
Modeling General Constraint Satisfaction Problems

July 20, 2016

In this note, we will discuss a general technique in modeling constraint satisfaction problems (CSPs) as a
convex program (in particular, as LP or SDP). We will also see how to design an approximation algorithm
for these problems (since they are NP-hard in general, we will be looking for near-optimal solution).

1 General CSPs

A general constraint satisfaction problem (CSP) is described by the following ingredients:

• Domain: D = {0, 1, . . . , q − 1}.

• Constraint type: Γ = {R : Dk → {0, 1}} where k is the arity of the relation R. The relation evaluates
to 1 if the constraint is satisfied.

The CSP described by these ingredients are specified by CSP(Γ). The parameters k and D are implicitly
defined in Γ.

CSP instances: Let X = {x1, . . . , xn} be variables. Then the CSP(Γ) instance is described by a collection
of clauses Ci = (Ri, Si) where Ri ∈ Γ and Si is an ordered k-tuple. The clause Ci is satisfied by an
assignment f : X → D if Ri(f(Si)) = 1.

Optimizing CSP: The goal of the optimization problem is to find the best assignment. Let D be an
instance (or distribution) of CSP(Γ). Given an assignment φ : X → D, we define its value as val(φ) =∑m

i=1Ri(φ(Si)).

1.1 Many examples

1. Max-3-SAT: In this case, Γ represents the OR-predicate.

2. Max-Cut: We can model this as a CSP where the vertices that get assigned to one side get 0 value
and the other gets 1; so the domain set is D = {0, 1}. The set Γ contains only 6= predicate.

3. Max-E3-LIN2: The domain is {0, 1}. There are two types of precidates in Γ, i.e. xi + xj + xk = 0
and xi + xj = xk = 1 (under modolu two.)

4. Max Acyclic Subgraph: An edge is satisfied if it goes from lower to higher number. The domain is
[n]. The predicate is <.

1

2 Some Algorithms for CSPs

2.1 LP Rounding for SAT

Maximum Sat: We are given a collection of clauses Ci in the CNF, where each clause Ci = (Ri, Si). Our
goal is to maximize the total weight of satisfied clauses.

LP Relaxation: We have a variable λi[Q] for each clause Ci = (Ri, Si) where Ri is in the form Ri =

{0, 1}|Si| \Bi; we should intepret Bi as the only assignment that does not satisfy clause Ci (since this is a
CNF formula). For instance, for clause Ci = xa ∪ x̄b, we would have Ri = {0, 1}2 \ {(0, 1)}, i.e. Bi = (0, 1).
In other words, Bi represents the only false assignment for Ci. Also, we have variable µj [l] for each variable
xj and l ∈ {0, 1}. The LP is summarized below:

(LP-SAT)

max

m∑
i=1

∑
Q∈Ri

λi[Q]

s.t. µj [0] + µj [1] = 1 for all j∑
Q

λi[Q] = 1 for all i

∑
Q:Q[j]=l

λi[Q] = µj [l] for all i, j ∈ Si, l ∈ D

LP Rounding: We construct an assignment f : {x1, . . . , xn} → {0, 1} as follows. For each variable xj , we
assign f(xj) = 1 with probability µj [1]; otherwise, f(xj) = 0. In words, we interpret µj as a probability
distribution on D = {0, 1} and use it to design a randomized algorithm.

Analysis: We first analyze the probability that a clause Ci is satisfied by the assignment f . Notice
that such probability is 1 − Pr[(∀j ∈ Si)f(xj) = Bi(xj)]. Since we perform the randomized rounding
independently for each variable j, the second term is:

Pr[(∀xj ∈ Si)f(xj) = Bi(xj)] =
∏
xj∈Si

µj [Bi(xj)]

By using AM-GM, we get

1−
∏
j∈Si

µj [Bi(xj)] ≥ 1−

(
1−

∑
xj∈Si

(1− µj [Bi(xj)])
|Si|

)|Si|

We denote the term
∑

j∈Si
(1−µj [Bi(xj)]) by pi. So we have the probability of satisfying clause Ci at least

1− (1− pi/|Si|)|Si|.

Lemma 2.1.
∑

Q∈Ri
λi[Q] ≤ pi

Proof. Notice that
∑

Q∈Ri
λi[Q] =

∑
Q:Q6=Bi

λi[Q] ≤
∑

j∈Si

∑
Q:Q(j) 6=Bi(xj)

λi[Q] =
∑

j∈Si
(1 − µj [Bi(xj)]).

2

Now we can apply the convexity of the function h(x) = (1− x/r)r, together with the Jensen’s inequality,
to finish the proof. Since h is convex, we have h(x) ≤ xh(1) + (1− x)h(0) for all x ∈ (0, 1).

2.2 Maximum Cut

Consider first the following quadratic program:

max
∑
ij∈E

(1− yiyj)
2

, (∀i)yi ∈ {−1, 1}

This quadratic (integer) program also captures the maximum cut problem. We now relax it such that each
yi is replaced by a vector vi ∈ Rn, so now we get the following convex program.

(SDP-MC)

max
∑
ij∈E

(1− vi · vj)
2

s.t. ||vi||2 = 1 for all i

Lemma 2.2. This is a relaxation of MaxCut.

Proof. Consider any cut (A,B). Define the solution vi = (−1, 0, . . . , 0)T for i ∈ A and vi = (1, 0, . . . , 0)T

for i ∈ B. Notice that ||vi||2 = 1 for all i, and that vi · vj ∈ {−1, 1}. Morevoer, any edge ij ∈ E is cut by
(A,B) iff (1− vi · vj) = 2.

We can also check that this can be solved by Ellipsoid method. Define aij = vi · vj , and matrix A = (aij).
It is clear that there are vectors v1, . . . , vn satisfying the consraints if and only if A is a PSD matrix. One
can in fact think of the above convex program as the LP with (infinitely many) constraints of the form
xTAx ≥ 0 for all vectors x.

Rounding: We can think of vector solutions vi as lying on the unit sphere. We are looking for a cut that
separate as many vectors as possible, so why don’t we pick a random cut? More precisely, pick a random
vector r ∈ Sd−1 and then define A = {i : vi · r ≥ 0}. The cut (A, V \ A) will be our cut. What is the
probability that each edge ij ∈ E is separated? This is exactly the value:

θij
π

=
cos−1(vi · vj)

π

where θij denotes the angle between the two vectors vi and vj .

3 Generic LP/SDP Formulation

3.1 LP

Recall that we have three types of constraints in the LP relaxation. First, we introduce distribution µj [`]
for each variable xj and each label ` ∈ D. Also, there are constriants that enforce the variables {µj [`]}`∈D
being a distribution:

(∀j)
∑
`∈D

µj [`] = 1

3

We also have a “local” distributions for constraints. For each constraint (Ri, Si), for each possible assign-
ment Q ∈ Dr, we have LP-variable λi[Q] that indicates how to assign the labels to variables in Si.

(∀i)
∑
Q

λi[Q] = 1

We can think of each variable µj and λi as a probability distribution. At this point, there is nothing
that ensures the “consistency” of these two types of distributions, so the LP is not making any sense yet.
We would need constraints that guarantee somehow that the µ and the λ are talking about the same
distribution of solutions.

(∀i)(∀j : xj ∈ Si)(∀` ∈ D)
∑

Q:Q(xj)=`

λi[Q] = µj [`]

Distribution Viewpoint: All these constraints can be written concisely as simply saying that we are
looking for two collections of distributions {λi}mi=1 and {µj}nj=1 such that their first moments agree:

(∀i)(∀j : xj ∈ Si)(∀` ∈ D)PrQ∼λi [Q(xj) = `] = Pr`′∼µj
[
`′ = `

]
This viewpoint will be useful when we want to strengthen the relaxation further, as we will see in the next
section when we want to write an SDP relaxation for all CSPs.

3.2 SDP

We will first construct a collection of random variables satisfying certain constraints. Then we will argue
that these random variables can be computed by SDP. We will have a random variable Yj,` for each CSP-
variable xj and label ` ∈ D. This random variable denotes the event that f(xj) = `, where f is the
tentatively “best” assignment function.

Similar to the case of LP, we have random variable λi for each constraint (Ri, Si). Let D be the unknown
“optimal distribution” that we are looking for. In the integral world, this optimal distribution would assign
Pr [Yj,` = 1] = 1 if f(xj) = `; and Pr [Yj,` = 1] = 0 otherwise. We need to somehow “glue together” the
random variables λi and the random variables Yj,`. Consider two types of constraints:

• First moment: For each constraint i, for each xj ∈ Si, and for each ` ∈ D, we have

PrQ∼λi [Q(xj) = `] = ED [Yj,`]

• Second moment: For each constraint i, for each xj , xj′ ∈ Si, and for each `, `′ ∈ D, we have

PrQ∼λi
[
Q(xj) = ` ∧Q(xj′) = `′

]
= ED

[
Yj,`Yj′,`′

]
One should keep in mind that the random variables Yj,` are not necessarily independent, so the expected
value of a product is not the product of two expected values. Let us denote the new relaxation by (SDP).

Lemma 3.1. The new relaxation is at least as strong as the generic LP relaxation.

Proof. Let D be a joint distribution that satisfies all the (SDP) constraints. We have to define the right
choices of µj [`]. This can be done by simply µj [`] = ED [Yj,`]. This immediately satisfies the consistency
constraints. Notice that

∑
` µj [`] = 1 because of the first moment constraint PrQ∼λi [Q(xj) = `] = µj [`],

and summing over all ` is imply summing over all possible ` in the distribution λi.

4

Let us investigate into these random variables a bit more. Now we know that the expectation of
∑

`∈D Yj,`
is equal to 1 (from the proof of the lemma). But if these random variables make sense at all in this context,
we should in fact have that

∑
`∈D Yj,` = 1 with probability one! This is simply because these variables

represent how the labels are assigned. Indeed, this is true because the variance of
∑

`∈D Yj,` is zero.

Lemma 3.2. For any j, Var(
∑

`∈D Yj,`) = 0

Proof. Recall the variance Var(
∑

`∈D Yj,`) = E
[
(
∑

`∈D Yj,`)
2
]
−
(
E
[∑

`∈D Yj,`
])2

. The second term is one.

We can expand the first term as E
[∑

`∈D Y
2
j,`

]
+ 2E

[∑
` 6=`′ Yj,`Yj,`′

]
, where each of the second term is

equal to PrQ∼λi [Q(xj) = ` ∧Q(xj) = `′] = 0; the first term is equal to
∑

`∈DPrQ∼λi [Q(xj) = `] = 1.

Solving the relaxation by SDP: We argue that the existence of such random variables is equivalent to
asserting that a certain matrix is PSD. For each j, j′, `, `′, define a(j,`),(j′,`) as the probability

PrQ∼λi
[
Q(xj) = ` ∧Q(xj′) = `′

]
=

∑
Q:Q(xj)=`,Q(xj′)=`

′

λi[Q]

We can explicitly write such linear constraints in our convex relaxation. This already represents the second
moment constraints, and the only thing we need is to assert that there are random variables whose second
moments are exactly a(j,`)(j′,`′). This is equivalent to saying that matrix A = (a(j,`)(j′,`′)) is PSD.

More precisely, the SDP is obtained by simply replacing the term PrQ∼λi
[
Q(xj) = ` ∧Q(xj′) = `′

]
by

a(j,`)(j′,`′). Other probability terms can be derived easily, e.g. Pr [Q(xj) = `] is just a(j,`)(j,`). If we want to
view it as vector programs, we can replace a(j,`)(j′,`′) by the inner product v(j,`) ·v(j′,`′) (introducing vectors
v(j,`) for all j, `).

3.3 Discussion

This SDP was proposed by Prasad Raghavendra in 2008. It is known to achieve the “best” approximation
ratio among any polynomial-time algorithm, assuming UGC. Raghavendra showed that the SDP integrality
gap curves give a limit to polynomial time algorithms, while presenting an algorithm that achieves the
integrality gap.

5

