Bitwise Operations

Sebastian Hack
hackQcs.uni-sb.de

Christoph Weidenbach

weidenbach@mpi-inf.mpg.de

06.01.2009

SAARLAND

l l I I UNIVERSITY U
— —

COMPUTER SCIENCE

Basics

> In this lecture, we assume 32-bit wide two's complement arithmetic
for integers

» Fundamental identities of bit operations
0&x=0 0|x=x 0P x=x
-1 & x=x -1|x=-1 -1®&x =X
x & x=x x| x=x x®x=0
X&x=0 X|x=-1 Xdx=-1
» Relate bit operations to arithmetic:
x+x=-1
> Leads to
—x=x+1
» And finally

Basics
Setting and deleting bits

» Setting bit m
x—x| (1< m)

Clear bit m

v

x—x&1<Km
» Create mask m = 07120 to set/clear multiple bits:
(1<xb)-1)xc

> (1< (b+o)-(1xc)

v

Analogously for the inverted mask m = 120°1°¢

v

Special cases for ¢ = 0:

Bitstring Production Example (b = 3)

0®°1P (1< b) -1 7
1%°0b —(1 < b) -8

Rightmost Bits

> Let us consider the rightmost bits in a word

x=0a01...110...0=00110> a>0,b>0,a € {0,1}"
——— N~
a b

Rightmost Bits

> Let us consider the rightmost bits in a word

x=0a01...110...0=00110> a>0,b>0,a € {0,1}"
——— N~
a b

» Then we have

x = «01?10°
X = w@l0?01b
x—1 = «01%01b

—x = al0?10P

Rightmost Bits

> Let us consider the rightmost bits in a word

x=0a01...110...0=00110> a>0,b>0,a € {0,1}"
——— N~
a b

» Then we have

x = a01?10°
X = al0?01®
x—1 = «a01?01°
—x = al0°10®

» and

x&(x—-1) =

Rightmost Bits

> Let us consider the rightmost bits in a word

x=0a01...110...0=00110> a>0,b>0,a € {0,1}"
——— N~
a b

» Then we have

x = a01?10b
X = al0?01?
x—1 = «01%01b
—x = a1010?
» and
x& (x—1) = a01?00® clear rightmost 1

test against O to check if x is power-of-two

x& —x =

Rightmost Bits

> Let us consider the rightmost bits in a word

x=0a01...110...0=00110> a>0,b>0,a € {0,1}"
——— N~
a b

» Then we have

x = a01?10b
X = al0?01?
x—1 = «01%01b
—x = a1010?
» and
x& (x—1) = a01?00® clear rightmost 1

test against O to check if x is power-of-two

x& —x = 0%°00710° isolate rightmost 1
X& (x—1)=

Rightmost Bits

> Let us consider the rightmost bits in a word

x=0a01...110...0=00110> a>0,b>0,a € {0,1}"
——— N~
a b

» Then we have

x = a01?10b
X = al0?01?
x—1 = «01%01b
—x = a1010?
» and
x& (x—1) = a01?00® clear rightmost 1

test against O to check if x is power-of-two

x& —x = 0%°00710° isolate rightmost 1
X& (x—1)=x|—x 0°°00701% bitmask for lower zeroes
x|(x=1) =

Rightmost Bits

> Let us consider the rightmost bits in a word

x=0a01...110...0=00110> a>0,b>0,a € {0,1}"
——— N~
a b

» Then we have

x = a01?10b
X = al0?01?
x—1 = «01%01b
—x = a1010?
» and
x& (x—1) = a01?00® clear rightmost 1

test against O to check if x is power-of-two

x& —x = 0%°00710° isolate rightmost 1
X& (x—1)=x|—x 0°°00701% bitmask for lower zeroes
x| (x—1) = «a01?11® right-propagate rightmost 1

Exclusive Or

» Exclusive Or (@) can serve as identity and not:
x = x@0
X = x®0
» Enables “conditional” not when condition is in sign bit
y =c <07 "x : x;

equals
S
y—(c>31)@ex

Exclusive Or

» Exclusive Or (@) can serve as identity and not:

X = x&O0
X = x®0
» Enables “conditional” not when condition is in sign bit
y =c <07 "x : x;

equals
S
y—(c>31)@ex

» Nice absolute value function:

static inline int abs(int x) {
int t = x >> (sizeof (int) * 8 - 1);
return (x ~ t) - t;

3-Way Comparison

» Compare functions often require 3-way compare:

-1 x<0
cmp(x,y) =<0 x=0
1 x>0
» One way:
int cmp(int x, int y) {
if (x > y)
return 1;
if (x < y)

return -1;
return O;

}

» Without branches:

int cmp(int x, int y) {
return (x > y) - (x < y);
}

> Look for yourself what code your compiler generates

Saturating Addition/Subtraction

» Sometimes you want addition/subtraction not to overflow but to
saturate

MAX_INT z(x) + z(y)
sadd(x,y) = { MIN_INT z(x) + z(y)
xX+y otherwise

z(MAX_INT)

>
< z(MIN_INT)

(Note: z: 2%2 — 7 embeds integers into 7Z)

Saturating Addition/Subtraction

» Sometimes you want addition/subtraction not to overflow but to
saturate

MAX_INT z(x) + z(y)
sadd(x,y) = { MIN_INT z(x) + z(y)
xX+y otherwise

> z(MAX_INT)
< z(MIN_INT)

(Note: z: 2%2 — 7 embeds integers into 7Z)
» So, how can we check if an addition overflowed?

Saturating Addition/Subtraction

» Sometimes you want addition/subtraction not to overflow but to
saturate

MAX_INT z(x) + z(y)
sadd(x,y) = { MIN_INT z(x) + z(y)
xX+y otherwise

z(MAX_INT)

>
< z(MIN_INT)

(Note: z: 2% — Z embeds integers into Z)
» So, how can we check if an addition overflowed?
» If operands have different signs, there cannot be an overflow

Saturating Addition/Subtraction

» Sometimes you want addition/subtraction not to overflow but to
saturate

MAX_INT z(x) + z(y)
sadd(x,y) = { MIN_INT z(x) + z(y)
xX+y otherwise

z(MAX_INT)

>
< z(MIN_INT)

(Note: z: 2%2 — 7 embeds integers into 7Z)
So, how can we check if an addition overflowed?
If operands have different signs, there cannot be an overflow
If the signs are equal and the sum'’s sign is different,
we had an overflow:

vyYyy

overflow = (x ®s) & (y ® s) s=x+y

v

overflow has sign bit set, if x + y overflowed

Saturating Addition/Subtraction

>

v

Sometimes you want addition/subtraction not to overflow but to
saturate

MAX_INT z(x) + z(y)
sadd(x,y) = { MIN_INT z(x) + z(y)
xX+y otherwise

z(MAX_INT)

>
< z(MIN_INT)

(Note: z: 2%2 — 7 embeds integers into 7Z)
So, how can we check if an addition overflowed?
If operands have different signs, there cannot be an overflow
If the signs are equal and the sum'’s sign is different,
we had an overflow:

overflow = (x ®s) & (y ® s) s=x+y

overflow has sign bit set, if x + y overflowed

static inline int sadd(int x, int y) {

int sum =x +y;

int overflow = (x ~ s) & (y ~ s);
int big = (x >> 31) -~ INT_MAX;
return overflow < 0O 7 big : sum;

~

Rounding Up/Down to a Multiple of a Known Power of 2

» Rounding to some next power of 2 can be used for binning
(remember malloc lecture)

» Rounding up (down) here means round to +o00 (—o0)

» Rounding down is easy:
x & —n

rounds down to next 2K = n

» Rounding up is almost as easy:
(x+(n=1))& —n
» Round to nearest power of 2 toward O:

(x+t)&—-n t=(x>31)&((n-1)

Rounding Up/Down to the Next Power of 2

undefined x <0 undefined x <0
fip2(x) =<0 x=0 cp2(x) =40 x=0
2llog, x| x>0 2 [log, x] x>0

» f1p2 means isolating the leftmost bit
(remember how easy this was for the rightmost!)
» We need to propagate the highest set bit down

Rounding Up/Down to the Next Power of 2

flp2(x)

undefined x <0 undefined x <0
0 x=0 clp2(x) =40 x=0
2 llog; x| x>0 2 [log, x] x>0

» f1p2 means isolating the leftmost bit
(remember how easy this was for the rightmost!)
» We need to propagate the highest set bit down

unsigned flp2(unsigned x) {

X

MoM MM

MoM X M

X

(x
(x
(x
(x

(x

return x -

>> 1);
>> 2);
>> 4);
>> 8);
>>16) ;
(x >> 1);

» The first five lines create a band of 1
» x - (x >> 1) isolates the most significant one

Rounding Up/Down to the Next Power of 2

undefined x <0 undefined x <0
fip2(x) =<0 x=0 cp2(x) =40 x=0
2 llog; x| x>0 2 [log, x] x>0

» f1p2 means isolating the leftmost bit
(remember how easy this was for the rightmost!)
» We need to propagate the highest set bit down
unsigned flp2(unsigned x) {
X | (x >> 1);

| (x >> 2);
| (x >> 4);
|
|

MoM X M

(x >> 8);
x (x >>16);
return x - (x >> 1);

MoM MM
o nonon

» The first five lines create a band of 1
» x - (x >> 1) isolates the most significant one

» If we have an instruction nlz that gives the number of leading zeroes:

flp2(x) = 1 < (nlz(x) @ 31)

Number of Leading Zeroes (nlz)

Find most significant set bit
Basically the discrete binary logarithm
Very useful for bit sets (remember last lecture)

GCC has it as a compiler-known function ffs

vV v.v. vy

Many machines feature it as a native instruction
bsr (bit scan reverse) on x86 (since i386)

Number of Leading Zeroes (nlz)

Find most significant set bit
Basically the discrete binary logarithm
Very useful for bit sets (remember last lecture)

GCC has it as a compiler-known function ffs

vV v.v. vy

Many machines feature it as a native instruction
bsr (bit scan reverse) on x86 (since i386)

» Binary-search implementation in C if not available as machine instr

-~

unsigned nlz(unsigned x)
unsigned y, n = 32;

y = x >>16; if (y) { n = n -16; x = y; }
y =x > 8; if (y) { n =mn - 8; x = y; }
y =x > 4; if (y) {n=1n - 4; x = y; }
y =x > 2; if (y) {n=mn - 2; x = y; }
y = x > 1; if (y) return n - 2;

return n - Xx;

}

» Unfortunately has jumps

Portably using Inline Assembly

Using nlz as an Exmaple

static inline unsigned nlz(unsigned x) {
#if defined (__GNUC__) && defined(__i386__)
unsigned res;

if (x == 0) return 32;
__asm__("bsrl %1,%0" : "=r" (res) : "r" (x));
return 31 - res;

#else
unsigned y, n = 32;
y = x >>16; if (y !'= 0) { n -= 16; x = y; }
y =x > 8; if (y '= 0) { n -= 8; x =y; }
y =x > 4; if (y '=0) {n -= 4; x =y; }
y =x > 2; if (y '=0) {n -= 2; x =y; }
y = x > 1; if (y != 0) return n - 2;
return n - Xx;

#endif

X

> Use compiler and platform define to check for the right flavor of
inline assembler and CPU architecture

» Always provide a C version

Number of Trailing Zeroes

. and de Bruijn Numbers

» How can we find the number of trailing zeroes?

Idea 1 Reduce problem to numbers that have only one bit set
» We can do that easily by applying x & —x
Idea 2 Use hashing:

» There are 32 numbers with 1 bit

» Create a function h(x) that maps each one bit
number to the bit's position

» Hash table should be small

» Hash function easy to compute

» Hash function should be collision-free

Idea 3 Use de Bruijn Numbers for the hash function

Number of Trailing Zeroes

de Bruijn Sequences
Definition (de Bruijn Sequence)

A length-n (n = 2) de Bruijn sequence s is a sequence of n 0's and 1's
such that every 0-1 sequence of length k occurs exactly once as a
contiguous substring

Example for k = 3
A length-8 de Bruijn sequence is
00011101
Move a 3-bit window right (one bit at a time, wrapping around):

000,001,011,111, 110, 101,010, 100

» Every 0,1-sequence of length k has a unique index in 00011101
» E.g.: 000 has index 0, 010 has index 6, and so on

Number of Trailing Zeroes

. and de Bruijn Numbers

h(x) = (x * B) > (n — log, n)

B is a number whose bits are a de Bruijn sequence
x has only one set bit

x * B shifts B left by log, x

Read out the upper log, n bits of x x B

That value will be different for every x

Index a table with h(x) and read out
the number of trailing zeroes for x

vV v v v v Yy

Number of Trailing Zeroes

. and de Bruijn Numbers

Example for n = 8

>
>
>
>
>
>

Use de Bruijn number B = 00011101

Let x’ = 00101100, number of trailing zeroes is 2
x =x" & —x’ = 00000100

x % 00011101 = 01110100 (00011101 < log, x)
Take out the upper log, n = 3 bits: 011

Index the table with 011 should get 2 then

Counting Bits

» How many bits are set in a word (population count)?
» Using the things we already learned (by B. Kernighan)

unsigned popcnt(unsigned x) {
unsigned c;
for (c = 0; x; c++)
x &= x - 1; // clear the least significant bit set
return c;

}

takes too long, has jumps, worst case 32 iterations

» We can use “divide and conquer”

16

Population Count
Divide and Conquer

10111100011000110111111011111111

011010000101001001710100110101010

00110010/0010(0010(0011{/0011/0100(0100

00000101/00000100/00000110/00001000

0000000000001001/00000000000011160

00000000000000000000000000010111

Population Count

Simple Version

» Add bit 2k to bit 2k + 1
» Then add two bits at 4k to the bits at 4k + 2

» and so on

Population Count

Simple Version

» Add bit 2k to bit 2k +1
» Then add two bits at 4k to the bits

» and so on

unsigned popcnt (unsigned

X

MoX MM

(x
(x
(x
(x
(x

return

&

MR R

0x55555555)
0x33333333)
0x0f0f0fO0f)
0x00ff00ff)
0x0000ffff)

» Can be tuned further

at 4k + 2
>> 1) & 0x55555555);
>> 2) & 0x33333333);
>> 4) & 0xO0f0f0fO0f);
>> 8) & 0xO00ffO0O0ff);
>>16) & 0xO0000ffff);

Population Count

Tuned Version

> Adding the 2-bits can be done more efficiently:
> We need following mapping:
00b — 00b
0lb — 01b
10b — 01b
11b — 10b

> x —(x > 1) does the trick
» need still to mask with 0x55555555 to clear down-shifted bits

x — x — ((x > 1) & 0x55555555)

Population Count
Tuned Version
> Adding the 2-bits can be done more efficiently:
> We need following mapping:

00b — 00b
0lb — 01b
10b — 01b
11b — 10b

> x —(x > 1) does the trick
» need still to mask with 0x55555555 to clear down-shifted bits

x — x — ((x > 1) & 0x55555555)

» Adding the 4-bit groups can also be optimized:
» Each 4-bit group’s value is at most 100b
(it is the number of set bits in 4 bits)
> Hence, the largest value of the sum of two 4-bit groups is 1000b
> That fits into 4 bits
> Need only to mask the result: x «— (x + (x > 4)) & 0x0f0f0f0f

X = OaaalObbbOcccOdddOeee0fff0gggOhhh
x >> 4 = 00000aaaObbbOcccOdddOeee0fff0ggg
sum = Qaaawwww???7xxxx77??yyyy????zzzz

Population Count
Tuned Version: Final step
» Our value now looks like this:
0000wwww0000xxxx0000yyyy0000zzz=z
we need the sum wwww + Xxxx + yyyy + zzzz

20

Population Count

Tuned Version: Final step
» Our value now looks like this
0000wwww0000xxxx0000yyyy0000zzz=z
we need the sum wwww + Xxxx + yyyy + zzzz
» Multiply by 0x01010101:
> equals x + (x € 8) + (x € 16) + (x < 24)
> Accumulates the desired sum in the upper 8 bits (tt)
OwOx0y0z * 01010101 =
:0w0x0y0z
Ow:0x0y0z
Ow0x:0y0z
OwOxOy:0z

Population Count

Tuned Version: Final step
» Our value now looks like this:
0000wwww0000xxxx0000yyyy0000zzzz
we need the sum wwww + Xxxx + yyyy + zzzz
» Multiply by 0x01010101:
> equals x + (x € 8) + (x € 16) + (x < 24)
> Accumulates the desired sum in the upper 8 bits (tt)
OwOx0y0z * 01010101 =
:0w0x0y0z
Ow:0x0y0z
Ow0x:0y0z
OwOxOy:0z

» Final version:

unsigned popcnt (unsigned x) {
X x - ((x > 1) & 0x55555555);
X (x & 0x33333333) + ((x >> 2) & 0x33333333);
x (x + (x >> 4)) & 0x0f0f0fOf;
return (x * 0x01010101) >> 24;

References

ﬁ Henry S. Warren, Jr.
Hacker's Delight
Addison Wesley, 2003

[d Donald Knuth
The Art of Computer Programming, Volume 4, Pre-Fascicle 1A
http://www-cs-faculty.stanford.edu/~uno/fascla.ps.gz

21

http://www-cs-faculty.stanford.edu/~uno/fasc1a.ps.gz

	Basics
	Rightmost Bits

	Powers of 2
	Counting Bits

