Bitwise Operations

Sebastian Hack
hack@cs.uni-sb.de
Christoph Weidenbach
weidenbach@mpi-inf.mpg.de

06.01.2009

リIINII

Basics

- In this lecture, we assume 32-bit wide two's complement arithmetic for integers
- Fundamental identities of bit operations

$$
\begin{array}{rcr}
0 \& x=0 & 0 \mid x=x & 0 \oplus x=x \\
-1 \& x=x & -1 \mid x=-1 & -1 \oplus x=\bar{x} \\
x \& x=x & x \mid x=x & x \oplus x=0 \\
\bar{x} \& x=0 & \bar{x} \mid x=-1 & \bar{x} \oplus x=-1
\end{array}
$$

- Relate bit operations to arithmetic:

$$
x+\bar{x}=-1
$$

- Leads to

$$
-x=\bar{x}+1
$$

- And finally

$$
x-y=x+\bar{y}+1
$$

Basics

Setting and deleting bits

- Setting bit m

$$
x \leftarrow x \mid(1 \ll m)
$$

- Clear bit m

$$
x \leftarrow x \& \overline{1 \ll m}
$$

- Create mask $m=0^{a} 1^{b} 0^{c}$ to set/clear multiple bits:

$$
((1 \ll b)-1) \ll c
$$

or

$$
(1 \ll(b+c))-(1 \ll c)
$$

- Analogously for the inverted mask $m=1^{a} 0^{b} 1^{c}$
- Special cases for $c=0$:

$$
\begin{array}{ccc}
\text { Bitstring } & \text { Production } & \text { Example }(b=3) \\
\hline 0^{\infty} 1^{b} & (1 \ll b)-1 & 7 \\
1^{\infty} 0^{b} & -(1 \ll b) & -8
\end{array}
$$

Rightmost Bits

- Let us consider the rightmost bits in a word

$$
x=\alpha 0 \underbrace{1 \ldots 1}_{a} 1 \underbrace{0 \ldots 0}_{b}=\alpha 01^{a} 10^{b} \quad a \geq 0, b \geq 0, \alpha \in\{0,1\}^{*}
$$

Rightmost Bits

- Let us consider the rightmost bits in a word

$$
x=\alpha 0 \underbrace{1 \ldots 1}_{a} 1 \underbrace{0 \ldots 0}_{b}=\alpha 01^{a} 10^{b} \quad a \geq 0, b \geq 0, \alpha \in\{0,1\}^{*}
$$

- Then we have

$$
\begin{aligned}
x & =\alpha 01^{a} 10^{b} \\
\bar{x} & =\bar{\alpha} 10^{a} 01^{b} \\
x-1 & =\alpha 01^{a} 01^{b} \\
-x & =\bar{\alpha} 10^{a} 10^{b}
\end{aligned}
$$

Rightmost Bits

- Let us consider the rightmost bits in a word

$$
x=\alpha 0 \underbrace{1 \ldots 1}_{a} 1 \underbrace{0 \ldots 0}_{b}=\alpha 01^{a} 10^{b} \quad a \geq 0, b \geq 0, \alpha \in\{0,1\}^{*}
$$

- Then we have

$$
\begin{aligned}
x & =\alpha 01^{a} 10^{b} \\
\bar{x} & =\bar{\alpha} 10^{a} 01^{b} \\
x-1 & =\alpha 01^{a} 01^{b} \\
-x & =\bar{\alpha} 10^{a} 10^{b}
\end{aligned}
$$

- and

$$
x \&(x-1)=
$$

Rightmost Bits

- Let us consider the rightmost bits in a word

$$
x=\alpha 0 \underbrace{1 \ldots 1}_{a} 1 \underbrace{0 \ldots 0}_{b}=\alpha 01^{a} 10^{b} \quad a \geq 0, b \geq 0, \alpha \in\{0,1\}^{*}
$$

- Then we have

$$
\begin{aligned}
x & =\alpha 01^{a} 10^{b} \\
\bar{x} & =\bar{\alpha} 10^{a} 01^{b} \\
x-1 & =\alpha 01^{a} 01^{b} \\
-x & =\bar{\alpha} 10^{a} 10^{b}
\end{aligned}
$$

- and

$$
\begin{aligned}
& x \&(x-1)= \alpha 01^{a} 00^{b} \quad \text { clear rightmost } 1 \\
& \text { test against } 0 \text { to check if } x \text { is power-of-two } \\
& x \&-x=
\end{aligned}
$$

Rightmost Bits

- Let us consider the rightmost bits in a word

$$
x=\alpha 0 \underbrace{1 \ldots 1}_{a} 1 \underbrace{0 \ldots 0}_{b}=\alpha 01^{a} 10^{b} \quad a \geq 0, b \geq 0, \alpha \in\{0,1\}^{*}
$$

- Then we have

$$
\begin{aligned}
x & =\alpha 01^{a} 10^{b} \\
\bar{x} & =\bar{\alpha} 10^{a} 01^{b} \\
x-1 & =\alpha 01^{a} 01^{b} \\
-x & =\bar{\alpha} 10^{a} 10^{b}
\end{aligned}
$$

- and

$$
\begin{aligned}
& x \&(x-1)=\alpha 01^{a} 00^{b} \quad \text { clear rightmost } 1 \\
& \\
& \\
& \text { test against } 0 \text { to check if } x \text { is power-of-two } \\
& x \&-x=0^{\infty} 00^{a} 10^{b} \quad \text { isolate rightmost } 1
\end{aligned}
$$

Rightmost Bits

- Let us consider the rightmost bits in a word

$$
x=\alpha 0 \underbrace{1 \ldots 1}_{a} 1 \underbrace{0 \ldots 0}_{b}=\alpha 01^{a} 10^{b} \quad a \geq 0, b \geq 0, \alpha \in\{0,1\}^{*}
$$

- Then we have

$$
\begin{aligned}
x & =\alpha 01^{a} 10^{b} \\
\bar{x} & =\bar{\alpha} 10^{a} 01^{b} \\
x-1 & =\alpha 01^{a} 01^{b} \\
-x & =\bar{\alpha} 10^{a} 10^{b}
\end{aligned}
$$

- and

$$
\begin{aligned}
& x \&(x-1)= \alpha 01^{a} 00^{b} \quad \text { clear rightmost } 1 \\
& \text { test against } 0 \text { to check if } x \text { is power-of-two } \\
& x \&-x=0^{\infty} 00^{a} 10^{b} \quad \text { isolate rightmost } 1 \\
& \overline{x \&(x-1)=\overline{x \mid-x}}=0^{\infty} 00^{a} 01^{b} \quad \text { bitmask for lower zeroes } \\
& x \mid(x-1)=
\end{aligned}
$$

Rightmost Bits

- Let us consider the rightmost bits in a word

$$
x=\alpha 0 \underbrace{1 \ldots 1}_{a} 1 \underbrace{0 \ldots 0}_{b}=\alpha 01^{a} 10^{b} \quad a \geq 0, b \geq 0, \alpha \in\{0,1\}^{*}
$$

- Then we have

$$
\begin{aligned}
x & =\alpha 01^{a} 10^{b} \\
\bar{x} & =\bar{\alpha} 10^{a} 01^{b} \\
x-1 & =\alpha 01^{a} 01^{b} \\
-x & =\bar{\alpha} 10^{a} 10^{b}
\end{aligned}
$$

- and

$$
\begin{array}{rll}
x \&(x-1)= & \alpha 01^{a} 00^{b} \quad \text { clear rightmost } 1 \\
& \text { test against } 0 \text { to check if } x \text { is power-of-two } \\
x \&-x=0^{\infty} 00^{a} 10^{b} & \text { isolate rightmost } 1 \\
\bar{x} \&(x-1)=\overline{x \mid-x} & =0^{\infty} 00^{a} 01^{b} & \text { bitmask for lower zeroes } \\
x \mid(x-1)=\alpha 01^{a} 11^{b} & \text { right-propagate rightmost } 1
\end{array}
$$

Exclusive Or

- Exclusive $\operatorname{Or}(\oplus)$ can serve as identity and not:

$$
\begin{aligned}
& x=x \oplus 0 \\
& \bar{x}=x \oplus \overline{0}
\end{aligned}
$$

- Enables "conditional" not when condition is in sign bit

$$
y=c<0 \quad{ }^{\sim}{ }^{\sim} x: x
$$

equals

$$
y \leftarrow\left(c>_{>}^{s} 31\right) \oplus x
$$

Exclusive Or

- Exclusive $\operatorname{Or}(\oplus)$ can serve as identity and not:

$$
\begin{aligned}
& x=x \oplus 0 \\
& \bar{x}=x \oplus \overline{0}
\end{aligned}
$$

- Enables "conditional" not when condition is in sign bit

$$
\mathrm{y}=\mathrm{c}<0 \text { ? } \mathrm{x}: \mathrm{x} \text {; }
$$

equals

$$
y \leftarrow\left(c>_{>}^{s} 31\right) \oplus x
$$

- Nice absolute value function:

```
static inline int abs(int x) {
    int t = x >> (sizeof(int) * 8 - 1);
    return (x ~ t) - t;
}
```


3-Way Comparison

- Compare functions often require 3-way compare:

$$
\operatorname{cmp}(x, y)= \begin{cases}-1 & x<0 \\ 0 & x=0 \\ 1 & x>0\end{cases}
$$

- One way:

```
int cmp(int x, int y) {
    if (x > y)
        return 1;
    if (x < y)
        return -1;
    return 0;
}
```

- Without branches:

```
int cmp(int x, int y) {
    return (x > y) - (x < y);
}
```

- Look for yourself what code your compiler generates

Saturating Addition/Subtraction

- Sometimes you want addition/subtraction not to overflow but to saturate

$$
\operatorname{sadd}(x, y)= \begin{cases}\text { MAX_INT } & z(x)+z(y) \geq z(\text { MAX_INT }) \\ \text { MIN_INT } & z(x)+z(y) \leq z(\text { MIN_INT }) \\ x+y & \text { otherwise }\end{cases}
$$

(Note: $z: 2^{32} \rightarrow \mathbb{Z}$ embeds integers into \mathbb{Z})

Saturating Addition/Subtraction

- Sometimes you want addition/subtraction not to overflow but to saturate

$$
\operatorname{sadd}(x, y)= \begin{cases}\text { MAX_INT } & z(x)+z(y) \geq z(\text { MAX_INT }) \\ \text { MIN_INT } & z(x)+z(y) \leq z(\text { MIN_INT }) \\ x+y & \text { otherwise }\end{cases}
$$

(Note: $z: 2^{32} \rightarrow \mathbb{Z}$ embeds integers into \mathbb{Z})

- So, how can we check if an addition overflowed?

Saturating Addition/Subtraction

- Sometimes you want addition/subtraction not to overflow but to saturate

$$
\operatorname{sadd}(x, y)= \begin{cases}\text { MAX_INT } & z(x)+z(y) \geq z(\text { MAX_INT }) \\ \text { MIN_INT } & z(x)+z(y) \leq z(\text { MIN_INT }) \\ x+y & \text { otherwise }\end{cases}
$$

(Note: $z: 2^{32} \rightarrow \mathbb{Z}$ embeds integers into \mathbb{Z})

- So, how can we check if an addition overflowed?
- If operands have different signs, there cannot be an overflow

Saturating Addition/Subtraction

- Sometimes you want addition/subtraction not to overflow but to saturate

$$
\operatorname{sadd}(x, y)= \begin{cases}\text { MAX_INT } & z(x)+z(y) \geq z(\text { MAX_INT }) \\ \text { MIN_INT } & z(x)+z(y) \leq z(\text { MIN_INT }) \\ x+y & \text { otherwise }\end{cases}
$$

(Note: z: $2^{32} \rightarrow \mathbb{Z}$ embeds integers into \mathbb{Z})

- So, how can we check if an addition overflowed?
- If operands have different signs, there cannot be an overflow
- If the signs are equal and the sum's sign is different, we had an overflow:

$$
\text { overflow }=(x \oplus s) \&(y \oplus s) \quad s=x+y
$$

- overflow has sign bit set, if $x+y$ overflowed

Saturating Addition/Subtraction

- Sometimes you want addition/subtraction not to overflow but to saturate

$$
\operatorname{sadd}(x, y)= \begin{cases}\text { MAX_INT } & z(x)+z(y) \geq z(\text { MAX_INT }) \\ \text { MIN_INT } & z(x)+z(y) \leq z(\text { MIN_INT }) \\ x+y & \text { otherwise }\end{cases}
$$

(Note: $z: 2^{32} \rightarrow \mathbb{Z}$ embeds integers into \mathbb{Z})

- So, how can we check if an addition overflowed?
- If operands have different signs, there cannot be an overflow
- If the signs are equal and the sum's sign is different, we had an overflow:

$$
\text { overflow }=(x \oplus s) \&(y \oplus s) \quad s=x+y
$$

- overflow has sign bit set, if $x+y$ overflowed

```
static inline int sadd(int x, int y) {
    int sum = x + y;
    int overflow = (x ` s) & (y ~ s);
    int big = (x >> 31) - INT_MAX;
    return overflow < 0 ? big : sum;
}
```


Rounding Up/Down to a Multiple of a Known Power of 2

- Rounding to some next power of 2 can be used for binning (remember malloc lecture)
- Rounding up (down) here means round to $+\infty(-\infty)$
- Rounding down is easy:

$$
x \&-n
$$

rounds down to next $2^{k}=n$

- Rounding up is almost as easy:

$$
(x+(n-1)) \&-n
$$

- Round to nearest power of 2 toward 0 :

$$
(x+t) \&-n \quad t=\left(x>_{>}^{s} 31\right) \&(n-1)
$$

Rounding Up/Down to the Next Power of 2

$$
\operatorname{flp} 2(x)=\left\{\begin{array}{ll}
\text { undefined } & x<0 \\
0 & x=0 \\
2^{\left\lfloor\log _{2} x\right\rfloor} & x>0
\end{array} \quad \operatorname{clp} 2(x)= \begin{cases}\text { undefined } & x<0 \\
0 & x=0 \\
2^{\left\lceil\log _{2} x\right\rceil} & x>0\end{cases}\right.
$$

- flp2 means isolating the leftmost bit (remember how easy this was for the rightmost!)
- We need to propagate the highest set bit down

Rounding Up/Down to the Next Power of 2

$$
\operatorname{flp} 2(x)=\left\{\begin{array}{ll}
\text { undefined } & x<0 \\
0 & x=0 \\
2^{\left\lfloor\log _{2} x\right\rfloor} & x>0
\end{array} \quad \operatorname{clp} 2(x)= \begin{cases}\text { undefined } & x<0 \\
0 & x=0 \\
2^{\left\lceil\log _{2} x\right\rceil} & x>0\end{cases}\right.
$$

- flp2 means isolating the leftmost bit (remember how easy this was for the rightmost!)
- We need to propagate the highest set bit down

```
unsigned flp2(unsigned x) {
    x = x | ( }\textrm{x >> 1);
    x = x | (x >> 2);
    x = x | (x >> 4);
    x = x | (x >> 8);
    x = x | (x >>16);
    return x - (x >> 1);
}
```

- The first five lines create a band of 1
- x - (x >> 1) isolates the most significant one

Rounding Up/Down to the Next Power of 2

$$
\operatorname{flp} 2(x)=\left\{\begin{array}{ll}
\text { undefined } & x<0 \\
0 & x=0 \\
2^{\left\lfloor\log _{2} x\right\rfloor} & x>0
\end{array} \quad \operatorname{clp} 2(x)= \begin{cases}\text { undefined } & x<0 \\
0 & x=0 \\
2^{\left\lceil\log _{2} x\right\rceil} & x>0\end{cases}\right.
$$

- flp2 means isolating the leftmost bit (remember how easy this was for the rightmost!)
- We need to propagate the highest set bit down

```
unsigned flp2(unsigned x) {
    x = x | ( }\textrm{x >> 1);
    x = x | (x >> 2);
    x = x | (x >> 4);
    x = x | (x >> 8);
    x = x | (x >>16);
    return x - (x >> 1);
}
```

- The first five lines create a band of 1
- $x-(x \gg 1)$ isolates the most significant one
- If we have an instruction n / z that gives the number of leading zeroes:

$$
f l p 2(x)=1 \ll(n l z(x) \oplus 31)
$$

Number of Leading Zeroes (nlz)

- Find most significant set bit
- Basically the discrete binary logarithm
- Very useful for bit sets (remember last lecture)
- GCC has it as a compiler-known function ffs
- Many machines feature it as a native instruction bsr (bit scan reverse) on $\times 86$ (since i386)

Number of Leading Zeroes (nlz)

- Find most significant set bit
- Basically the discrete binary logarithm
- Very useful for bit sets (remember last lecture)
- GCC has it as a compiler-known function ffs
- Many machines feature it as a native instruction bsr (bit scan reverse) on $\times 86$ (since i386)
- Binary-search implementation in C if not available as machine instr

```
unsigned nlz(unsigned x) {
    unsigned y, n = 32;
    y = x >>16; if (y) { n = n -16; x = y; }
    y = x >> 8; if (y) { n = n - 8; x = y; }
    y = x >> 4; if (y) { n = n - 4; x = y; }
    y = x >> 2; if (y) { n = n - 2; x = y; }
    y = x >> 1; if (y) return n - 2;
    return n - x;
}
```

- Unfortunately has jumps

Portably using Inline Assembly

Using nlz as an Exmaple

```
static inline unsigned nlz(unsigned x) {
#if defined(__GNUC__) && defined(__i386__)
    unsigned res;
    if(x == 0) return 32;
    __asm__("bsrl_%%1,%0" : "=r" (res) : "r" (x));
    return 31 - res;
#else
    unsigned y, n = 32;
    y = x >>16; if (y != 0) { n -= 16; x = y; }
    y = x >> 8; if (y != 0) { n -= 8; x = y; }
    y = x >> 4; if (y != 0) { n -= 4; x = y; }
    y = x >> 2; if (y != 0) { n -= 2; x = y; }
    y = x >> 1; if (y != 0) return n - 2;
    return n - x;
#endif
}
```

- Use compiler and platform define to check for the right flavor of inline assembler and CPU architecture
- Always provide a C version

Number of Trailing Zeroes

... and de Bruijn Numbers

- How can we find the number of trailing zeroes?

Idea 1 Reduce problem to numbers that have only one bit set

- We can do that easily by applying $x \&-x$

Idea 2 Use hashing:

- There are 32 numbers with 1 bit
- Create a function $h(x)$ that maps each one bit number to the bit's position
- Hash table should be small
- Hash function easy to compute
- Hash function should be collision-free

Idea 3 Use de Bruijn Numbers for the hash function

Number of Trailing Zeroes

de Bruijn Sequences

Definition (de Bruijn Sequence)

A length- $n\left(n=2^{k}\right)$ de Bruijn sequence s is a sequence of $n 0$'s and 1 's such that every $0-1$ sequence of length k occurs exactly once as a contiguous substring

Example for $k=3$
A length-8 de Bruijn sequence is

$$
00011101
$$

Move a 3-bit window right (one bit at a time, wrapping around):

$$
000,001,011,111,110,101,010,100
$$

- Every 0,1-sequence of length k has a unique index in 00011101
- E.g.: 000 has index 0,010 has index 6 , and so on

Number of Trailing Zeroes

and de Bruijn Numbers

$$
h(x)=(x * B) \stackrel{u}{\gg}\left(n-\log _{2} n\right)
$$

- B is a number whose bits are a de Bruijn sequence
- x has only one set bit
- $x * B$ shifts B left by $\log _{2} x$
- Read out the upper $\log _{2} n$ bits of $x * B$
- That value will be different for every x
- Index a table with $h(x)$ and read out the number of trailing zeroes for x

Number of Trailing Zeroes

and de Bruijn Numbers

Example for $n=8$

- Use de Bruijn number $B=00011101$
- Let $x^{\prime}=00101100$, number of trailing zeroes is 2
- $x=x^{\prime} \&-x^{\prime}=00000100$
- $x * 00011101=01110100\left(00011101 \ll \log _{2} x\right)$
- Take out the upper $\log _{2} n=3$ bits: 011
- Index the table with 011 should get 2 then

Counting Bits

- How many bits are set in a word (population count)?
- Using the things we already learned (by B. Kernighan)

```
unsigned popcnt(unsigned x) {
    unsigned c;
    for (c = 0; x; c++)
        x &= x - 1; // clear the least significant bit set
    return c;
}
```

takes too long, has jumps, worst case 32 iterations

- We can use "divide and conquer"

Population Count

Divide and Conquer

$$
\begin{array}{|llllllllllllllllllllllllllllllll|}
\hline 1 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline
\end{array}
$$

$$
\left.\begin{array}{|ll|ll|l|ll|ll|l|ll|ll|ll|ll|ll|ll|l|ll|ll|ll|}
\hline 0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 1
\end{array} 0\right)
$$

$$
\begin{array}{|llll|llllllll|llll|llll|llll|llll|llll|}
\hline 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
\hline
\end{array}
$$

$$
\begin{array}{|lllllll|llllllll|lllllll|llllllll|}
\hline 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0
\end{array} 0
$$

$$
\begin{array}{|lllllllllllllll|lllllllllllllll|}
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1
\end{array} 1
$$

$$
0100000000000000000000000000000100010111
$$

Population Count

Simple Version

- Add bit $2 k$ to bit $2 k+1$
- Then add two bits at $4 k$ to the bits at $4 k+2$
- and so on

Population Count

Simple Version

- Add bit $2 k$ to bit $2 k+1$
- Then add two bits at $4 k$ to the bits at $4 k+2$
- and so on

```
unsigned popcnt(unsigned x) {
    x = (x & 0x55555555) + ((x >> 1) & 0x55555555);
    x = (x & 0x33333333) + ((x >> 2) & 0x33333333);
    x = (x & 0x0f0f0f0f) + ((x >> 4) & 0x0f0f0f0f);
    x = (x & 0x00ff00ff) + ((x >> 8) & 0x00ff00ff);
    x = (x & 0x0000ffff) + ((x >>16) & 0x0000ffff);
    return x;
}
```

- Can be tuned further

Population Count

Tuned Version

- Adding the 2-bits can be done more efficiently:
- We need following mapping:

$$
\begin{array}{lll}
00 \mathrm{~b} & \rightarrow & 00 \mathrm{~b} \\
01 \mathrm{~b} & \rightarrow & 01 \mathrm{~b} \\
10 \mathrm{~b} & \rightarrow & 01 \mathrm{~b} \\
11 \mathrm{~b} & \rightarrow & 10 \mathrm{~b}
\end{array}
$$

- $x-(x \stackrel{u}{\gg} 1)$ does the trick
- need still to mask with 0×55555555 to clear down-shifted bits

$$
x \leftarrow x-((x \stackrel{u}{\gg 1} 1) \& 0 x 55555555)
$$

Population Count

Tuned Version

- Adding the 2-bits can be done more efficiently:
- We need following mapping:
$00 \mathrm{~b} \rightarrow 00 \mathrm{~b}$
$01 \mathrm{~b} \rightarrow 01 \mathrm{~b}$
$10 \mathrm{~b} \rightarrow 01 \mathrm{~b}$
$11 \mathrm{~b} \quad \rightarrow \quad 10 \mathrm{~b}$
- $x-(x \stackrel{u}{\gg} 1)$ does the trick
- need still to mask with 0×55555555 to clear down-shifted bits

$$
x \leftarrow x-((x \stackrel{u}{\gg 1} 1) \& 0 \mathrm{x} 55555555)
$$

- Adding the 4-bit groups can also be optimized:
- Each 4-bit group's value is at most 100b (it is the number of set bits in 4 bits)
- Hence, the largest value of the sum of two 4-bit groups is 1000b
- That fits into 4 bits
- Need only to mask the result: $x \leftarrow(x+(x \stackrel{u}{>} 4)) \& 0 x 0 f 0 f 0 f 0 f$

x	$=$ OaaaObbb0ccc0ddd0eeeOfff0ggg0hhh
$\mathrm{x} \gg 4$	$=00000 \mathrm{aaa} 0 \mathrm{bbb} 0 \mathrm{ccc} 0 \mathrm{dddOeeeOfff0ggg}$
sum	$=$ 0aaawwww????xxxx????yyyy????zzzz

Population Count

Tuned Version: Final step

- Our value now looks like this:

0000wwww0000xxxx0000yyyy0000zzzz we need the sum wwww + xxxx + yyyy $+z z z z$

Population Count

Tuned Version: Final step

- Our value now looks like this:

0000wwww0000xxxxx0000yyyy0000zzzz we need the sum wwww + xxxx + yyyy $+z z z z$

- Multiply by 0x01010101:
- equals $x+(x \ll 8)+(x \ll 16)+(x \ll 24)$
- Accumulates the desired sum in the upper 8 bits ($t \mathrm{t}$)

$$
\begin{gathered}
0 w 0 x 0 y 0 z * 01010101= \\
: 0 w 0 x 0 y 0 z \\
0 w: 0 x 0 y 0 z \\
0 w 0 x: 0 y 0 z \\
0 w 0 x 0 y: 0 z \\
00 ? ? ? ? ? ?: \text { tt????0z }
\end{gathered}
$$

Population Count

Tuned Version: Final step

- Our value now looks like this:

0000wwww0000xxxxx0000yyyy0000zzzz we need the sum wwww + xxxx + yyyy $+z z z z$

- Multiply by $0 x 01010101$:
- equals $x+(x \ll 8)+(x \ll 16)+(x \ll 24)$
- Accumulates the desired sum in the upper 8 bits ($t \mathrm{t}$)

$$
\begin{gathered}
0 w 0 x 0 y 0 z * 01010101= \\
: 0 w 0 x 0 y 0 z \\
0 w: 0 x 0 y 0 z \\
0 w 0 x: 0 y 0 z \\
0 w 0 x 0 y: 0 z \\
00 ? ? ? ? ? ?: \text { tt????0z }
\end{gathered}
$$

- Final version:

```
unsigned popcnt(unsigned x) {
    x = x - (( }\textrm{x >> 1) & 0 x55555555);
    x = (x & 0x33333333) + ((x >> 2) & 0x33333333);
    x = (x + (x >> 4)) & Ox0f0f0f0f;
    return (x * 0x01010101) >> 24;
}
```


References

围 Henry S. Warren, Jr.
Hacker's Delight
Addison Wesley, 2003
國 Donald Knuth
The Art of Computer Programming, Volume 4, Pre-Fascicle 1A http://www-cs-faculty.stanford.edu/~uno/fasc1a.ps.gz

