
Advanced C Programming
Winter Term 2008/09

Guest Lecture by Markus Thiele <thiele@st.cs.uni-sb.de>

Lecture 14:

Parallel Programming with OpenMP

Motivation: Why parallelize?

 Tact frequencies are reaching their limit

 Multi-core systems are becoming more and more

common

 Automatic parallelization is still in its infancy

“The free lunch is over.”
– Herb Sutter (2005)

Options for Parallelization

 Platform specific APIs

 POSIX Threads

 …

 Generally provide:

 Forking into threads (often functions as threads)

 Joining threads

 Synchronization with Mutexes, Semaphores, etc.

Our focus today: OpenMP

 Cross-platform API for C/C++ and Fortran

 In development since about 1997

 Open standard

 Widely supported (in recent compiler versions)

 GNU (GCC 4.2 and higher)

 Microsoft (Visual C++ 2005 and newer)

 Intel, Sun, IBM, etc.

 High-level API

http://www.OpenMP.org/

Experience Report: OpenMP

for(j=start;j<len;j++)
data[j] = (Qfloat)(y[i]*y[j]*

(this->*kernel_function)(i,j));

for(i=0;i<l;i++)
kvalue[i] =

Kernel::k_function(x,model->SV[i],model->param);

#pragma omp parallel for private(j)

#pragma omp parallel for private(i)

 Parallelizing libsvm

…

…

…

 Effect: 2 to 5 times faster on 16 cores

Integration

 Compiler Feature

gcc –fopenmp …

 Directives

#pragma omp …

 Library

#include <omp.h>

 Conditional Compilation

_OPENMP macro

 Environment Variables

e.g. OMP_NUM_THREADS

Computation Model

 Fork-and-Join model

Master Thread

Worker 1

Worker 2

Fork Join

Parallel Section

“Team” of Threads

Team Size

 How many threads are created?

 By default as many as there are cores

 Can be overridden by

 OMP_NUM_THREADS environment variable

 omp_set_num_threads() library function

 num_threads clause in a specific directive

Memory Model

 Shared memory with thread local storage

Shared Memory

Thread 1 Thread 2 Thread N…

Private Memory 1 Private Memory 2 Private Memory N…

Forking

 Creates a team of threads, executing the following code
block (i.e. the exact same code)

 Clauses change behavior

 Block may contain synchronization directives

 Block may contain work sharing constructs to distribute
work over threads in a specific way

 Implicit join at the end of the block

#pragma omp parallel [<clauses>]
{

…
}

Clauses: Parallelism

 Normally, the default number of threads (or the number

specified by the environment variable OMP_NUM_THREADS)

is created and run in parallel

 Clauses may change this:

 num_threads(<integer expression>)
The number of threads created will correspond to the

number the given expression evaluates to.

 if(<boolean expression>)
If the given expression evaluates to false, the block will be

executed sequentially in the master thread only

Clauses: Storage Association

 By default, all variables are shared among threads

 Clauses may change this:

 private(<list of variables>)
Each thread will operate on a private version of the listed

variables (note that the value of the variable is undefined on

entry and exit)

 Shared(<list of variables>)
All threads will explicitly (this is the default) operate on the

same original version of the variable

 default({shared|none})
Changes the default storage association; If none is specified,

all used variables must explicitly be declared private or

shared.

Clauses: Private Variables

 Normally, private versions of variables are uninitialized

and the value of the original variable at the end of the

block is undefined

 Variations of the private clause may change this:

 firstprivate(<list of variables>)
Listed variables are private and are initialized with the

value of the original object before entry

 lastprivate(<list of variables>)
Listed variables are private and at the end of the block,

the original object will receive the value of the private

version from the sequentially last operation

Clauses: Shared Variables

 Normally, shared variables are subject to race conditions

 The reduction clause avoids race conditions for

certain computations:

 reduction(<operator>: <list of variables>)
If the listed variables are only updated with allowed

operations, code is generated to avoid race conditions

 Allowed operations (for variable x):

x = x <operator> <expression>
x = <expression> <operator> x
x++, ++x, x--, --x
x <operator>= <expression>

 The value of x is undefined until the end of the block

Synchronization Directives

 #pragma omp barrier
Threads will sleep when reaching the barrier until all
other threads have reached the barrier

 #pragma omp critical
{ … }

The critical section will be executed by all threads, but
only by one thread at a time

 #pragma omp atomic
<expression statement>

Light weight alternative to make a single memory update
atomic (executed without interruption by another thread)

Synchronization Directives

 #pragma omp flush [<list of variables>]
Make sure all threads have a consistent view of the listed

variables (or all shared variables, if none are listed)

 #pragma omp ordered
{ … }

Preserve apparent sequential execution order inside the

given block (this is very inefficient, as it does not allow

much actual parallelism)

Work Sharing: Single Execution

 #pragma omp single [<clauses>]
{ … }

The given block is only executed once by a single thread
(there is no implicit barrier, so other threads will move on
past the block as soon as they’re ready)

 #pragma omp master [<clauses>]
{ … }

The given block is only executed once by the master
thread (again with no implicit barrier)

 These directives support the Storage Association clauses
as described before

Work Sharing: Sections

 #pragma omp sections [<clauses>]
{

…
#pragma omp section
…
#pragma omp section
…

}

 Each section (separated by the section directive) is
executed exactly once by one thread (left-over threads
wait)

 There is an implicit barrier at the end of the sections
block, which may be lifted with the nowait clause

Work Sharing: Loops

 #pragma omp for [<clauses>]

<for loop>

 #pragma omp do [<clauses>]

<do loop>

 The loop iterations will be executed in parallel by all

available threads

 There is an implicit barrier at the end of the sections

block, which may be lifted with the nowait clause

Work Sharing: Shorter Notation

 #pragma omp parallel for [<clauses>]
<for loop>

… is equivalent to …

 #pragma omp parallel [<clauses>]
{

#pragma omp for [<clauses>]
<for loop>

}

 The same shorter notation may be applied to do and

sections blocks

Load Balancing

 The schedule clause affects the way loop iterations are

assigned to threads in a team

 schedule({static|dynamic|guided}[,<chunk size>])

schedule(runtime)

static Each thread is statically assigned a chunk of iterations (if no chunk

size is specified, the iteration space is divided approximately equally)

round-robin

dynamic Chunks of iterations are assigned to threads that are waiting for work

and every thread waits for a new chunk when its work is done

guided Behaves like dynamic, but the chunk size starts out at an

approximately even distribution and then exponentially decreases

down to the specified chunk size (or 1).

runtime The schedule to use is read from the OMP_SCHEDULE environment

variable

OpenMP Runtime Library

 Provides information about the current thread and the
current team of threads
 omp_get_thread_num() – returns the current thread

ID (the master thread is always 0)
 omp_get_num_threads() – returns the current

number of threads to be used by a team
 omp_get_num_procs() – returns the maximum

number of available processors

 omp_in_parallel() – returns true if currently in
parallel region, false otherwise

 omp_get_dynamic() – returns true if dynamic thread
adjustment is enabled

 omp_get_wtime() – returns the “wall clock” time

 omp_get_wtick() – returns the number of seconds
between clock ticks

OpenMP Runtime Library

 Allows to change some settings

 omp_set_num_threads() – sets the number of threads

to be used by a team

 omp_set_dynamic() – enable or disable dynamic

thread adjustment (this can also be done with the

environment variable OMP_DYNAMIC)

 Provides traditional locking mechanisms

 omp_init_lock(), omp_destroy_lock(),

omp_set_lock(), omp_unset_lock(),

omp_test_lock()

More Information

 For much more information about OpenMP, visit the

OpenMP website at…

http://www.OpenMP.org/

Conclusions

 Advantages

 Simple and intuitive

 High level (hides many ugly details)

 Can be incrementally applied to existing code

 Can easily be enabled and disabled

 Disadvantages

 Requires compiler support (recent compiler versions)

 Limited to a certain memory architecture

 Limited fine-grained control

 Limited error handling

Lecture 14:

Parallel Programming with OpenMP

Thank you for your attention!

Questions? Comments? Suggestions?

