1 Recap

1.1 Simplex algorithm

Let P be a polyhedron that defines feasible space and c be a vector of objective function. The simplex algorithm takes the following steps:

1. Start at some vertice of P
2. Move to the next vertice, that would improve objective function
3. Repeat step 2 until objective function cannot be improved anymore
4. Obtained vertice is the optimal solution

There are several ways to describe vertices mathematically:

- **Vertex.** There exists an objective function such that point v is the unique optimal solution
- **Extreme point.** The point of polyhedron P cannot be expressed as a convex combination of two other points in P.
- **Basic feasible solution.** There exist n linearly independent constraints that are tight in this point.

2 Optimal solution at vertices

2.1 When polyhedron has vertices

Applying the simplex algorithm we want it to finish in finite time. Therefore polyhedron P should not have infinite amount of vertexes. We claim that there exists an optimal solution, which is a vertice, apart from the following exceptions:
• P is unbounded
• there are no feasible solutions
• P does not have a vertex

We define a property of polyhedron, that detects whether a polyhedron has no vertexes.

Definition A polyhedron P has no vertexes if it contains a line.

Definition P contains a line if there exists a point $x \in P$ and vector d denoting direction, such that every point of the form $x + \lambda d \in P$.

Theorem The polyhedron $P = \{x \in \mathbb{R}^n | Ax \geq b\} \neq \emptyset$. The following statements are equal:

a) P has at least one extreme point

b) P does not contain a line

c) there are no n linearly independent constraints

Proof: b) \Rightarrow a) Let’s construct a polyhedron. Then we start in some point and move in direction of boundary of P considering we cannot have infinite amount of steps. We know that we are on the edge if some constraints are tight.

Let point $x \in P$, and define set of indexes $I = \{i | a_i^T x = b_i\}$ and set of rows, for which constraints are tight $S = \{a_i | i \in I\}$. If amount of rows in S is equal to n, then x is basic feasible solution, hence (according to the theorem from Lecture 5) x is an extreme point.

Assume it’s not the case. Then a_i lie in the subspace of $\mathbb{R}^n \Rightarrow \exists d \neq 0$ such that $a_i^T d = 0 \forall i \in I$. d is a direction in which we want to move. Now we are interested in points of a form $x + \lambda d$.

As we move in direction of boundary, after some finite λ some constraint has to become tight (was not tight before). Hence $\exists \lambda^* > 0$ and $j \notin I$ such that $a_j^T (x + \lambda^* d) = b_i$. If we add a_j to S, rank of S increases. Then we need the following claim to be true.

Claim: a_j is not a linear combination os vectors in S.

Proof: By contradiction assume there exists a way to express a_j as a linear combination $a_j = \sum_{i \in I} \lambda_i a_i$. We know that $a_j^T x \neq b_j$, because $j \notin I$. But also:

$$a_j^T (x + \lambda^* d) = b_j \Rightarrow a_j^T \neq b_j, a_j^T \lambda^* d \neq 0$$

but $a_j^T = 0 \forall i \in I$ by definition. So we know that $a_j^T \neq 0$ and $\sum_{i \in I} \lambda_i a_i^T d = 0 \neq a_j^T d = 0$. Contradiction.

Now get back to the proof of the theorem. The rank of S increases $\text{rank}(S) < \text{rank}(S \cup \{a_j\})$.

2
We take a point \(x + \lambda d \) and move again. After we move \(n \) iterations \(\text{rank}(S') = n \) we obtain the point \(x' \) with corresponding \(S' \) with \(\text{rank}(S') = n \), hence we have \(n \) linearly independent constraints, hence \(x' \) is a vertex, hence also an extreme point.

\[a) \Rightarrow c) \text{Suppose } x \text{ is an extreme point. That means that } x \text{ is also basic feasible solution. Hence, there are } n \text{ linearly independent constraints active at } x. \]

\[c) \Rightarrow b) \text{Suppose we have } n \text{ linearly independent constraints } a_1 \ldots a_n. \text{Suppose by contradiction } p \text{ contains a line, means it contains all points of a form } \{ x + \lambda d | \lambda \in \mathbb{R}, d \neq 0 \}. \text{This also means that every point on this line satisfies all constraints:} \]

\begin{align*}
 a_i^T (x + \lambda d) & \geq b_i \forall i, \lambda \in \mathbb{R} \\
 a_i^T x + \lambda a_i^T d & \geq b_i \forall i, \lambda \in \mathbb{R}
\end{align*}

We want this to hold for all \(\lambda \), so that it is not possible to pick arbitrary small negative \(\lambda \), that would break the condition. Hence we need \(\lambda a_i^T d = 0 \forall i \). But if \(a_i^T d = 0 \forall i, d \neq 0 \) then \(a_i \) are not linearly independent. Contradiction.

2.2 Optimal solution in extreme point

Theorem. Let \(P \subset \mathbb{R}^n \) be polyhedron with at least one extreme point. Consider the LP \(\max \{ c^T x | x \in P \} \) and assume a (finite) optimal solution exists. Then there exists optimal solution which is an extreme point.

Proof. Let \(P = \{ x \in \mathbb{R}^n | Ax \geq b \} \), \(v \) is a finite optimum \(v = \max \{ c^T x | x \in P \} \). Define a new polyhedron \(Q \), that contains only those points of \(P \), that are optimal \(Q = \{ x \in \mathbb{R}^n | Ax \geq b \land c^T x = v \} \). \(P \) has an extreme point, thus it does not contain a line. \(Q \) is a subset of \(P \), thus \(Q \) also does not contain a line. Hence \(Q \) has an extreme point \(x^* \).

Claim: \(x^* \) is also an extreme point of \(P \).

Proof: By contradiction assume that \(x^* \) is not an extreme point of \(P \). Then there exist two points of \(P \), that give a linear combination of \(x^* \): \(\exists y, z \in P, \lambda \in [0, 1] \) such that \(x^* = \lambda y + (1 - \lambda)z \). As \(x^* \in Q \) we know \(v = c^T x^* = \lambda c^T y + (1 - \lambda)c^T z \). As \(v \) is optimal solution then \(c^T y \leq v, c^T z \leq v \).

If \(y \in P \setminus Q \) then \(c^T y < v \Rightarrow v = \lambda c^T y + (1 - \lambda)c^T z < v \). Then \(y \) gives strictly better solution for LP, hence \(y \in Q \land z \in Q \). Hence \(x^* \) is not an extreme point of \(Q \). Contradiction.

We know that \(x^* \) is an extreme point of \(P \) and \(x^* \in Q \). Thus \(c^T x^* = v \) and \(x^* \) is an optimal extreme point solution for LP.
3 Full rank assumption

Theorem. Let $P = \{ x | Ax = b, x \geq 0 \}$ where $A \in \mathbb{R}^{m \times n}$ but $\text{rank}(A) = k < m$. Assume $P \neq \emptyset$ and w.l.o.g. that rows a_1^T, \ldots, a_k^T are linearly independent. Define $Q = \{ x | a_1^T x = b_1, \ldots, a_k^T x = b_k, x \geq 0 \}$. Then $Q = P$.

Proof. 1) Every point that satisfies P also satisfies $Q \Rightarrow P \subseteq Q$.

2) Prove $Q \subseteq P$. Every row a_i^T of A can be expressed as $a_i^T = \sum_{j=1}^{k} a_i^T \lambda_{ij}$ for some $\lambda \in \mathbb{R}$. Because $P \neq \emptyset$ we can say let $x \in P$, $b_i = a_i^T x = \sum_{j=1}^{k} a_i^T \lambda_{ij} \forall i$. Let $y \in Q \forall i a_i^T y = \sum_{j=1}^{k} \lambda_{ij} a_i^T y = \sum_{j=1}^{k} \lambda_{ij} b_j = b_i$. Hence we know that y satisfied all constraints in Q. Then $y \in P$ and $Q \subseteq P$.

From 1) and 2) we conclude that $Q = P$.

From now on we consider that all A have full row rank.

Let $A \in \mathbb{R}^{m \times n}, m \leq n$. If x is a feasible solution, then first m constraints are tight, vector x is $m-$dimensional. $n - m$ constraints of a form $x_j \geq 0$ have to be also tight at x to satisfy linear independence. How to choose these?

4 Extreme points of LP in standard form

Theorem. Given LP $Ax = b, x \geq 0$ and assume that rows of A are linearly independent. A vector $x \in \mathbb{R}^n$ is basic solution if and only if $Ax = b$ and there are indexes $B \subseteq \{1, \ldots, n\}, |B| = m$ such that:

- a) the columns $A_j, j \in B$ are linearly independent
- b) if $j \notin B$ then $x_j = 0$

Proof. 1) Direction \Leftarrow. Let $x^* \in \mathbb{R}^n$ such that $Ax = b$ and let B be a set of indexes satisfying a) and b). Consider a system of equations:

$$Ax = b$$
$$x_j = 0 \forall j \notin B$$

We know that $b = Ax^* = \sum_{i=1}^{n} A_i x_i^*$. Let x be an arbitrary solution for the system. Then $b = Ax = \sum_{i=1}^{n} A_i x = \sum_{j \in B} A_j x_j$.

By assumption we know that A_j are linearly independent, hence the system has only one solution, that is x^*. Thus there are n linearly independent **tight** constraints at x^*. Then by definition x^* is a basic solution.

2) Direction \Rightarrow. Let x be a basic solution. Let’s define a set of indexes B_1 such that $x_j \neq 0$. Consider the system of equations, that are tight at x. By assumption x is basic solution,
hence the system has a unique solution. Thus columns $A_j, j \in B$ are linearly independent.

If not then there will be $\lambda_j \forall j \in B_1$ such that $\sum_{j \in B_1} A_j \lambda_j = 0$ where λ_j are not all 0. Then it would be $\sum_{j \in B_1} A_j (x_j + \lambda_j) = b$ and solution x is not unique in this case. Contradiction.

Since row rank is the same as column rank $|B_1| \leq m$. And we know $\text{rank}(A) = m$, thus there exist m linearly independent columns. We can find $m - |B_1|$ columns B_2 with $B_1 \cap B_2 = 0$ such that columns represented by $B_1 \cup B_2$ are linearly independent \Rightarrow a) is satisfied.

If there exist $j \notin B$ and $j \notin B_1$ then $x_j = 0$ by definition of B_1. b) is satisfied.