Advanced C Programming

Compilers |l

Sebastian Hack
hackQcs.uni-sb.de

Christoph Weidenbach

weidenbach@mpi-inf.mpg.de

Winter Term 2008,/09

I COMPUTER SCIENCE

Contents

Today: A small high-level glance at some compiler optimizations

Data-Dependence Graphs

Optimizations on the IR
Constant Folding
Common Subexpression Elimination
Operator Strength Reduction in Loops

Backend Optimizations
Instruction Selection
Instruction Scheduling
Register Allocation

Data-Dependence Graphs

> In SSA, every variable has only one definition in the code

v

The instruction that defines the variable and the variable can be
identified

We do not need variables anymore

SSA removes output dependences

Represent instructions in a data-dependence graphs

vV v vv

If an instruction has multiple return values (i.e. divmod)
use tuples and projection instructions

> Inside a basic block, graph is acyclic

Data-Dependence Graphs

[=] Block 63
| 0 ° [l |
| ProjM 171 ‘ ‘ ProjT T_args 70 ‘ ‘ ProjX X_initial_exec 67 ‘
T « start - - -
M — proj(T,mem)
)

A «— proj(T,args)

a; < proj(A,0)

a, «— proj(A,1)

as < add(ag, a»)
return(M, a3)

Simple Scalar Transformations
Constant Folding, Strength Reduction, Algebraic Identities

All constant expressions are evaluated
On SSA graphs these are just graph transformations

When cross-compiling: Obey target machine arithmetic!

vV v v v

Be careful when operations cause side-effects:

int main() {
int x = 5 / 0;
return O;

b

trap must also be caused when program is run

» Optimize all algebraic identities
x+0, x&0, x-1, x—x, ...

» Reduce strength of operators
2:Xx—>x+x,5x—>x<K2+ x, and so on

» They come not only from user code but are left over by other
optimizations

Simple Scalar Transformations

Constant Folding, Strength Reduction, Algebraic Identities

» Normalize expressions for commutative operations

1

Block 75

Constls 0x1 77

0

Subls 78| | Constls 0x2 79 |

Block 100

Constls 0x3 105

Subls 106

Return 108

» Interplay of several small local optimizations

(1-x)+2

—x+(1+2)
= —x+3
3—x

1+ (=x))+2

Normalize — to +
Associativity

Fold constant
Local optimize

Common Subexpression Elimination (CSE)

v

Goal: Avoid recomputation of equal expressions

v

Again:
> Not only in code written explicitly by the programmer
> Also stems from address arithmetic, other optimizations

v

Advantages:
> Save computations
» Disadvantages:

> Possibly increases register pressure
» Constants often do not have to be materialized in a register

~

Common Subexpression Elimination (CSE)

Example

» Address arithmetic of an access of a struct in an array

struct pt {
int x, y;

i

int foo(struct
int ij;
arr[i].x
arr[i] .y

The frontend produces:

p
ai
a
as

Mo
dg

. 35

E)
Mz

pt *arr) {

» a, and as have always the same value

rrrrr1r117

param(0)
mul(/,8)

add(a, p)
add(ag, 0)
store(My, as, v1)
mul(/,8)

add(a4a p)
add(a5, 4-)
store(Ma, ag, v2)

» The common subexpressions can be eliminated

Common Subexpression Elimination (CSE)

Example

» Address arithmetic of an access of a struct in an array

struct pt {
int x, y;

i

int foo(struct
int ij;
arr[i].x
arr[i] .y

pt *arr) {

Optimized version

p
ai
an

M>
ae

Mz

> a, and as have always the same value

rrr1r11

param(0)
mul(/,8)

add(az, p)
store(My, az, v1)
add(az, 4)
store(Ma, ag, v2)

» The common subexpressions can be eliminated

Common Subexpression Elimination

How does it work?

>

The simple version is restricted to a basic block

» Can easily be extended to dominators

» We can compare two instruction (variables) for equality easily:

> Operator the same
> Operands pairwise equal (recursive check)

Maintain a hash table for every basic block
that holds all instructions of the block
Hash code of an instruction derived from hash code of the operands
and from the operator
Whenever we want to add an instruction to the block,
look in the hash table whether the expression is already computed
Without SSA, that would not be that simple!
> Multiple definitions of the same variable possible!
Again:
» Everything only for scalar, alias-free variables
» Cannot look inside the memory

Common Subexpression Elimination

Again those potentially aliased variables. . .

int foo(int i, int *p) {
int x = *p + i;
int y = x * 2;

int a
int y

*p + i,
X *x 2;

» Depending on the code in
the middle it may be hard to
do CSE

» Compiler might not be able
to prove that there no
aliased access to *p

int foo(int i, int *p) {

int
int
int
int
int

dp

X =

y

a =

y

*p;
dp + i;
X * 2;

dp + i;
X * 2;

» User knows p is alias free

» CSE can be done on
expressions at the end

Common Subexpression Elimination
. and register pressure
» Consider following example again
p < param(0)
ap < mul(i,4)
ap < add(as, p)
ly: My — store(My, as, v1)

b : ag «— add(32,4)
Mz — store(M,, ag, v»)

<—T(31,...)

» Between ¢; and ¢5 both, a; and a, are live
» Two registers would be occupied with a; and ay
» If the register pressure is very high between ¢; and /5
one of both might be spilled
» Perhaps recomputing add(a;, p) would be better
» Could have inserted loads and stores to save an addition(!)

Common Subexpression Elimination

. and register pressure

Definition (Liveness)

A variable v is live at an instruction £ if there is a path from ¢ to a use
of v that does not go through the definition.

Definition (Register Pressure)

The number of simultaneously live variables at an instruction ¢ is called
the register pressure at /.

» CSE might increase register pressure
» Depends on the register file size of the machine

» IR is unaware of the constraints of the machine

Operator Strength Reduction in Loops (OSR)

v

Variables that are linearly dependent on the loop counter
for (i = 0; i < n; i++) {
int j = 25 * ij;

}

» Multiplication in the loop is potentially expensive.
» Compiler rewrites it to:

for (i = 0, j = 0; i < nj; i++, j += 25) {
}

» However, we now have two variables live in the loop
» Kills multiplications, but raises register pressure

» careful trade-off needed!

Operator Strength Reduction in Loops (OSR)
Example
» Why is that useful? Array addressing:
for (i = 0; i < n; i++) {
alil = 2 * b[il;
}

Operator Strength Reduction in Loops (OSR)

Example
» Why is that useful? Array addressing:
for (i = 0; i < n; i++) {
alil = 2 * b[il;
}
> really is:
for (i = 0; i < n; i++) {
*(a + sizeof(*xa) * i) = 2 * *x(b + sizeof (*b) * i);

}

Operator Strength Reduction in Loops (OSR)

Example

» Why is that useful? Array addressing:

for (i = 0; i < n; i++) {
alil = 2 * b[il;
}
> really is:
for (i = 0; i < n; i++) {
*(a + sizeof(*xa) * i) = 2 * *x(b + sizeof (*b) * i);
}

» can be rewritten to:
pa = a; pb = b;
for (i = 0; i < n; i++) {
*pa = 2 x *pb;
pa += sizeof (*¥a); pb += sizeof (*¥b);

Operator Strength Reduction in Loops (OSR)

Example

» Why is that useful? Array addressing:

for (i = 0; i < n; i++) {
alil = 2 * b[il;
}
> really is:
for (i = 0; i < n; i++) {
*(a + sizeof(*xa) * i) = 2 * *x(b + sizeof (*b) * i);
}

> can be rewritten to:

pa = a; pb = b;
for (i = 0; i < n; i++) {
*pa = 2 * *xpb;
pa += sizeof (*¥a); pb += sizeof (*¥b);

}
» When we do not need the loop counter at all:

pa = a; pb = b; m = a + sizeof (*a) * n;
for (; a < m;) {

*pa = 2 * *xpb;

pa += sizeof (xa); pb += sizeof (xb);

Operator Strength Reduction in Loops (OSR)

Summary

» Never do this yourself

» Confer to alias problems from last lecture:
a[i] is better analyzable than *a++

» The compiler can do it easily for all variables (scalar, alias-free!)
that are linearly dependent on the loop counter

Inlining

» Remove function calls by pasting-in the body of called function at
the call site
» Advantages:
» Save overhead for call:
* Saving the return address, the call
* Moving parameters to specific registers or on the stack: memory
operations
> Function body can be optimized within context of caller
> |If the body is small, call overhead might be larger than executed
code of the body
» Disadvantages:

> Potential code bloat
> Larger instruction cache footprint

» Limitations:

> Indirect calls hard to inline: need to know where it goes
> Especially severe in OO-programs (dynamic dispatch)

Inlining

Example
| 4
| 4
>

Scalar Product of a 2D point encapsulated in a function
foo just forms the required struct and copies arguments in it
These copies are just there to satisfy the signature of sprod

float sprod(struct pt *p) {
return p->x * p->X + p->y * p->y;

}

float foo(float x, float y) {
struct pt p;
P-X = X;
P-y = ¥,
return sprod (&p);
}

After inlining the body of sprod

float foo(float x, float y) {
struct pt p;
P.-X = X;
p-y = Vs
return p.x * p.x + p.y * p.y;
b

cont'd

Inlining

Example
> p is still kept in memory (on the call stack of foo)
> p.x = ... results in memory stores and ... = p.xin loads
» To remove these stores and loads the compiler has to prove that

there are no aliased accesses inbetween

» Easy in this case

After load/store optimizations and some scalarization

float foo(float x, float y) {
float t1 = x;
float t2 = y;
return tl1 *x tl + t2 *x t2;
+

And finally copy propagation

float foo(float x, float y) {
return x * x + y * y;

}

We get what we want

Inlining

Summary

Indispensible for small functions (getters, setter, ...)
Allows to implement abstraction with functions efficiently

Beware of function pointers!

vV v v v

Polymorphism in OO languages are function pointers
hidden under a nice syntax!

» Small functions like sprod should go in header files to be inlineable:

static inline float sprod(const struct pt *p) {
return p->x * p->X + p->y * p->y;
+
> If you put them in the .c file you need whole-program compilation

» Cannot compile every .c separately
. or inlining has to be done by the linker ®

Contents

Backend Optimizations
Instruction Selection
Instruction Scheduling
Register Allocation

20

Overview

| 2

Implement the constraints of the target processor

» Some machines are harder, some easier

v

vV v v Yy

Some have very wild constraints that are hard to tackle
algorithmically

Hardware designers thought to do something very smart. ..
...compiler writers are just sighing
The hardware guys should have to write the code generator! ©®

Some examples:

> On Sparc, doubles start at even register numbers:
Turns optimal RA in basic block NP-complete

> Split register files for address generation and normal computations
on some DSPs: Have to minimize moves between register files

> Parts of a register are accessible under a different name

> and many more ...

All these render the backend's task often NP-complete on
straight-line code

The best is: A standard RISC machine like Alpha

Principal Phases in a Backend

Back End
Instruction Instruction Register
Selection Scheduling Allocation
Select processor Create a linear order Map variables
instructions for of the instructions of the IR to
operations in the IR processor’s registers
Bad news

All three phases are NP-complete and inter-dependent

22

Instruction Selection

IR operator set is as minimalistic as possible
Processors often have more instructions than the operators of the IR

Interdependences with register allocation:

vV Yy Vv Yy

Interdependences with scheduling:

> Not every instruction can be decoded by every decoder

> Not every instruction can be executed by every functional unit
> Latency can depend on instructions before/after

> Not to talk about things like p-op fusion and so on

Instruction Selection

» x86 has the powerful 1ea instruction that computes
lea rl, [r2 + r3 * scale] + imm <= nr <« mn+r-scalet+imm

for scale € 1,2,4,8 and 0 < imm < 232 — 1 using the addressing
path

» Many CPUs feature a multiply-and-add instruction
n«mn-r3+n
because it is easy to implement in hardware and occurs often in

practice

» Digital signal processors (DSPs) often have more complex
instructions to support fixed-point arithmetic and operations
common in video-/audio codecs

> Post-increment loads/stores on ARM/PowerPC

Instruction Scheduling

Order the instructions linearly such that instruction level parallelism
can be exploited by the CPU

Not that important for out-of-order CPUs

» Recent Intel CPUs are in-order again!

» There scheduling is important since the processors fills the pipelines

vV v v v

depending on the order in the instruction stream

VLIW processors allow the compiler to fill the pipelines directly
There scheduling is very important

Instruction-level parallelism increases register pressure

Strong interdependence with register allocation

Register Allocation

Put as many variables in registers as possible
Access to registers at least 3x faster than cache access

Good register allocation is decisive for program performance

vV v v v

What to do do if there are more scalar, alias-free variables alive than
registers?
» Some variables have to be spilled to memory
» Assume that instructions are already linearly ordered
> Necessary because we need to know where an instruction is live
» Interdependences to instruction selection:

> Inserts new instructions (spill code)
> Could also rematerialize (recompute)

» Interdependences to scheduling:
> Register pressure dominated by scheduling
> Amount of inserted spill code determined by schedule

> Need to reschedule after spill-code insertion because instruction
stream changed

Register Allocation

Clever heuristics exist

v

v

Live ranges of variables are split around high-pressure areas where
they are not used

v

Provide as many scalar, alias-free variables as possible

v

The compiler can then figure out when to put which in memory

v

Much easier for the compiler than the other way around!

~
N

	Data-Dependence Graphs
	Optimizations on the IR
	Constant Folding
	Common Subexpression Elimination
	Operator Strength Reduction in Loops

	Backend Optimizations
	Instruction Selection
	Instruction Scheduling
	Register Allocation

