
Chapter 2

Semidefinite Programming

Let us start with the concept of linear programming. A linear program is
the problem of maximizing (or minimizing) a linear function in n variables
subject to linear equality and inequality constraints. In equational form, a
linear program can be written as

maximize cTx
subject to Ax = b

x ≥ 0.

Here x = (x1, x2, . . . , xn) is a vector of n variables,1 c = (c1, c2, . . . , cn)
is the objective function vector, b = (b1, b2, . . . , bm) is the right-hand side,
and A ∈ R

m×n is the constraint matrix. The bold digit 0 stands for the zero
vector of the appropriate dimension. Vector inequalities like x ≥ 0 are to be
understood componentwise.

In other words, among all x ∈ R
n that satisfy the matrix equation Ax = b

and the vector inequality x ≥ 0 (such x are called feasible solutions), we are
looking for an x∗ with the highest value cTx∗.

2.1 From Linear to Semidefinite Programming

To get a semidefinite program, we replace the vector space R
n underlying x

by another real vector space, namely the vector space

SYMn = {X ∈ R
n×n : xij = xji, 1 ≤ i < j ≤ n}

of symmetric n×nmatrices, and we replace the matrix A by a linear mapping
A: SYMn → R

m.

1 Vectors are column vectors, but in writing them explicitly, we use the n-tuple
notation.

15B. Gärtner and J. Matoušek, Approximation Algorithms and Semidefinite
Programming, DOI 10.1007/978-3-642-22015-9 2,
© Springer-Verlag Berlin Heidelberg 2012

16 2 Semidefinite Programming

The standard scalar product 〈x,y〉 = xTy over R
n gets replaced by the

standard scalar product

X • Y :=

n∑

i=1

n∑

j=1

xijyij

over SYMn. Alternatively, we can also write X • Y = Tr(XTY), where for a
square matrix M , Tr(M) (the trace of M) is the sum of the diagonal entries
of M .

Finally, we replace the constraint x ≥ 0 by the constraint

X � 0.

Here X � 0 stands for “the matrix X is positive semidefinite.”
Next, we will explain all of this in more detail.

2.2 Positive Semidefinite Matrices

First we recall that a positive semidefinite matrix is a real matrix M that
is symmetric (i.e., MT = M , and in particular, M is a square matrix) and
has all eigenvalues nonnegative. (The condition of symmetry is all too easy to
forget. Let us also recall from Linear Algebra that a symmetric real matrix
has only real eigenvalues, and so the nonnegativity condition makes sense.)

Here are several equivalent characterizations.

2.2.1 Fact. Let M ∈ SYMn. The following statements are equivalent.

(i) M is positive semidefinite, i.e., all the eigenvalues of M are nonnegative.
(ii) xTMx ≥ 0 for all x ∈ R

n.
(iii) There exists a matrix U ∈ R

n×n such that M = UTU .

This can easily be proved using diagonalization, which is a basic tool for
dealing with symmetric matrices.

Using the condition (ii), we can see that a semidefinite program as intro-
duced earlier can be regarded as a “linear program with infinitely many
constraints.” Indeed, the constraint X � 0 for the unknown matrix X can be
replaced with the constraints aTXa ≥ 0, a ∈ R

n. That is, we have infinitely
many linear constraints, one for every vector a ∈ R

n.

2.2.2 Definition. PSDn is the set of all positive semidefinite n×n matrices.

2.3 Cholesky Factorization 17

A matrix M is called positive definite if xTMx > 0 for all x 	= 0. It can
be checked that the positive definite matrices form the interior of the set
PSDn ⊆ SYMn.

2.3 Cholesky Factorization

In semidefinite programming we often need to compute, for a given posi-
tive semidefinite matrix M , a matrix U as in Fact 2.2.1(iii), i.e., such that
M = UTU . This is called the computation of a Cholesky factorization. (The
definition also requires U to be upper triangular, but we don’t need this.)

We present a simple explicit method, the outer product Cholesky Factor-
ization [GvL96, Sect. 4.2.8], which uses O(n3) arithmetic operations for an
n× n matrix M .

If M = (α) ∈ R
1×1, we set U = (

√
α), where α ≥ 0 by the nonnegativity

of the eigenvalues. Otherwise, since M is symmetric, we can write it as

M =

(
α qT

q N

)
.

We also have α = eT1 Me1 ≥ 0 by Fact 2.2.1(ii). Here ei denotes the i-th unit
vector of the appropriate dimension.

There are two cases to consider. If α > 0, we compute

M =

(√
α 0T

1√
α
q In−1

)(
1 0T

0 N − 1
αqq

T

)(√
α 1√

α
qT

0 In−1

)
. (2.1)

The matrix N − 1
αqq

T is again positive semidefinite (Exercise 2.2), and we
can recursively compute a Cholesky factorization

N − 1

α
qqT = V TV.

Elementary calculations yield that

U =

(√
α 1√

α
qT

0 V

)

satisfies M = UTU , and so we have found a Cholesky factorization of M .
In the other case (α = 0), we also have q = 0 (Exercise 2.2). The matrix

N is positive semidefinite (apply Fact 2.2.1(ii) with x = (0, x2, . . . , xn)), so
we can recursively compute a matrix V satisfying N = V TV . Setting

U =

(
0 0T

0 V

)

18 2 Semidefinite Programming

then gives M = UTU , and we are done with the outer product Cholesky
factorization.

Exercise 2.3 asks you to show that the above method can be modified to
check whether a given matrix M is positive semidefinite.

We note that the outer product Cholesky factorization is a polynomial-
time algorithm only in the real RAM model. We can transform it into a
polynomial-time Turing machine, but at the cost of giving up the exact fac-
torization. After all, a Turing machine cannot even exactly factor the 1× 1
matrix (2), since

√
2 is an irrational number that cannot be written down

with finitely many bits.
The error analysis of Higham [Hig91] implies the following: when we run a

modified version of the above algorithm (the modification is to base the fac-
torization (2.1) not on α = m11 but rather on the largest diagonal entry mjj),
and when we round all intermediate results to O(n) bits (the constant chosen
appropriately), then we will obtain a matrix U such that the relative error

‖UTU −M‖F/‖M‖F is bounded by 2−n. (Here ‖M‖F =
(∑n

i,j=1 m
2
ij

)1/2
is

the Frobenius norm.) This accuracy is sufficient for most purposes, and in
particular, for the Goemans–Williamson MaxCut algorithm of the previous
chapter.

2.4 Semidefinite Programs

2.4.1 Definition. A semidefinite program in equational form is the fol-
lowing kind of optimization problem:

Maximize
∑n

i,j=1 cijxij

subject to
∑n

i,j=1 aijkxij = bk, k = 1, . . . ,m,

X � 0,

(2.2)

where the xij , 1 ≤ i, j ≤ n, are n2 variables satisfying the symmetry
conditions xji = xij for all i, j, the cij , aijk and bk are real coefficients,
and

X = (xij)
n
i,j=1 ∈ SYMn.

In a more compact form, the semidefinite program in this definition can
be written as

Maximize C •X
subject to A1 •X = b1

A2 •X = b2
...

Am •X = bm
X � 0,

(2.3)

2.4 Semidefinite Programs 19

where
C = (cij)

n
i,j=1

is the matrix expressing the objective function,2 and

Ak = (aijk)
n
i,j=1, k = 1, 2, . . . ,m.

(We recall the notation C •X =
∑n

i,j=1 cijxij introduced earlier.)
We can write the system of m linear constraints A1•X = b1,. . . , Am•X =

bm even more compactly as
A(X) = b,

where b = (b1, . . . , bm) and A: SYMn → R
m is a linear mapping. This nota-

tion will be useful especially for general considerations about semidefinite
programs.

Following the linear programming case, we call the semidefinite program
(2.3) feasible if there is some feasible solution, i.e., a matrix X̃ ∈ SYMn with
A(X̃) = b, X̃ � 0. The value of a feasible semidefinite program is defined as

sup{C •X : A(X) = b, X � 0}, (2.4)

which includes the possibility that the value is ∞. In this case, the program
is called unbounded ; otherwise, we speak of a bounded semidefinite program.

An optimal solution is a feasible solution X∗ such that C •X∗ ≥ C •X
for all feasible solutions X . Consequently, if there is an optimal solution, the
value of the semidefinite program is finite, and it is attained, meaning that
the supremum in (2.4) is a maximum.

Warning: If a semidefinite program has finite value, generally we cannot
conclude that the value is attained! We illustrates this with an example below.
For applications, this presents no problem: All known efficient algorithms for
solving semidefinite programs return only approximately optimal solutions,
and these are the ones that we rely on in applications.

Here is the example. With X ∈ SYM2, let us consider the problem

Maximize −x11

subject to x12 = 1
X � 0.

The feasible solutions of this semidefinite program are all positive semidefinite
matrices X of the form

X =

(
x11 1
1 x22

)
.

2 Since X is symmetric, we may also assume that C is symmetric, without loss of
generality; similarly for the matrices Ak.

20 2 Semidefinite Programming

It is easy to see that such a matrix is positive semidefinite if and only if
x11, x22 ≥ 0 and x11x22 ≥ 1. Equivalently, if x11 > 0 and x22 ≥ 1/x11. This
implies that the value of the program is 0, but there is no solution that attains
this value.

2.5 Non-standard Form

Semidefinite programs do not always look exactly as in (2.3). Besides the
constraints given by linear equations, as in (2.3), there may also be inequality
constraints, and one may also need extra real variables that are not entries
of the positive semidefinite matrix X . Let us indicate how such more general
semidefinite programs can be converted to the standard form (2.3).

First, introducing extra nonnegative real variables x1, x2, . . . , xk not
appearing in X can be handled by incorporating them into the matrix.
Namely, we replace X with the matrix X ′ ∈ SYMn+k, of the form

X ′ =

⎛

⎜⎜⎜⎜⎜⎝

X 0 0 · · · 0
0 x1 0 · · · 0
0 0 x2 · · · 0

0 0 0
. . . 0

0 0 0 · · · xk

⎞

⎟⎟⎟⎟⎟⎠
.

We note that the zero entries really mean adding equality constraints
to the standard form (2.3). We have X ′ � 0 if and only if X � 0 and
x1, x2, . . . , xk ≥ 0.

To get rid of inequalities, we can add nonnegative slack variables, just as
in linear programming. Thus, an inequality constraint x23 + 5x15 ≤ 22 is
replaced with the equality constraint x23 + 5x15 + y = 22, where y is an
extra nonnegative real variable that does not occur anywhere else. Finally,
an unrestricted real variable xi (allowed to attain both positive and negative
values) is replaced by the difference x′

i − x′′
i , where x′

i and x′′
i are two new

nonnegative real variables.
By these steps, a non-standard semidefinite program assumes the form of

a standard program (2.3) over SYMn+k for some k.

2.6 The Complexity of Solving Semidefinite Programs

In Chap. 1 we claimed that under suitable conditions, satisfied in the
Goemans–Williamson MaxCut algorithm and many other applications,
a semidefinite program can be solved in polynomial time up to any desired
accuracy ε. Here we want to make this claim precise.

2.6 The Complexity of Solving Semidefinite Programs 21

In order to claim that a semidefinite program is (approximately) solvable
in polynomial time, we need to assume that it is “well-behaved” in some
sense. Namely, we need that the feasible solutions cannot be too large: we
will assume that together with the input semidefinite program, we also obtain
an integer R bounding the Frobenius norm of all feasible matrices X .

We will be able to claim polynomial-time approximate solvability only in
the case where R has polynomially many digits. As we will see later, one can
construct examples of semidefinite programs where this fails and one needs
exponentially many bits in order to write down any feasible solution.

What the ellipsoid method can do. The strongest known theoreti-
cal result on solvability of semidefinite programs follows from the ellipsoid
method (a standard reference is Grötschel et al. [GLS88]). The ellipsoid
method is a general algorithm for maximizing (or minimizing) a given linear
function over a given full-dimensional convex set C.3

In our case, we would like to apply the ellipsoid method to the set C ⊆
SYMn of all feasible solutions of the considered semidefinite program.

This set C is convex but not full-dimensional, due to the linear equality
constraints in the semidefinite program. But since the affine solution space
L of the set of linear equalities can be computed in polynomial time through
Gaussian elimination, we may restrict C to this space and then we have a
full-dimensional convex set. Technically, this can either be done through an
explicit coordinate transformation, or dealt with implicitly (we will do the
latter).

The ellipsoid method further requires that C should be enclosed in a ball
of radius R and it should be given by a polynomial-time weak separation
oracle [GLS88, Sect. 2.1]. In our case, this means that for a given symmetric
matrix X that satisfies all the equality constraints, we can either certify that
it is “almost” feasible (i.e., has small distance to the set PSDn), or find a
hyperplane that almost separates X from C. Polynomial time is w.r.t. the
encoding length of X , the bound R, and the amount of “almost.”

It turns out that a polynomial-time weak separation oracle is provided
by the Cholesky factorization algorithm (see Sect. 2.3 and Exercise 2.3). The
only twist is that we need to perform the decomposition “within” L, i.e., for
a suitably transformed matrix X ′ of lower dimension.

Indeed, if the approximate Cholesky factorization goes through, X ′ is an
almost positive semidefinite matrix, since it is close (in absolute terms) to a
positive semidefinite matrix UTU . The outer product Cholesky factorization
guarantees a small relative error, but this can be turned into a small absolute
error by computing with O(logR) more bits.

Similarly, if the approximate Cholesky factorization fails at some point,
we can reconstruct a vector v (by solving a system of linear equations) such
that vTX ′v is negative or at least very close to zero; this gives us an almost
separating hyperplane.

3 A set C is convex if for all x,y ∈ C and λ ∈ [0, 1], we also have (1− λ)x+ λy ∈ C.

22 2 Semidefinite Programming

To state the result, we consider a semidefinite program (P) in the form

Maximize C •X
subject to A1 •X = b1

A2 •X = b2
...

Am •X = bm
X � 0.

Let L := {X ∈ SYMn : Ai •X = bi, i = 1, 2, . . . ,m} be the affine subspace
of matrices satisfying all the equality constraints. Let us say that a matrix
X ∈ SYMn is an ε-deep feasible solution of (P) if all matrices Y ∈ L of
(Frobenius) distance at most ε from X are feasible solutions of (P).

Now we can state a precise result about the solvability of semidefinite pro-
grams, which follows from general results about the ellipsoid method [GLS88,
Theorem 3.2.1. and Corollary 4.2.7].

2.6.1 Theorem. Let us assume that the semidefinite program (P) has
rational coefficients, let R be an explicitly given bound on the maximum
Frobenius norm ‖X‖F of all feasible solutions of (P), and let ε > 0 be
a rational number.
Let us put vdeep := sup{C •X : X an ε-deep feasible solution of (P)}.
There is an algorithm, with runtime polynomial in the (binary) encoding
sizes of the input numbers and in log(R/ε), that produces one of the
following two outputs.

(a) A matrix X∗ ∈ L (i.e., satisfying all equality constraints) such that
‖X∗ − X‖F ≤ ε for some feasible solution X , and with C •X∗ ≥
vdeep − ε.

(b) A certificate that (P) has no ε-deep feasible solutions. This certifi-
cate has the form of an ellipsoid E ⊂ L that, on the one hand, is
guaranteed to contain all feasible solutions, and on the other hand,
has volume so small that it cannot contain an ε-ball.

One has to be careful here: This theorem does not yet imply the informal
claim made in Chap. 1. It does so if R is not too large. Unfortunately, R may
have to be very large in general, namely doubly-exponential in n, the matrix
size; see the pathological example below. In such a case, the bound of Theorem
2.6.1 is exponential!

What saves us in the applications is that R is usually small. In the Max-
Cut application, for example, all entries of a feasible solution X are inner
products of unit vectors. Hence the entries are in [−1, 1], and thus ‖X‖F ≤ n.

A glance at other algorithms. First we want to point out that the ellipsoid
method is the only known method that provably yields polynomial runtime

2.6 The Complexity of Solving Semidefinite Programs 23

in the Turing machine model, at least under suitable and fairly general con-
ditions such as a good bound R.

On the other hand, the practical performance of the ellipsoid method is
poor, and completely different algorithms have made semidefinite program-
ming into an extremely powerful computational tool in practice.

Perhaps the most significant and most widely used class of algorithms are
interior-point methods, which we will outline in Chap. 6. On the theoreti-
cal side, they are capable of providing polynomial-time bounds in the RAM
model, but there is no control over the sizes of the intermediate numbers that
come up in the computations, as far as we could find in the (huge) literature.
Moreover, describing these methods in full detail is beyond the scope of this
book.

In order to provide a simple and complete algorithm for semidefinite pro-
gramming, we will present and analyzeHazan’s algorithm in Chap. 5. This is a
recent alternative method for approximately solving semidefinite programs,
with a polynomial bound on the running time in the real RAM model. It
comes with output guarantees similar to the ones in Theorem 2.6.1 above,
and it is efficient in practice. However, the running time bound is polynomial
only in 1/ε and not in log(1/ε).

A semidefinite program where all feasible solutions are huge. To
get such a pathological example, let us consider a semidefinite program with
the following constraints:

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 0 0 0 0 · · · 0 0
2 x1 0 0 0 0 · · · 0 0
0 0 1 x1 0 0 · · · 0 0
0 0 x1 x2 0 0 · · · 0 0
0 0 0 0 1 x2 · · · 0 0
0 0 0 0 x2 x3 · · · 0 0

...
. . .

...
0 0 0 0 0 0 · · · 1 xn−1

0 0 0 0 0 0 · · · xn−1 xn

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� 0.

This is in fact a constraint of the form X � 0, along with various equalities
involving entries of X . Due to the block structure, we have X � 0 if and only
if

(
1 xi−1

xi−1 xi

)
� 0, i = 1, . . . , n,

where x0 := 2. But this implies

det

(
1 xi−1

xi−1 xi

)
= xi − x2

i−1 ≥ 0, i = 1, . . . , n,

24 2 Semidefinite Programming

equivalently xi ≥ x2
i−1, i = 1, . . . , n. It follows that

xn ≥ 22
n

for every feasible solution, which is doubly-exponential in n. Hence, the encod-
ing size of xn (when written as say a rational number) is exponential in n
and also in the number of variables.

Exercises

2.1 Prove or disprove the following claim: For all A,B ∈ SYMn, we also have
AB ∈ SYMn.

2.2 Fill in the missing details of the outer product Cholesky factorization.

(i) If the matrix

M =

(
α qT

q N

)

is positive semidefinite with α > 0, then the matrix

N − 1

α
qqT

is also positive semidefinite.
(ii) If the matrix

M =

(
0 qT

q N

)

is positive semidefinite, then also q = 0.

2.3 Show that the outer product Cholesky factorization can also be used to
test whether a matrix M ∈ R

n×n is positive semidefinite.

2.4 A rank-constrained semidefinite program is a problem of the form

Maximize C •X
subject to A(X) = b

X � 0
rank(X) ≤ k,

where k is a fixed integer. Show that the problem of solving a rank-constrained
semidefinite program is NP-hard for k = 1.

2.5 A matrix M ∈ R
n×n is called a Euclidean distance matrix if there exist

n points p1, . . . ,pn ∈ R
n, such that M is the matrix of pairwise squared

Euclidean distances, i.e.,

2.6 The Complexity of Solving Semidefinite Programs 25

mij = ‖pi − pj‖2, 1 ≤ i, j ≤ m.

Prove that a matrix M is a Euclidean distance matrix if and only if M is
symmetric, mii = 0 for all i, and

xTMx ≤ 0 for all x with
n∑

i=1

xi = 0.

2.6 Let G = ({1, . . . , n}, E) be a graph with two edge weight functions αe ≤
βe, e ∈ E. We want to know whether there exist points p1, . . . ,pn ∈ R

n, such
that

α{i,j} ≤ ‖pi − pj‖2 ≤ β{i,j}, for all {i, j} ∈ E.

Show that this decision problem can be formulated as a semidefinite program!

2.7 (Sums of squares and minimization I)

(a) Let p(x) ∈ R[x] be a univariate polynomial of degree d with real coef-
ficients. We would like to decide whether p(x) is a sum of squares,
i.e., if it can be written as p(x) = q1(x)

2 + · · · + qm(x)2 for some
q1(x), . . . , qm(x) ∈ R[x]. Formulate this problem as the feasibility of a
semidefinite program.

(b) Let us call a polynomial p(x) ∈ R[x] nonnegative if p(x) ≥ 0 for all x ∈ R.
Obviously, a sum of squares is nonnegative. Prove that the converse holds
as well: Every nonnegative univariate polynomial is a sum of squares.
(Hint: First factor into quadratic polynomials.)

(c) Let p(x) ∈ R[x] be a given polynomial. Express its global minimum
min{p(t) : t ∈ R} as the optimum of a suitable semidefinite program
(use (b) and a suitable extension of (a)).

2.8 (Sums of squares and minimization II)

(a) Now let p(x1, . . . , xn) be a polynomial in n variables of degree d with real
coefficients, and as in Exercise 2.7, we ask whether it can be expressed as
a sum of squares (of n-variate real polynomials). Formulate this problem
as the feasibility of a semidefinite program. How many variables and
constraints are there in this SDP?

(b) Verify that the Motzkin polynomial p(x, y) = 1 + x2y2(x2 + y2 − 3) is
nonnegative for all pairs (x, y) ∈ R

2, but it is not a sum of squares.

Even though part (b) shows that for multivariate polynomials, nonnegativity
is not equivalent to being a sum of squares, the multivariate version of the
method from Exercise 2.7 constitutes a powerful tool in practice, which can
find a global minimum in many cases (see, e.g., [Par06] or [Las10]).

	Chapter 2 Semidefinite Programming
	2.1 From Linear to Semidefinite Programming
	2.2 Positive Semidefinite Matrices
	2.3 Cholesky Factorization
	2.4 Semidefinite Programs
	2.5 Non-standard Form
	2.6 The Complexity of Solving Semidefinite Programs

