
Advanced C Programming
Compilers II

Sebastian Hack
hack@cs.uni-sb.de

Christoph Weidenbach
weidenbach@mpi-inf.mpg.de

Winter Term 2008/09

computer science

saarland
university

1



Contents

Today: A small high-level glance at some compiler optimizations

Data-Dependence Graphs

Optimizations on the IR
Constant Folding
Common Subexpression Elimination
Operator Strength Reduction in Loops

Backend Optimizations
Instruction Selection
Instruction Scheduling
Register Allocation

2



Data-Dependence Graphs

I In SSA, every variable has only one definition in the code

I The instruction that defines the variable and the variable can be
identified

I We do not need variables anymore

I SSA removes output dependences

I Represent instructions in a data-dependence graphs

I If an instruction has multiple return values (i.e. divmod)
use tuples and projection instructions

I Inside a basic block, graph is acyclic

3



Data-Dependence Graphs

T ← start
M ← proj(T , mem)
A ← proj(T , args)
a1 ← proj(A, 0)
a2 ← proj(A, 1)
a3 ← add(a1, a2)

return(M, a3)

4



Simple Scalar Transformations
Constant Folding, Strength Reduction, Algebraic Identities

I All constant expressions are evaluated

I On SSA graphs these are just graph transformations

I When cross-compiling: Obey target machine arithmetic!

I Be careful when operations cause side-effects:

int main() {

int x = 5 / 0;

return 0;

}

trap must also be caused when program is run

I Optimize all algebraic identities
x + 0, x & 0, x · 1, x − x , . . .

I Reduce strength of operators
2 · x → x + x , 5 · x → x � 2 + x , and so on

I They come not only from user code but are left over by other
optimizations

5



Simple Scalar Transformations
Constant Folding, Strength Reduction, Algebraic Identities

I Normalize expressions for commutative operations

Block 75

Return 82

AddIs 80

ConstIs 0x2 79SubIs 78

ConstIs 0x1 77

1

0

10

01

Block 100

Return 108

SubIs 106

ConstIs 0x3 105

1

0

01

I Interplay of several small local optimizations

(1− x) + 2
= (1 + (−x)) + 2 Normalize − to +
= −x + (1 + 2) Associativity
= −x + 3 Fold constant
= 3− x Local optimize

6



Common Subexpression Elimination (CSE)

I Goal: Avoid recomputation of equal expressions

I Again:
I Not only in code written explicitly by the programmer
I Also stems from address arithmetic, other optimizations

I Advantages:
I Save computations

I Disadvantages:
I Possibly increases register pressure
I Constants often do not have to be materialized in a register

7



Common Subexpression Elimination (CSE)
Example

I Address arithmetic of an access of a struct in an array

struct pt {

int x, y;

};

int foo(struct pt *arr) {

int i;

...

arr[i].x = ...;

arr[i].y = ...;

}

The frontend produces:
p ← param(0)

a1 ← mul(i , 8)
a2 ← add(a1, p)
a3 ← add(a2, 0)

M2 ← store(M1, a3, v1)
a4 ← mul(i , 8)
a5 ← add(a4, p)
a6 ← add(a5, 4)

M3 ← store(M2, a6, v2)

I a2 and a5 have always the same value

I The common subexpressions can be eliminated

8



Common Subexpression Elimination (CSE)
Example

I Address arithmetic of an access of a struct in an array

struct pt {

int x, y;

};

int foo(struct pt *arr) {

int i;

...

arr[i].x = ...;

arr[i].y = ...;

}

Optimized version
p ← param(0)

a1 ← mul(i , 8)
a2 ← add(a1, p)

M2 ← store(M1, a2, v1)
a6 ← add(a2, 4)

M3 ← store(M2, a6, v2)

I a2 and a5 have always the same value

I The common subexpressions can be eliminated

8



Common Subexpression Elimination
How does it work?

I The simple version is restricted to a basic block

I Can easily be extended to dominators

I We can compare two instruction (variables) for equality easily:
I Operator the same
I Operands pairwise equal (recursive check)

I Maintain a hash table for every basic block
that holds all instructions of the block

I Hash code of an instruction derived from hash code of the operands
and from the operator

I Whenever we want to add an instruction to the block,
look in the hash table whether the expression is already computed

I Without SSA, that would not be that simple!
I Multiple definitions of the same variable possible!

I Again:
I Everything only for scalar, alias-free variables
I Cannot look inside the memory

9



Common Subexpression Elimination
Again those potentially aliased variables. . .

int foo(int i, int *p) {

int x = *p + i;

int y = x * 2;

...

int a = *p + i;

int y = x * 2;

}

I Depending on the code in
the middle it may be hard to
do CSE

I Compiler might not be able
to prove that there no
aliased access to *p

int foo(int i, int *p) {

int dp = *p;

int x = dp + i;

int y = x * 2;

...

int a = dp + i;

int y = x * 2;

}

I User knows p is alias free

I CSE can be done on
expressions at the end

10



Common Subexpression Elimination
. . . and register pressure

I Consider following example again

p ← param(0)
a1 ← mul(i , 4)
a2 ← add(a1, p)

`1 : M2 ← store(M1, a2, v1)
...

`2 : a6 ← add(a2, 4)
M3 ← store(M2, a6, v2)

...
← τ(a1, . . . )

I Between `1 and `2 both, a1 and a2 are live
I Two registers would be occupied with a1 and a2

I If the register pressure is very high between `1 and `2

one of both might be spilled
I Perhaps recomputing add(a1, p) would be better
I Could have inserted loads and stores to save an addition(!)

11



Common Subexpression Elimination
. . . and register pressure

Definition (Liveness)

A variable v is live at an instruction ` if there is a path from ` to a use
of v that does not go through the definition.

Definition (Register Pressure)

The number of simultaneously live variables at an instruction ` is called
the register pressure at `.

I CSE might increase register pressure

I Depends on the register file size of the machine

I IR is unaware of the constraints of the machine

12



Operator Strength Reduction in Loops (OSR)

I Variables that are linearly dependent on the loop counter

for (i = 0; i < n; i++) {

int j = 25 * i;

...

}

I Multiplication in the loop is potentially expensive.

I Compiler rewrites it to:

for (i = 0, j = 0; i < n; i++, j += 25) {

...

}

I However, we now have two variables live in the loop

I Kills multiplications, but raises register pressure

I careful trade-off needed!

13



Operator Strength Reduction in Loops (OSR)
Example

I Why is that useful? Array addressing:

for (i = 0; i < n; i++) {

a[i] = 2 * b[i];

}

I really is:

for (i = 0; i < n; i++) {

*(a + sizeof (*a) * i) = 2 * *(b + sizeof (*b) * i);

}

I can be rewritten to:

pa = a; pb = b;

for (i = 0; i < n; i++) {

*pa = 2 * *pb;

pa += sizeof (*a); pb += sizeof (*b);

}

I When we do not need the loop counter at all:

pa = a; pb = b; m = a + sizeof (*a) * n;

for (; a < m; ) {

*pa = 2 * *pb;

pa += sizeof (*a); pb += sizeof (*b);

}

14



Operator Strength Reduction in Loops (OSR)
Example

I Why is that useful? Array addressing:

for (i = 0; i < n; i++) {

a[i] = 2 * b[i];

}

I really is:

for (i = 0; i < n; i++) {

*(a + sizeof (*a) * i) = 2 * *(b + sizeof (*b) * i);

}

I can be rewritten to:

pa = a; pb = b;

for (i = 0; i < n; i++) {

*pa = 2 * *pb;

pa += sizeof (*a); pb += sizeof (*b);

}

I When we do not need the loop counter at all:

pa = a; pb = b; m = a + sizeof (*a) * n;

for (; a < m; ) {

*pa = 2 * *pb;

pa += sizeof (*a); pb += sizeof (*b);

}

14



Operator Strength Reduction in Loops (OSR)
Example

I Why is that useful? Array addressing:

for (i = 0; i < n; i++) {

a[i] = 2 * b[i];

}

I really is:

for (i = 0; i < n; i++) {

*(a + sizeof (*a) * i) = 2 * *(b + sizeof (*b) * i);

}

I can be rewritten to:

pa = a; pb = b;

for (i = 0; i < n; i++) {

*pa = 2 * *pb;

pa += sizeof (*a); pb += sizeof (*b);

}

I When we do not need the loop counter at all:

pa = a; pb = b; m = a + sizeof (*a) * n;

for (; a < m; ) {

*pa = 2 * *pb;

pa += sizeof (*a); pb += sizeof (*b);

}

14



Operator Strength Reduction in Loops (OSR)
Example

I Why is that useful? Array addressing:

for (i = 0; i < n; i++) {

a[i] = 2 * b[i];

}

I really is:

for (i = 0; i < n; i++) {

*(a + sizeof (*a) * i) = 2 * *(b + sizeof (*b) * i);

}

I can be rewritten to:

pa = a; pb = b;

for (i = 0; i < n; i++) {

*pa = 2 * *pb;

pa += sizeof (*a); pb += sizeof (*b);

}

I When we do not need the loop counter at all:

pa = a; pb = b; m = a + sizeof (*a) * n;

for (; a < m; ) {

*pa = 2 * *pb;

pa += sizeof (*a); pb += sizeof (*b);

}

14



Operator Strength Reduction in Loops (OSR)
Summary

I Never do this yourself

I Confer to alias problems from last lecture:
a[i] is better analyzable than *a++

I The compiler can do it easily for all variables (scalar, alias-free!)
that are linearly dependent on the loop counter

15



Inlining

I Remove function calls by pasting-in the body of called function at
the call site

I Advantages:
I Save overhead for call:

F Saving the return address, the call
F Moving parameters to specific registers or on the stack: memory

operations

I Function body can be optimized within context of caller
I If the body is small, call overhead might be larger than executed

code of the body

I Disadvantages:
I Potential code bloat
I Larger instruction cache footprint

I Limitations:
I Indirect calls hard to inline: need to know where it goes
I Especially severe in OO-programs (dynamic dispatch)

16



Inlining
Example

I Scalar Product of a 2D point encapsulated in a function
I foo just forms the required struct and copies arguments in it
I These copies are just there to satisfy the signature of sprod

float sprod(struct pt *p) {

return p->x * p->x + p->y * p->y;

}

float foo(float x, float y) {

struct pt p;

p.x = x;

p.y = y;

return sprod (&p);

}

I After inlining the body of sprod

float foo(float x, float y) {

struct pt p;

p.x = x;

p.y = y;

return p.x * p.x + p.y * p.y;

}

I cont’d
17



Inlining
Example

I p is still kept in memory (on the call stack of foo)

I p.x = ... results in memory stores and ... = p.x in loads

I To remove these stores and loads the compiler has to prove that
there are no aliased accesses inbetween

I Easy in this case

I After load/store optimizations and some scalarization

float foo(float x, float y) {

float t1 = x;

float t2 = y;

return t1 * t1 + t2 * t2;

}

I And finally copy propagation

float foo(float x, float y) {

return x * x + y * y;

}

I We get what we want

18



Inlining
Summary

I Indispensible for small functions (getters, setter, . . . )

I Allows to implement abstraction with functions efficiently

I Beware of function pointers!

I Polymorphism in OO languages are function pointers
hidden under a nice syntax!

I Small functions like sprod should go in header files to be inlineable:

static inline float sprod(const struct pt *p) {

return p->x * p->x + p->y * p->y;

}

I If you put them in the .c file you need whole-program compilation

I Cannot compile every .c separately
. . . or inlining has to be done by the linker ,

19



Contents

Data-Dependence Graphs

Optimizations on the IR
Constant Folding
Common Subexpression Elimination
Operator Strength Reduction in Loops

Backend Optimizations
Instruction Selection
Instruction Scheduling
Register Allocation

20



Overview

I Implement the constraints of the target processor

I Some machines are harder, some easier

I Some have very wild constraints that are hard to tackle
algorithmically

I Hardware designers thought to do something very smart. . .

I . . . compiler writers are just sighing

I The hardware guys should have to write the code generator! ,
I Some examples:

I On Sparc, doubles start at even register numbers:
Turns optimal RA in basic block NP-complete

I Split register files for address generation and normal computations
on some DSPs: Have to minimize moves between register files

I Parts of a register are accessible under a different name
I and many more . . .

I All these render the backend’s task often NP-complete on
straight-line code

I The best is: A standard RISC machine like Alpha

21



Principal Phases in a Backend

Back End

Instruction
Selection

Instruction
Scheduling

Register
Allocation

Select processor

instructions for

operations in the IR

Create a linear order

of the instructions

Map variables

of the IR to

processor’s registers

Bad news

All three phases are NP-complete and inter-dependent

22



Instruction Selection

I IR operator set is as minimalistic as possible

I Processors often have more instructions than the operators of the IR

I Interdependences with register allocation:

I Interdependences with scheduling:
I Not every instruction can be decoded by every decoder
I Not every instruction can be executed by every functional unit
I Latency can depend on instructions before/after
I Not to talk about things like µ-op fusion and so on

23



Instruction Selection

I x86 has the powerful lea instruction that computes

lea r1, [r2 + r3 * scale] + imm ⇐⇒ r1 ← r2+r3·scale+imm

for scale ∈ 1, 2, 4, 8 and 0 ≤ imm ≤ 232 − 1 using the addressing
path

I Many CPUs feature a multiply-and-add instruction

r1 ← r2 · r3 + r4

because it is easy to implement in hardware and occurs often in
practice

I Digital signal processors (DSPs) often have more complex
instructions to support fixed-point arithmetic and operations
common in video-/audio codecs

I Post-increment loads/stores on ARM/PowerPC

24



Instruction Scheduling

I Order the instructions linearly such that instruction level parallelism
can be exploited by the CPU

I Not that important for out-of-order CPUs

I Recent Intel CPUs are in-order again!

I There scheduling is important since the processors fills the pipelines
depending on the order in the instruction stream

I VLIW processors allow the compiler to fill the pipelines directly

I There scheduling is very important

I Instruction-level parallelism increases register pressure

I Strong interdependence with register allocation

25



Register Allocation

I Put as many variables in registers as possible

I Access to registers at least 3× faster than cache access

I Good register allocation is decisive for program performance

I What to do do if there are more scalar, alias-free variables alive than
registers?

I Some variables have to be spilled to memory

I Assume that instructions are already linearly ordered
I Necessary because we need to know where an instruction is live

I Interdependences to instruction selection:
I Inserts new instructions (spill code)
I Could also rematerialize (recompute)

I Interdependences to scheduling:
I Register pressure dominated by scheduling
I Amount of inserted spill code determined by schedule
I Need to reschedule after spill-code insertion because instruction

stream changed

26



Register Allocation

I Clever heuristics exist

I Live ranges of variables are split around high-pressure areas where
they are not used

I Provide as many scalar, alias-free variables as possible

I The compiler can then figure out when to put which in memory

I Much easier for the compiler than the other way around!

27


	Data-Dependence Graphs
	Optimizations on the IR
	Constant Folding
	Common Subexpression Elimination
	Operator Strength Reduction in Loops

	Backend Optimizations
	Instruction Selection
	Instruction Scheduling
	Register Allocation


