
Bitwise Operations

Sebastian Hack
hack@cs.uni-sb.de

Christoph Weidenbach
weidenbach@mpi-inf.mpg.de

06.01.2009

computer science

saarland
university

1



Basics

I In this lecture, we assume 32-bit wide two’s complement arithmetic
for integers

I Fundamental identities of bit operations

0 & x = 0 0 | x = x 0⊕ x = x

-1 & x = x -1 | x = -1 -1⊕ x = x

x & x = x x | x = x x ⊕ x = 0

x & x = 0 x | x = -1 x ⊕ x = -1

I Relate bit operations to arithmetic:

x + x = −1

I Leads to
−x = x + 1

I And finally
x − y = x + y + 1

2



Basics
Setting and deleting bits

I Setting bit m
x ← x | (1� m)

I Clear bit m
x ← x & 1� m

I Create mask m = 0a1b0c to set/clear multiple bits:

((1� b)− 1)� c

or
(1� (b + c))− (1� c)

I Analogously for the inverted mask m = 1a0b1c

I Special cases for c = 0:

Bitstring Production Example (b = 3)
0∞1b (1� b)− 1 7
1∞0b −(1� b) −8

3



Rightmost Bits
I Let us consider the rightmost bits in a word

x = α0 1 . . . 1︸ ︷︷ ︸
a

1 0 . . . 0︸ ︷︷ ︸
b

= α01a10b a ≥ 0, b ≥ 0, α ∈ {0, 1}∗

I Then we have
x = α01a10b

x = α10a01b

x − 1 = α01a01b

−x = α10a10b

I and

x & (x − 1) = α01a00b clear rightmost 1

test against 0 to check if x is power-of-two

x & −x = 0∞00a10b isolate rightmost 1

x & (x − 1) = x | −x = 0∞00a01b bitmask for lower zeroes
x | (x − 1) = α01a11b right-propagate rightmost 1

4



Rightmost Bits
I Let us consider the rightmost bits in a word

x = α0 1 . . . 1︸ ︷︷ ︸
a

1 0 . . . 0︸ ︷︷ ︸
b

= α01a10b a ≥ 0, b ≥ 0, α ∈ {0, 1}∗

I Then we have
x = α01a10b

x = α10a01b

x − 1 = α01a01b

−x = α10a10b

I and

x & (x − 1) = α01a00b clear rightmost 1

test against 0 to check if x is power-of-two

x & −x = 0∞00a10b isolate rightmost 1

x & (x − 1) = x | −x = 0∞00a01b bitmask for lower zeroes
x | (x − 1) = α01a11b right-propagate rightmost 1

4



Rightmost Bits
I Let us consider the rightmost bits in a word

x = α0 1 . . . 1︸ ︷︷ ︸
a

1 0 . . . 0︸ ︷︷ ︸
b

= α01a10b a ≥ 0, b ≥ 0, α ∈ {0, 1}∗

I Then we have
x = α01a10b

x = α10a01b

x − 1 = α01a01b

−x = α10a10b

I and

x & (x − 1) =

α01a00b clear rightmost 1

test against 0 to check if x is power-of-two

x & −x = 0∞00a10b isolate rightmost 1

x & (x − 1) = x | −x = 0∞00a01b bitmask for lower zeroes
x | (x − 1) = α01a11b right-propagate rightmost 1

4



Rightmost Bits
I Let us consider the rightmost bits in a word

x = α0 1 . . . 1︸ ︷︷ ︸
a

1 0 . . . 0︸ ︷︷ ︸
b

= α01a10b a ≥ 0, b ≥ 0, α ∈ {0, 1}∗

I Then we have
x = α01a10b

x = α10a01b

x − 1 = α01a01b

−x = α10a10b

I and

x & (x − 1) = α01a00b clear rightmost 1

test against 0 to check if x is power-of-two

x & −x =

0∞00a10b isolate rightmost 1

x & (x − 1) = x | −x = 0∞00a01b bitmask for lower zeroes
x | (x − 1) = α01a11b right-propagate rightmost 1

4



Rightmost Bits
I Let us consider the rightmost bits in a word

x = α0 1 . . . 1︸ ︷︷ ︸
a

1 0 . . . 0︸ ︷︷ ︸
b

= α01a10b a ≥ 0, b ≥ 0, α ∈ {0, 1}∗

I Then we have
x = α01a10b

x = α10a01b

x − 1 = α01a01b

−x = α10a10b

I and

x & (x − 1) = α01a00b clear rightmost 1

test against 0 to check if x is power-of-two

x & −x = 0∞00a10b isolate rightmost 1

x & (x − 1) =

x | −x = 0∞00a01b bitmask for lower zeroes
x | (x − 1) = α01a11b right-propagate rightmost 1

4



Rightmost Bits
I Let us consider the rightmost bits in a word

x = α0 1 . . . 1︸ ︷︷ ︸
a

1 0 . . . 0︸ ︷︷ ︸
b

= α01a10b a ≥ 0, b ≥ 0, α ∈ {0, 1}∗

I Then we have
x = α01a10b

x = α10a01b

x − 1 = α01a01b

−x = α10a10b

I and

x & (x − 1) = α01a00b clear rightmost 1

test against 0 to check if x is power-of-two

x & −x = 0∞00a10b isolate rightmost 1

x & (x − 1) = x | −x = 0∞00a01b bitmask for lower zeroes
x | (x − 1) =

α01a11b right-propagate rightmost 1

4



Rightmost Bits
I Let us consider the rightmost bits in a word

x = α0 1 . . . 1︸ ︷︷ ︸
a

1 0 . . . 0︸ ︷︷ ︸
b

= α01a10b a ≥ 0, b ≥ 0, α ∈ {0, 1}∗

I Then we have
x = α01a10b

x = α10a01b

x − 1 = α01a01b

−x = α10a10b

I and

x & (x − 1) = α01a00b clear rightmost 1

test against 0 to check if x is power-of-two

x & −x = 0∞00a10b isolate rightmost 1

x & (x − 1) = x | −x = 0∞00a01b bitmask for lower zeroes
x | (x − 1) = α01a11b right-propagate rightmost 1

4



Exclusive Or

I Exclusive Or (⊕) can serve as identity and not:

x = x ⊕ 0

x = x ⊕ 0

I Enables “conditional” not when condition is in sign bit

y = c < 0 ? ~x : x;

equals

y ← (c
s
� 31)⊕ x

I Nice absolute value function:

static inline int abs(int x) {

int t = x >> (sizeof(int) * 8 - 1);

return (x ^ t) - t;

}

5



Exclusive Or

I Exclusive Or (⊕) can serve as identity and not:

x = x ⊕ 0

x = x ⊕ 0

I Enables “conditional” not when condition is in sign bit

y = c < 0 ? ~x : x;

equals

y ← (c
s
� 31)⊕ x

I Nice absolute value function:

static inline int abs(int x) {

int t = x >> (sizeof(int) * 8 - 1);

return (x ^ t) - t;

}

5



3-Way Comparison
I Compare functions often require 3-way compare:

cmp(x , y) =


−1 x < 0

0 x = 0

1 x > 0

I One way:

int cmp(int x, int y) {

if (x > y)

return 1;

if (x < y)

return -1;

return 0;

}

I Without branches:

int cmp(int x, int y) {

return (x > y) - (x < y);

}

I Look for yourself what code your compiler generates

6



Saturating Addition/Subtraction
I Sometimes you want addition/subtraction not to overflow but to

saturate

sadd(x , y) =


MAX INT z(x) + z(y) ≥ z(MAX INT)

MIN INT z(x) + z(y) ≤ z(MIN INT)

x + y otherwise

(Note: z : 232 → Z embeds integers into Z)

I So, how can we check if an addition overflowed?
I If operands have different signs, there cannot be an overflow
I If the signs are equal and the sum’s sign is different,

we had an overflow:

overflow = (x ⊕ s) & (y ⊕ s) s = x + y

I overflow has sign bit set, if x + y overflowed

static inline int sadd(int x, int y) {

int sum = x + y;

int overflow = (x ^ s) & (y ^ s);

int big = (x >> 31) ^ INT_MAX;

return overflow < 0 ? big : sum;

}

7



Saturating Addition/Subtraction
I Sometimes you want addition/subtraction not to overflow but to

saturate

sadd(x , y) =


MAX INT z(x) + z(y) ≥ z(MAX INT)

MIN INT z(x) + z(y) ≤ z(MIN INT)

x + y otherwise

(Note: z : 232 → Z embeds integers into Z)
I So, how can we check if an addition overflowed?

I If operands have different signs, there cannot be an overflow
I If the signs are equal and the sum’s sign is different,

we had an overflow:

overflow = (x ⊕ s) & (y ⊕ s) s = x + y

I overflow has sign bit set, if x + y overflowed

static inline int sadd(int x, int y) {

int sum = x + y;

int overflow = (x ^ s) & (y ^ s);

int big = (x >> 31) ^ INT_MAX;

return overflow < 0 ? big : sum;

}

7



Saturating Addition/Subtraction
I Sometimes you want addition/subtraction not to overflow but to

saturate

sadd(x , y) =


MAX INT z(x) + z(y) ≥ z(MAX INT)

MIN INT z(x) + z(y) ≤ z(MIN INT)

x + y otherwise

(Note: z : 232 → Z embeds integers into Z)
I So, how can we check if an addition overflowed?
I If operands have different signs, there cannot be an overflow

I If the signs are equal and the sum’s sign is different,
we had an overflow:

overflow = (x ⊕ s) & (y ⊕ s) s = x + y

I overflow has sign bit set, if x + y overflowed

static inline int sadd(int x, int y) {

int sum = x + y;

int overflow = (x ^ s) & (y ^ s);

int big = (x >> 31) ^ INT_MAX;

return overflow < 0 ? big : sum;

}

7



Saturating Addition/Subtraction
I Sometimes you want addition/subtraction not to overflow but to

saturate

sadd(x , y) =


MAX INT z(x) + z(y) ≥ z(MAX INT)

MIN INT z(x) + z(y) ≤ z(MIN INT)

x + y otherwise

(Note: z : 232 → Z embeds integers into Z)
I So, how can we check if an addition overflowed?
I If operands have different signs, there cannot be an overflow
I If the signs are equal and the sum’s sign is different,

we had an overflow:

overflow = (x ⊕ s) & (y ⊕ s) s = x + y

I overflow has sign bit set, if x + y overflowed

static inline int sadd(int x, int y) {

int sum = x + y;

int overflow = (x ^ s) & (y ^ s);

int big = (x >> 31) ^ INT_MAX;

return overflow < 0 ? big : sum;

}

7



Saturating Addition/Subtraction
I Sometimes you want addition/subtraction not to overflow but to

saturate

sadd(x , y) =


MAX INT z(x) + z(y) ≥ z(MAX INT)

MIN INT z(x) + z(y) ≤ z(MIN INT)

x + y otherwise

(Note: z : 232 → Z embeds integers into Z)
I So, how can we check if an addition overflowed?
I If operands have different signs, there cannot be an overflow
I If the signs are equal and the sum’s sign is different,

we had an overflow:

overflow = (x ⊕ s) & (y ⊕ s) s = x + y

I overflow has sign bit set, if x + y overflowed

static inline int sadd(int x, int y) {

int sum = x + y;

int overflow = (x ^ s) & (y ^ s);

int big = (x >> 31) ^ INT_MAX;

return overflow < 0 ? big : sum;

}

7



Rounding Up/Down to a Multiple of a Known Power of 2

I Rounding to some next power of 2 can be used for binning
(remember malloc lecture)

I Rounding up (down) here means round to +∞ (−∞)

I Rounding down is easy:
x & −n

rounds down to next 2k = n

I Rounding up is almost as easy:

(x + (n − 1)) & −n

I Round to nearest power of 2 toward 0:

(x + t) & −n t = (x
s
� 31) & (n − 1)

8



Rounding Up/Down to the Next Power of 2

flp2(x) =


undefined x < 0

0 x = 0

2blog2 xc x > 0

clp2(x) =


undefined x < 0

0 x = 0

2dlog2 xe x > 0

I flp2 means isolating the leftmost bit
(remember how easy this was for the rightmost!)

I We need to propagate the highest set bit down

unsigned flp2(unsigned x) {

x = x | (x >> 1);

x = x | (x >> 2);

x = x | (x >> 4);

x = x | (x >> 8);

x = x | (x >>16);

return x - (x >> 1);

}

I The first five lines create a band of 1
I x - (x >> 1) isolates the most significant one

I If we have an instruction nlz that gives the number of leading zeroes:

flp2(x) = 1� (nlz(x)⊕ 31)

9



Rounding Up/Down to the Next Power of 2

flp2(x) =


undefined x < 0

0 x = 0

2blog2 xc x > 0

clp2(x) =


undefined x < 0

0 x = 0

2dlog2 xe x > 0

I flp2 means isolating the leftmost bit
(remember how easy this was for the rightmost!)

I We need to propagate the highest set bit down

unsigned flp2(unsigned x) {

x = x | (x >> 1);

x = x | (x >> 2);

x = x | (x >> 4);

x = x | (x >> 8);

x = x | (x >>16);

return x - (x >> 1);

}

I The first five lines create a band of 1
I x - (x >> 1) isolates the most significant one

I If we have an instruction nlz that gives the number of leading zeroes:

flp2(x) = 1� (nlz(x)⊕ 31)

9



Rounding Up/Down to the Next Power of 2

flp2(x) =


undefined x < 0

0 x = 0

2blog2 xc x > 0

clp2(x) =


undefined x < 0

0 x = 0

2dlog2 xe x > 0

I flp2 means isolating the leftmost bit
(remember how easy this was for the rightmost!)

I We need to propagate the highest set bit down

unsigned flp2(unsigned x) {

x = x | (x >> 1);

x = x | (x >> 2);

x = x | (x >> 4);

x = x | (x >> 8);

x = x | (x >>16);

return x - (x >> 1);

}

I The first five lines create a band of 1
I x - (x >> 1) isolates the most significant one

I If we have an instruction nlz that gives the number of leading zeroes:

flp2(x) = 1� (nlz(x)⊕ 31)
9



Number of Leading Zeroes (nlz)

I Find most significant set bit

I Basically the discrete binary logarithm

I Very useful for bit sets (remember last lecture)

I GCC has it as a compiler-known function ffs

I Many machines feature it as a native instruction
bsr (bit scan reverse) on x86 (since i386)

I Binary-search implementation in C if not available as machine instr

unsigned nlz(unsigned x) {

unsigned y, n = 32;

y = x >>16; if (y) { n = n -16; x = y; }

y = x >> 8; if (y) { n = n - 8; x = y; }

y = x >> 4; if (y) { n = n - 4; x = y; }

y = x >> 2; if (y) { n = n - 2; x = y; }

y = x >> 1; if (y) return n - 2;

return n - x;

}

I Unfortunately has jumps

10



Number of Leading Zeroes (nlz)

I Find most significant set bit

I Basically the discrete binary logarithm

I Very useful for bit sets (remember last lecture)

I GCC has it as a compiler-known function ffs

I Many machines feature it as a native instruction
bsr (bit scan reverse) on x86 (since i386)

I Binary-search implementation in C if not available as machine instr

unsigned nlz(unsigned x) {

unsigned y, n = 32;

y = x >>16; if (y) { n = n -16; x = y; }

y = x >> 8; if (y) { n = n - 8; x = y; }

y = x >> 4; if (y) { n = n - 4; x = y; }

y = x >> 2; if (y) { n = n - 2; x = y; }

y = x >> 1; if (y) return n - 2;

return n - x;

}

I Unfortunately has jumps

10



Portably using Inline Assembly
Using nlz as an Exmaple

static inline unsigned nlz(unsigned x) {

#if defined(__GNUC__) && defined(__i386__)

unsigned res;

if(x == 0) return 32;

__asm__("bsrl %1,%0" : "=r" (res) : "r" (x));

return 31 - res;

#else

unsigned y, n = 32;

y = x >>16; if (y != 0) { n -= 16; x = y; }

y = x >> 8; if (y != 0) { n -= 8; x = y; }

y = x >> 4; if (y != 0) { n -= 4; x = y; }

y = x >> 2; if (y != 0) { n -= 2; x = y; }

y = x >> 1; if (y != 0) return n - 2;

return n - x;

#endif

}

I Use compiler and platform define to check for the right flavor of
inline assembler and CPU architecture

I Always provide a C version

11



Number of Trailing Zeroes
. . . and de Bruijn Numbers

I How can we find the number of trailing zeroes?

Idea 1 Reduce problem to numbers that have only one bit set

I We can do that easily by applying x & −x

Idea 2 Use hashing:

I There are 32 numbers with 1 bit
I Create a function h(x) that maps each one bit

number to the bit’s position
I Hash table should be small
I Hash function easy to compute
I Hash function should be collision-free

Idea 3 Use de Bruijn Numbers for the hash function

12



Number of Trailing Zeroes
de Bruijn Sequences

Definition (de Bruijn Sequence)

A length-n (n = 2k) de Bruijn sequence s is a sequence of n 0’s and 1’s
such that every 0-1 sequence of length k occurs exactly once as a
contiguous substring

Example for k = 3

A length-8 de Bruijn sequence is

00011101

Move a 3-bit window right (one bit at a time, wrapping around):

000, 001, 011, 111, 110, 101, 010, 100

I Every 0,1-sequence of length k has a unique index in 00011101

I E.g.: 000 has index 0, 010 has index 6, and so on

13



Number of Trailing Zeroes
. . . and de Bruijn Numbers

h(x) = (x ∗ B)
u
� (n − log2 n)

I B is a number whose bits are a de Bruijn sequence

I x has only one set bit

I x ∗ B shifts B left by log2 x

I Read out the upper log2 n bits of x ∗ B

I That value will be different for every x

I Index a table with h(x) and read out
the number of trailing zeroes for x

14



Number of Trailing Zeroes
. . . and de Bruijn Numbers

Example for n = 8

I Use de Bruijn number B = 00011101

I Let x ′ = 00101100, number of trailing zeroes is 2

I x = x ′ & −x ′ = 00000100

I x ∗ 00011101 = 01110100 (00011101� log2 x)

I Take out the upper log2 n = 3 bits: 011

I Index the table with 011 should get 2 then

15



Counting Bits

I How many bits are set in a word (population count)?

I Using the things we already learned (by B. Kernighan)

unsigned popcnt(unsigned x) {

unsigned c;

for (c = 0; x; c++)

x &= x - 1; // clear the least significant bit set

return c;

}

takes too long, has jumps, worst case 32 iterations

I We can use “divide and conquer”

16



Population Count
Divide and Conquer

17



Population Count
Simple Version

I Add bit 2k to bit 2k + 1

I Then add two bits at 4k to the bits at 4k + 2

I and so on

unsigned popcnt(unsigned x) {

x = (x & 0x55555555) + ((x >> 1) & 0x55555555 );

x = (x & 0x33333333) + ((x >> 2) & 0x33333333 );

x = (x & 0x0f0f0f0f) + ((x >> 4) & 0x0f0f0f0f );

x = (x & 0x00ff00ff) + ((x >> 8) & 0x00ff00ff );

x = (x & 0x0000ffff) + ((x >>16) & 0x0000ffff );

return x;

}

I Can be tuned further

18



Population Count
Simple Version

I Add bit 2k to bit 2k + 1

I Then add two bits at 4k to the bits at 4k + 2

I and so on

unsigned popcnt(unsigned x) {

x = (x & 0x55555555) + ((x >> 1) & 0x55555555 );

x = (x & 0x33333333) + ((x >> 2) & 0x33333333 );

x = (x & 0x0f0f0f0f) + ((x >> 4) & 0x0f0f0f0f );

x = (x & 0x00ff00ff) + ((x >> 8) & 0x00ff00ff );

x = (x & 0x0000ffff) + ((x >>16) & 0x0000ffff );

return x;

}

I Can be tuned further

18



Population Count
Tuned Version

I Adding the 2-bits can be done more efficiently:
I We need following mapping:

00b → 00b

01b → 01b

10b → 01b

11b → 10b

I x − (x
u
� 1) does the trick

I need still to mask with 0x55555555 to clear down-shifted bits

x ← x − ((x
u
� 1) & 0x55555555)

I Adding the 4-bit groups can also be optimized:
I Each 4-bit group’s value is at most 100b

(it is the number of set bits in 4 bits)
I Hence, the largest value of the sum of two 4-bit groups is 1000b
I That fits into 4 bits
I Need only to mask the result: x ← (x + (x

u
� 4)) & 0x0f0f0f0f

x = 0aaa0bbb0ccc0ddd0eee0fff0ggg0hhh

x >> 4 = 00000aaa0bbb0ccc0ddd0eee0fff0ggg

sum = 0aaawwww????xxxx????yyyy????zzzz

19



Population Count
Tuned Version

I Adding the 2-bits can be done more efficiently:
I We need following mapping:

00b → 00b

01b → 01b

10b → 01b

11b → 10b

I x − (x
u
� 1) does the trick

I need still to mask with 0x55555555 to clear down-shifted bits

x ← x − ((x
u
� 1) & 0x55555555)

I Adding the 4-bit groups can also be optimized:
I Each 4-bit group’s value is at most 100b

(it is the number of set bits in 4 bits)
I Hence, the largest value of the sum of two 4-bit groups is 1000b
I That fits into 4 bits
I Need only to mask the result: x ← (x + (x

u
� 4)) & 0x0f0f0f0f

x = 0aaa0bbb0ccc0ddd0eee0fff0ggg0hhh

x >> 4 = 00000aaa0bbb0ccc0ddd0eee0fff0ggg

sum = 0aaawwww????xxxx????yyyy????zzzz

19



Population Count
Tuned Version: Final step

I Our value now looks like this:

0000wwww0000xxxx0000yyyy0000zzzz
we need the sum wwww + xxxx + yyyy + zzzz

I Multiply by 0x01010101:
I equals x + (x � 8) + (x � 16) + (x � 24)
I Accumulates the desired sum in the upper 8 bits (tt)

0w0x0y0z * 01010101 =
:0w0x0y0z

0w:0x0y0z
0w0x:0y0z

0w0x0y:0z
00??????:tt????0z

I Final version:

unsigned popcnt(unsigned x) {

x = x - ((x >> 1) & 0x55555555 );

x = (x & 0x33333333) + ((x >> 2) & 0x33333333 );

x = (x + (x >> 4)) & 0x0f0f0f0f;

return (x * 0x01010101) >> 24;

}

20



Population Count
Tuned Version: Final step

I Our value now looks like this:

0000wwww0000xxxx0000yyyy0000zzzz
we need the sum wwww + xxxx + yyyy + zzzz

I Multiply by 0x01010101:
I equals x + (x � 8) + (x � 16) + (x � 24)
I Accumulates the desired sum in the upper 8 bits (tt)

0w0x0y0z * 01010101 =
:0w0x0y0z

0w:0x0y0z
0w0x:0y0z

0w0x0y:0z
00??????:tt????0z

I Final version:

unsigned popcnt(unsigned x) {

x = x - ((x >> 1) & 0x55555555 );

x = (x & 0x33333333) + ((x >> 2) & 0x33333333 );

x = (x + (x >> 4)) & 0x0f0f0f0f;

return (x * 0x01010101) >> 24;

}

20



Population Count
Tuned Version: Final step

I Our value now looks like this:

0000wwww0000xxxx0000yyyy0000zzzz
we need the sum wwww + xxxx + yyyy + zzzz

I Multiply by 0x01010101:
I equals x + (x � 8) + (x � 16) + (x � 24)
I Accumulates the desired sum in the upper 8 bits (tt)

0w0x0y0z * 01010101 =
:0w0x0y0z

0w:0x0y0z
0w0x:0y0z

0w0x0y:0z
00??????:tt????0z

I Final version:

unsigned popcnt(unsigned x) {

x = x - ((x >> 1) & 0x55555555 );

x = (x & 0x33333333) + ((x >> 2) & 0x33333333 );

x = (x + (x >> 4)) & 0x0f0f0f0f;

return (x * 0x01010101) >> 24;

}

20



References

Henry S. Warren, Jr.
Hacker’s Delight
Addison Wesley, 2003

Donald Knuth
The Art of Computer Programming, Volume 4, Pre-Fascicle 1A
http://www-cs-faculty.stanford.edu/~uno/fasc1a.ps.gz

21

http://www-cs-faculty.stanford.edu/~uno/fasc1a.ps.gz

	Basics
	Rightmost Bits

	Powers of 2
	Counting Bits

