
Chapter 3 

The Ellipsoid Method 

In 1979 a note of L. G. Khachiyan indicated how an algorithm, the so-called 
ellipsoid method, originally devised for nonlinear nondifferentiable optimization, 
can be modified in order to check the feasibility of a system of linear inequalities 
in polynomial time. This result caused great excitement in the world of math
ematical programming since it implies the polynomial time solvability of linear 
programming problems. 

This excitement had several causes. First of all, many researchers all over the 
world had worked hard on the problem of finding a polynomial time algorithm 
for linear programming for a long time without success. So a really major open 
problem had been solved. 

Secondly, many people believe that f1J> = %.'3l' n co-%f1J> - cf. Section 1.1 -
and the linear programming problem was one of the few problems known to 
belong to %f1J> n co-%f1J> but that had not been shown to be in f1J>. Thus, a further 
indication for the correctness of this conjecture was obtained. 

Thirdly, the ellipsoid method together with the additional number theoret
ical "tricks" was so different from all the algorithms for linear programming 
considered so far that the method itself and the correctness proof were a real 
surprise. 

Fourthly, the ellipsoid method, although "theoretically efficient", did not prove 
to be "practically efficient". Therefore, controversies in complexity theory about 
the value of polynomiality of algorithms and about how to measure encoding 
lengths and running times - cf. Chapter 1 - were put into focus. 

For almost all presently known versions of the simplex method, there exist a 
few (artificial) examples for which this algorithm has exponential running time. 
The first examples of this type have been discovered by KLEE and MINTY (1972). 
Such bad examples do not exist for the ellipsoid method. But the ellipsoid 
method has been observed to be much slower than the simplex algorithm on the 
average in practical computation. In fact, BORGWARDT (1982) has shown that 
the expected running time of a version of the simplex method is polynomial and 
much better than the running time of the ellipsoid method. Although the ellipsoid 
method does not seem to be a breakthrough in applied linear programming, it 
is of value in nonlinear (in particular nondifferentiable) optimization - see for 
instance ECKER and KUPFERSCHMID (1983). 

As mentioned, nonlinear optimization is one of the roots of the ellipsoid 
method. The method grew out of work in convex nondifferential optimization 
(relaxation, subgradient, space dilatation methods, methods of central sections) 
as well as of studies on computational complexity of convex programming 
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problems. The history of the ellipsoid method and its antecedents has been 
covered extensively by BLAND, GOLDFARB and TODD (1981) and SCHRADER (1982). 
Briefly, the development was as follows. 

Based on his earlier work, SHOR (1970a,b) described a new gradient projection 
algorithm with space dilatation for convex nondifferential programming. YUDIN 
and NEMIRovsKn (1976a,b) observed that Shor's algorithm provides an answer 
to a problem discussed by LEVIN (1965) and - in a somewhat cryptical way 
- gave an outline of the ellipsoid method. The first explicit statement of the 
ellipsoid method, as we know it today, is due to SHOR (1977). In the language of 
nonlinear programming, it can be viewed as a rank-one update algorithm and is 
quite analogous to a variable metric quasi-Newton method - see GOFFIN (1984) 
for such interpretations of the ellipsoid method. This method was adapted by 
KHACHIYAN (1979) to state the polynomial time solvability oflinear programming. 
The proofs appeared in KHACHIYAN (1980). Khachiyan's 1979-paper stimulated 
a flood of research aiming at accelerating the method and making it more stable 
for numerical purposes - cf. BLAND, GOLDFARB and TODD (1981) and SCHRADER 
(1982) for surveys. We will not go into the numerical details of these modifications. 
Our aim is to give more general versions of this algorithm which will enable us 
to show that the problems discussed in Chapter 2 are equivalent with respect 
to polynomial time solvability and, by applying these results, to unify various 
algorithmic approaches to combinatorial optimization. The applicability of the 
ellipsoid method to combinatorial optimization was discovered independently by 
KARP and PAPADIMITRIOU (1980), PADBERG and RAo (1981), and GROTSCHEL, 
LoVASZ and SCHRIJVER (1981). 

We do not believe that the ellipsoid method will become a true competitor of 
the simplex algorithm for practical calculations. We do, however, believe that the 
ellipsoid method has fundamental theoretical power since it is' an elegant tool for 
proving the polynomial time solvability of many geometric and combinatorial 
optimization problems. 

YAMNITSKI and LEVIN (1982) gave an algorithm - in the spirit of the ellipsoid 
method and also based on the research in the Soviet Union mentioned above -
in which ellipsoids are replaced by simplices. This algorithm is somewhat slower 
than the ellipsoid method, but it seems to have the same theoretical applicability. 

Khachiyan's achievement received an attention in the nonscientific press that 
is - to our knowledge - unpreceded in mathematics. Newspapers and journals 
like The Guardian, Der Spiegel, Nieuwe Rotterdamsche Courant, Nepszabadsag, 
The Daily Yomiuri wrote about the "major breakthrough in the solution of 
real-world problems". The ellipsoid method even jumped on the front page 
of The New York Times: "A Soviet Discovery Rocks World of Mathematics" 
(November 7, 1979). Much of the excitement of the journalists was, however, due 
to exaggerations and misinterpretations - see LAWLER (1980) for an account of 
the treatment of the implications of the ellipsoid method in the public press. 

Similar attention has recently been given to the new method of KARMARKAR 
(1984) for linear programming. Karmarkar's algorithm uses an approach different 
from the ellipsoid method and from the simplex method. Karmarkar's algorithm 
has a better worst-case running time than the ellipsoid method, and it seems that 
this method runs as fast or even faster than the simplex algorithm in practice. 
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But Karmarkar's algorithm requires - like the simplex method - the complete 
knowledge of the constraint system for the linear programmming problem. And 
thus - as far as we can see - it cannot be used to derive the consequences to be 
discussed in this book. 

The unexpected theoretical and practical developments in linear programming 
in the recent years have prompted a revival of research in this area. The nonlinear 
approach to linear programming - using techniques like the Newton method and 
related descent procedures - receives particular attention. A number of further 
polynomial time methods for the solution of linear programming problems have 
been suggested - see for instance IRI and IMAI (1986), DE GHELLINCK and 
VIAL (1986), BETKE and GRITZMANN (1986), and SONNEVEND (1986) - and are 
under investigation with respect to their theoretical and practical behaviour. 
It is conceivable that careful implementations of these methods and, possibly, 
combinations of these methods with the simplex algorithm will lead to good codes 
for linear programming problems. Such codes may become serious competitors 
for the simplex codes that presently dominate the "LP-market". A thorough 
computational and theoretical study of such prospects is the recent paper GILL, 
MURRAY, SAUNDERS, TOMLIN and WRIGHT (1986), where variants of Karmarkar's 
algorithm are discussed in a general framework of projected Newton barrier 
methods and where these are compared with several versions of the simplex 
method with respect to practical efficiency for various classes of LP-problems. 

3.1 Geometric Background and an Informal Description 

The purpose of this section is to explain the geometric idea behind the ellip
soid method, to give an informal description of it, to demonstrate some proof 
techniques, and to discuss various modifications. We begin by summarizing well
known geometric facts about ellipsoids. Then we describe the ellipsoid method 
for the special case of finding a point in a polytope that is explicitly given by 
linear inequalities and known to be empty or full-dimensional. We also present 
proofs of a few basic lemmas, and finally, computational aspects of the ellipsoid 
method are discussed, in particular questions of "rounding" and quicker "shrink
ing". Proofs of more general results than described in this section can be found 
in Sections 3.2 and 3.3. 

The problems we address are trivial for the case of one variable. So we 
assume in the proofs throughout Chapter 3 that n ~ 2. 

Properties of Ellipsoids 

A set E ~ Rn is an ellipsoid if there exist a vector a E Rn and a positive definite 
n x n-matrix A such that 

(3.1.1) E = E(A, a) := {x E R n I (x - a)T A-I(x - a) :s 1}. 

(It will become clear soon that using A-I here, which is also a positive definite 
matrix, is more convenient than using A.) Employing the ellipsoidal norm II IIA 
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defined in Section 0.1 we can write equivalently 

(3.1.2) E(A,a) = {x E JR.n I IIx - aliA :5; I}, 

that is, the ellipsoid E (A, a) is the unit ball around a in the vector space JR. n 
endowed with the norm II IIA. SO in particular, the unit ball S (0,1) around zero 
(in the Euclidean norm) is the ellipsoid E (J, 0). Note that E determines A and a 
uniquely. The vector a is called the center of E, and we say that E(A, a) is the 
ellipsoid associated with A and a. 

For every positive definite matrix A there exists a unique positive definite 
matrix, denoted by A 1/2, such that A = A 1/2 A 1/2. It follows by a simple calculation 
that 

(3.1.3) E(A, a) = AI/ 2S(0, 1) + a. 

Thus every ellipsoid is the image of the unit ball under a bijective affine trans
formation. 

There are some interesting connections between geometric properties of the 
ellipsoid E = E (A, a) and algebraic properties of the matrix A which we want to 
point out here. Recall from (0.1.3) that all eigenvalues of A are positive reals. 
The diameter of E is the length of a longest axis and is equal to 2v'1\., where A is 
the largest eigenvalue of A. The longest axes of E correspond to the eigenvectors 
belonging to A. The width of E is the length of a shortest axis which is 2VI, 
where A. is the smallest eigenvalue of A. These observations imply that the ball 
S(a, VI) is the largest ball contained in E(A,a) and that S(a,v'1\.) is the smallest 
ball containing E(A,a). In fact, this is the geometric contents of inequality (0.1.9) . 

. Moreover, the axes of symmetry of E correspond to the eigenvectors of A. 
Figure 3.1 shows an ellipsoid graphically. It is the ellipsoid E (A, 0) ~ JR. 2 with 

A = diag«16,4f). The eigenvalues of A are A = 16 and A. = 4'with corresponding 
eigenvectors el = (l,O)T and e2 = (0, 1)T. SO the diameter of E(A,O) is 2v'1\. = 8, 
while the width is 2VI = 4. 

length yT 

·t--

length VA 

Figure 3.1 

The volume of an ellipsoid E = E(A, a), denoted by vol(E), depends only on 
the determinant of A and on the dimension of the space. More exactly, we have 

(3.1.4) vol(E(A, a» = vdetA· Vn, 
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where VII is the volume of the unit ball S(O, 1) in lR". It is well known that 

(3.1.5) 

where 

n"/2 1 ( 2en ) 11/2 

VII = r(n12 + 1) '" vnn --;;- , 
00 

r(x) := J e-ttx- 1 dt, for x > 0 

o 

is the gamma-function. The gamma-function satisfies 

r(n) = (n -1)1 for all n E N. 

We will frequently need bounds on VII' It turns out that for our purposes it will 
be enough to use the very rough estimates 

(3.1.6) 

which are derived from the facts that S(O, 1) contains {x E lR" I 0 ~ Xi ~ lin, i = 
1, ... , n} and that S(O, l)is contained in {x E lR" IlIxli oo ~ I}. 

If x f-----+ Dx + d is a bijective affine transformation T then vol(T(E(A, a))) = 
det DJ det A . VII' This in particular shows that 

vol(E(A,a» 
vol(E (B, b» 

vol(T(E(A, a))) 
vol(T(E(B, b)))' 

that is, the quotient of the volumes of two ellipsoids is invariant under bijective 
affine transformations. 

It will be necessary for us to optimize linear objective functions over ellipsoids. 
This is easy and can be derived from the obvious fact that, for c i= 0, max cT x, 
x E S(a, 1) is achieved at the vector a+c/llcil. Namely, suppose that E(A,a) ~ lR" 
is an ellipsoid and let c E lR" \ {O}. Set Q := Al/2. Recall from (3.1.3) that 
Q-l E(A, a) = S (0,1) + Q-1a = S (Q-l a, 1) and thus 

max{cT x I x E E(A, a)} = max{cT QQ-l x I Q-1 X E Q-l E(A,a)} 

= max{cTQy lye S(Q-l a, I)} 

TIT -1 
= c Q II Qc II Qc + c QQ a 

1 = cT--Ac+cTa 
JcTAc 

= cT a + J cT Ac. 

By setting 

(3.1.7) 
1 

b:= ~Ac, 
vcTAc 

Zmax := a+b, 

Zmin := a-b, 
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we therefore obtain 

(3.1.8) eT Zmax = max{eT x I x E E(A,a)} = eTa + JeT Ae = eTa + IIeIlA-I, 
eT Zmin = min{eT x I x E E(A,a)} = eTa - JeT Ae = eT a -lieIlA-I. 

This means that Zmax maximizes and Zmin minimizes eTx over E(A,a). The line 
connecting Zmax and Zmin goes through the center a of E (A, a) and has direction b. 
In Figure 3.2 we show the ellipsoid E(A,a) with A = diag«16,4)T), aT = (1,0.5) 
and objective function eT = (-2,-3). From (3.1.7) we obtain bT = (-3.2,-1.2), 
z~ax = (1,0.5) + (-3.2,-1.2) = (-2.2,-0.7) and Z~in = (1,0.5) - (-3.2,-1.2) = 
(4.2,1.7). 

Figure 3.2 

It is a well-known fact that every convex body is contained in a unique 
ellipsoid of minimal volume and contains a unique ellipsoid of maximal volume. 
Apparently, these two results have been discovered independently by several 
mathematicians - see for instance DANZER, GRUNBAUM and KLEE (1963, p. 139). 
In particular, these authors attribute the first result to K. Lowner. lOHN (1948) 
proved the following more general theorem, the "moreover" part of which will 
be of interest later. 

(3.1.9) Theorem. For every convex body K £; IR" there exists a unique ellipsoid 
E of minimal volume containing K. MoreOver, K contains the ellipsoid obtained 
from E by shrinking it from its center by a factor ofn. 0 

Let us call the minimum volume ellipsoid containing a convex body K the 
Lowner-John ellipsoid of K. In formulas, the second part of Theorem (3.1.9) 
states that, if E(A, a) is the Lowner-lohn ellipsoid of K, then K contains the 
ellipsoid E(n-2A,a). 

For a regular simplex S, the Lowner-lohn ellipsoid is a ball E (R 2 I, a) with 
an appropriate radius R around the center of gravity a of S. The concentrical 
ball E(n-2R 2I,a) is the largest ellipsoid contained in S. This shows that the 
parameter n ·in Theorem (3.1.9) is best possible. 
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(a) (b) 

Figure 3.3 

In general, the L6wner-John ellipsoid of a convex body K is hard to compute. 
We will, however, show in Section 4.6 that, under certain assumptions on K, good 
approximations of it can be computed in polynomial time. In the ellipsoid method 
and its variants, L6wner-John ellipsoids of certain ellipsoidal sections are used; 
and for these L6wner-John ellipsoids, explicit formulas are known. We will 
describe some of them. 

Suppose E(A, a) is an ellipsoid and c E lRn \ {o}. Set 

(3.1.10) E'(A,a,c) := E(A, a) n {x eo lRn leT x::; cT a}. 

So E' (A, a, c) is one half of the ellipsoid E (A, a) obtained by cutting E (A, a) 
through the center a using the hyperplane {x E lRn I cT X = eTa}. The L6wner
John ellipsoid of E'(A,a,c) is the ellipsoid E(A',a') given by the following formu
las: 

(3.1.11) 
, 1 

a := a- n+ 1 b, 

(3.1.12) , n2 
( 2 bbT ) 

A := n2 _ 1 A - n + 1 ' 

where b is the vector defined in (3.1.7). In Figure 3.3 we show the L6wner
John ellipsoids E(A', a') of two half ellipsoids E'(A, a, c), where in (a), A = 
diag((1,25/4)T), a = 0, c = (25,-4) and in (b), A = diag((16,4)T), a = 0, 
c = (-2,-3)T. The half ellipsoids E'(A,a,c) are the dotted regions. 

Note that the center a' of the L6wner-John ellipsoid E(A', a') of E'(A,a,c) lies 
on the line through the vectors Zmax and Zmin - see (3.1.7). More exactly, one can 
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get from a to a' by making a step from a towards Zmin of length "!lllzmin - all. 

Moreover, the boundary of E(A', a') touches E'(A, a, c) in the point Zmin and in 
the set {x I IIx - aliA = 1} n {x I cT X = eTa}. In R.2 the last set consists of two 
points only - see Figure 3.3 - while in R.3 this is an ellipse. 

We will see later that the algorithm described by Khachiyan makes use of 
the Lowner-John ellipsoid of E' (A, a, c). There are modifications of this method 
using Lowner-John ellipsoids of other ellipsoidal sections. Here we will describe 
those that we use later - see BLAND, GOLDFARB and TODD (1981) for further 
details. So suppose E(A, a) is an ellipsoid and c E R." \ {OJ, Y E R.. It follows from 
(3.1.8) that the hyperplane 

H :={xER."lcTx=y} 

has a nonempty intersection with E(A, a) if and only if cT Zmin ;S; Y ;S; cT Zmax, that 
is, if and only if 

For notational convenience, let us set 

(3.1.13) 
cTa-y 

IX '= -----=== . vcTAc' 

Then H intersects E (A, a) if and only if 

(3.1.14) -1 ;S; IX ;S; 1. 

The number IX can be interpreted as the signed distance of the center a from the 
boundary of the halfspace {x leT X ;S; y} in the space R." endowed with the norm 
II IIA~[' (The distance is nonpositive if a is contained in the halfspace.) 

We want to cut E(A,a) into two pieces using H and to compute the Lowner
John ellipsoid of the piece contained in {x I cTx;S; y}. For 

(3.1.15) E'(A,a,c,y) := E(A, a) n {x ER." leT x;S; y}, 

the Lowner-John ellipsoid E(A', a') can be determined as follows. 

(3.1.16) 

(3.1.17) 

If -1 ;S; IX;S; -lin then E(A',a') = E(A,a). 

If -l/n;s; IX < 1 then E(A',a') is given by 

'._ _ 1 + nlXb 
a .- a n+ 1 ' 

, n2 2 ( 2(1 + nIX) T) 
A := n2 _ 1 (1 -IX ) A - (n + 1)(1 + IX) bb , 

where b is the vector defined in (3.1.7). Note that if y = eTa then E'(A, a, c, y) = 
E' (A, a, c) and formulas (3.1.16) and (3.1.17) reduce to formulas (3.1.11) and 
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(3.1.12). So in formulas (3.1.11) and (3.1.12) we compute the Lowner-John 
ellipsoid of the section E (A, a, c) of E (A, a) that is obtained by cutting with H 
through the center a. We call this a central cut. If 0 < IX < 1 then E' (A, a, e, y) 
is strictly contained in E' (A, a, c). This means that we cut off a larger piece of 
E(A,a), and therefore eT x:s; y is called a deep cut. If -lin < IX < 0 then we leave 
more of E(A, a) than the "half" E'(A, a, c), and we call eT x :s; y a shallow cut; 
but in this case the Lowner-John ellipsoid of E'(A,a,e,y) is still strictly smaller 
than E(A,a), in the sense that it has a smaller volume. (We shall see later that 
a volume reduction argument will prove the polynomial time termination of the 
ellipsoid method.) 

It is also possible to compute explicit formulas for the Lowner-John ellipsoid 
of E(A, a) n {x I y' :s; eT x :s; y}, i. e., for an ellipsoidal section determined by 
parallel cuts. However, the formulas are quite horrible - see BLAND, GOLDFARB 
and TODD (1981). We will need a special case of this, namely the Lowner-John 
ellipsoid of an ellipsoidal section determined by centrally symmetric parallel cuts, 
i. e., of 

(3.1.18) 

where y > O. Similarly as in (3.1.13), let IX = -ylveT Ae. It turns out that the 
Lowner-John ellipsoid of E"(A, a, e, y) is the ellipsoid E(A', a') defined as follows. 

IfIX < -1/..;n then E(A',a') = E(A,a). 

If -1 l..;n :s; IX < 0 then E (A', a') is given by 

. (3.1.19) a' :=a, 

(3.1.20) 

(a) (b) (c) (d) 

Figure 3.4a-d 

Figure 3.4 shows the four types of cuts used in various versions of the ellipsoid 
method. In all cases we assume that E(A,a) is the unit ball S(O,l). Let e := 
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(-I,O)T be the vector used to cut through E(A, a). Picture (b) shows the Lowner
John ellipsoid of the dotted area E'(A,a,c) = S(O, 1) n {x I Xl ~ O}, a central cut. 
Picture (a) shows the Lowner-John ellipsoid of the dotted set E'(A,a,c,-1/2) = 
S(O, l)n{x I XI ~ 1/2}, a deep cut. Picture (c) shows the Lowner-John ellipsoid of 
E'(A,a,c, 1/3) = S(O, 1) n {x I XI ~ -I/3}, a shallow cut; while the Lowner-John 
ellipsoid of E"(A,a,c, 1/4) = S(O, 1) n {x I -1/4 ::;; XI ::;; 1/4} is displayed in 
picture (d). This set is determined by a centrally symmetric parallel cut. 

Description of the Basic Ellipsoid Method 

To show the basic idea behind the ellipsoid method, we describe it now as a 
method to solve the strong nonemptiness problem for explicitly given polytopes 
that are either empty or full-dimensional. The input for our algorithm is a system 
of inequalities cT X ::;; Yi, i = 1, ... , m, with n variables in integral coefficients. We 
would like to determine whether 

(3.1.21) P := {x E IRn leT x::;; Yi, i = 1, ... , m} = {x I Cx ::;; d} 

is empty or not, and if it is nonempty, we would like to find a point in P. In 
order to get a correct answer the input must be accompanied by the following 
guarantees: 

(3.1.22) 

(3.1.23) 

P is bounded. 

If P is nonempty, then P is full-dimensional. 

It will turn out later that the certificates (3.1.22) and (3.1.23) are not necessary. The 
(appropriately modified) method also works for possibly unbounded polyhedra 

. that are not full-dimensional. Moreover, we can handle polyhedra defined by 
inequalities that are provided by a separation oracle, that is, the inequalities need 
not be given in advance. To treat all these additional possibilities now would 
only obscure the lines of thought. Thus, in order to explain the ideas underlying 
the ellipsoid method, we restrict ourselves to the special case described above. 

Recall the well-known method of catching a lion in the Sahara. It works as 
follows. Fence in the Sahara, and split it into two parts; check which part does 
not contain the lion, fence the other part in, and continue. After a finite number 
of steps we will have caught the lion - if there was any - because the fenced-in 
zone will be so small that the lion cannot move anymore. Or we realize that the 
fenced-in zone is so small that it cannot contain any lion, i. e., there was no lion 
at all. In order to illustrate the ellipsoid method by this old hunter's story we 
have to describe what our Sahara is, how we split it into two parts, how we fence 
these in, and when we can declare the lion caught or nonexistent. 

For the Sahara we choose a ball around the origin, say S(O,R), that contains 
our polytope P, the lion. If the system of inequalities (3.1.21) contains explicit 
upper and lower bounds on the variables, say Ii ::;; Xi ::;; Ui, i = 1, ... , n then a 
radius R with P s;;: S (0, R) is easily found. Take for instance 

(3.1.24) R := V "'[,7=1 max{ur,If}. 

If bounds on the variables are not given explicitly we can use the information 
that C and d are integral and that P is a polytope to compute such a radius R, 
namely we have: 
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(3.1.25) Lemma. P £ S (0, R), where R := Vn 2(C,d)-n2 • o 

Recall that < C, d) denotes the encoding length of C and d - see Section 1.3. 
(Since we do not want to interrupt the flow of thought, the proofs of all lemmas 
stated in this subsection are postponed to the next subsection.) 

Now we have the starting point for the ellipsoid method. We know that P is 
in S(O,R) with R given by (3.1.24) or (3.1.25). This ball around the origin will 
be our first ellipsoid E(Ao,ao) (which is clearly given by setting Ao := R2[ and 
ao = 0). 

Let us now describe the k-th step, k ~ 0, of the procedure. By construction, 
the current ellipsoid 

(3.1.26) 

contains P. The ellipsoid Ek has one distinguished point, its center ak, and we 
have it explicitly at hand. So we can substitute ak into the inequality system 
(3.1.21) and check whether all inequalities are satisfied. If this is the case, we can 
stop, having found a feasible solution. If the center is not feasible, then at least 
one inequality of the system (3.1.21) must be violated, let us say cT x ~ y. So we 
have cT ak > y. The hyperplane {x I cT X = cT ad through the center ak of Ek 
cuts Ek into two "halves", and we know from the construction that the polytope 
P is contained in the half 

(3.1.27) 

Therefore we choose, as the next ellipsoid Ek+1 in our sequence, the Lowner-John 
ellipsoid of E'(Ak, ak, c), which is given by formulas (3.1.11) and (3.1.12). And we 
continue this way by successively including P into smaller and smaller ellipsoids. 

The question to be answered now is: When can we stop? Clearly, if we find 
a point in P, we terminate. But how long do we have to continue the iterations 
if no feasible point is obtained? The stopping criterion comes from a volume 
argument. Namely, we know the initial ellipsoid S (0, R) and therefore we can 
estimate its volume, e. g., through (3.1.6). In each step k we construct a new 
ellipsoid Ek+1 whose volume is strictly smaller than that of Ek. More precisely, 
one can show: 

(3.1.28) Lemma. 

_vo_I.....:(_E_k+-,-I-'-.) = ((_n_) n+1 (_n_) n-I) 1/2 < e-1/(2n) < 1. 
vol(Ek) n + 1 n - 1 

o 

By our guarantees (3.1.22) and (3.1.23) we are sure that our polytope P has 
a positive volume, unless it is empty. One can use the integrality of the data and 
the fact that' P is a polytope to prove 
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(3.1.29) Lemma. If the polytope P is full-dimensional, then 

vol(P) ~ 2-(n+l)(C}+n3 • 

o 

Now we can finish our analysis. We can estimate the volume of the initial 
ellipsoid from above, and the volume of P, if P is nonempty, from below; and 
we know the shrinking rate of the volumes. Therefore, we iterate until the present 
ellipsoid has a volume that is smaller than the lower bound (3.1.29) on the volume 
of P. If we have reached this situation, in step N say, we can stop since we know 
that 

(3.1.30) P £; EN, 

vol(EN) < vol(P). 

This is clearly impossible, and we can conclude that P is empty. Thenumber N 
of iterations that have to be done in the worst case can be estimated as follows. 
If we choose 

(3.1.31) N := 2n«2n + 1)( e) + n(d) - n3) 

then it is easy to see that vol(EN) < 2-(n+l)(C}+n3 (for an elaboration, see Lemma 
(3.1.36». Combining this with (3.1.29) we see that (3.1.30) holds for this N. 
Our description of the ellipsoid method (except for implementational details) is 
complete and we can summarize the procedure. 

(3.1.32) The Basic Ellipsoid Method (for the strong nonemptiness problem for 
full-dimensional or empty polytopes). 

Input: An mxn-inequality system ex ::;; d with integral coefficients. We assume 
that the data are accompanied by a guarantee that P = {x E R n I ex ::;; d} is 
bounded and either empty or fuji-dimensional. 

Initialization: Set 

(a) k:= 0, 
(b) N := 2n«2n + 1)( e) + n(d) - n3), 

(c) Ao:= R2 I with R := .;n 2(C,d}-n2 (or use any valid smaller R 
as, for example, given in (3.1.24», 

ao := 0 (so Eo := E (Ao, ao) is the initial ellipsoid). 

General Step: 

(d) Ifk = N, STOP! (Declare P empty.) 
(e) If ak E P, STOP! (A feasible solution is found.) 
(f) If ak ¢ P, then choose an inequality, say cT x ::;; y, 

of the system ex ::;; d that is violated byak. 
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Set 

(g) (see (3.1.7», 

(h) (see (3.1.11», 

(i) (see (3.1.12», 

and go to (d). o 

We call algorithm (3.1.32) the basic ellipsoid method since it contains all the 
fundamental ideas of the procedure. To make it a polynomial time algorithm or 
to make it more efficient certain technical details have to be added. For instance, 
we have to specify how the vector ak+l in (h) is to be calculated. Our formula on 
the right hand side of (h) leads to irrational numbers in general since a square 
root is computed in the formula for b in (g). Nevertheless, the lemmas stated 
before prove that the basic ellipsoid method works - provided that the single 
steps of algorithm (3.1.32) can be implemented correctly (and efficiently). We will 
discuss this issue in the subsection after the next one. 

Proofs of Some Lemmas 

We now give the proofs of the lemmas stated above. We begin with a slight. 
generalization of Lemma (3.1.25). 

(3.1.33) Lemma. If P = {x E R n I Cx ~ d} is a polyhedron and C, dare 
integral, then all vertices of P are contained in the ball around 0 with radius 
R := ..;n 2(C,d)-n2 • In particular, if P is a polytope then P £; S (0, R). 

Proof. In order to show that the vertices of P are in S (0, R) with the R given 
above, we estimate the largest (in absolute value) component of a vertex of P. 
Clearly, if we can find a number t ~ ° such that no vertex of P has a component 
which (in absolute value) is larger than t, then the vertices of P are contained 
in {x I -t ~ Xi ~ t, i = 1, ... , n}, and thus in S (0, ..;n t). From polyhedral theory 
we know that for each vertex v of P there is a nonsingular subsystem of ex ~ d 
containing n inequalities, say Bx ~ b, such that v is the unique solution of 
Bx = b. By Cramer's rule, each component Vi of v is given by 

detBi 
v·---
1- detB 

where we obtain Bi from B by replacing the i-th column of B by the vector b. Since 
B is integral and nonsingular, we have that I det BI ~ 1, and so Ivd ~ I det Bd. By 
(1.3.3) (c) 
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And thus, since (Bj) :s; (C,d), 

Therefore, setting R := vn 2(C,d)-n2 we can conclude that all vertices of Pare 
contained in S(O,R). 0 

The reader is invited to find better estimates for R, for instance by using the 
Hadamard inequality (0.1.28) directly and not only via (1.3.3). 

Next we prove (3.1.28) and estimate how much the volume of the Lowner
John ellipsoid of the half ellipsoid E' (Ak, ak, c) shrinks compared with the volume 
of E(Ak,ak). 

(3.1.34) Lemma. Let E £ R n be an ellipsoid and E' be the ellipsoid obtained 
from E using formulas (3.1.7), (3.1.11), (3.1.12) for some vectorc E R n \ {O}. Then 

vol(E' ) = ((_n_)n+1 (_n_)n-I) 1/2 < e-I/(2n) < 1. 
vol(E) n + 1 n - 1 

Proof. To estimate the volume quotient, let us assume first, that the initial 
ellipsoid is F := E (/,0) i. e., the unit ball around zero, and that the update vector 
c used to compute b in (3.1.7) is the vector (-1,0, ... , O)T. In this case we obtain 
from (3.1.7), (3.1.11), and (3.1.12): 

b = (-1,0, ... , O)T, 

a'=a- n~lb= (n~I'O' ... ,O)T, 

I n2( 2 T ) A = n2 -1 /- n+l(-I,O, ... ,0) (-1,0, ... ,0) 

. (( n2 n2 n2 ) T) = dlag (n + 1)2' n2 - l' ... , n2 - 1 . 

From this and (3.1.4) we conclude for the volumes of F. and F' := E(A', d): 

vol(F ') = .JdetA' Vn = vi det A' = ( n2n n - 1) 1/2 
vol(F) vdetA Vn (n+J)n(n-l)n n+ 1 

= (C:lf+l(n:lf-lf/2. 
Hence, by taking the natural logarithm In, we obtain: 

vol(F ' ) < e-I /(2n) <==> el / n < (n+ l)n+l(n-l)n-1 
vol(F) n n 

1 1 1 
<==> - < (n + 1)ln(1 + -) + (n - 1)ln(1 - -). 

n n n 
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Using the power series expansion Inx = L~l (-I)k+l(X _1)k /k for 0 < x ::;; 2, 
we obtain 

1 1 
(n + 1) In (1 + -) + (n - 1) In (1 - -) = 

n n 

= f(_I)k+l n +k1 - f n-kl 
k=l kn k=l kn 

= f(-I)k+1~ - f 2(n~;) 
k=l kn k=l 2kn 

00 2 00 2 00 1 00 1 
= L (2k -1)n2k- 1 - L 2kn2k - L kn2k- 1 + L kn2k 

k=l k=l k=l k=l 
00 1 1 

= L (2k - l)k n2k- 1 
k=l 
1 

> -, 
n 

and thus the claim is proved for our special choice of the initial ellipsoid and c. 
Now let E = E(A,a) be any ellipsoid and E' = E(A',a') be an ellipsoid 

constructed from E using the formulas (3.1.7), (3.1.11), and (3.1.12) for some 
vector C E R" \ {O}. By (3.1.3), E = A1/2E(I,0) + a = Al/2F + a. Clearly, there 
is an orthogonal matrix, say Q, which rotates Al/2C into a positive multiple of 
(-1,0, ... , 0), that 'is, there is an orthogonal matrix Q such that 

Then 
T(x) := Al/2QT x + a 

is a bijective affine transformation with T-l(X) = QA-l/2(X - a). Now 

T(F) = {T(y) I yT y::;; I} 

= {x I (T-1x)T(T-1x)::;; I} 

= {x I (x-a)T A-1/2QTQA-1/2(x_a)::;; I} 

= {x I (x-a)T A-1(x-a)::;; I} 

=E, 

and similarly for the ellipsoid F' defined above, we obtain T(F') = E'. In the 
subsection about properties of ellipsoids we have seen that the quotient of the 
volumes of two ellipsoids is invariant under bijective transformations. Thus we 
have 

vol(E') = vol(T(F'» = vol(F') = ((_n_)n+l(_n_)n-l)I/2 < e-1/(2n) 

vol(E) vol(T(F» vol(F) n + 1 n - 1 ' 

which completes the proof. D 
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The following lemma proves (3.1.29) and shows the interesting fact that the 
volume of a full-dimensional polytope cannot be "extremely small", that is, a 
lower bound on vol(P) can be computed in polynomial time. 

(3.1.35) Lemma. If P = {x ERn I Cx ::;;; d} is a full-dimensional polytope and 
the matrix C and the vector d are integral then 

vol(P) ~ r(n+1)(C)+nJ • 

Proof. From polyhedral theory we know that every full-dimensional polytope P 
in R n contains n + 1 vertices vo, VI, .•. , Vn, say, that are affinely independent. The 
convex hull of these vertices forms a simplex S that is contained in P. Thus, 
the volume of P is bounded from below by the volume of S. The volume of a 
simplex can be determined by a well-known formula, namely we have 

1 I (1 1 vol(S) = -, det 
n. Vo VI 

... 1) I 

... Vn . 

Now recall that, for every vertex Vj, its i-th component is of the form ddet BBji by 
et j 

Cramers rule, where B j is a submatrix of C and Bji a submatrix of (C,d). So we 
obtain 

I d (1 . . . 1) I I 1 II d ( det Bo . . . det Bn ) I 
et Vo . . . Vn = det Bo ..... det Bn et Uo . . . Un 

where Uo, .. ,' Un are integral vectors in Rn. Since the last determinant above is 
a nonzero integer, and since by (1.3.3) (c), I det Bj I ::;;; 2(C)-n2 holds, we get 

I det (1 ... 1) I ~ 1 ~ (2(C)-n2)-(n+1). 
Vo ... Vn I det Bol ..... I det Bnl 

Therefore, using n! ::;;; 2n2 , we obtain 

vol(P) ~ vol(S) ~ ~(2(C)-n2)-(n+l) ~ 2-(n+I)(C)+nJ , 

n. 

D 

The last lemma in this sequence justifies the choice (3.1.31) of the number N 
of iterations of the general step in the basic ellipsoid method. 

(3.1.36) Lemma. Suppose P = {x E R n I Cx::;;; d} is a full-dimensional polytope 
and Cx ::;;; d is an integral inequality system, If Eo = E(Ao,ao) with ao = 0, 
Ao = R2[ and R = y'n2(C,d)-n2 is the initial ellipsoid, and if the general step of 
the basic ellipsoid method (3.1.32) is applied N := 2n«2n + 1)( C) + n(d) - n3) 

times then 
vo~(EN) < 2-(n+I)(C)+nJ ::;;; vol(P). 
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Proof. Since Eo £ {x E 1R.n I IIxlioo ~ R}, we have 

By (3.1.34), in each step of the basic ellipsoid method the volume of the next 
ellipsoid shrinks at least with the factor e-1/(2n). Thus after N steps we get 

vol(EN) < e-N /(2n) vol (Eo) < TN /(2n)+n(C,d) = 2-(n+1)(C)+n3 ~ vol(P), 

where the last inequality folloWS from (3.1.35). The equality above is, in fact, the 
defining equality for N. This-'proves our claim. D 

The reader will have noticed that most of the estimates in the proofs above 
are quite generous. By a somewhat more careful analysis one can improve all 
crucial parameters slightly to obtain a smaller upper bound N on the number of 
iterations of the ellipsoid method. Since our main point is that the upper bound 
is polynomial we have chosen a short way to achieve this. As far as we can see, 
however, the order of magnitude of N, which is O(n2(e,d», cannot be improved. 

Implementation Problems and Polynomiality 

To estimate the running time of the basic ellipsoid method (3.1.32) in the worst 
case, let us count" each arithmetic operation as one elementary step of the 
algorithm. The initialization (a), (b), (c) can obviously be done in O(m' n) , 
elementary steps. In each execution of the general step (d), ... , (i) of (3.1.32) we 
have to substitute ak into the system ex ~ d which requires O(m . n) elementary 
steps, and we have to update ak and Ak in (h), (i). Clearly (h) needs O(n) 
elementary steps while (i) requires O(n2) elementary steps. The maximum number 
of times the general step of (3.1.32) is executed is bounded from above by 
N = 2n«2n + 1)(C) + n(d) - n3) = O(n2(e,d». Since P is a polytope we have 
m ~ n, and thus the total number of elementary steps of the basic ellipsoid 
method is O(mn3(e,d». So we have found a polynomial upper bound on the 
number of elementary steps of the basic ellipsoid method. 

However, there are certain problems concerning the implementation of some 
of the elementary steps. We take a square root in step (c) to calculate R, so we 
may obtain an irrational number. One can take care of this by rounding R up 
to the next integer. But, in fact, we only need the rational number R2 in the 
initialization of Ao, so we do not have to compute R at all. A more serious 
problem comes up in the general step. The vector b calculated in (g) is in general 
irrational, and so is ak+1' Since irrational numbers have no finite representation in 
binary encoding, we are not able to calculate the center ak+l exactly. Thus, in any 
implementation of the ellipsoid method we have to round the coefficients of the 
entries of the center of the next ellipsoid. This causes difficulties in our analysis. 
Namely, by rounding ak+l to some vector Qk+1 E Gr, say, we will translate the 
ellipsoid Ek+l slightly to the ellipsoid Ek+1 := E(Ak+1' Qk+l)' Recalling that Ek+1 
is the ellipsoid of minimum volume containing the half ellipsoid E' (Ak, ak, c) -
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cf. (3.1.27) - we see that Ek+l does not contain E'(Ak,ak,c) any more. So it 
may happen that the polytope P £; E' (Ak, ak, c) is not contained in Ek+l either. 
And therefore, our central proof idea of .constructing a sequence of shrinking 
ellipsoids each containing P is not valid any more. 

There is a further issue. Observe that the new matrix Ak+l calculated in (i) 
is rational, provided Ak and c are. But it is not clear a priori that the entries of 
Ak+l do not grow too fast. 

All these difficulties can be overcome with some effort. We will describe 
here the geometric ideas behind this. The concrete mathematical analysis of the 
correctness and implementability of these ideas will be given in Section 3.2. 

We have seen that rounding is unavoidable in the calculation of the center 
ak+l. We will do this as follows. We write each entry of ak+l in its binary 
representation and cut off after p digits behind the binary point, where p is to 
be specified. In other words, we fix a denominator 2P and approximate each 
number by a rational number with this denominator. To keep the growth of the 
encoding lengths of the matrices Ak+l under control, we apply the same rounding 
method to the entries of Ak+l. As remarked before, rounding of the entries of the 
center results in a translation of the ellipsoid. By rounding the entries of Ak+l 
we induce a change of the shape of the ellipsoid in addition. The two roundings 
may produce a new ellipsoid which does not contain P. Moreover, by rounding 
a positive definite matrix too roughly positive definiteness may be lost. So we 
also have to take care that the rounded matrix is still positive definite. It follows 
that we should maJce p large enough, subject to the condition that all numbers 
coming up during the execution of the algorithm are of polynomial encoding 
length. 

We still have to find a way to keep P inside the newly calculated ellipsoid. 
Since we cannot move P, we have to do something with the new ellipsoid. One 
idea that works is to maintain the (rounded) center and to blow up the ellipsoid 
obtained by rounding the entries of Ak+l in such a way that the blow-up will 
compensate the translation and the change of shape of the Lowner-John ellipsoid 
induced by rounding. The blow-up factor must be so large that the enlarged 
ellipsoid contains P. Clearly, we have to blow up carefully. We know from 
(3.1.28) that the shrinking rate is below 1; but it is very close to 1. In order to 
keep polynomial time termination, we have to choose a blow-up factor that on 
the one hand gives a sufficient shrinking rate and on the other, guarantees that 
P is contained in the blown-up ellipsoid. This shows that the blow-up factor and 
the number p determining the precision of the arithmetic influence each other, 
and they have to be chosen simultaneously to achieve all the goals at the same 
time. 

It turns out that appropriate choices of N, p, and the blow-up factor e can 
be made, namely if we choose 

(3.1.37) N := 50(n+ 1)2(C,d), 

p :=8N, 
1 

e := 1 + 4(n+ 1)2' 
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we can make all the desired conclusions. These modifications turn the basic 
ellipsoid method (3.1.32) into an algorithm that runs in polynomial time. 

From the practical point of view these considerations and modifications 
seem quite irrelevant. Note that the ellipsoid method requires problem-specific 
precision. But usually, our computers have fixed precision. Even software that 
allows the use of variable precision would not help, since the precision demands of 
the ellipsoid method in this version are so gigantic that they are hardly satisfiable 
in practice. Thus, in a computer implementation of the ellipsoid method with 
fixed precision it will be possible to conclude that one of the calculated centers is 
contained in P, but by stopping after N steps we cannot surely declare P empty. 
To prove emptiness, additional tests have to be added, based for instance on the 
Farkas lemma. 

By looking at the formulas we have stated for Lowner-John ellipsoids of 
various ellipsoidal sections - see (3.1.11), (3.1.12); (3.1.16), (3.1.17); (3.1.19), 
(3.1.20) - one can immediately see that a speed-up of the shrinking can be 
obtained by using deep or other cuts. There are many possibilities to "play" with 
the parameters of the ellipsoid method. To describe some of them let us write 
the basic iteration of the ellipsoid method in the following form 

(3.1.38) 

(3.1.39) 

where "~" means cutting off after the p-th digit behind the point in the binary 
representation of the number on the right hand side. Following BLAND, GOLDFARB 
and TODD (1981) we call p the step parameter (it determines the length of the 
step from ak in the direction of -b to obtain ak+l), (J the dilatation parameter, 
"t" the expansion parameter and ~ the blow-up parameter (this is the factor used 
to blow up the ellipsoid to compensate for the rounding errors). The ellipsoid 
method in perfect arithmetic (no rounding) as stated in (3.1.32) is thus given by 

(3.1.40) 
1 

p:= n+ l' 
n2 

(J := -2--1' n -
2 

"t" := n+ l' ~ := 1. 

It is a so-called central-cut method since it always uses cuts through the center 
of the current ellipsoid. The ellipsoid method with rounding and blow-up, i. e., 
the polynomial time version of (3.1.32) is thus defined by 

(3.1.41) 
1 

p:= n+ l' 
n2 

(J := -2--1' n -
2 

"t" := n+l' 
1 

~ := 1 + 4(n + 1)2 . 

If cT x $; y is the violated inequality found in (f) of (3.1.32), then defining oc := 
(cT ak - y)jJcT AkC as in (3.1.13) and setting 

(3.1.42) 
1 + noc 

p:= n+ 1 ' 
2(1 + noc) 

"t" .- (n + 1)(1 + oc)' 
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we obtain the deep-cut ellipsoid method (in perfect arithmetic). Note that since 
cT ak > }I, the hyperplane {x I cT X = }I} is indeed a deep cut, and so the Lowner
John ellipsoid of E'(Ak,ak,C,}I) - see (3.1.15) - which is given through formulas 
(3.1.38), (3.1.39) (without rounding), and (3.1.42) has indeed a smaller volume 
than that of E'(Ak,ak, c) used in (3.1.32). 

The use of deep cuts will - due to faster shrinking - in general speed up the 
convergence of the ellipsoid method. But one can also easily construct examples 
where the standard method finds a feasible solution more quickly. However, 
the use of deep cuts does not seem to change the order of magnitude of the 
number N of iterations of the general step necessary to correctly conclude that 
P is empty. So from a theoretical point of view, deep cuts do not improve the 
worst-case running time of the algorithm. 

Using a number (X in (3.1.42) with -lin < (X < 0 we obtain a shallow-cut 
ellipsoid method. Although - from a practical point of view - it seems ridiculous 
to use a shallow-cut method, since we do not shrink as much as we can, it will 
turn out that this version of the ellipsoid method is of particular theoretical 
power. Using this method we will be able to prove results which - as far as we 
can see - cannot be derived from the central-cut or deep-cut ellipsoid method. 

Some Examples 

The following examples have been made up to illustrate the iterations of the 
ellipsoid method geometrically. Let us first consider the polytope P s;;; R2. 
defined by the inequalities 

(1) - Xl- x2::;-2 
(2) 3Xl ::; 4 
(3) -2Xl +2X2::; 3. 

This polytope is contained in the ball of radius 7 around zero. To find a point in 
P, we start the basic ellipsoid method (3.1.32) with E (Ao, ao) where 

( 49 0) 
Ao = 0 49 ' 

see Figure 3.5. The center ao violates inequality (1). One iteration of the algorithm 
yields the ellipsoid E(A\,ad also shown in Figure 3.5. The new center al violates 
(2). We update and continue this way. The fifth iteration produces the ellipsoid 
E(As,as) displayed in Figure 3.6. In the 7-th iteration the ellipsoid E(A7,a7) 
shown in Figure 3.7 is found. Its center a7 = (1.2661,2.3217)T is contained in 
P. The whole sequence of ellipsoids E(Ao,ao), ... , E(A7,a7) produced in this 
example is shown in Figure 3.8. 
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Figure 3.5 

Figure 3.6 
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Figure 3.7 

Figure 3.8 
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The pictures of the iterations of the ellipsoid method show clearly that in 
an update the ellipsoid is squeezed in the direction of c while it is expanded 
in the direction orthogonal to c. If many updates are done with one and the 
same vector c the ellipsoids become "needles". To demonstrate this effect, let us 
consider the polytope P ~ JR 2 defined by 

Starting the basic ellipsoid method with E(Ao,ao) = S(0,1), we make five it
erations until the center as = (211 /243, 0) T of the fifth ellipsoid E (As, as) is 
contained in P. The six ellipsoids ~ (Ao, ao), ... , E (A5, as) of this sequence are 
displayed in Figure 3.9 (a). If the ellipsoid method receives "fiat" polytopes as 
its input, it is likely that the algorithm produces extremely fiat ellipsoids, say of 
several kilometers length and a few millimeters width. This inevitably leads to 
numerical difficulties in practice. In such cases, some variants of the ellipsoid 
method frequently perform better empirically. For instance, the deep-cut ellipsoid 
method finds a feasible point of the polytope P defined above in one iteration. 
This iteration is shown in Figure 3.9 (b). But there is no general result quantifying 
this improvement in performance. 

(a) Figure 3.9 
(b) 

* 3.2 The Central-Cut Ellipsoid Method 

We shall now give a description and analysis of the version of the basic ellipsoid 
method (3.1.32) where arithmetic operations are performed in finite precision 
and the errors induced by rounding are compensated for by blowing up the 
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"rounded" Lowner-John ellipsoid. This section provides proofs of the claims 
about this method made in the previous section. In particular, the polynomial 
running time is established. Moreover, we do not restrict ourselves to the case 
of an explicitly given polytope, but we treat the general case of a circumscribed 
closed convex set given by a certain separation oracle. Our main result of this 
section can be stated as follows. 

(3.2.1) Theorem. There exists an oracle-polynomial time algorithm, called the 
central-cut ellipsoid method, that solves the following problem: 

Input: A rational number e > 0 and a circumscribed closed convex set (K ; n, R) 
given by an oracle SEPK that, for any y E <Qn and any rational number [) > 0, 
either asserts that y E S(K,[) or finds a vector c E <Q" with IIcll oo = 1 such that 
cT x :::; cT y + [) for every x E K. 

Output: One of the following: 

(i) a vector a E S (K, e), 
(ii) a positive definite matrix A E <Qnxn and a point a E <Q" such that K s;; E(A,a) 

and vol(E(A, a» :::; e. 

Whenever we speak of the ellipsoid method without referring to a special 
version we will mean the central-cut ellipsoid method, to be described in the proof 
of Theorem (3.2.1). This method specifies a sequence of ellipsoids Eo, Et, ... , EN 
(i. e., a sequence of positive definite matrices Ao,Al, ... , AN, and a sequence of 
centers ao,at, ... , aN, with Ek = E(Ak,ak), k = 0, ... , N), that contain the given 
set K, such that either at least one of the centers ak satisfies ak E S(K, e) (so 
alternative (i) of (3.2.1) is achieved), or the last ellipsoid EN ~as volume at most 
e. 

Proof of Theorem (3.2.1). The proof will be given in several steps. We first 
describe the method, then prove its correctness assuming that several lemmas 
hold. Finally the truth of the lemmas will be established. 

So let numbers n, R, e and an oracle SEPK be given as required in the theorem. 
Without loss of generality e < 1. 

I. For the precise description of the algorithm we need the following parameters: 

(3.2.2) 

(3.2.3) 

(3.2.4) 

N := rSnJlog eJ + Sn2Jlog(2R)Il, 

p :=8N, 

[) := 2-p • 

The integer N is the maximum number of iterations of the central-cut ellipsoid 
method, the rational number [) is the error we allow the oracle SEPK to make, and 
the integer p is the precision parameter for representation of numbers. We assume 
throughout the algorithm that all numbers occurring are represented in binary 
form and are rounded to p digits behind the point. Clearly, for every rational 
number given by a numerator and denominator, this binary approximation can 
be easily computed. 
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We initialize the procedure by setting: 

(3.2.5) ao:= 0, 

Ao := R2I, 

so that Eo = S (0, R) and hence K £ Eo. 
Assume ak, Ak are found for some k ~ 0. If k = N, then the ellipsoid EN = 

E(AN,aN) has the property required in (ii) of (3.2.1) (we shall prove this later), 
and we stop. 

If k < N, we call the oracle SEPK with y = ak and the error parameter {) 
defined in (3.2.4). 

If SEPK concludes that ak E S(K,{)), then by the choice of {), ak E S(K,e), 
and we stop having achieved (i) of (3.2.1). 

If SEPK gives a vector c E <Qn with Ilclloo = 1 and cT x :5: cT ak + {) for all 
x E K, then we do the following computations: 

1 AkC 
.::;::: ak - -- --=== 
. n+1vcTA k C ' 

(3.2.6) 

(3.2.7) :::;::: 2n2 + 3 (Ak __ 2_ AkCCT Ak) , 
2n2 n + 1 cT AkC 

where the sign "::;:::" in (3.2.6), (3.2.7) means that the left hand side is obtained by 
cutting the binary expansions of the numbers on right hand side after p digits 
behind the binary point. This finishes the description of the central-cut ellipsoid 
method. 

II. To prove the correctness of the algorithm, we establish the following facts .. 
(Recall that for a vector x, IIxll denotes the Euclidean norm, and for a matrix A, 
IIAII denotes the spectral norm (0.1.16).) 

(3.2.8) Lemma. The matrices Ao,A 1, ••• are positive definite. Moreover, 

lIakll:5: R2k, II Akll:5: R22k, and IIA;;III:5: R-24k. 

(3.2.9) Lemma. K £ Ek for k = 0, 1, ... 

(3.2.10) Lemma. vol(Ek+dl vol(Ek) :5: e- I /(5n) for k = 0, 1, ... 

We shall prove these lemmas in III, IV, and V below. 
It follows from Lemma (3.2.8) that all the formulas on the right hand sides 

of (3.2.6), (3.2.7) are meaningful (no division by 0) and that the intermediate 
numbers (entries of ak and Ak) do not grow too large, i. e., have polynomial 
encoding lengths. This shows that all the arithmetic operations can be carried 
out in polynomial time. 

If the algorithm stops with ak E S (K, e), then of course we have nothing to 
prove. If it stops with k = N, then by Lemma (3.2.9), EN indeed contains K. 
Moreover, by Lemma (3.2.10) the volume of EN satisfies 

vol(EN) :5: e-N /(5n) vol(Eo). 
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Eo is the ball around zero with radius R, so Eo is contained in the hypercube 
Q = {x E R n I -R ~ Xi ~ R, i = 1, ... , n}. From the very rough estimate 
vol(Eo) ~ vol(Q) = (2R)n we get 

(3.2.11) 

The last inequality in (3.2.11) in fact is the inequality from which the value of 
N is derived. So the truth of this inequality directly follows from the choice of 
N. This finishes the proof of Theorem (3.2.1) subject to the correctness of (3.2.8), 
(3.2.9), (3.2.10), which we show now. 0 

III. Proof of Lemma (3.2.8). We prove the lemma by induction on k. Since 
ao = 0 and since the largest eigenvalue of Ao is R2, all the statements of (3.2.8) 
are clearly true for k = O. Assume that they are true for k ~ O. Let a~+ .. A~+1 be 
the right hand sides of (3.2.6) and (3.2.7) without rounding, i. e., 

(3.2.12) 

(3.2.13) 

Then note first that 

(3.2.14) 

which is easy to verify by computation. Thus, (A~+1)-! is the sum of a .positive 
definite and a positive semidefinite matrix, and so it is positive definite. Hence 
also A~+1 is positive definite. 

Equation (0.1.17) immediately implies that for positive semidefinite matrices 
A and B, IIAII ~ IIA + BII holds. Using this, the fact that A:+! is positive definite, 
and the induction hypothesis, we have: 

(3.2.15) 

Further, since each entry of Ak+! differs from the corresponding entry of A~+! by 
at most 2-P (due to our rounding procedure) we have from (0.1.23) 

(3.2.16) 

So (3.2.15), (3.2.16), and the choice of p give 

(3.2.17) .IIAk+!1I ~ IIAk+l - A~+111 + IIA~+!II ~ nrp + 181 R22k ~ R22k+!. 
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This proves the second claim of Lemma (3.2.8). 
Moreover, setting Q := A!/2, using formula (3.2.12) and the definition of the 

spectral norm (0.1.16) we obtain 

• 1 IIAkc11 1 cT A~c 
lIak+1 - ak II = n + 1 ..j cT Akc = n + 1 cT AkC n+1 

(3.2.18) 

< _1_ fll.;li'IIA II < _1_R2k- 1 
- n + 1 V lI.fIk II - n + 1 . 

Our rounding procedure and (0.1.7) give 

(3.2.19) lIak+1 - a~+111 5 y'iillak+1 - a~+IIICX) 5 y'ii2-P ; 

(cT QT)Ak(QC) 

CTQTQc 

and therefore, by the induction hypothesis, the choice of p, and the inequalities 
(3.2.18) and (3.2.19) derived above we get 

(3.2.20) Ilak+lll 5 Ilak+1 - a~+111 + lIa~+1 - ak II + lIak II 
1 

5 y'ii2-P + --R2k- 1 + R2k 
n+1 

5 R2k+l. 

This proves the first claim of (3.2.8). Finally, we observe that 

(3.2.21) II(A~+I)-III 5 ~2n2 (11Aklll + _2_ IIccTII ) 
2n + 3 n - 1 cT AkC 

2n2 (-I 2 -I) 
5 2n2 + 3 IIAk II + n _ 1"A k II 

< :~! IIAkl1l 

5 3R-24k • 

(The first inequality above follows from (3.2.14). To get the second inequality, 
note that (0.1.16) immediately yields IIccTIl = cT c. Setting Q = A!12, by (0.1.18) 

we have II Til cT 
~ = _c_ 511Q-11I 2 = IIA-Ili. 
cT AkC cT Q2c k 

The last inequality in (3.2.21) follows from n ~ 2 and our induction hypothesis.) 
Let ..to denote the least eigenvalue of Ak+1 and let v be a corresponding 

eigenvector with IIvll = 1. Then by (3.2.16), (3.2.21), and (0.1.17), (0.1.23), and the 
choice of p: 

(3.2.22) ..to = vT Ak+lV = vT A~+IV+VT(Ak+l-A~+I)v 

~ II (A~+I)-III-I - IIAk+1 - A~+III 

1 R24-k 2-P > - -n 
3 

~ R 24-(k+l) . 

From..to > 0 we can conclude that Ak+1 is positive definite. Moreover, by (0.1.18) 
and (3.2.22), 

This proves the third assertion of (3.2.8). o 
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IV. Proof of Lemma (3.2.9). By induction on k. The claim holds by construction 
for k = O. Suppose the claim is true for k, and let ak+1 and Ak+1 be the vector 
resp. matrix defined in (3.2.12) and (3.2.13) in the proof of the previous lemma. 
Take any x E K. We have to prove that 

(3.2.23) 

We shall estimate the left-hand side of (3.2.23) in several steps. Using (3.2.14) we 
get 

By induction hypothesis, we know that K £; Ek. So x belongs to Ek, and thus 
the first term in the last formula of (3.2.24) above is at most 1. Setting 

(3.2.25) 

we therefore obtain 

(3.2.26) 

To estimate t(t+ 1), we proceed as follows. Using the fact that Ak can be written as 
QQ, where Q = A!/2, we can bound t from above employing the Cauchy-Schwarz 
inequality (0.1.26): 

leT (x - ak)1 = leT Q(Q-I (x - ak))1 

~ lIeTQIIIIQ-I(X-ak)11 

= JeT QQe ...;r-(x---ak-) T=-Q---:-I-Q--I=-(x---a-k) 

= JeT Ake V(x - ak)T Akl(x - ak), 

and hence, since x E Ek 

(3.2.27) 
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The oracle SEPK guarantees that cT (x - ad ::; J, and so 

t = cT(xT-ad ::; J ::; JVIIAkl II ::; JR-12k; 
VC AkC lie II VIIAklll-1 

Using this estimate and (3.2.27), we can conclude 

t(t + 1) ::; 2JR-12N. 

Substituting this upper bound for t(t + 1) in (3.2.26), we get 

(3.2.28) 
2 2 2 

• )T • -I. n (n -I N) 
(x - ak+1 (Ak+1) (x - ak+l ) ::; 2n2 + 3 n2 _ 1 + 4JR 2 

2n4 1 N 
::; 2 4 2 3 + 4JR- 2 . 

n +n -

The rest of the proof is standard error estimation: 

L\ := I(x - ak+dT Ak~1 (x - ak+l) - (x - aZ+I)T(AZ+1)-I(x - a~+1)1 

::; I(x - ak+I)T Ak~1 (aZ+1 - ak+dl + l(aZ+1 - ak+1)Ak~1 (x - aZ+1) I 
+ I(x - a~+I) T (Ak~1 - (A~+1)-I)(X - a~+1)1 

::; IIx - ak+111 IIAk~11I lIaZ+, - ak+111 + IlaZ+1 - ak+111 IIAk~11I IIx - aZ+111 
+ IIx - aZ+11121IAk~11I II (AZ+1)-111 IIAZ+I - Ak+lll· 

To continue the estimation, we observe that by Lemma (3.2.8), by the choice of 
p, and by the facts that XES (0, R) and k ::; N - 1 : 

Ilx-ak+lll::; IIxll + Il ak+111 ::;R+R2k+1 ::;R2N+1, 

IIx - aZ+,1I ::; IIx - ak+111 + lIak+1 - a~+,11 ::; R + R2k+1 + y'/1 TP ::; R2N+I. 

So again by (3.2.8) and by (3.2.21), we conclude: 

(3.2.29) L\ ::; (R2N+1)(R-24N)(y'/1TP) + (y'/12-P)(R-24N)(R2N+1) 
+ (R222N+2)(R-24N)(R-24N)(n2-P) 

::; nR-123N+2-p + nR-226N+2-p. 

Now we can put the estimates (3.2.28) and (3.2.29) together to get (3.2.23): 

(x - ak+dT Ak~l (x - ak+d ::; 

::; I(x - ak+,f Ak~1 (x - ak+d - (x - a~+I)(AZ+I)-1 (x - aZ+1) I 
+ (x - a~+1) T (AZ+1)-1 (x - a~+I) 

2n4 ::; + 4JR-12N + nR-123N+2-p + nR-226N+2-p 
2n4 + n2 - 3 

::; 1, 

where the last inequality follows from the choice of p. o 
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V. Proof of Lemma (3.2.10). As mentioned in (3.1.4), the volume of an ellipsoid 
E(A, a) £ JRn is known to be v'det(A) vol(S(O, 1». Hence we obtain 

(3.2.30) 
vol(Ek+d 

vol (Ed 

det(Ak+l) 

det(Ad 

det(Ak+d 

det(A~+l) , 

where A~+l is the matrix defined in (3.2.l3). To estimate the first factor on the 

right hand side of (3.2.30), write Ak = QQ where Q = A!/2 and use the definition 
of A~+l: 

Since QccT Q/ cT QQc has rank one and trace one, the matrix in the last determi
nant has eigenvalues 1, ... , 1,1 - 2/(n + 1). So 

(3.2.31) 

To obtain the last estimate we have used the well-known facts that 1 + x ::; ~ 
for all x E JR and (1 + n~l)n > e2, for n ~ 2 - cf. POLYA and SZEOO (1978), I. 172. 

To estimate the second factor of (3.2.30) write it as follows (and recall 
inequality (3.2.21) and the fact that det B ::; liB lin): 

(3.2.32) 
det Ak+l • -1 • 
d • = det(I + (A k+1) (Ak+l - Ak+1» 
etAk+1 

::; III + (A~+1)-1 (Ak+1 - A~+I) lin 
::; (11111 + II (A~+1)-II1IIAk+1 - A~+1 W 
::; (1 + (R-24k+1)(nTPW 
::; en222N-PR-2 

::; e l /(lOn), 

where the last inequality follows from the choice of Nand p. Thus, from the 
estimates (3.2.31) and (3.2.32) we get 

vol(Ek+d 
--:-c-- < 
vol (Ed -

This finishes the proof of Lemma (3.2.10). o 

Thus the proof of Theorem (3.2.l) is complete. 
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(3.2.33) Remark. Suppose that, instead of the oracle SEP K in the input of 
Theorem (3.2.1), we have an oracle SEPK,KI (for some fixed subset KI !;;; K), 
which is weaker than SEPK in the following sense: for any y E.Cfl' and any 
rational fJ > 0, SEPK,KI either asserts that y E S(K, fJ) or finds a vector e E Cfl' 
with lIeli oo = 1 such that eT x ~ eT y+fJ for every x E K 1• Then we obtain the same 
conclusion as in (3.2.1) except that we can only guarantee that KI is contained 
in E(A,a). 0 

(3.2.34) Remark. For technical reasons, the "separation" oracle used in Theorem 
(3.2.1) is slightly stronger than a weak separation oracle. However, for well
bounded convex bodies (where we know an inner radius for the convex set), any 
weak separation oracle can be turned into one necessary for Theorem (3.2.1). 
This is immediate from the following lemma. 0 

(3.2.35) Lemma. Let (K;n,R,r) be a well-bounded convex body, e E R" with 
lIeli oo = 1, and y,fJ E R with r > fJ > O. Suppose that eT x ~ y is valid for 
S(K,-fJ). Then 

2RfJ 
eT x ~ y + --vn for all x E K. 

r 

Proof. Let Xo be a point in K maximizing eT x over K. By definition (2.1.16), there 
is a point ao E R" with S(ao,r) !;;; K. Consider the function f(x) := ~x+(I-~)xo. 
Set a := f(ao), then f(S(ao,r» = S(a,fJ), and moreover, S(a,fJ) is contained in 
conv({xo} U S(ao,r». Since Xo E K, and S(ao,r) !;;; K, S(a,fJ) is contained in K 
by convexity. Hence a E S(K,-fJ), and so we know that eT a ~ y. Now note 
that Xo = a + ~(xo - ao). Thus in order to estimate eT Xo, we have to find a 
bound on eT (xo - ao). Since Xo, ao E K and K !;;; S (0, R), we can conclude that 
Ilxo - aoll ~ 2R, and since Ilell oo = 1, we know that lIell ~.;n. Putting this 
together and using the Cauchy-Schwarz inequality (0.1.26) we get: 

T T fJ fJ T fJ fJt= 
e Xo ~ e (a+-(xo-ao» ~ y+-e (xo-ao) ~ y+-Ilellllxo-aoll ~ y+-vn2R, 

r r r r 

and the claim is proved. 0 

* 3.3 The Shallow-Cut Ellipsoid Method 

We have already mentioned before that the central-cut ellipsoid method as 
described in the previous section does not make full use of the geometric idea 
behind it. It has been observed by many authors that, for instance, using deep 
cuts can speed up the method (see SHOR and GERSHOVICH (1979), and BLAND, 
GoLDFARB and TODD (1981) for a survey). A deeper idea due to YUDIN and 
NEMIROVSKli (1976b) is the use of shallow cuts. These provide slower (though 
still polynomial time) termination but work for substantially weaker separation 
oracles. This method will allow us to derive (among other results) the polynomial 
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time equivalence of the weak membership (2.1.14) and weak separation problems 
(2.1.13) for centered convex bodies. 

To formulate this method precisely, we have to define a shallow separation 
oracle for a convex set K. Before giving an exact definition, we describe the 
geometric idea on which the shallow-cut method is based. In the central-cut 
ellipsoid method we stop as soon as we have found a point almost in the convex 
set K. Now we want to find a point deep in K - even more, we are looking for an 
ellipsoid E(A, a) containing K such that the concentrical ellipsoid E«n+ 1)-2 A,a) 
is contained in K. The method stops as soon as such an ellipsoid E(A, a) is found. 
If an ellipsoid E (A, a) does not have this property, then E «n + 1)-2 A, a) \ K is 
nonempty, and we look for a half space cT x :s; y which contains K but does not 
completely contain E«n+ 1)-2A,a). Such a half space will be called a shallow cut 
since it may contain the center a of E(A, a) in its interior - see Figure 3.10. 

Figure 3.10 

The method proceeds by determining the minimum volume ellipsoid containing 

(3.3.1) E(A, a) n {x I cT X :s; eTa + ~1 VeT Ac} 
n+ 

and continues this way. Of course, since irrational numbers may come up, it will 
be necessary to round, and therefore the Lowner-John-ellipsoid has to be blown 
up a little bit as in the central-cut ellipsoid method. 

Note that, by (3.1.8), the right hand side cT a+(n+l)-lVcT Ac = cT a+(n+l)-l 
II ellA-I in (3.3.1) is the maximum value the linear function cT x assumes on the 
ellipsoid E«n+l)-2A,a). So the half space {x ERn I cT x:s; cT a+(n+l)-lVCT Ac} 
contains this ellipsoid and supports it at the point a + «n + I)V cT AC)-l Ac. 

(3.3.2) Definition. A shallow separation oracle for a convex set K s;;; R n is an 
oracle whose input is an ellipsoid E(A, a) described by a positive definite matrix 
A E q'xn and a vector a E q'. A shallow separation oracle for K can write one 
of the following two possible answers on its output tape: 
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(i) a vector c E CQn, e j 0, so that the halfspace H := {x E JRn I cT X ~ 
cT a + (n + 1)-1 JeT Ae} contains K n E(A,a) (a vector c with this property is 
called a shallow cut for K and E(A, a»), 

(ii) the assertion that E(A, a) is tough. 
o 

At least two remarks are necessary to explain this definition. In answer 
(i), the inequality cT x ~ y with y = eTa + n!t JeT Ac defining the halfspace H 
containing K n E (A, a) has an irrational right hand side in general. But note 
that this right hand side y is not written on the output tape. The oracle only 
confirms that H contains K n E (A, a). In answer (ii) we have used the yet 
undefined word "tough". Loosely speaking, the word "tough" stands for "cutting 
is impossible". "Toughness" is a parameter left open, and in every instance of a 
shallow separation oracle the particular meaning of "tough" has to be specified. 
For instance, in the example described above a tough ellipsoid would be an 
ellipsoid E(A, a) such that E((n + 1)-2 A, a) is contained in K. But there are other 
meaningful and interesting definitions of toughness possible. 

We assume, as usual, that with each shallow separation oracle a polynomial 
function <I> is associated such that for every input to the oracle of encoding length 
at most L the encoding length of its output is at most <I>(L). 

The aim of this section is to prove the following. 

(3.3.3) Theorem. There exists an oracle-polynomial time algorithm, called the 
shallow-cut ellipsoid method, that, for any rational number e > 0 and for any 
circumscribed closed convex set (K; n, R) given by a shallow separation oracle, 
finds a positive definite matrix A E CQnxn and a point a E ~ such that one of the 
following holds: 

(i) E(A, a) has been declared tough by the oracle, 

(ii) K c:; E (A, a) and vol(E (A, a» ~ e. 
o 

Before giving a proof of a slightly more general version of this theorem, we 
want to illustrate it by three special cases. 

(3.3.4) Example. Suppose that K c:; JR n, n ~ 2, is a full-dimensional polytope 
given as the solution set of a system of linear inequalities 

T . 1 ai x ~ lXi, 1= , ... , m, 

where ai E CQn, lXi E CQ for i = 1, ... , m. We design a shallow separation oracle as 
follows. Let E(A, a) be an ellipsoid given by A and a. For i = 1, ... , m, determine 
whether all points in the ellipsoid E((n+ 1)-2 A, a) satisfy aT x ~ lXi. It follows from 
(3.1.8) that this can be done by checking whether (n + 1)-2aT Aai ~ (lXi - aT a)2 
holds. If an index i is found for which this inequality does not hold, then the 
oracle gives the shallow cut ai as answer. If all inequalities of the given system 
are satisfied by all points in E((n + 1)-2A,a), then the oracle declares E(A,a) 
tough. . 
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If L denotes the encoding length of the inequality system aT x :S cx;, i = 
1, ... , m, then we know from Lemma (3.1.33) that K 5; S (0, R(K)) with R(K) := 
y'n2L- n2 and from Lemma (3.1.35) that vol(K) ~ e(K) := 2-(n;+-I)L+nJ • So, 
by running the shallow-cut ellipsoid method of Theorem (3.3.3) with input 
(K; n, R(K)) and e = e(K) and with the shallow separation oracle defined above, 
we will obtain an ellipsoid E (A, a) containing K such that the concentrical 
ellipsoid E«n + 1)-2A,a) is contained in K. 0 

Example (3.3.4) applies to more general situations. Namely, if for a circum
scribed convex set K we have a shallow separation oracle where toughness of 
an ellipsoid E(A, a) means that E«n + 1)-2 A, a) 5; K, then the shallow-cut ellip
soid method solves the weak nonemptiness problem for K with the additional 
advantage that it gives a point deep inside K. 

(3.3.5) Example. The central-cut ellipsoid method can be simulated by the 
shallow-cut ellipsoid method, and Theorem (3.2.1) is a consequence of Theorem 
(3.3.3). In fact, suppose that we have an oracle SEPK as in (3.2.1) for a 
circumscribed closed convex set (K; n, R) and that a positive rational number 
e > 0 is given. Then we can design a shallow separation oracle for K as follows. 
Let an ellipsoid E(A,a) be given by A and a. Compute a positive strict lower 
bound el for the square root of the least eigenvalue A. of A. Let ~' := min{e,ed 
and ~ := (n + 1)-1~'. Call the oracle SEPK for K with input y := a and error 
parameter~. If the oracle SEPK asserts that y E S(K,~), then we declare the 
ellipsoid E(A, a) tough. If SEPK finds a vector e E <Q" with Ilell oo = 1 and 
eT x :S eT y + ~ for all x E K, then we take the vector e as output of the shallow 
separation oracle. By the choice of ~, the vector e is indeed a shallow cut for K 
and E(A,a), namely, for all x E K we have 

(3.3.6) eT x :S eT a + ~ :S eT a + (n + 1)-lel :S eT a + (n + 1)-1 v';: 
= eT a + (n + 1)-1 v';: lIeli oo :S eT a + (n + 1)-1 v';: lIell 
:S eTa + (n + 1)- l lleliA-l, 

where the last inequality follows from (0.1.9). In this case, toughness implies that 
the center of the tough ellipsoid is in S(K,~) and hence in S(K,e). 0 

(3.3.7) Example. We can also turn a weak separation oracle into a shallow 
separation oracle provided an inner radius r for K is known. This follows 
directly by combining Remark (3.2.33) with Example (3.3.5). 0 

By definition (3.3.2), a shallow cut for K and E (A, a) is a vector e E <Q" such 
that eT x :S eT a + (n + 1)-1 JeT Ae for all x E K n E(A, a). The parameter (n + 1)-1 
used in the right hand side of this inequality is just a convenient choice out of an 
interval of possible parameters with which a shallow-cut method can b~ defined 
and for which it works. For our applications, greater generality is not necessary. 
But we will state and prove a slightly more general theorem to show what can 
be done. 
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(3.3.8) Definition. For any rational number 13 with ° < 13 < lin a shallow 
f3-separation oracle for a convex set K c;; R n is an oracle which, for an input a, 
A, where a E <Q" and A is a rational positive definite n x n-matrix, writes one of 
the following two answers on its output tape: 

(i) a vector c E <Q", c =1= 0, such that the halfspace {x I cT x:$; eTa + f3Jc T Ac} 
contains K n E (A, a) (such a vector c is called a shallow f3-(!ut for K and 
E(A,a»), 

(ii) the assertion that E (A, a) is tough. o 

Observe that the halfspace {x ERn I cT X :$; eTa + 13 .jeT Ae} contains and 
supports the ellipsoid E (13 2 A, a). Clearly a shallow separation oracle as defined 
in (3.3.2) is a shallow n~1 -oracle as defined above. 

(3.3.9) Theorem. There exists an algorithm, called the shallow-f3-(!ut ellipsoid 
method, that, for any 13 E <Q, ° < 13 < lin, and for any circumscribed closed 
convex set (K; n, R) given by a shallow 13 -separation oracle, and for any rational 
e > 0, finds, in time oracle-polynomial in n + (R) + (e) + r(1 - nf3)- l l, a positive 
definite matrix A E <Q"xn and a vector a E <Qn such that one of the following 
holds: 

(i) E(A, a) has been declared tough by the oracle; 

(ii) K c;; E(A, a) and vol(E(A,a» :$; e. 

Note that the algorithm we are going to design is not polynomial in the 
encoding length (13) of 13. But if we choose 13 such that the encoding length 
of the number (1 - nf3)-1 is bounded by a polynomial in the encoding length· 
n+(R)+(e) of the other input (e. g., if we set 13 := (n+ 1)-1), then the algorithm 
is truely oracle-polynomial. So Theorem (3.3.3) directly follows from Theorem 
(3.3.9). 

Proof of Theorem (3.3.9). As in the proof of Theorem (3.2.1) we are going 
to describe a sequence of ellipsoids Eo, E I.. .. ,i. e., we are going to construct a 
sequence of positive definite matrices Ao, AJ, ... and a sequence of centers ao, al, ... 
such that Ek = E (Ak, ak). The algorithm we describe is the shallow-f3-(!ut ellipsoid 
method. Set 

r 5n 5n2 1 
(3.3.10) N:= (1 _ nf3)2 I log el + (1 _ nf3)2 I log(2R) I + Ilog(l - nf3)1 

(3.3.11) p :=8N. 

We initialize the procedure by setting 

(3.3.12) ao:= ° 
Assume ak, Ak are defined for some k ;:::: 0. If k = N, we stop. In this case the 
ellipsoid EN contains K and has volume at most e, so alternative (ii) of (3.3.9) 
is achieved. If k < N, we call the shallow f3-separation oracle with a = ak and 
A=Ak. 
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If the oracle concludes that E(A,a) is tough, then Ek has the desired property. 
If the oracle gives a shallow p-cut c, then we perform the following compu

tations. 

(3.3.13) 

(3.3.14) 

where 

(3.3.15) 

(3.3.16) 

1-np 
p:= n+ 1 ' 

ni(1 _ p2) 
(1 := 2 1 ' n -

(3.3.17) 
2(I-np) 

t := (n + 1)(1 _ P)' 

(3.3.18) r '= 1 (1 - np)2 
... + 2n2 

Again "~" means that the left hand side is obtained by rounding the right hand 
side to p digits behind the point. (Note that without rounding and without 
blowing-up (i. e., with setting' := 1) the update formulas above determine the 
Lowner-John-ellipsoid of Ek(A, a, c, y) with y := cT ak + P-v'cT AkC - cf. (3.1.15), 
(3.1.16), (3.1.17).) . 

Similarly as in the case of the central-cut ellipsoid method, to establish the 
correctness of the algorithm we need the following lemmas. 

(3.3.19) Lemma. The matrices Ao, At, . .. are positive definite. Moreover, 

(3.3.20) Lemma. K £; Ek for k = 0, 1, .... 

(3.3.21) Lemma. vol(Ek+dl vol(Ek) ::::;; e-(I-np)2/(5n) for k = 0, 1, .... 

The first two of these lemmas can be proved along the same lines as Lemmas 
(3.2.8) and (3.2.9). We will prove Lemma (3.3.21), where the crucial condition 
p < lin plays a role. 

Proof of Lemma (3.3.21). As in the proof of Lemma (3.2.10) we write 

(3.3.22) det(Ak+d 
det(Ak+1) , 
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where Ak+1 is defined in (3.3.14), and we obtain for the first factor in (3.3.22) 

(3.3.23) 

= (1 + (1 - nP)2) n/2 (n2(1 - P2») (n-1)/2 n(1 + P> . 
2n2 n2-1 n+l 

The first of the three factors in (3.3.23) can be easily estimated as follows: 

(3.3.24) (1 + (1 ;n~P)2r/2 ~ e(1-np)2/(4n). 

To derive an upper bound for the last two factors in (3.3.23) take the natural 
logarithm In (and recall the power series expansion of In(1 + x) and In(1 - x»: 

( ( n2(1 _ P2») (n-1)/2 • n(1 + P») _ 
(3.3.25) In 2 1 1 -

n - n+ 

= n; 1 (In(1 _ p2) -In ( 1 - :2)) + In(1 + P) -In ( 1 + ~) 

= n - 1 (f ! ( !k _ p2k ) ) + f (_I)k ( lk _ pk) 
2 k=l k n k=l k n 

(~ 1 ( 1 2k)) ~ 1 (1 2k-1) = n f..J 2k n2k - p - f..J 2k - 1 n2k- 1 - p 
k=l k=l 

~ -1 2k 2k-1 
= 6 2k(2k _ l)n2k-1 «2k - l)(np) - 2k(np) + 1) 

-(I-np)2 
~ 2n 

The last inequality follows from the observation that each term of the series on 
the left hand side is negative as np < 1. Hence the first term -(1 - np)2 j(2n) of 
this last sum is an upper bound for it. 

Thus, from (3.3.24) and (3.3.25) we get 

(3.3.26) 

The second factor in (3.3.22) can be estimated just like in the proof of Lemma 
(3.2.10), and we obtain 

(3.3.27) 

Combining inequalities (3.3.26) and (3.3.27) gives the desired result. This com
pletes the proof of Lemma (3.3.21) and, by the same argument as in the proof of 
Theorem (3.2.1), also the proof of Theorem (3.3.9). 0 
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As mentioned above, we will only use the shallow fJ-cut ellipsoid method for 
fJ = n~l in the sequel, and that is what we call the shallow-cut ellipsoid method. 
Similarly, if fJ = n~l' a shallow fJ-separation oracle is called just a shallow 
separation oracle. The parameters used in the shallow-cut ellipsoid method are 
the following (compare with (3.3.10), ... , (3.3.18) and (3.2.2), ... , (3.2.7)): 

N : r5n(n + 1)211ogel + 5n2(n + 1)21 log(2R) 1 + log(n + 1)1, 

p :=8N, 

P := (n+ 1)2' 

n3(n + 2) 
(1 .= ----'---=---'---

. (n + 1)3(n - 1)' 
2 

r .- n(n + 1)' 

1 
, := 1 + 2n2(n + 1)2. 

So, in particular one can see that the number N of iterations of the shallow-cut 
ellipsoid method is about (n + 1)2 times as large as the number of iterations of 
the central-cut ellipsoid method. This, of course, matters for practical purposes, 
but is of no significance if one is only interested in polynomial time solvability. 


