
Advanced C Programming
Debugging, SAT-Tips and Efficient Algorithms

Sebastian Hack
hack@cs.uni-sb.de

Christoph Weidenbach
weidenbach@mpi-inf.mpg.de

11.11.2008

computer science

saarland
university

1



The Laws of the Edit-Compile-Debug Cycle

I all complex software has bugs

I the bug is probably caused by the last thing you have touched

I if the bug isn’t where you are lookin, it’s somewhere else

2



The Laws of the Edit-Compile-Debug Cycle

I all complex software has bugs

I the bug is probably caused by the last thing you have touched

I if the bug isn’t where you are lookin, it’s somewhere else

2



The Laws of the Edit-Compile-Debug Cycle

I all complex software has bugs

I the bug is probably caused by the last thing you have touched

I if the bug isn’t where you are lookin, it’s somewhere else

2



The Laws of the Edit-Compile-Debug Cycle

I all complex software has bugs

I the bug is probably caused by the last thing you have touched

I if the bug isn’t where you are lookin, it’s somewhere else

2



Debugging Friendly Coding Style

I remove implicit assumptions or assert that they are valid

I use assertions to detect impossible conditions

I don’t hide bugs when you program defensively

I use a second algorithm to validate your results

I don’t wait for bugs to happen; use startup checks

Any Debug - Assert Code is READ-ONLY!

3



Debugging Friendly Coding Style

I remove implicit assumptions or assert that they are valid

I use assertions to detect impossible conditions

I don’t hide bugs when you program defensively

I use a second algorithm to validate your results

I don’t wait for bugs to happen; use startup checks

Any Debug - Assert Code is READ-ONLY!

3



Debugging Friendly Coding Style

I remove implicit assumptions or assert that they are valid

I use assertions to detect impossible conditions

I don’t hide bugs when you program defensively

I use a second algorithm to validate your results

I don’t wait for bugs to happen; use startup checks

Any Debug - Assert Code is READ-ONLY!

3



Debugging Friendly Coding Style

I remove implicit assumptions or assert that they are valid

I use assertions to detect impossible conditions

I don’t hide bugs when you program defensively

I use a second algorithm to validate your results

I don’t wait for bugs to happen; use startup checks

Any Debug - Assert Code is READ-ONLY!

3



Debugging Friendly Coding Style

I remove implicit assumptions or assert that they are valid

I use assertions to detect impossible conditions

I don’t hide bugs when you program defensively

I use a second algorithm to validate your results

I don’t wait for bugs to happen; use startup checks

Any Debug - Assert Code is READ-ONLY!

3



Debugging Friendly Coding Style

I remove implicit assumptions or assert that they are valid

I use assertions to detect impossible conditions

I don’t hide bugs when you program defensively

I use a second algorithm to validate your results

I don’t wait for bugs to happen; use startup checks

Any Debug - Assert Code is READ-ONLY!

3



Debugging Friendly Coding Style

I remove implicit assumptions or assert that they are valid

I use assertions to detect impossible conditions

I don’t hide bugs when you program defensively

I use a second algorithm to validate your results

I don’t wait for bugs to happen; use startup checks

Any Debug - Assert Code is READ-ONLY!

3



What Do You Do if a Bug Shows up?

1. think

2. run the debugger, look at the backtrace

3. think

4. set break points, further output, add debug code, run the debugger

5. think

6. remove complexity goto 1

4



What Do You Do if a Bug Shows up?

1. think

2. run the debugger, look at the backtrace

3. think

4. set break points, further output, add debug code, run the debugger

5. think

6. remove complexity goto 1

4



What Do You Do if a Bug Shows up?

1. think

2. run the debugger, look at the backtrace

3. think

4. set break points, further output, add debug code, run the debugger

5. think

6. remove complexity goto 1

4



What Do You Do if a Bug Shows up?

1. think

2. run the debugger, look at the backtrace

3. think

4. set break points, further output, add debug code, run the debugger

5. think

6. remove complexity goto 1

4



What Do You Do if a Bug Shows up?

1. think

2. run the debugger, look at the backtrace

3. think

4. set break points, further output, add debug code, run the debugger

5. think

6. remove complexity goto 1

4



What Do You Do if a Bug Shows up?

1. think

2. run the debugger, look at the backtrace

3. think

4. set break points, further output, add debug code, run the debugger

5. think

6. remove complexity goto 1

4



What Do You Do if a Bug Shows up?

1. think

2. run the debugger, look at the backtrace

3. think

4. set break points, further output, add debug code, run the debugger

5. think

6. remove complexity goto 1

4



Efficient Algorithms Through Marking

1. Pointer Equality

2. Extra Space for the Marks

3. Control of All Objects

4. Encapsulation including reset

5



Efficient Algorithms Through Marking

1. Pointer Equality

2. Extra Space for the Marks

3. Control of All Objects

4. Encapsulation including reset

5



Efficient Algorithms Through Marking

1. Pointer Equality

2. Extra Space for the Marks

3. Control of All Objects

4. Encapsulation including reset

5



Efficient Algorithms Through Marking

1. Pointer Equality

2. Extra Space for the Marks

3. Control of All Objects

4. Encapsulation including reset

5



Efficient Algorithms Through Marking

1. Pointer Equality

2. Extra Space for the Marks

3. Control of All Objects

4. Encapsulation including reset

5



Efficient SAT Implementation

1. No Search when Propagating Literals

2. No Search when Evaluating Clauses

3. Heuristic Based on Literal Occurrences

6



Efficient SAT Implementation

1. No Search when Propagating Literals

2. No Search when Evaluating Clauses

3. Heuristic Based on Literal Occurrences

6



Efficient SAT Implementation

1. No Search when Propagating Literals

2. No Search when Evaluating Clauses

3. Heuristic Based on Literal Occurrences

6



Efficient SAT Implementation

1. No Search when Propagating Literals

2. No Search when Evaluating Clauses

3. Heuristic Based on Literal Occurrences

6


