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Why Advanced C?

“Our”

I we need experienced C programmers

“Religious”

I portability

I efficiency

I powerful and flexible

“Real”

I unix

I network software

I embedded systems

I research: graphics, vision, formal methods

I entertainment: games, films
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Content I

SAT Solving I

Basic C Setup

Efficient Algorithms I

SAT Solving II

Style, Signals, Timing and Tools

SAT Solving III

Memory Management and Tools
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Content II

Software Engineering in the Small

Know the Compiler and Processor

Efficient Algorithms II

Parallelism

Recent C Standards
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Propositional logic

I logic of truth values

I decidable (but NP-complete)

I can be used to describe functions over a finite domain

I important for hardware applications (e.g., model checking)
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Syntax

I propositional variables: P, Q, R ∈ Π

I logical symbols: ∧ and, ∨ or, ¬ not, > true, ⊥ false

I literals are propositional variables or their negation: P, ¬P

I clauses are (posssibly empty) disjunctions of literals: P ∨ ¬Q ∨ R

I clause sets are sets of clauses interpreted as the conjunction of all
clauses

I literals, clauses and clause sets are formulas
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Semantics

Classical

In classical logic (dating back to Aristoteles) there are “only” two truth
values “true” and “false” which we shall denote, respectively, by 1 and 0.
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Valuations

A propositional variable has no intrinsic meaning. The meaning of a
propositional variable has to be defined by a valuation.

A Π-valuation is a map
A : Π → {0, 1}.

where {0, 1} is the set of truth values.
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Truth Value of a Literal, Clause, Clause Set

Given a Π-valuation A, it can be extended to formulas
A : formulas → {0, 1} inductively as follows:

A(⊥) = 0

A(>) = 1

A(P) = A(P)

A(¬P) = 1−A(P)

A(A ∨ B) = max(A(A),A(B))

A(C ∧ D) = min(A(C ),A(D))
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Models, Validity, and Satisfiability

Validity

F is valid in A (A is a model of F ; F holds under A):

A |= F :⇔ A(F ) = 1

F is valid (or is a tautology):

|= F :⇔ A |= F for all Π-valuations A

(Un)Satisfiability

F is called satisfiable if there exists an A such that A |= F . Otherwise F
is called unsatisfiable (or contradictory).

Hence, F is valid iff ¬F is unsatisfiable.
We say that N |= F iff N ∧ ¬F is unsatisfiable.
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Checking Unsatisfiability

Every formula F contains only finitely many propositional variables.
Obviously, A(F ) depends only on the values of those finitely many
variables in F under A.

If F contains n distinct propositional variables, then it is sufficient to
check 2n valuations to see whether F is satisfiable or not ⇒ truth table.

So the satisfiability problem is clearly decidable (but, by Cook’s Theorem,
NP-complete). Nevertheless, in practice, there are (much) better
methods than truth tables to check the satisfiability of a formula.
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The DPLL Procedure

Goal

Given a propositional formula in CNF (or alternatively, a finite set N of
clauses), check whether it is satisfiable (and optionally: output one
solution, if it is satisfiable).

Assumption

Clauses contain neither duplicated literals nor complementary literals.

Notation

L is the complementary literal of L, i.e., P = ¬P and ¬P = P.
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Partial Valuations

Since we will construct satisfying valuations incrementally, we consider
partial valuations (that is, partial mappings A : Π → {0, 1}).

Every partial valuation A corresponds to a set M of literals that does not
contain complementary literals, and vice versa:

I A(L) is true, if L ∈ M.

I A(L) is false, if L ∈ M.

I A(L) is undefined, if neither L ∈ M nor L ∈ M.

A clause is true under a partial valuation A (or under a set M of literals)
if one of its literals is true; it is false if all its literals are false; otherwise it
is undefined.
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Unit Clauses

Observation

Let A be a partial valuation. If the set N contains a clause C , such that
all literals but one in C are false under A, then the following properties
are equivalent:

I there is a valuation that is a model of N and extends A.

I there is a valuation that is a model of N and extends A and makes
the remaining literal L of C true.

C is called a unit clause; L is called a unit literal.
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The Davis-Putnam-Logemann-Loveland Procedure

booleanDPLL(literal set M, clause set N) {
if (all clauses in N are true under M) return true;
elsif (some clause in N is false under M) return false;
elsif (N contains unit clause P) return DPLL(M ∪ {P}, N);
elsif (N contains unit clause ¬P) return DPLL(M ∪ {¬P}, N);
else {

let P be some undefined variable in N;
if (DPLL(M ∪ {¬P}, N)) return true;
else return DPLL(M ∪ {P}, N);

}
}

Initially, DPLL is called with an empty literal set and the clause set N.
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DPLL Iteratively

In practice, there are several changes to the procedure:

I The branching variable is not chosen randomly.

I The algorithm is implemented iteratively;
the backtrack stack is managed explicitly
(it may be possible and useful to backtrack more than one level).

I Information is reused by learning.
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Formalizing DPLL with Refinements

The DPLL procedure is modelled by a transition relation ⇒DPLL on a set
of states.

States

I fail

I M ‖ N,

where M is a list of annotated literals and N is a set of clauses.

Annotated literal

I L: deduced literal, due to unit propagation.

I Ld: decision literal (guessed literal).
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DPLL Rules

Unit Propagate

M ‖ N ∪ {C ∨ L} ⇒DPLL M L ‖ N ∪ {C ∨ L}
if C is false under M and L is undefined under M.

Decide

M ‖ N ⇒DPLL M Ld ‖ N

if L is undefined under M.

Fail

M ‖ N ∪ {C} ⇒DPLL fail

if C is false under M and M contains no decision literals.
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DPLL Rules

Backjump

M ′ Ld M ′′ ‖ N ⇒DPLL M ′ L′ ‖ N

if there is some “backjump clause” C ∨ L′ such that
N |= C ∨ L′,
C is false under M ′, and
L′ is undefined under M ′.
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Backtracking

The Backjump rule is always applicable, if the list of literals M contains
at least one decision literal and some clause in N is false under M.

There are many possible backjump clauses. One candidate: L1 ∨ . . . ∨ Ln,
where the Li are all the decision literals in M Ld M ′. (But usually there
are better choices.)
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DIMACS SAT File Input Format

Syntax

{c <comment>}∗
p cnf <number of variables> <number of clauses>

{<clause> 0}∗

A <clause> is a sequence of integers from + <number of variables> to
− <number of variables>, except 0, separated by blanks.

Example

The clauses P ∨ ¬Q ∨ R,Q ∨ ¬R can be coded by the file

c first, simple example

p cnf 3 2

1 -2 3 0

2 -3 0
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