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Exercise 1 (10 points) Given a unweighted directed graph G = (V,E) and a source vertex
s ∈ V , SSR (single source reachability) is the problem of checking for every node t if it is
reachable from s, i.e, if there is a path from s to t. Consider the partially dynamic version of
SSR.

a) (4 points) Show an incremental algorithm with total update time O(|E|) and query time
O(1).

b) (6 points) When G is a DAG (directed acyclic graph), demonstrate a decremental algo-
rithm with total update time O(|E|) and query time O(1).

Exercise 2 (10 points) In the lecture, we saw that there is a decremental algorithm for main-
taining APSP in unweighted directed graphs with total update time O(mn log2 n) and query
time O(n). Modify this algorithm (or create your own algorithm) to demonstrate a decremen-
tal algorithm for maintaining APSP in unweighted directed graphs with total update time
O(mn(t + log2 n)) and query time O(n logn

t
) for any 1 ≤ t ≤ n.

Note : Putting t = 1 gives us the algorithm we showed in the lecture.



Exercise 3 (10 points) Consider the dynamic version of APSP called APSPM where we want
the distance matrix to be stored explicitly (which immediately gives a query time of O(1) for
answering distance queries between any pair of nodes).

a) (6 points) Show an Ω(n2) time lower bound per update for fully dynamic APSPM.

b) (4 points) For incremental APSPM, show an Ω(n3) time lower bound on the total update
time with O(n) insertions starting from the empty graph (with n nodes but no edges).

Exercise 4 (10 points) In lecture we presented the Even/Shiloach algorithm, which has a total
update time time of O(mn) for both incremental and decremental SSSP in unweighted graphs.
In this exercise we consider barriers for improving this algorithm in dense graphs.

a) (6 points) Show that there is no combinatorial incremental SSSP algorithm with O(n3−ε)
total update time and O(1) query time unless BMM has a O(n3−δ) time combinatorial
algorithm.

b) (4 points) Show that there is no incremental SSSP algorithm with O(n3−ε) total update
time and O(1) query time unless the OMv conjecture fails.


