increases the buying variable less aggressively. In this case each update costs at
most 1 + 1

e(1/�)�1 =
1

1�e(�1/�) and at most N of these updates are made therefore Algorithm 4

5

primal-dual method, the results of [25]. As in [25] our prediction A will be the total number of
vacation days N pred.

PDLA for ski rental. To simplify the description, we denote an instance of the problem as
I = (N,B) and define the function e(z) = (1 + 1/B)

z·B . Note that if B ! 1, then e(z) ap-
proaches ez hence the choice of notation. In an integral solution, the variable x is 1 to indicate that
the skis are bought and 0 otherwise. In the same spirit fj indicates whether we rent on day j or not.
Buchbinder et al. [5] showed how to easily turn a fractional monotone solution (i.e. it is not permitted
to decrease a variable) to an online randomized algorithm of expected cost equal to the cost of the
fractional solution. Hence we focus only on building online a fractional solution. Algorithm 3 is
due to [5] and uses the Primal-Dual method to solve the problem. Each new day j a new constraint
x+ fj > 1 is revealed. To satisfy this constraint, the algorithm updates the primal and dual variables
while trying to maintain (1) the ratio �P/�D as small as possible and (2) the primal and dual
solutions feasible. As in the online weighted set cover problem, the key idea for extending Algorithm
3 to the learning augmented Algorithm 4 is to use the prediction N

pred in order to adjust the rate
at which each variable is increased. Thus, when N

pred
> B we increase the buying variable more

aggressively than the pure online algorithm. Here, the cost of following blindly the prediction N
pred

is S(N pred
, I) = B · {N pred

> B}+N · {N pred 6 B}.

Algorithm 3 PRIMAL DUAL FOR SKI-
RENTAL [5].

Initialize: x 0, fj 0, 8j
c e(1), c0 1

for each new day j s.t. x+ fj < 1 do
/* Primal Update

fj 1� x

x (1 +
1
B
)x+

1
(c�1)·B

/* Dual Update

yj c
0

end for

))

Algorithm 4 PDLA FOR SKI-RENTAL.

Input: �, N pred

Initialize: x 0, fj 0, 8j
if N

pred > B then
/* Prediction suggests buying

c e(�), c0 1

else
/* Prediction suggests renting

c e(1/�), c0 �

end if
for each new day j s.t. x+ fj < 1 do

/* Primal Update

fj 1� x

x (1 +
1
B
)x+

1
(c�1)·B

/* Dual Update

yj c
0

end for

In the following we assume that either �B or B/� is an integer (depending on whether c equals e(�)
or e(1/�) respectively in Algorithm 4). Our results do not change qualitatively by rounding up to the
closest integer. See appendix B for details.

Theorem 2 (PDLA for ski rental). For any � 2 (0, 1], the cost of PDLA for ski rental is bounded as

follows

cPDLA(N
pred

, I,�) 6 min

⇢
�

1� e(��) · S(N
pred

, I), 1

1� e(��) ·OPT(I)
�

Proof sketch. The robustness bound is proved essentially using the same proof as for the original
analysis of Algorithm 3 in [5]. For the consistency bound we first note that after an update the primal
increase is 1+ 1

c�1 , now depending on the value of c we distinguish between two cases. If N pred > B

then Algorithm 4 is always aggressive in buying. In this case it is easy to show that at most �B
updates are made before we get x > 1. Once x > 1, no more updates are needed. Since each
aggressive update costs at most 1 + 1

e(�)�1 =
e(�)

e(�)�1 =
1

1�e(��) we get that the total cost paid by
Algorithm 4 is at most �B

1�e(��) = S(N
pred

, I) · �

1�e(��) . Similarly, in the second case N
pred

< B

and the algorithm increases the buying variable less aggressively. In this case each update costs at
most 1 + 1

e(1/�)�1 =
1

1�e(�1/�) and at most N of these updates are made therefore Algorithm 4

5

primal-dual method, the results of [25]. As in [25] our prediction A will be the total number of
vacation days N pred.

PDLA for ski rental. To simplify the description, we denote an instance of the problem as
I = (N,B) and define the function e(z) = (1 + 1/B)

z·B . Note that if B ! 1, then e(z) ap-
proaches ez hence the choice of notation. In an integral solution, the variable x is 1 to indicate that
the skis are bought and 0 otherwise. In the same spirit fj indicates whether we rent on day j or not.
Buchbinder et al. [5] showed how to easily turn a fractional monotone solution (i.e. it is not permitted
to decrease a variable) to an online randomized algorithm of expected cost equal to the cost of the
fractional solution. Hence we focus only on building online a fractional solution. Algorithm 3 is
due to [5] and uses the Primal-Dual method to solve the problem. Each new day j a new constraint
x+ fj > 1 is revealed. To satisfy this constraint, the algorithm updates the primal and dual variables
while trying to maintain (1) the ratio �P/�D as small as possible and (2) the primal and dual
solutions feasible. As in the online weighted set cover problem, the key idea for extending Algorithm
3 to the learning augmented Algorithm 4 is to use the prediction N

pred in order to adjust the rate
at which each variable is increased. Thus, when N

pred
> B we increase the buying variable more

aggressively than the pure online algorithm. Here, the cost of following blindly the prediction N
pred

is S(N pred
, I) = B · {N pred

> B}+N · {N pred 6 B}.

Algorithm 3 PRIMAL DUAL FOR SKI-
RENTAL [5].

Initialize: x 0, fj 0, 8j
c e(1), c0 1

for each new day j s.t. x+ fj < 1 do
/* Primal Update

fj 1� x

x (1 +
1
B
)x+

1
(c�1)·B

/* Dual Update

yj c
0

end for

))

Algorithm 4 PDLA FOR SKI-RENTAL.

Input: �, N pred

Initialize: x 0, fj 0, 8j
if N

pred > B then
/* Prediction suggests buying

c e(�), c0 1

else
/* Prediction suggests renting

c e(1/�), c0 �

end if
for each new day j s.t. x+ fj < 1 do

/* Primal Update

fj 1� x

x (1 +
1
B
)x+

1
(c�1)·B

/* Dual Update

yj c
0

end for

In the following we assume that either �B or B/� is an integer (depending on whether c equals e(�)
or e(1/�) respectively in Algorithm 4). Our results do not change qualitatively by rounding up to the
closest integer. See appendix B for details.

Theorem 2 (PDLA for ski rental). For any � 2 (0, 1], the cost of PDLA for ski rental is bounded as

follows

cPDLA(N
pred

, I,�) 6 min

⇢
�

1� e(��) · S(N
pred

, I), 1

1� e(��) ·OPT(I)
�

Proof sketch. The robustness bound is proved essentially using the same proof as for the original
analysis of Algorithm 3 in [5]. For the consistency bound we first note that after an update the primal
increase is 1+ 1

c�1 , now depending on the value of c we distinguish between two cases. If N pred > B

then Algorithm 4 is always aggressive in buying. In this case it is easy to show that at most �B
updates are made before we get x > 1. Once x > 1, no more updates are needed. Since each
aggressive update costs at most 1 + 1

e(�)�1 =
e(�)

e(�)�1 =
1

1�e(��) we get that the total cost paid by
Algorithm 4 is at most �B

1�e(��) = S(N
pred

, I) · �

1�e(��) . Similarly, in the second case N
pred

< B

and the algorithm increases the buying variable less aggressively. In this case each update costs at
most 1 + 1

e(1/�)�1 =
1

1�e(�1/�) and at most N of these updates are made therefore Algorithm 4

5

• Robustness

• Consistency

eλ

eλ − 1

λeλ

eλ − 1

primal-dual method, the results of [25]. As in [25] our prediction A will be the total number of
vacation days N pred.

PDLA for ski rental. To simplify the description, we denote an instance of the problem as
I = (N,B) and define the function e(z) = (1 + 1/B)

z·B . Note that if B ! 1, then e(z) ap-
proaches ez hence the choice of notation. In an integral solution, the variable x is 1 to indicate that
the skis are bought and 0 otherwise. In the same spirit fj indicates whether we rent on day j or not.
Buchbinder et al. [5] showed how to easily turn a fractional monotone solution (i.e. it is not permitted
to decrease a variable) to an online randomized algorithm of expected cost equal to the cost of the
fractional solution. Hence we focus only on building online a fractional solution. Algorithm 3 is
due to [5] and uses the Primal-Dual method to solve the problem. Each new day j a new constraint
x+ fj > 1 is revealed. To satisfy this constraint, the algorithm updates the primal and dual variables
while trying to maintain (1) the ratio �P/�D as small as possible and (2) the primal and dual
solutions feasible. As in the online weighted set cover problem, the key idea for extending Algorithm
3 to the learning augmented Algorithm 4 is to use the prediction N

pred in order to adjust the rate
at which each variable is increased. Thus, when N

pred
> B we increase the buying variable more

aggressively than the pure online algorithm. Here, the cost of following blindly the prediction N
pred

is S(N pred
, I) = B · {N pred

> B}+N · {N pred 6 B}.

Algorithm 3 PRIMAL DUAL FOR SKI-
RENTAL [5].

Initialize: x 0, fj 0, 8j
c e(1), c0 1

for each new day j s.t. x+ fj < 1 do
/* Primal Update

fj 1� x

x (1 +
1
B
)x+

1
(c�1)·B

/* Dual Update

yj c
0

end for

))

Algorithm 4 PDLA FOR SKI-RENTAL.

Input: �, N pred

Initialize: x 0, fj 0, 8j
if N

pred > B then
/* Prediction suggests buying

c e(�), c0 1

else
/* Prediction suggests renting

c e(1/�), c0 �

end if
for each new day j s.t. x+ fj < 1 do

/* Primal Update

fj 1� x

x (1 +
1
B
)x+

1
(c�1)·B

/* Dual Update

yj c
0

end for

In the following we assume that either �B or B/� is an integer (depending on whether c equals e(�)
or e(1/�) respectively in Algorithm 4). Our results do not change qualitatively by rounding up to the
closest integer. See appendix B for details.

Theorem 2 (PDLA for ski rental). For any � 2 (0, 1], the cost of PDLA for ski rental is bounded as

follows

cPDLA(N
pred

, I,�) 6 min

⇢
�

1� e(��) · S(N
pred

, I), 1

1� e(��) ·OPT(I)
�

Proof sketch. The robustness bound is proved essentially using the same proof as for the original
analysis of Algorithm 3 in [5]. For the consistency bound we first note that after an update the primal
increase is 1+ 1

c�1 , now depending on the value of c we distinguish between two cases. If N pred > B

then Algorithm 4 is always aggressive in buying. In this case it is easy to show that at most �B
updates are made before we get x > 1. Once x > 1, no more updates are needed. Since each
aggressive update costs at most 1 + 1

e(�)�1 =
e(�)

e(�)�1 =
1

1�e(��) we get that the total cost paid by
Algorithm 4 is at most �B

1�e(��) = S(N
pred

, I) · �

1�e(��) . Similarly, in the second case N
pred

< B

and the algorithm increases the buying variable less aggressively. In this case each update costs at
most 1 + 1

e(1/�)�1 =
1

1�e(�1/�) and at most N of these updates are made therefore Algorithm 4

5

• Robustness

• Consistency

eλ

eλ − 1

λeλ

eλ − 1

Recovering
the results of
Kumar et al.

NeurIPS 2018

primal-dual method, the results of [25]. As in [25] our prediction A will be the total number of
vacation days N pred.

PDLA for ski rental. To simplify the description, we denote an instance of the problem as
I = (N,B) and define the function e(z) = (1 + 1/B)

z·B . Note that if B ! 1, then e(z) ap-
proaches ez hence the choice of notation. In an integral solution, the variable x is 1 to indicate that
the skis are bought and 0 otherwise. In the same spirit fj indicates whether we rent on day j or not.
Buchbinder et al. [5] showed how to easily turn a fractional monotone solution (i.e. it is not permitted
to decrease a variable) to an online randomized algorithm of expected cost equal to the cost of the
fractional solution. Hence we focus only on building online a fractional solution. Algorithm 3 is
due to [5] and uses the Primal-Dual method to solve the problem. Each new day j a new constraint
x+ fj > 1 is revealed. To satisfy this constraint, the algorithm updates the primal and dual variables
while trying to maintain (1) the ratio �P/�D as small as possible and (2) the primal and dual
solutions feasible. As in the online weighted set cover problem, the key idea for extending Algorithm
3 to the learning augmented Algorithm 4 is to use the prediction N

pred in order to adjust the rate
at which each variable is increased. Thus, when N

pred
> B we increase the buying variable more

aggressively than the pure online algorithm. Here, the cost of following blindly the prediction N
pred

is S(N pred
, I) = B · {N pred

> B}+N · {N pred 6 B}.

Algorithm 3 PRIMAL DUAL FOR SKI-
RENTAL [5].

Initialize: x 0, fj 0, 8j
c e(1), c0 1

for each new day j s.t. x+ fj < 1 do
/* Primal Update

fj 1� x

x (1 +
1
B
)x+

1
(c�1)·B

/* Dual Update

yj c
0

end for

))

Algorithm 4 PDLA FOR SKI-RENTAL.

Input: �, N pred

Initialize: x 0, fj 0, 8j
if N

pred > B then
/* Prediction suggests buying

c e(�), c0 1

else
/* Prediction suggests renting

c e(1/�), c0 �

end if
for each new day j s.t. x+ fj < 1 do

/* Primal Update

fj 1� x

x (1 +
1
B
)x+

1
(c�1)·B

/* Dual Update

yj c
0

end for

In the following we assume that either �B or B/� is an integer (depending on whether c equals e(�)
or e(1/�) respectively in Algorithm 4). Our results do not change qualitatively by rounding up to the
closest integer. See appendix B for details.

Theorem 2 (PDLA for ski rental). For any � 2 (0, 1], the cost of PDLA for ski rental is bounded as

follows

cPDLA(N
pred

, I,�) 6 min

⇢
�

1� e(��) · S(N
pred

, I), 1

1� e(��) ·OPT(I)
�

Proof sketch. The robustness bound is proved essentially using the same proof as for the original
analysis of Algorithm 3 in [5]. For the consistency bound we first note that after an update the primal
increase is 1+ 1

c�1 , now depending on the value of c we distinguish between two cases. If N pred > B

then Algorithm 4 is always aggressive in buying. In this case it is easy to show that at most �B
updates are made before we get x > 1. Once x > 1, no more updates are needed. Since each
aggressive update costs at most 1 + 1

e(�)�1 =
e(�)

e(�)�1 =
1

1�e(��) we get that the total cost paid by
Algorithm 4 is at most �B

1�e(��) = S(N
pred

, I) · �

1�e(��) . Similarly, in the second case N
pred

< B

and the algorithm increases the buying variable less aggressively. In this case each update costs at
most 1 + 1

e(1/�)�1 =
1

1�e(�1/�) and at most N of these updates are made therefore Algorithm 4

5

• Robustness

• Consistency

eλ

eλ − 1

λeλ

eλ − 1

Recovering
the results of
Kumar et al.

NeurIPS 2018

Best possible robustness-
consistency tradeoff

primal-dual method, the results of [25]. As in [25] our prediction A will be the total number of
vacation days N pred.

PDLA for ski rental. To simplify the description, we denote an instance of the problem as
I = (N,B) and define the function e(z) = (1 + 1/B)

z·B . Note that if B ! 1, then e(z) ap-
proaches ez hence the choice of notation. In an integral solution, the variable x is 1 to indicate that
the skis are bought and 0 otherwise. In the same spirit fj indicates whether we rent on day j or not.
Buchbinder et al. [5] showed how to easily turn a fractional monotone solution (i.e. it is not permitted
to decrease a variable) to an online randomized algorithm of expected cost equal to the cost of the
fractional solution. Hence we focus only on building online a fractional solution. Algorithm 3 is
due to [5] and uses the Primal-Dual method to solve the problem. Each new day j a new constraint
x+ fj > 1 is revealed. To satisfy this constraint, the algorithm updates the primal and dual variables
while trying to maintain (1) the ratio �P/�D as small as possible and (2) the primal and dual
solutions feasible. As in the online weighted set cover problem, the key idea for extending Algorithm
3 to the learning augmented Algorithm 4 is to use the prediction N

pred in order to adjust the rate
at which each variable is increased. Thus, when N

pred
> B we increase the buying variable more

aggressively than the pure online algorithm. Here, the cost of following blindly the prediction N
pred

is S(N pred
, I) = B · {N pred

> B}+N · {N pred 6 B}.

Algorithm 3 PRIMAL DUAL FOR SKI-
RENTAL [5].

Initialize: x 0, fj 0, 8j
c e(1), c0 1

for each new day j s.t. x+ fj < 1 do
/* Primal Update

fj 1� x

x (1 +
1
B
)x+

1
(c�1)·B

/* Dual Update

yj c
0

end for

))

Algorithm 4 PDLA FOR SKI-RENTAL.

Input: �, N pred

Initialize: x 0, fj 0, 8j
if N

pred > B then
/* Prediction suggests buying

c e(�), c0 1

else
/* Prediction suggests renting

c e(1/�), c0 �

end if
for each new day j s.t. x+ fj < 1 do

/* Primal Update

fj 1� x

x (1 +
1
B
)x+

1
(c�1)·B

/* Dual Update

yj c
0

end for

In the following we assume that either �B or B/� is an integer (depending on whether c equals e(�)
or e(1/�) respectively in Algorithm 4). Our results do not change qualitatively by rounding up to the
closest integer. See appendix B for details.

Theorem 2 (PDLA for ski rental). For any � 2 (0, 1], the cost of PDLA for ski rental is bounded as

follows

cPDLA(N
pred

, I,�) 6 min

⇢
�

1� e(��) · S(N
pred

, I), 1

1� e(��) ·OPT(I)
�

Proof sketch. The robustness bound is proved essentially using the same proof as for the original
analysis of Algorithm 3 in [5]. For the consistency bound we first note that after an update the primal
increase is 1+ 1

c�1 , now depending on the value of c we distinguish between two cases. If N pred > B

then Algorithm 4 is always aggressive in buying. In this case it is easy to show that at most �B
updates are made before we get x > 1. Once x > 1, no more updates are needed. Since each
aggressive update costs at most 1 + 1

e(�)�1 =
e(�)

e(�)�1 =
1

1�e(��) we get that the total cost paid by
Algorithm 4 is at most �B

1�e(��) = S(N
pred

, I) · �

1�e(��) . Similarly, in the second case N
pred

< B

and the algorithm increases the buying variable less aggressively. In this case each update costs at
most 1 + 1

e(1/�)�1 =
1

1�e(�1/�) and at most N of these updates are made therefore Algorithm 4

5

• Robustness

• Consistency

eλ

eλ − 1

λeλ

eλ − 1

Recovering
the results of
Kumar et al.

NeurIPS 2018

Best possible robustness-
consistency tradeoff

PDLA for Ski rental:

primal-dual method, the results of [25]. As in [25] our prediction A will be the total number of
vacation days N pred.

PDLA for ski rental. To simplify the description, we denote an instance of the problem as
I = (N,B) and define the function e(z) = (1 + 1/B)

z·B . Note that if B ! 1, then e(z) ap-
proaches ez hence the choice of notation. In an integral solution, the variable x is 1 to indicate that
the skis are bought and 0 otherwise. In the same spirit fj indicates whether we rent on day j or not.
Buchbinder et al. [5] showed how to easily turn a fractional monotone solution (i.e. it is not permitted
to decrease a variable) to an online randomized algorithm of expected cost equal to the cost of the
fractional solution. Hence we focus only on building online a fractional solution. Algorithm 3 is
due to [5] and uses the Primal-Dual method to solve the problem. Each new day j a new constraint
x+ fj > 1 is revealed. To satisfy this constraint, the algorithm updates the primal and dual variables
while trying to maintain (1) the ratio �P/�D as small as possible and (2) the primal and dual
solutions feasible. As in the online weighted set cover problem, the key idea for extending Algorithm
3 to the learning augmented Algorithm 4 is to use the prediction N

pred in order to adjust the rate
at which each variable is increased. Thus, when N

pred
> B we increase the buying variable more

aggressively than the pure online algorithm. Here, the cost of following blindly the prediction N
pred

is S(N pred
, I) = B · {N pred

> B}+N · {N pred 6 B}.

Algorithm 3 PRIMAL DUAL FOR SKI-
RENTAL [5].

Initialize: x 0, fj 0, 8j
c e(1), c0 1

for each new day j s.t. x+ fj < 1 do
/* Primal Update

fj 1� x

x (1 +
1
B
)x+

1
(c�1)·B

/* Dual Update

yj c
0

end for

))

Algorithm 4 PDLA FOR SKI-RENTAL.

Input: �, N pred

Initialize: x 0, fj 0, 8j
if N

pred > B then
/* Prediction suggests buying

c e(�), c0 1

else
/* Prediction suggests renting

c e(1/�), c0 �

end if
for each new day j s.t. x+ fj < 1 do

/* Primal Update

fj 1� x

x (1 +
1
B
)x+

1
(c�1)·B

/* Dual Update

yj c
0

end for

In the following we assume that either �B or B/� is an integer (depending on whether c equals e(�)
or e(1/�) respectively in Algorithm 4). Our results do not change qualitatively by rounding up to the
closest integer. See appendix B for details.

Theorem 2 (PDLA for ski rental). For any � 2 (0, 1], the cost of PDLA for ski rental is bounded as

follows

cPDLA(N
pred

, I,�) 6 min

⇢
�

1� e(��) · S(N
pred

, I), 1

1� e(��) ·OPT(I)
�

Proof sketch. The robustness bound is proved essentially using the same proof as for the original
analysis of Algorithm 3 in [5]. For the consistency bound we first note that after an update the primal
increase is 1+ 1

c�1 , now depending on the value of c we distinguish between two cases. If N pred > B

then Algorithm 4 is always aggressive in buying. In this case it is easy to show that at most �B
updates are made before we get x > 1. Once x > 1, no more updates are needed. Since each
aggressive update costs at most 1 + 1

e(�)�1 =
e(�)

e(�)�1 =
1

1�e(��) we get that the total cost paid by
Algorithm 4 is at most �B

1�e(��) = S(N
pred

, I) · �

1�e(��) . Similarly, in the second case N
pred

< B

and the algorithm increases the buying variable less aggressively. In this case each update costs at
most 1 + 1

e(1/�)�1 =
1

1�e(�1/�) and at most N of these updates are made therefore Algorithm 4

5

✅

• Robustness

• Consistency

eλ

eλ − 1

λeλ

eλ − 1

Recovering
the results of
Kumar et al.

NeurIPS 2018

Best possible robustness-
consistency tradeoff

PDLA for Ski rental:

TCP Acknowledgement

TCP-ack problem definition:

TCP-ack problem definition: A server receives a stream of packets

TCP-ack problem definition: A server receives a stream of packets

✉

✉
✉

✉

✉ 💻

TCP-ack problem definition: A server receives a stream of packets

✉

✉
✉
✉

✉ 💻

TCP-ack problem definition: A server receives a stream of packets

✉

✉
✉
✉

✉ 💻

The server sends an ack to the sender
immediately

✉

✉

✉
✉

✉ 💻

TCP-ack problem definition: A server receives a stream of packets

✉

✉
✉
✉

✉ 💻

The server sends an ack to the sender
immediately

✉

✉

✉
✉

✉ 💻
ack

TCP-ack problem definition: A server receives a stream of packets

✉

✉
✉
✉

✉ 💻

The server sends an ack to the sender
immediately

✉

✉

✉
✉

✉

💻
ack

TCP-ack problem definition: A server receives a stream of packets

✉

✉
✉
✉

✉ 💻

The server sends an ack to the sender
immediately

✉

✉

✉
✉

✉

💻
ack
ack

TCP-ack problem definition: A server receives a stream of packets

✉

✉
✉
✉

✉ 💻

The server sends an ack to the sender
immediately

✉

✉

✉
✉

✉

💻
ack
ack

Cost = (cost of ack) + (cost of ack)

TCP-ack problem definition: A server receives a stream of packets

✉

✉
✉
✉

✉ 💻

The server sends an ack to the sender
immediately

✉

✉

✉
✉

✉

💻
ack

The server sends an ack to the sender
after he received enough packets

✉

✉

✉
✉

✉ 💻
ack

Cost = (cost of ack) + (cost of ack)

TCP-ack problem definition: A server receives a stream of packets

✉

✉
✉
✉

✉ 💻

The server sends an ack to the sender
immediately

✉

✉

✉
✉

✉

💻
ack

The server sends an ack to the sender
after he received enough packets

✉
✉

✉
✉

✉
💻

ack

Cost = (cost of ack) + (cost of ack)

TCP-ack problem definition: A server receives a stream of packets

✉

✉
✉
✉

✉ 💻

The server sends an ack to the sender
immediately

✉

✉

✉
✉

✉

💻
ack

The server sends an ack to the sender
after he received enough packets

✉
✉

✉
✉

✉
💻

ack ack

Cost = (cost of ack) + (cost of ack)

TCP-ack problem definition: A server receives a stream of packets

✉

✉
✉
✉

✉ 💻

The server sends an ack to the sender
immediately

✉

✉

✉
✉

✉

💻
ack

The server sends an ack to the sender
after he received enough packets

✉
✉

✉
✉

✉
💻

ack ack

Cost = (cost of ack) + (cost of ack) Cost = (cost of ack) + (cost of delayed packets)

4.1 The PDLA algorithm and its theoretical analysis

Our prediction consists in a collection of times A in which the prediction suggests sending an ack.
Let ↵(t) be the next time t

0 > t when prediction sends an ack. With this definition each packet
j, if the prediction is followed blindly, is acknowledged at time ↵(t(j)) incurring a latency cost
of (↵(t(j))� t(j)) · 1

d
. In the same spirit as for the ski rental problem we adapt the pure online

Algorithm 5 into the learning augmented Algorithm 6. Algorithm 6 adjusts the rate at which we
increase the primal and dual variables according to the prediction A. Thus if a packet j at time t is
"uncovered" (

P
t

k=t(j) xk + fjt < 1) by our fractional solution and "covered" by A (↵(t(j)) 6 t) we
increase xt at a faster rate. To simplify the description of Algorithm 6 we define e(z) = (1 +

1
d
)
z·d.

To get to the continuous time case, we will take the limit d!1 so the reader should think intuitively
as e(z) ⇡ e

z .

Algorithm 5 PRIMAL DUAL METHOD FOR
TCP ACKNOWLEDGEMENT [5].

Initialize: x 0, y 0

for all times t do
for all packages j such thatP

t

k=t(j) xk < 1 do
c � e(1), c0 � 1/d

/* Primal Update

fjt 1�
P

t

k=t(j) xk

xt xt +
1
d
·
⇣P

t

k=t(j) xk +
1

c�1

⌘

/* Dual Update

yjt c
0

end for
end for

))

Algorithm 6 PDLA FOR TCP ACKNOWLEDGE-
MENT

Input: �, A
Initialize: x 0, y 0
for all times t do

for all packages j such that
Pt

k=t(j) xk < 1 do
if t > ↵(t(j)) then

/* Prediction already acknowledged packet j

c � e(�), c0 � 1/d
else

/* Prediction did not acknowledge packet j yet

c � e(1/�), c0 � �/d
end if
/* Primal Update

fjt 1�
Pt

k=t(j) xk

xt xt + 1
d ·

⇣Pt
k=t(j) xk + 1

c�1

⌘

/* Dual Update

yjt c0

end for
end for

We continue by presenting Algorithm’s 6 guarantees together with a proof sketch. As before I
denotes the TCP ack problem instance which is revealed in an online fashion. The full proof is
deferred to appendix C.
Theorem 5 (PDLA for TCP-ack). For any prediction A, any instance I of the TCP ack problem,

any parameter � 2 (0, 1], and d ! 1: Algorithm 6 outputs a fractional solution of cost at most

cPDLA(A, I,�) 6 min

n
�

1�e�� · S(A, I), 1
1�e�� ·OPT(I)

o

Proof sketch. The two bounds are proven separately. For the robustness bound, while our analysis
is slightly more technical, we use the same idea as the original analysis in [5]. That is, upper
bounding the ratio �P/�D in every iteration and using weak duality. The consistency proof uses
a simple charging scheme that can be seen as a generalization of our consistency proof for the ski
rental problem. We essentially have two cases, big (c = e(�)) and small (c = e(1/�)) updates.
In the case of a small update, a simple calculation reveals that the increase in cost of the solution
is at most �P =

1
d

⇣
1�

P
t

k=t(j) xk

⌘
+

1
d

⇣P
t

k=t(j) xk +
1

e(1/�)�1

⌘
=

1
d

⇣
1 +

1
e(1/�)�1

⌘
=

1
d
·
⇣

1
1�e(�1/�)

⌘
. Notice then whenever Algorithm 6 does a small update at time t due to request j,

prediction A pays a latency cost of 1/d since it has not yet acknowledged request j. Hence the primal
increase of cost which is at most 1

d
· 1
1�e(�1/�) can be charged to the latency cost 1/d paid by A with

a multiplicative factor 1
1�e(�1/�) 6 �

1�e(��) (see Lemma 19, inequality (3)). The case of big updates
is slightly different. Consider a time t0 at which A sends an acknowledgement and consider the big
updates performed by Algorithm 6 for packets j arrived before that time (t(j) 6 t0). We claim that at
most d�de such big updates can be made. Indeed, big updates are more aggressive (i.e. xt increases

7

4.1 The PDLA algorithm and its theoretical analysis

Our prediction consists in a collection of times A in which the prediction suggests sending an ack.
Let ↵(t) be the next time t

0 > t when prediction sends an ack. With this definition each packet
j, if the prediction is followed blindly, is acknowledged at time ↵(t(j)) incurring a latency cost
of (↵(t(j))� t(j)) · 1

d
. In the same spirit as for the ski rental problem we adapt the pure online

Algorithm 5 into the learning augmented Algorithm 6. Algorithm 6 adjusts the rate at which we
increase the primal and dual variables according to the prediction A. Thus if a packet j at time t is
"uncovered" (

P
t

k=t(j) xk + fjt < 1) by our fractional solution and "covered" by A (↵(t(j)) 6 t) we
increase xt at a faster rate. To simplify the description of Algorithm 6 we define e(z) = (1 +

1
d
)
z·d.

To get to the continuous time case, we will take the limit d!1 so the reader should think intuitively
as e(z) ⇡ e

z .

Algorithm 5 PRIMAL DUAL METHOD FOR
TCP ACKNOWLEDGEMENT [5].

Initialize: x 0, y 0

for all times t do
for all packages j such thatP

t

k=t(j) xk < 1 do
c � e(1), c0 � 1/d

/* Primal Update

fjt 1�
P

t

k=t(j) xk

xt xt +
1
d
·
⇣P

t

k=t(j) xk +
1

c�1

⌘

/* Dual Update

yjt c
0

end for
end for

))

Algorithm 6 PDLA FOR TCP ACKNOWLEDGE-
MENT

Input: �, A
Initialize: x 0, y 0
for all times t do

for all packages j such that
Pt

k=t(j) xk < 1 do
if t > ↵(t(j)) then

/* Prediction already acknowledged packet j

c � e(�), c0 � 1/d
else

/* Prediction did not acknowledge packet j yet

c � e(1/�), c0 � �/d
end if
/* Primal Update

fjt 1�
Pt

k=t(j) xk

xt xt + 1
d ·

⇣Pt
k=t(j) xk + 1

c�1

⌘

/* Dual Update

yjt c0

end for
end for

We continue by presenting Algorithm’s 6 guarantees together with a proof sketch. As before I
denotes the TCP ack problem instance which is revealed in an online fashion. The full proof is
deferred to appendix C.
Theorem 5 (PDLA for TCP-ack). For any prediction A, any instance I of the TCP ack problem,

any parameter � 2 (0, 1], and d ! 1: Algorithm 6 outputs a fractional solution of cost at most

cPDLA(A, I,�) 6 min

n
�

1�e�� · S(A, I), 1
1�e�� ·OPT(I)

o

Proof sketch. The two bounds are proven separately. For the robustness bound, while our analysis
is slightly more technical, we use the same idea as the original analysis in [5]. That is, upper
bounding the ratio �P/�D in every iteration and using weak duality. The consistency proof uses
a simple charging scheme that can be seen as a generalization of our consistency proof for the ski
rental problem. We essentially have two cases, big (c = e(�)) and small (c = e(1/�)) updates.
In the case of a small update, a simple calculation reveals that the increase in cost of the solution
is at most �P =

1
d

⇣
1�

P
t

k=t(j) xk

⌘
+

1
d

⇣P
t

k=t(j) xk +
1

e(1/�)�1

⌘
=

1
d

⇣
1 +

1
e(1/�)�1

⌘
=

1
d
·
⇣

1
1�e(�1/�)

⌘
. Notice then whenever Algorithm 6 does a small update at time t due to request j,

prediction A pays a latency cost of 1/d since it has not yet acknowledged request j. Hence the primal
increase of cost which is at most 1

d
· 1
1�e(�1/�) can be charged to the latency cost 1/d paid by A with

a multiplicative factor 1
1�e(�1/�) 6 �

1�e(��) (see Lemma 19, inequality (3)). The case of big updates
is slightly different. Consider a time t0 at which A sends an acknowledgement and consider the big
updates performed by Algorithm 6 for packets j arrived before that time (t(j) 6 t0). We claim that at
most d�de such big updates can be made. Indeed, big updates are more aggressive (i.e. xt increases

7

4.1 The PDLA algorithm and its theoretical analysis

Our prediction consists in a collection of times A in which the prediction suggests sending an ack.
Let ↵(t) be the next time t

0 > t when prediction sends an ack. With this definition each packet
j, if the prediction is followed blindly, is acknowledged at time ↵(t(j)) incurring a latency cost
of (↵(t(j))� t(j)) · 1

d
. In the same spirit as for the ski rental problem we adapt the pure online

Algorithm 5 into the learning augmented Algorithm 6. Algorithm 6 adjusts the rate at which we
increase the primal and dual variables according to the prediction A. Thus if a packet j at time t is
"uncovered" (

P
t

k=t(j) xk + fjt < 1) by our fractional solution and "covered" by A (↵(t(j)) 6 t) we
increase xt at a faster rate. To simplify the description of Algorithm 6 we define e(z) = (1 +

1
d
)
z·d.

To get to the continuous time case, we will take the limit d!1 so the reader should think intuitively
as e(z) ⇡ e

z .

Algorithm 5 PRIMAL DUAL METHOD FOR
TCP ACKNOWLEDGEMENT [5].

Initialize: x 0, y 0

for all times t do
for all packages j such thatP

t

k=t(j) xk < 1 do
c � e(1), c0 � 1/d

/* Primal Update

fjt 1�
P

t

k=t(j) xk

xt xt +
1
d
·
⇣P

t

k=t(j) xk +
1

c�1

⌘

/* Dual Update

yjt c
0

end for
end for

))

Algorithm 6 PDLA FOR TCP ACKNOWLEDGE-
MENT

Input: �, A
Initialize: x 0, y 0
for all times t do

for all packages j such that
Pt

k=t(j) xk < 1 do
if t > ↵(t(j)) then

/* Prediction already acknowledged packet j

c � e(�), c0 � 1/d
else

/* Prediction did not acknowledge packet j yet

c � e(1/�), c0 � �/d
end if
/* Primal Update

fjt 1�
Pt

k=t(j) xk

xt xt + 1
d ·

⇣Pt
k=t(j) xk + 1

c�1

⌘

/* Dual Update

yjt c0

end for
end for

We continue by presenting Algorithm’s 6 guarantees together with a proof sketch. As before I
denotes the TCP ack problem instance which is revealed in an online fashion. The full proof is
deferred to appendix C.
Theorem 5 (PDLA for TCP-ack). For any prediction A, any instance I of the TCP ack problem,

any parameter � 2 (0, 1], and d ! 1: Algorithm 6 outputs a fractional solution of cost at most

cPDLA(A, I,�) 6 min

n
�

1�e�� · S(A, I), 1
1�e�� ·OPT(I)

o

Proof sketch. The two bounds are proven separately. For the robustness bound, while our analysis
is slightly more technical, we use the same idea as the original analysis in [5]. That is, upper
bounding the ratio �P/�D in every iteration and using weak duality. The consistency proof uses
a simple charging scheme that can be seen as a generalization of our consistency proof for the ski
rental problem. We essentially have two cases, big (c = e(�)) and small (c = e(1/�)) updates.
In the case of a small update, a simple calculation reveals that the increase in cost of the solution
is at most �P =

1
d

⇣
1�

P
t

k=t(j) xk

⌘
+

1
d

⇣P
t

k=t(j) xk +
1

e(1/�)�1

⌘
=

1
d

⇣
1 +

1
e(1/�)�1

⌘
=

1
d
·
⇣

1
1�e(�1/�)

⌘
. Notice then whenever Algorithm 6 does a small update at time t due to request j,

prediction A pays a latency cost of 1/d since it has not yet acknowledged request j. Hence the primal
increase of cost which is at most 1

d
· 1
1�e(�1/�) can be charged to the latency cost 1/d paid by A with

a multiplicative factor 1
1�e(�1/�) 6 �

1�e(��) (see Lemma 19, inequality (3)). The case of big updates
is slightly different. Consider a time t0 at which A sends an acknowledgement and consider the big
updates performed by Algorithm 6 for packets j arrived before that time (t(j) 6 t0). We claim that at
most d�de such big updates can be made. Indeed, big updates are more aggressive (i.e. xt increases

7

4.1 The PDLA algorithm and its theoretical analysis

Our prediction consists in a collection of times A in which the prediction suggests sending an ack.
Let ↵(t) be the next time t

0 > t when prediction sends an ack. With this definition each packet
j, if the prediction is followed blindly, is acknowledged at time ↵(t(j)) incurring a latency cost
of (↵(t(j))� t(j)) · 1

d
. In the same spirit as for the ski rental problem we adapt the pure online

Algorithm 5 into the learning augmented Algorithm 6. Algorithm 6 adjusts the rate at which we
increase the primal and dual variables according to the prediction A. Thus if a packet j at time t is
"uncovered" (

P
t

k=t(j) xk + fjt < 1) by our fractional solution and "covered" by A (↵(t(j)) 6 t) we
increase xt at a faster rate. To simplify the description of Algorithm 6 we define e(z) = (1 +

1
d
)
z·d.

To get to the continuous time case, we will take the limit d!1 so the reader should think intuitively
as e(z) ⇡ e

z .

Algorithm 5 PRIMAL DUAL METHOD FOR
TCP ACKNOWLEDGEMENT [5].

Initialize: x 0, y 0

for all times t do
for all packages j such thatP

t

k=t(j) xk < 1 do
c � e(1), c0 � 1/d

/* Primal Update

fjt 1�
P

t

k=t(j) xk

xt xt +
1
d
·
⇣P

t

k=t(j) xk +
1

c�1

⌘

/* Dual Update

yjt c
0

end for
end for

))

Algorithm 6 PDLA FOR TCP ACKNOWLEDGE-
MENT

Input: �, A
Initialize: x 0, y 0
for all times t do

for all packages j such that
Pt

k=t(j) xk < 1 do
if t > ↵(t(j)) then

/* Prediction already acknowledged packet j

c � e(�), c0 � 1/d
else

/* Prediction did not acknowledge packet j yet

c � e(1/�), c0 � �/d
end if
/* Primal Update

fjt 1�
Pt

k=t(j) xk

xt xt + 1
d ·

⇣Pt
k=t(j) xk + 1

c�1

⌘

/* Dual Update

yjt c0

end for
end for

We continue by presenting Algorithm’s 6 guarantees together with a proof sketch. As before I
denotes the TCP ack problem instance which is revealed in an online fashion. The full proof is
deferred to appendix C.
Theorem 5 (PDLA for TCP-ack). For any prediction A, any instance I of the TCP ack problem,

any parameter � 2 (0, 1], and d ! 1: Algorithm 6 outputs a fractional solution of cost at most

cPDLA(A, I,�) 6 min

n
�

1�e�� · S(A, I), 1
1�e�� ·OPT(I)

o

Proof sketch. The two bounds are proven separately. For the robustness bound, while our analysis
is slightly more technical, we use the same idea as the original analysis in [5]. That is, upper
bounding the ratio �P/�D in every iteration and using weak duality. The consistency proof uses
a simple charging scheme that can be seen as a generalization of our consistency proof for the ski
rental problem. We essentially have two cases, big (c = e(�)) and small (c = e(1/�)) updates.
In the case of a small update, a simple calculation reveals that the increase in cost of the solution
is at most �P =

1
d

⇣
1�

P
t

k=t(j) xk

⌘
+

1
d

⇣P
t

k=t(j) xk +
1

e(1/�)�1

⌘
=

1
d

⇣
1 +

1
e(1/�)�1

⌘
=

1
d
·
⇣

1
1�e(�1/�)

⌘
. Notice then whenever Algorithm 6 does a small update at time t due to request j,

prediction A pays a latency cost of 1/d since it has not yet acknowledged request j. Hence the primal
increase of cost which is at most 1

d
· 1
1�e(�1/�) can be charged to the latency cost 1/d paid by A with

a multiplicative factor 1
1�e(�1/�) 6 �

1�e(��) (see Lemma 19, inequality (3)). The case of big updates
is slightly different. Consider a time t0 at which A sends an acknowledgement and consider the big
updates performed by Algorithm 6 for packets j arrived before that time (t(j) 6 t0). We claim that at
most d�de such big updates can be made. Indeed, big updates are more aggressive (i.e. xt increases

7

• Robustness

• Consistency

eλ

eλ − 1

λeλ

eλ − 1

4.1 The PDLA algorithm and its theoretical analysis

Our prediction consists in a collection of times A in which the prediction suggests sending an ack.
Let ↵(t) be the next time t

0 > t when prediction sends an ack. With this definition each packet
j, if the prediction is followed blindly, is acknowledged at time ↵(t(j)) incurring a latency cost
of (↵(t(j))� t(j)) · 1

d
. In the same spirit as for the ski rental problem we adapt the pure online

Algorithm 5 into the learning augmented Algorithm 6. Algorithm 6 adjusts the rate at which we
increase the primal and dual variables according to the prediction A. Thus if a packet j at time t is
"uncovered" (

P
t

k=t(j) xk + fjt < 1) by our fractional solution and "covered" by A (↵(t(j)) 6 t) we
increase xt at a faster rate. To simplify the description of Algorithm 6 we define e(z) = (1 +

1
d
)
z·d.

To get to the continuous time case, we will take the limit d!1 so the reader should think intuitively
as e(z) ⇡ e

z .

Algorithm 5 PRIMAL DUAL METHOD FOR
TCP ACKNOWLEDGEMENT [5].

Initialize: x 0, y 0

for all times t do
for all packages j such thatP

t

k=t(j) xk < 1 do
c � e(1), c0 � 1/d

/* Primal Update

fjt 1�
P

t

k=t(j) xk

xt xt +
1
d
·
⇣P

t

k=t(j) xk +
1

c�1

⌘

/* Dual Update

yjt c
0

end for
end for

))

Algorithm 6 PDLA FOR TCP ACKNOWLEDGE-
MENT

Input: �, A
Initialize: x 0, y 0
for all times t do

for all packages j such that
Pt

k=t(j) xk < 1 do
if t > ↵(t(j)) then

/* Prediction already acknowledged packet j

c � e(�), c0 � 1/d
else

/* Prediction did not acknowledge packet j yet

c � e(1/�), c0 � �/d
end if
/* Primal Update

fjt 1�
Pt

k=t(j) xk

xt xt + 1
d ·

⇣Pt
k=t(j) xk + 1

c�1

⌘

/* Dual Update

yjt c0

end for
end for

We continue by presenting Algorithm’s 6 guarantees together with a proof sketch. As before I
denotes the TCP ack problem instance which is revealed in an online fashion. The full proof is
deferred to appendix C.
Theorem 5 (PDLA for TCP-ack). For any prediction A, any instance I of the TCP ack problem,

any parameter � 2 (0, 1], and d ! 1: Algorithm 6 outputs a fractional solution of cost at most

cPDLA(A, I,�) 6 min

n
�

1�e�� · S(A, I), 1
1�e�� ·OPT(I)

o

Proof sketch. The two bounds are proven separately. For the robustness bound, while our analysis
is slightly more technical, we use the same idea as the original analysis in [5]. That is, upper
bounding the ratio �P/�D in every iteration and using weak duality. The consistency proof uses
a simple charging scheme that can be seen as a generalization of our consistency proof for the ski
rental problem. We essentially have two cases, big (c = e(�)) and small (c = e(1/�)) updates.
In the case of a small update, a simple calculation reveals that the increase in cost of the solution
is at most �P =

1
d

⇣
1�

P
t

k=t(j) xk

⌘
+

1
d

⇣P
t

k=t(j) xk +
1

e(1/�)�1

⌘
=

1
d

⇣
1 +

1
e(1/�)�1

⌘
=

1
d
·
⇣

1
1�e(�1/�)

⌘
. Notice then whenever Algorithm 6 does a small update at time t due to request j,

prediction A pays a latency cost of 1/d since it has not yet acknowledged request j. Hence the primal
increase of cost which is at most 1

d
· 1
1�e(�1/�) can be charged to the latency cost 1/d paid by A with

a multiplicative factor 1
1�e(�1/�) 6 �

1�e(��) (see Lemma 19, inequality (3)). The case of big updates
is slightly different. Consider a time t0 at which A sends an acknowledgement and consider the big
updates performed by Algorithm 6 for packets j arrived before that time (t(j) 6 t0). We claim that at
most d�de such big updates can be made. Indeed, big updates are more aggressive (i.e. xt increases

7

• Robustness

• Consistency

eλ

eλ − 1

λeλ

eλ − 1

PDLA for TCP Ack:

4.1 The PDLA algorithm and its theoretical analysis

Our prediction consists in a collection of times A in which the prediction suggests sending an ack.
Let ↵(t) be the next time t

0 > t when prediction sends an ack. With this definition each packet
j, if the prediction is followed blindly, is acknowledged at time ↵(t(j)) incurring a latency cost
of (↵(t(j))� t(j)) · 1

d
. In the same spirit as for the ski rental problem we adapt the pure online

Algorithm 5 into the learning augmented Algorithm 6. Algorithm 6 adjusts the rate at which we
increase the primal and dual variables according to the prediction A. Thus if a packet j at time t is
"uncovered" (

P
t

k=t(j) xk + fjt < 1) by our fractional solution and "covered" by A (↵(t(j)) 6 t) we
increase xt at a faster rate. To simplify the description of Algorithm 6 we define e(z) = (1 +

1
d
)
z·d.

To get to the continuous time case, we will take the limit d!1 so the reader should think intuitively
as e(z) ⇡ e

z .

Algorithm 5 PRIMAL DUAL METHOD FOR
TCP ACKNOWLEDGEMENT [5].

Initialize: x 0, y 0

for all times t do
for all packages j such thatP

t

k=t(j) xk < 1 do
c � e(1), c0 � 1/d

/* Primal Update

fjt 1�
P

t

k=t(j) xk

xt xt +
1
d
·
⇣P

t

k=t(j) xk +
1

c�1

⌘

/* Dual Update

yjt c
0

end for
end for

))

Algorithm 6 PDLA FOR TCP ACKNOWLEDGE-
MENT

Input: �, A
Initialize: x 0, y 0
for all times t do

for all packages j such that
Pt

k=t(j) xk < 1 do
if t > ↵(t(j)) then

/* Prediction already acknowledged packet j

c � e(�), c0 � 1/d
else

/* Prediction did not acknowledge packet j yet

c � e(1/�), c0 � �/d
end if
/* Primal Update

fjt 1�
Pt

k=t(j) xk

xt xt + 1
d ·

⇣Pt
k=t(j) xk + 1

c�1

⌘

/* Dual Update

yjt c0

end for
end for

We continue by presenting Algorithm’s 6 guarantees together with a proof sketch. As before I
denotes the TCP ack problem instance which is revealed in an online fashion. The full proof is
deferred to appendix C.
Theorem 5 (PDLA for TCP-ack). For any prediction A, any instance I of the TCP ack problem,

any parameter � 2 (0, 1], and d ! 1: Algorithm 6 outputs a fractional solution of cost at most

cPDLA(A, I,�) 6 min

n
�

1�e�� · S(A, I), 1
1�e�� ·OPT(I)

o

Proof sketch. The two bounds are proven separately. For the robustness bound, while our analysis
is slightly more technical, we use the same idea as the original analysis in [5]. That is, upper
bounding the ratio �P/�D in every iteration and using weak duality. The consistency proof uses
a simple charging scheme that can be seen as a generalization of our consistency proof for the ski
rental problem. We essentially have two cases, big (c = e(�)) and small (c = e(1/�)) updates.
In the case of a small update, a simple calculation reveals that the increase in cost of the solution
is at most �P =

1
d

⇣
1�

P
t

k=t(j) xk

⌘
+

1
d

⇣P
t

k=t(j) xk +
1

e(1/�)�1

⌘
=

1
d

⇣
1 +

1
e(1/�)�1

⌘
=

1
d
·
⇣

1
1�e(�1/�)

⌘
. Notice then whenever Algorithm 6 does a small update at time t due to request j,

prediction A pays a latency cost of 1/d since it has not yet acknowledged request j. Hence the primal
increase of cost which is at most 1

d
· 1
1�e(�1/�) can be charged to the latency cost 1/d paid by A with

a multiplicative factor 1
1�e(�1/�) 6 �

1�e(��) (see Lemma 19, inequality (3)). The case of big updates
is slightly different. Consider a time t0 at which A sends an acknowledgement and consider the big
updates performed by Algorithm 6 for packets j arrived before that time (t(j) 6 t0). We claim that at
most d�de such big updates can be made. Indeed, big updates are more aggressive (i.e. xt increases

7

• Robustness

• Consistency

eλ

eλ − 1

λeλ

eλ − 1

✅PDLA for TCP Ack:

PDLA in Action for TCP Ack

PDLA in Action for TCP Ack

Experimental setting:

PDLA in Action for TCP Ack

Experimental setting: • number of packets at each time step follows a Lomax distribution

• (perturbed) at each time step with probability p we delete the

packets of the true instance , and with probability p we add an
independent instance

I →
Ipred → I

I

PDLA in Action for TCP Ack

Experimental setting: • number of packets at each time step follows a Lomax distribution

• (perturbed) at each time step with probability p we delete the

packets of the true instance , and with probability p we add an
independent instance

I →
Ipred → I

I

Bad prediction: maintain robustness

PDLA in Action for TCP Ack

Good prediction: beat online algorithms

Experimental setting: • number of packets at each time step follows a Lomax distribution

• (perturbed) at each time step with probability p we delete the

packets of the true instance , and with probability p we add an
independent instance

I →
Ipred → I

I

Bad prediction: maintain robustness

• Learning-augmented online algorithms

• Case study: set cover

• Instantiating PDLA for other problems

• Future directions

Outline

• PDLA gives a principled way of extending the primal-dual approach to
incorporate new predictions

• Simple proofs (using old analysis)

• Unifies and some new results

Summary

• Apply PDLA to problems with packing constraints (e.g. revenue maximization
in ad-auctions)

• Apply PDLA to problems with covering constraints and non-linear objective
functions (e.g. speed scaling for energy minimization scheduling)

• Learning augment and try to get tight consistency/robustness guarantees for
many more covering problems (e.g. load balancing, weighted caching etc.)

• Good advice doesn’t come for free

Future directions

Thank You!

