Advanced C Programming

Sebastian Hack
hack@cs.uni-sb.de
Christoph Weidenbach
weidenbach@mpi-inf.mpg.de

Winter Term 2008/09

Why Advanced C?

"Our"

we need experienced C programmers

"Religious"

- portability
- efficiency
- powerful and flexible

"Real"

- unix
- network software
- embedded systems
- research: graphics, vision, formal methods
- entertainment: games, films

.

Content I

SAT Solving I

Basic C Setup

Efficient Algorithms I

SAT Solving II

Style, Signals, Timing and Tools

SAT Solving III

Memory Management and Tools

Content II

Software Engineering in the Small

Know the Compiler and Processor

Efficient Algorithms II

Parallelism

Recent C Standards

Propositional logic

- ► logic of truth values
- ► decidable (but NP-complete)
- ▶ can be used to describe functions over a finite domain
- ▶ important for hardware applications (e.g., model checking)

Syntax

- ▶ propositional variables: P, Q, $R \in \Pi$
- ▶ logical symbols: \land and, \lor or, \neg not, \top true, \bot false
- ▶ literals are propositional variables or their negation: P, $\neg P$
- ▶ clauses are (posssibly empty) disjunctions of literals: $P \lor \neg Q \lor R$
- clause sets are sets of clauses interpreted as the conjunction of all clauses
- literals, clauses and clause sets are formulas

Semantics

Classical

In classical logic (dating back to Aristoteles) there are "only" two truth values "true" and "false" which we shall denote, respectively, by $1\ \text{and}\ 0$.

Valuations

A propositional variable has no intrinsic meaning. The meaning of a propositional variable has to be defined by a valuation.

A Π-valuation is a map

$$\mathcal{A}:\Pi \rightarrow \{0,1\}.$$

where $\{0,1\}$ is the set of truth values.

Truth Value of a Literal, Clause, Clause Set

Given a Π -valuation \mathcal{A} , it can be extended to formulas \mathcal{A} : formulas $\to \{0,1\}$ inductively as follows:

$$\mathcal{A}(\bot) = 0$$

$$\mathcal{A}(\top) = 1$$

$$\mathcal{A}(P) = \mathcal{A}(P)$$

$$\mathcal{A}(\neg P) = 1 - \mathcal{A}(P)$$

$$\mathcal{A}(A \lor B) = \max(\mathcal{A}(A), \mathcal{A}(B))$$

$$\mathcal{A}(C \land D) = \min(\mathcal{A}(C), \mathcal{A}(D))$$

Models, Validity, and Satisfiability

Validity

F is valid in A (A is a model of F; F holds under A):

$$\mathcal{A} \models F :\Leftrightarrow \mathcal{A}(F) = 1$$

F is valid (or is a tautology):

$$\models F :\Leftrightarrow \mathcal{A} \models F$$
 for all Π -valuations \mathcal{A}

(Un)Satisfiability

F is called satisfiable if there exists an A such that $A \models F$. Otherwise F is called unsatisfiable (or contradictory).

Hence, F is valid iff $\neg F$ is unsatisfiable.

We say that $N \models F$ iff $N \land \neg F$ is unsatisfiable.

Checking Unsatisfiability

Every formula F contains only finitely many propositional variables. Obviously, A(F) depends only on the values of those finitely many variables in F under A.

If F contains n distinct propositional variables, then it is sufficient to check 2^n valuations to see whether F is satisfiable or not \Rightarrow truth table.

So the satisfiability problem is clearly decidable (but, by Cook's Theorem, NP-complete). Nevertheless, in practice, there are (much) better methods than truth tables to check the satisfiability of a formula.

The DPLL Procedure

Goal

Given a propositional formula in CNF (or alternatively, a finite set N of clauses), check whether it is satisfiable (and optionally: output one solution, if it is satisfiable).

Assumption

Clauses contain neither duplicated literals nor complementary literals.

Notation

 \overline{L} is the complementary literal of L, i.e., $\overline{P} = \neg P$ and $\overline{\neg P} = P$.

Partial Valuations

Since we will construct satisfying valuations incrementally, we consider partial valuations (that is, partial mappings $\mathcal{A}:\Pi \to \{0,1\}$).

Every partial valuation \mathcal{A} corresponds to a set M of literals that does not contain complementary literals, and vice versa:

- ▶ A(L) is true, if $L \in M$.
- ▶ A(L) is false, if $\overline{L} \in M$.
- ▶ A(L) is undefined, if neither $L \in M$ nor $\overline{L} \in M$.

A clause is true under a partial valuation \mathcal{A} (or under a set M of literals) if one of its literals is true; it is false if all its literals are false; otherwise it is undefined.

Unit Clauses

Observation

Let \mathcal{A} be a partial valuation. If the set N contains a clause C, such that all literals but one in C are false under \mathcal{A} , then the following properties are equivalent:

- \blacktriangleright there is a valuation that is a model of N and extends A.
- ▶ there is a valuation that is a model of N and extends A and makes the remaining literal L of C true.

C is called a unit clause; L is called a unit literal.

The Davis-Putnam-Logemann-Loveland Procedure

```
booleanDPLL(literal set M, clause set N) {
    if (all clauses in N are true under M) return true;
    elsif (some clause in N is false under M) return false;
    elsif (N contains unit clause P) return DPLL(M \cup \{P\}, N);
   elsif (N contains unit clause \neg P) return DPLL(M \cup \{\neg P\}, N);
    else {
        let P be some undefined variable in N:
        if (DPLL(M \cup \{\neg P\}, N)) return true;
        else return DPLL(M \cup \{P\}, N);
```

Initially, DPLL is called with an empty literal set and the clause set N.

DPLL Iteratively

In practice, there are several changes to the procedure:

- ▶ The branching variable is not chosen randomly.
- ► The algorithm is implemented iteratively; the backtrack stack is managed explicitly (it may be possible and useful to backtrack more than one level).
- ▶ Information is reused by learning.

Formalizing DPLL with Refinements

The DPLL procedure is modelled by a transition relation $\Rightarrow_{\mathrm{DPLL}}$ on a set of states.

States

- ► fail
- ► *M* || *N*,

where M is a list of annotated literals and N is a set of clauses.

Annotated literal

- L: deduced literal, due to unit propagation.
- ▶ L^d: decision literal (guessed literal).

DPLL Rules

Unit Propagate

 $M \parallel N \cup \{C \lor L\} \Rightarrow_{\text{DPLL}} M L \parallel N \cup \{C \lor L\}$ if *C* is false under *M* and *L* is undefined under *M*.

Decide

 $M \parallel N \Rightarrow_{\text{DPLL}} M L^{\text{d}} \parallel N$ if L is undefined under M.

Fail

 $M \parallel N \cup \{C\} \Rightarrow_{\mathrm{DPLL}} \mathit{fail}$ if C is false under M and M contains no decision literals.

DPLL Rules

Backjump

```
M' L^{\mathrm{d}} M'' \parallel N \Rightarrow_{\mathrm{DPLL}} M' L' \parallel N if there is some "backjump clause" C \vee L' such that N \models C \vee L', C is false under M', and L' is undefined under M'.
```

Backtracking

The Backjump rule is always applicable, if the list of literals M contains at least one decision literal and some clause in N is false under M.

There are many possible backjump clauses. One candidate: $\overline{L_1} \vee \ldots \vee \overline{L_n}$, where the L_i are all the decision literals in M $L^{\rm d}$ M'. (But usually there are better choices.)

DIMACS SAT File Input Format

Syntax

```
{c <comment>}*
p cnf <number of variables> <number of clauses>
{<clause> 0}*
A <clause> is a sequence of integers from + <number of variables> to - <number of variables>, except 0, separated by blanks.
```

Example

```
The clauses P \lor \neg Q \lor R, Q \lor \neg R can be coded by the file c first, simple example p cnf 3 2 1 -2 3 0 2 -3 0
```