
Advanced C Programming
Compilers

Sebastian Hack
hack@cs.uni-sb.de

Christoph Weidenbach
weidenbach@mpi-inf.mpg.de

20.01.2009

computer science

saarland
university

1



Contents

Overview
Optimizations

Program Representations
Abstract Syntax Trees
Control-Flow Graphs
Some Simple Optimizations

Dead Code Elimination
Constant Folding

Static Single Assignment
Scalar Variables, Memory, and State

Summary

2



Goals

I Get an impression of what compilers can do

I Write programs in a way such that compilers can optimize them well

I Get an impression of what compilers cannot do

I Do some important optimizations by hand

3



Compilers
Architecture

Front End “Middle End” Back End

I Syntactic / semantic
analysis of the input
program

I Dependent on the
programming language

I Heart of the compiler

I Independent from
language and target
architecture

I most optimizations
implemented here

I Transform the program
to machine code

I Dependent on target
architecture

I Implement resource
constraints of
machine/runtime-
system

4



Optimizations

I Optimization is the wrong word

I It is a mathematical term describing the task of solving an
optimization problem

I Compiler “optimizations” merely transform the program
I Should thus be called transformations
I We call them optimizations anyway ,

I Many interesting optimizations are NP-complete or uncomputable

I Since compilation speed also matters:
I Much in compilers is about finding fast heuristics for extremely

difficult problems

I Challenging engineering task:
I Very diverse inputs
I Complex data structures
I Complex invariants
I No tolerance of failure: Must work for every input

5



Optimizations

I Compiler writers have a mathematically provable job guarantee

I The full employment theorem

Given: A program P that does not emit anything
Wanted: The smallest binary for P

Theorem

There exists no compiler that can produce such a binary for every P

Proof.

If P does not terminate, its smallest implementation is

L1 : jmp L1

To this end, the compiler must determine whether P holds.

6



Optimizations

I Compiler writers have a mathematically provable job guarantee

I The full employment theorem

Given: A program P that does not emit anything
Wanted: The smallest binary for P

Theorem

There exists no compiler that can produce such a binary for every P

Proof.

If P does not terminate, its smallest implementation is

L1 : jmp L1

To this end, the compiler must determine whether P holds.

6



Optimizations

I Compiler writers have a mathematically provable job guarantee

I The full employment theorem

Given: A program P that does not emit anything
Wanted: The smallest binary for P

Theorem

There exists no compiler that can produce such a binary for every P

Proof.

If P does not terminate, its smallest implementation is

L1 : jmp L1

To this end, the compiler must determine whether P holds.

6



Program Representations

I Compilers process data like any other program

I However, the data they process are programs

I To get an idea of what compilers can do, we need to understand
how they represent programs

I Every “end” uses its own intermediate representation (IR)

I The effectiveness of many optimizations are dependent on the
degree of abstraction and the shape of the IR

I Most compilers use ≤ 4 IRs

7



Program Representations
Front End

I Abstract Syntax Tree (AST)

I Program represented by syntactical structure

I Basically a large tree and a name table

I Nodes represent type of structural entity:
Function, Statement, Operator, . . .

I Mainly used for:
I Name resolution
I Type checking
I High-level transformations

(loop transformations)

8



Program Representation
AST

Source

int sum_upto(int n) {

int i, res = 0;

for (i = 0; i < n; ++i)

res += i;

return res;

}

AST

FUNCTION_DECL name:sum_upto

ARG name:n type:int

BODY

STATEMENT_LIST

VAR_DECL name:i type:int

...

FOR_LOOP

ASSIGN

VAR_EXPR Name:i

CONST_EXPR Value:0

CMP_EXPR Op:<

VAR_EXPR Name:i

VAR_EXPR Name:n

...

9



Program Representations
“Middle” to Back End

I Control-Flow Graphs (CFG)
I High-level control structures (for, if, . . . ) gone
I Nodes of the CFG: Basic Blocks
I Edges represent flow of control

I Instructions in a basic block are in “triple form”
I Each instruction has the form

z ← op(x1, . . . , xn) Often: n = 2

I No expression trees anymore
I Notion of a statement no longer present
I z , x1, . . . , xn scalar variables + machine types

Definition (Basic Block)

A basic block B is a maximal sequence of instructions I1, . . . , In for which

1. Ii is a control-flow predecessor of Ii+1

2. If Ii is executed so is Ij

10



Program Representation
CFG/Tripe-Code

Source

int sum_upto(int n) {

int i, r = 0;

for (i = 0; i < n; ++i)

r += i;

return r;

}

Tripe-code CFG

i ← ⊥
r ← cnst 0
i ← cnst 0

b ← cmplt(i , n)
cond(b, T , F )

r ← add(r , i)
i ← add(i , 1)

T

ret(r)

F

11



Program Representations
Back End

I Nowadays similar to middle end:
I CFGs with machine instructions
I Registers instead of variables

I At the very end, a list of assembly instructions is generated

I CFG is flattened

I Flattening important:
I Use fall-throughs + safe jump instructions
I Arrange blocks carefully to aid branch prediction

I Other “minor” stuff to care about:
I Instruction encoding
I Alignment
I Data Layout
I . . .

12



Contents

Overview
Optimizations

Program Representations
Abstract Syntax Trees
Control-Flow Graphs
Some Simple Optimizations

Dead Code Elimination
Constant Folding

Static Single Assignment
Scalar Variables, Memory, and State

Summary

13



Dead Code Elimination

I Eliminate Code which has no effect

I Must not be written by the user

I Can also result as “garbage” from other transformation

x ← · · ·
z ← · · ·

z ← op(x , . . . ) x ← · · ·

ret(z)

I Definition of x in right
branch is dead

I the value computed there
will never be used

I How to find dead
computations?

I Data-flow analysis

14



Constant Folding

I Compute constant expressions during compile time

x ← cnst 0

y ← cnst 10
z ← add(y , x)

x ← call()

ret(x)

I Addition in left block can be
optimized to

z ← cnst 10

I The use of x in the bottom
cannot

I x has unknown contents
when coming from the right
branch

I Again, use data-flow analysis
to determine whether
variable has known constant
contents

15



Static Single Assignment (SSA)

I Performing data-flow analyses all the time is laborious

I Each time the program changes, analysis information has to be
updated

I Both transformations needed following information:

Reaching Definitions

For a use of a variable x , which are the definitions of x that can write the
value read at the use of x

I Solution:
I Encode this directly in the IR

I Allow every variable to only have one instruction that writes its value

I At each use of that variable there is exactly one definition reaching

I Variables and program points are now identical

16



Dead Code Elimination
Revisited — SSA

non SSA

x ← · · ·
z ← · · ·

z ← op(x , . . . ) x ← · · ·

ret(z)

SSA

x1 ← · · ·
z1 ← · · ·

z2 ← op(x1, . . . ) x2 ← · · ·

z3 ← φ(z2, z1)

ret(z?)

I Which z is used at the return?

I Use φ-functions to propagate SSA variables over control flow

I Each variable which has no use is dead (x2)

I Use that criterion transitively

17



Dead Code Elimination
Revisited — SSA

non SSA

x ← · · ·
z ← · · ·

z ← op(x , . . . ) x ← · · ·

ret(z)

SSA

x1 ← · · ·
z1 ← · · ·

z2 ← op(x1, . . . ) x2 ← · · ·

z3 ← φ(z2, z1)
ret(z3)

I Which z is used at the return?

I Use φ-functions to propagate SSA variables over control flow

I Each variable which has no use is dead (x2)

I Use that criterion transitively

17



Constant Folding
Revisited — SSA

non SSA
x ← cnst 0

y ← cnst 10
z ← add(y , x)

x ← call()

ret(x)

SSA
x1 ← cnst 0

y1 ← cnst 10
z1 ← add(y1, x1)

x2 ← call()

x3 ← φ(x1, x2)
← ret(x3)

I Each variable has only one definition

I Either the value at the definition was constant or not

I we see that x3 is not constant because not all arguments of the φ
are constant

18



SSA
. . . is functional programming (Kelsey 1995)

(a, b)← start

if b < a

c1 ← a− b c2 ← 0

c3 ← φ(c1, c2)

return c3

start

f1 f2

f3

fun start a b = if b < a
then f1 a b
else f2

fun f1 a b = let c = b-a
in f3 c

fun f2 = f3 0

fun f3 c = c

I Each block is a function

I In FP each variable can be bind only once (here we go!)

I Control flow modeled by function evaluations

19



Contents

Overview
Optimizations

Program Representations
Abstract Syntax Trees
Control-Flow Graphs
Some Simple Optimizations

Dead Code Elimination
Constant Folding

Static Single Assignment
Scalar Variables, Memory, and State

Summary

20



Scalar Variables, Memory, and State

I Up to now all variables are “scalar”:

I resemble machine types (int, float, double), no arrays or structs

I And all variables were “alias-free”:

I each variable was only accessible by a single name

I Every modification of the variable happened through that name

I Under SSA this is equivalent to the variable concept in FP

I In FP there is no difference between the name and the variable

I Scalar, alias-free variables are good for code generation
I They can be put into a register

I What about non-scalar variables?

I What about variables referenced by pointers?

I We are able to reference the same variable through different names

I In imperative programming names and variables are not the same

I This makes life much harder for the compiler

21



Scalar Variables, Memory, and State

I Up to now all variables are “scalar”:

I resemble machine types (int, float, double), no arrays or structs

I And all variables were “alias-free”:

I each variable was only accessible by a single name

I Every modification of the variable happened through that name

I Under SSA this is equivalent to the variable concept in FP

I In FP there is no difference between the name and the variable

I Scalar, alias-free variables are good for code generation
I They can be put into a register

I What about non-scalar variables?

I What about variables referenced by pointers?

I We are able to reference the same variable through different names

I In imperative programming names and variables are not the same

I This makes life much harder for the compiler

21



Scalar Variables, Memory, and State
How are non-scalar variables implemented?

I Arrays
I Arrays define potentially aliased variables
I Each array element can be accessed by an indexing expression
I The value of the index expression might not be known at compile

time
I To disambiguate two accesses a[i] and a[j], need to prove i 6= j

I Structs
I . . . are simpler
I Unless the address of an element is taken, they can be “scalarized”

int foo(void)

vec3_t vec;

...

}

int foo(void)

float x, y, z;

...

}

22



Scalar Variables, Memory, and State
Aliased Variables

int global_var;

int foo(int *p) {

global_var = 2;

*p = 3;

return global_var;

}

I We cannot optimize to

return 2;

I p might point to
global var

I global var is
potentially aliased

I How can we find out?

I Look at all callers of foo

I and the passed argument

I Thus: probably also all the
callers of the callers and so
on

I What, if we do not know all
the callers

23



Scalar Variables, Memory, and State
Aliased Variables

int global_var;

int foo(int *p) {

global_var = 2;

*p = 3;

return global_var;

}

I We can help the compiler

I If the address of global var
is never taken

I and we defined it as static

I it can only be modified by
functions in the current file

I And never through a second
name

I It cannot be aliased

I Be as precise as possible
with your declarations

24



Scalar Variables, Memory, and State

I We “implement” aliased variables by a global memory
(Of course it is the other way around ,)

I This memory belongs to the state

I The main difference between functional and imperative programming
is the presence of state

I What else belongs to the state is a question of the programming
language’s semantics

I How that state is updated is (mostly) decided by the memory model

I For correct compilation, the visible effects on the state and their
order have to be preserved

I Both are defined in the PL’s semantics

I How do we model the state in the IR?

25



Scalar Variables, Memory, and State
Representation of Memory

I The memory is also represented as an SSA variable

I Each load and store reads takes a memory variable and gives back a
new one

int global_var;

int foo(int *p) {

global_var = 2;

*p = 3;

return global_var;

}

c1 ← cnst 2
c2 ← cnst 3

M1 ← getarg(0)
a ← symcnst global var

M2 ← store(M1, a, c1)
p ← getarg(1)

M3 ← store(M2, p, c2)
(M4, r) ← load(M3, a)

ret(M4, r)

I Memory is treated functionally

I Similar to the concept of a monad, cf. Haskell

26



Scalar Variables, Memory, and State
Representation of Memory

I We can also have multiple memory variables!

I They must however be implemented with the single memory we have

I We must make sure that they represent pairwise disjoint variables

M2 ← store(M1, p, v)
M3 ← store(M1, q,w)

does only work if p 6= q

I Benefit:
I Variables may be scalarized in some regions of the code
I order of memory accesses can be changed

+ important for code generation

27



Scalar Variables, Memory, and State
Points-to Analysis

I Subdivision of memory needs results of points-to analysis

I For each use of a pointer determine an (over-approximated) set of
variables the pointer might point to

I One of the hardest analyses
I interprocedural (whole-program)
I long runtime, large memory consumption

I Do not count on it

I Many compilers make precision sacrifices to safe compilation time

28



Summary

I Scalar, alias-free variables are good!

I Many analyses are easy for them

I Most optimizations only work on scalar, alias-free variables

I They can be allocated to a processor register

I Having many scalar variables is no problem
I The register allocator will decide which ones to spill where

I Know that accesses to non-scalar variables might result in memory
accesses

I Always program as scalar as possible

I Always convey as much information as possible

I Do not overly rely on points-to analysis

29



Being Scalar “Best Practices”
Arrays

Prefer

typedef struct {

float x, y, z, w;

} vec_t;

Over

typedef float vec_t [4];

I Compiler might have trouble analysing indexing expressions

I a.x is much clearer

I Can be scalarized more easily

I Some compilers do not consider arrays for scalarization

30



Being Scalar “Best Practices”
Arrays

Prefer

int x = p[i];

int y = p[i + 1];

int z = p[i + 2];

Over

int q = p + i;

int x = *p++;

int y = *p++;

int z = *p++;

I Array base pointer stays the same

I Inequality of indexing often easier to analyze than the pointer update

I Compiler will do that transformation itself if he knows that he can
save a register

31



Being Scalar “Best Practices”
Avoid pointer dereferencing

Prefer

void isqrt(unsigned long a,

unsigned long *q,

unsigned long *r)

{

unsigned long qq , rr;

qq = a;

if (a > 0) {

while (qq >(rr=a/qq)) {

qq = (qq + rr) >> 1;

}

}

rr = a - qq * qq;

*q = qq;

*r = rr;

}

Over

void isqrt(unsigned long a,

unsigned long *q,

unsigned long *r)

{

*q = a;

if (a > 0) {

while (*q>(*r=a/ *q)) {

*q = (*q + *r) >> 1;

}

}

*r = a - *q * *q;

}

I The left version makes explicit that we assume q 6= r
I In C99 you could use restrict
I But then you rely on the compiler to do it right
I If all these memory accesses stay, performance is worse
I Treat memory accesses like reading from file

32


	Overview
	Optimizations

	Program Representations
	Abstract Syntax Trees
	Control-Flow Graphs
	Some Simple Optimizations
	Static Single Assignment
	Scalar Variables, Memory, and State

	Summary

