1 Simplex Algorithm

1.1 Iteration of Simplex Algorithm (a “pivot”)

1. start with basis Matrix $A_{B(1)},...,A_{B(m)} \rightarrow$ basic feasible solution x.

2. compute reduced costs $\bar{c}_j = c_j - c^T_B A^{-1}_B A_j$ for each nonbasic variable x_j.

 (a) if all $\bar{c}_j \geq 0$ then we are optimal.

 (b) choose some j with $\bar{c}_j < 0$

3. compute $u = A^{-1}_B A_j = -d^T_B$. If $u \leq 0$ then the optimum is $-\infty$ and we stop.

4. Choose index l such that $u_l > 0$ and

 $\frac{x_B(l)}{u_l} = \theta^* = min\{\frac{x_B(i)}{u_i} | i \in [m] \text{ and } u_i > 0\}$

5. Form new basis by replacing $A_{B(l)}$ with A_j.

1.2 Faster Implementation

1st iteration: basic feasible solution x, basis matrix A_B, compute A^{-1}_B.
2nd iteration: basic feasible solution \bar{x}, basis matrix $A_{\bar{B}}$, compute $A^{-1}_{\bar{B}}$
 \rightarrow derive A^{-1}_B from $A^{-1}_{\bar{B}}$.

We know, that A_B and $A_{\bar{B}}$ are very similar.
Idea: Are A^{-1}_B and $A^{-1}_{\bar{B}}$ also similar?
We also know: \(A_B^{-1}A_B = I, \ A_B^{-1}A_B(i) = e_i, \ A_B^{-1}A_j = u \)

\[
A_B^{-1}A_B = \begin{bmatrix}
1 & 0 & \ldots & u_1 & \ldots & 0 & 0 \\
0 & \ddots & \ldots & u_2 & \ldots & 0 & 0 \\
\vdots & \vdots & 1 & \vdots & \vdots & \vdots & \vdots \\
0 & \ldots & 0 & u_l & 0 & \ldots & 0 \\
\vdots & \vdots & 1 & \vdots & \vdots & \vdots & \vdots \\
0 & \vdots & \ddots & 0 \\
0 & \ldots & 0 & u_m & \ldots & 0 & 1
\end{bmatrix}
\]

We want to find a matrix \(Q \), such that \(Q A_B^{-1}A_B = I \).

1.3 Elementary Row Operations

Multiply \(i \)-th row by some \(\alpha \neq 0 \)

\[\Leftrightarrow \text{ multiplying from left with} \]

\[
Q_1 = \begin{bmatrix}
1 & 0 & \ldots & \ldots & \ldots & \ldots & 0 \\
0 & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\
\vdots & \ddots & 1 & 0 & \vdots & \ddots & \vdots \\
\vdots & 0 & \alpha & 0 & 0 & \ddots & \vdots \\
\vdots & 0 & 1 & \ddots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots \\
0 & \ldots & \ldots & \ldots & 0 & 1
\end{bmatrix}
\]

This matrix is like the unit matrix, but with \(\alpha \) at position \((l, l)\). Obviously \(Q_1 \) is invertible.

Now add \(\beta \) times the \(j \)-th row to the \(i \)-th row for \(i \neq j \) to eliminate the non-diagonal components of \(u \):
\[Q_2 = \begin{bmatrix}
1 & 0 & \ldots & \ldots & \ldots & 0 \\
0 & \ddots & \ddots & \beta & \vdots \\
\vdots & \ddots & 1 & 0 & \vdots \\
\vdots & 0 & 1 & 0 & 0 \\
\vdots & 0 & 1 & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \ldots & \ldots & \ldots & 0 & 1
\end{bmatrix} \]

This matrix is like the unit matrix, but with β at position (i,j).

With these elementary row operations turn $A_B^{-1}A_{\bar{B}}$ into I.

- For each $i \neq l$:
 - Add the l-th row $-\frac{u_l}{u_i}$ times to the i-th row.
- Multiply l-th row by $\frac{1}{u_l}$

In other words: find Q_1, \ldots, Q_m such that:

\[
Q_m \ldots Q_2 Q_1 A_B^{-1}A_{\bar{B}} = \begin{bmatrix} 1 & \ldots & \ldots & \ldots & 0 \\
\end{bmatrix} \Rightarrow QA_B^{-1} = A_{\bar{B}}^{-1}
\]

1.4 Simplex: full tableau implementation

\[
\begin{array}{c|cc}
-c_B^T x_B & \bar{c}_1 & \ldots & \bar{c}_n \\
\hline
x_{B(1)} & A_B^{-1} A_1 & \ldots & A_B^{-1} A_n \\
x_{B(m)} & & & \\
\end{array}
\]

Note that $-c_B^T x_B$ is the negated objective value of x, $\bar{c}_1, \ldots, \bar{c}_n$ the reduced costs and the vectors $A_B^{-1} A_i = u_n$.

We call the vector $(-c_B^T x_B, \bar{c}_1, \ldots, \bar{c}_n)^T$ the 0-th row of our tableau and the vector $(-c_B^T x_B, x_{B(1)}, \ldots, x_{B(m)})^T$ the 0-th column.

1.5 Pivot step

1. If $\bar{c} \geq 0$ then STOP.
 Otherwise choose j such that $\bar{c}_j \leq 0$.
2. Consider \(u = A^{-1}B j \).
 If \(u \leq 0 \) then STOP.

3. For each \(i \) with \(u_i > 0 \) compute \(\frac{x_{B(i)}}{u_i} \).
 Let \(l \) be the index of a row that minimizes this ratio.

4. Column \(A_j \) enters basis,
 column \(A_{B(l)} \) leaves basis.

5. Perform elementary row operation such that:
 (a) \(u_l \) becomes 1
 (b) All other entries in the \(j \)-th column become 0, including entries in 0-th row.

1.5.1 Example

\[
\begin{align*}
\text{minimize} & \quad -10x_1 - 12x_2 - 12x_3 \\
\text{subject to} & \quad x_1 + 2x_2 + 2x_3 + x_4 = 20 \\
& \quad 2x_1 + x_2 + 2x_3 + x_5 = 20 \\
& \quad 2x_1 + 2x_2 + x_3 + x_6 = 20 \\
\end{align*}
\]

Initial solution \(x = (0, 0, 0, 20, 20, 20) \)
\(A_B = I = A_B^{-1}, c_B = 0 \)

The tableau for this LP looks like this:
\[
\begin{array}{cccccc|c}
0 & -10 & -12 & -12 & 0 & 0 & 0 \\
20 & 1 & 2 & 2 & 1 & 0 & 0 \\
20 & 2 & 1 & 2 & 0 & 1 & 0 \\
20 & 2 & 2 & 1 & 0 & 0 & 1 \\
\end{array}
\]

* This is the \(u_l \) that has to become 1. The other entries in this column (\(= u \)) have to become 0.

\[
\frac{x_{B(1)}}{u_1} = \frac{x_4}{u_1} = 20
\]
\[
\frac{x_{B(2)}}{u_2} = \frac{x_5}{u_2} = 10
\]
\[
\frac{x_{B(3)}}{u_3} = \frac{x_6}{u_3} = 10
\]

Index \(l = 2 \implies A_1 \) enters the basis, \(A_5 \) leaves the basis
\(B(1) = 4, B(2) = 1, B(3) = 6 \)
\[
\begin{array}{c|ccccc}
100 & 0 & -7 & -2 & 0 & 5 & 0 \\
10 & 0 & 0.5 & 1 & 1 & -0.5 & 0 \\
10 & 1 & 0.5 & 1 & 0 & 0.5 & 0 \\
0 & 0 & 1 & -1 & 0 & -1 & 1 \\
\end{array}
\]

1.6 Lemma 44

The elementary row operations lead to tableau

\[
\begin{pmatrix}
-c_T A_B^{-1} b \\
A_B^{-1} b
\end{pmatrix} =
\begin{pmatrix}
c^T - c_T A_B^{-1} A \\
A_B^{-1} A
\end{pmatrix}
\]

where \(\bar{B} \) is obtained from adding \(j \) to \(B \) and removing \(B(l) \) from \(B \).

1.6.1 Proof

Entries \(A_B^{-1} b \) and \(A_B^{-1} A \):

Elementary row operations are equivalent to left-multiplying with matrix \(Q \) such that \(QA_B^{-1} = A_B^{-1} \).

0-th row:

we started with \([0|c^T] - g^T [b|A]\) with \(g^T = c_T A_B^{-1} \).

After iteration, 0-th row equals \([0|c^T] - p^T [b|A] \).

\(\Rightarrow c_j - p^T A_j = 0 \) where \(j = B(l) \)

Let \(i \neq l \), \(\bar{c}(i) = 0 \) and entry stays 0 after update.

\(c_B^T - p^T A_B = 0 \) \(\Rightarrow p^T = c_B^T A_B^{-1} \)

\(\Rightarrow 0 \)-th row equals \([0|c^T] - c_B^T A_B^{-1} [b|A] \) \(\Box \)