Advanced C Programming

Sebastian Hack
hackQcs.uni-sb.de

Christoph Weidenbach
weidenbach@mpi-inf.mpg.de

Winter Term 2008/09

SAARLAND pfq

l l I I UNIVERSITY Wl
N

COMPUTER SCIENCE

Why Advanced C?
“Our”

» we need experienced C programmers

“Religious”

> portability
> efficiency

» powerful and flexible

“Real”

unix
network software
embedded systems

research: graphics, vision, formal methods

vV V. v v Yy

entertainment: games, films

Content |

SAT Solving |

Basic C Setup

Efficient Algorithms |

SAT Solving Il

Style, Signals, Timing and Tools
SAT Solving Il

Memory Management and Tools

Content I

Software Engineering in the Small
Know the Compiler and Processor
Efficient Algorithms |1

Parallelism

Recent C Standards

Propositional logic

logic of truth values
decidable (but NP-complete)

can be used to describe functions over a finite domain

vV vV v Vv

important for hardware applications (e.g., model checking)

Syntax

vV vV.v v VY

propositional variables: P, @, R €I

logical symbols: A and, V or, = not, T true, | false

literals are propositional variables or their negation: P, =P
clauses are (posssibly empty) disjunctions of literals: PV -Q V R

clause sets are sets of clauses interpreted as the conjunction of all
clauses

literals, clauses and clause sets are formulas

Semantics

Classical

In classical logic (dating back to Aristoteles) there are “only” two truth
values “true” and “false” which we shall denote, respectively, by 1 and 0.

Valuations

A propositional variable has no intrinsic meaning. The meaning of a
propositional variable has to be defined by a valuation.

A [l-valuation is a map

A: M —{0,1}.

where {0,1} is the set of truth values.

Truth Value of a Literal, Clause, Clause Set

Given a lN-valuation A, it can be extended to formulas
A : formulas — {0, 1} inductively as follows:

(L) =
(T) =
(P) = A()
A(-P) =1-A(P)
A(AV B) = maX((A), A(B))
A(C A D) = min(A(C), A(D))

LL&;
I_

Models, Validity, and Satisfiability
Validity
F is valid in A (A is a model of F; F holds under A):
AEF & AF)=1
F is valid (or is a tautology):

E F & A= F for all M-valuations A

(Un)Satisfiability

F is called satisfiable if there exists an A such that A = F. Otherwise F
is called unsatisfiable (or contradictory).

Hence, F is valid iff =F is unsatisfiable.
We say that N |= F iff N A =F is unsatisfiable.

Checking Unsatisfiability

Every formula F contains only finitely many propositional variables.
Obviously, A(F) depends only on the values of those finitely many
variables in F under A.

If F contains n distinct propositional variables, then it is sufficient to
check 2" valuations to see whether F is satisfiable or not = truth table.

So the satisfiability problem is clearly decidable (but, by Cook’s Theorem,
NP-complete). Nevertheless, in practice, there are (much) better
methods than truth tables to check the satisfiability of a formula.

The DPLL Procedure

Goal

Given a propositional formula in CNF (or alternatively, a finite set N of
clauses), check whether it is satisfiable (and optionally: output one
solution, if it is satisfiable).

Assumption

Clauses contain neither duplicated literals nor complementary literals.

Notation
L is the complementary literal of L, i.e., P =—P and =P = P.

Partial Valuations

Since we will construct satisfying valuations incrementally, we consider
partial valuations (that is, partial mappings A : 1 — {0,1}).

Every partial valuation A corresponds to a set M of literals that does not
contain complementary literals, and vice versa:

> A(L) is true, if L € M.
» A(L) is false, if L€ M.
» A(L) is undefined, if neither L € M nor L € M.

A clause is true under a partial valuation A (or under a set M of literals)
if one of its literals is true; it is false if all its literals are false; otherwise it
is undefined.

Unit Clauses

Observation

Let A be a partial valuation. If the set N contains a clause C, such that
all literals but one in C are false under A, then the following properties
are equivalent:

» there is a valuation that is a model of N and extends A.

» there is a valuation that is a model of N and extends A and makes
the remaining literal L of C true.

C is called a unit clause; L is called a unit literal.

The Davis-Putnam-Logemann-Loveland Procedure

booleanDPLL(literal set M, clause set N) {
if (all clauses in N are true under M) return true;
elsif (some clause in N is false under M) return false;
elsif (VN contains unit clause P) return DPLL(M U {P}, N);
elsif (N contains unit clause =P) return DPLL(M U {=P}, N);
else {
let P be some undefined variable in N;
if (DPLL(M U {=P}, N)) return true;
else return DPLL(M U {P}, N);

}
}

Initially, DPLL is called with an empty literal set and the clause set N.

DPLL lteratively

In practice, there are several changes to the procedure:

» The branching variable is not chosen randomly.

» The algorithm is implemented iteratively;
the backtrack stack is managed explicitly
(it may be possible and useful to backtrack more than one level).

> Information is reused by learning.

Formalizing DPLL with Refinements

The DPLL procedure is modelled by a transition relation =ppr1, on a set
of states.

States

> fail
» M| N,

where M is a list of annotated literals and N is a set of clauses.

Annotated literal

» L: deduced literal, due to unit propagation.

» L4: decision literal (guessed literal).

DPLL Rules

Unit Propagate

MH NU{C\/I_} —DPLL MLH NU{C\/L}

if C is false under M and L is undefined under M.
Decide

M || N = DPLL MLd H N

if L is undefined under M.
Fail

M || NU {C} =ppLr, fail
if C is false under M and M contains no decision literals.

DPLL Rules

Backjump

M’ Ld M || N =ppLL ML’ || N

if there is some “backjump clause” C V L’ such that
NECVL,
C is false under M’, and
L" is undefined under M’.

Backtracking

The Backjump rule is always applicable, if the list of literals M contains
at least one decision literal and some clause in N is false under M.

There are many possible backjump clauses. One candidate: L; V...V L,,
where the L; are all the decision literals in M LY M’. (But usually there
are better choices.)

DIMACS SAT File Input Format

Syntax

{c <comment>}*

p cnf <number of variables> <number of clauses>
{<clause> 0}*

A <clause> is a sequence of integers from + <number of variables> to
— <number of variables>, except 0, separated by blanks.

Example

The clauses PV =Q V R, @ V =R can be coded by the file
c first, simple example
p cnf 32
1-230
2-30

	SAT Solving I
	Syntax
	Semantics
	DPLL

