
Randomized Algorithms, Summer 2016 Lecture 4 (6 pages)

Bloom Filters and Locality-Sensitive Hashing

Instructor: Thomas Kesselheim and Kurt Mehlhorn

1 Notation

When we talk about the probability of an event, the underlying probability space is usually implicit.
Sometimes, we want to make the underlying probability space explicit. Assume we have a set S and an
event E depending on an element x ∈ S. We write

Prx∈S [E(x)] .

to stress that the underlying probability space is S and that x is drawn uniformly at random from S. If
x is drawn according to a more general distribution D, we write

Prx∼D [E(x)] .

For expectations, we use the analogous notation.

2 Bloom Filter

This section follows 5.5.3 in Mitzenmacher/Upfal.
Bloom Filters are a compact data structure for approximate membership queries. The data structure

uses only linear space. It makes mistakes in the sense that non-members may be declared members with
small probability.

Let S = {e1, . . . , em} be the elements to be stored; S is a subset of some universe U . We use a
boolean array T of length n. We assume that we have k hash functions that map U to the integers from
1 to n. The hash functions are assumed to be independent and random.

We initialize T to the all-zero array and then set T [i] to one iff there is an element ej ∈ S and a hash
function h` such that h`(ej) = i. Note that an array entry may be set to one by several elements.

In order to answer a membership query for e, we compute the hash values h`(e), 1 ≤ ` ≤ k, and
return “YES” if and only if T [h`(e)] = 1 for all `.

Clearly, if e ∈ S, the answer will be YES. Also, if the answer is NO, then e 6∈ S. However, there is
the possibility of false positives, i.e., the data structure might answer YES for elements e 6∈ S. What is
the probability that e is a false positive?

Let us first compute the probability that a particular T [i] stays zero. This is(
1− 1

n

)km
=

(
1− 1

n

)n·km/n
≈ e−km/n.

Set p = e−km/n. Then pn is (approximately) the expected number of array entries that are zero. The
events “T [i] is zero” and “T [j] is zero” are NOT independent.

We proceed under the simplifying assumption that a random fraction p of the table entries are zero (a
random fraction 1− p of the entries are one) after S has been stored in the table. Then the probability
that e 6∈ S is a false positive is

f = (1− p)k = (1− ekm/n)k.

What is a good choice of k for given m and n? There are two effects working against each other.
Having more hash functions helps to discover an error because all k functions must be fooled for a false
positive. Having fewer hash functions leaves more table entries equal to zero and this makes it harder to
fool a particular function. We use calculus to determine the optimum. Let g = ln f = k · ln(1− e−km/n).
Then

dg

dk
= ln(1− e−km/n) + k

−e−km/n

1− e−km/n
· (−m

n
) = ln(1− e−km/n) +

km

n

e−km/n

1− e−km/n
.

The derivative is zero for km/n = ln 2; note that dg
dk |km/n=ln 2= ln(1/2) + (ln 2) · 1/21/2 = 0. It is easy to

check that this value of k is a local minimum.

Randomized Algorithms, Summer 2016 Lecture 4 (page 2 of 6)

For k = n
m ln 2 ≈ 0.6185 nm , we have p = 1/2 and f = 2−k. For example, if we want k = 6 and hence

f ≤ 0.02, we need n ≥ k/0.6185m ≈ 10m. This is very significant. Using only 10m bits, we can answer
membership queries with the probability of false positives being below 0.02. However, in order to store
S, we would need m logU bits.

Is our simplifying assumption justified? See Mitzenmacher and Upfal.

3 Locality-Sensitive Hashing.

This section follows Chapter 3 “Finding Similar Items” of the book “Mining of Massive Data Sets” by
Jure Leskovec, Anand Rajarmadan, and Jeff Ullman. The book can be downloaded at mmds.org.

3.1 The Jaccard Similarity of Two Sets

Let S and T be two sets from a common ground set U . We define their Jaccard similarity as

J(S, T) =
|S ∩ T |
|S ∪ T |

,

as the ratio between the size of their intersection and the size of their union. For S = {a, c, f} and
T = {b, c, f} we have J(S, T) = 2/4 = 1/2.

Exercise 1. Extend the definition to multi-sets.

Exercise 2. Let d(S, T) = 1 − J(S, T) be the Jaccard distance of two sets S and T . Prove that d is a
metric.

3.2 MinHash

Assume that the ground set is ordered.
For every permutation π of the ground set U , we define a function hπ that maps any subset S of U

to its minimal member, i.e.,
hπ(S) = min{π(x) | x ∈ S}.

Let H be the set of such functions.

Theorem 4.1. For any two sets S and T

J(S, T) = Prhπ∈H [hπ(S) = hπ(T)] .

Proof. Let d = |S ∩ T | and m = |S ∪ T |. The probability that the first element of a random permutation
of S ∪ T comes from S ∩ T is d/m.

We can therefore estimate the Jaccard similarity of two sets S and T by choosing a number of
permutations, say π1 to πk, and computing 1

k

∑
1≤i≤k[hπi(S) = hπi(T)].

Lemma 4.2. The Jaccard-distance dJ(S, T) = 1− J(S, T) is a metric.

Proof. We have

dJ(S, T) = 1− J(S, T) =
|S∆T |
|S ∪ T |

= Pr [hπ(S) 6= hπ(T)] .

Clearly, dJ(S, S) = 0 and dJ(S, T) = dJ(T, S). Let S, T , U be three sets. For any permutation π: if
hπ(S) 6= hπ(T) then hπ(S) 6= hπ(U) or hπ(T) 6= hπ(U). Thus

dJ(S, T) = Pr [hπ(S) 6= hπ(T)] ≤ Pr [hπ(S) 6= hπ(U)] + Pr [hπ(T) 6= hπ(U)] = dJ(S,U) + dJ(U, T).

Remark 4.3. The set H is too big for practical purposes. Note that |H| = |U |! and hence |U | log |U |
bits are required to specify a function in H. There is significant research on identifying smaller sets of
functions which give essentially the same performance as the full set.

mmds.org

Randomized Algorithms, Summer 2016 Lecture 4 (page 3 of 6)

3.3 Locality-Sensitive Hashing

LSH generalizes what MinHash achieves for Jaccard distance.
Let M be a metric space with distance function d and let F be a set of functions defined on M . Let

d1 and d2 be two distance values with d1 < d2 and let p1 and p2 be two reals with 1 ≥ p1 > p2 ≥ 0. F
is said to be (d1, d2, p1, p2)-sensitive if for every x and y in M :

– If d(x, y) ≤ d1 then Prx∈F [h(x) = h(y)] ≥ p1.
– If d(x, y) ≥ d2 then Prx∈F [h(x) = h(y)] ≤ p2.

In words, if x and y are “close” (distance at most d1) then they are hashed to the same value with
probability at least p1 and if x and y are “far” (distance at least d2) then they are hashed to the same
value with probability at most p2.

The definition above “translates” a question about the distance of two points (which might be hard
to compute and requires both points as arguments) into a probabilistic question about the equality of
hash values. When we store elements in buckets according to hash values then elements that are close
are more likely in the same bucket than elements that are far. We will use this in a data structure for
nearest neighbor search in the next section.

Lemma 4.4. Let 0 ≤ d1 < d2 ≤ 1 be arbitrary. The set H of Minhash-functions is (d1, d2, 1−d1, 1−d2)-
sensitive for Jaccard-distance.

Proof. For any d ∈ [0, 1] and any two sets S and T , we have

Prh∈H [h(S) = h(T)] = J(S, T) = 1− dJ(S, T).

The claim follows.

3.4 Approximate Nearest Neighbor Search

This follows the Wikipedia entry on LSH.
Let M be some metric space. We assume that it takes time O(d) to compute the distance of two

points. Let F be a (d1, d2, p1, p2)-sensitive family. We describe a data structure that succeeds in finding
a point from a set S ⊆M within distance d2 from a query point q with probability at least 1− (1− pk1)L

if there exists a point within distance d1; here k and L are parameters that influence the preprocessing
time and the space requirement.

An Application: Screening Fingerprints Suppose we have a large collection (several million) of
fingerprints of criminals. We want to query a fingerprint x for membership in the collection without
searching the entire collection, say at a border control. We are willing to accept false negatives, i.e.,
fingerprints that are in the collection, but are declared non-members, and false positives, i.e., fingerprints
that are not in the collection, but are declared members. Actually, the method will identify a subset of
the collection which then has to be inspected in detail. So false positives are only a problem in the sense
that somebody may be kept under custody unnecessarily long until the detailed inspection of the subset.
False negatives are not a problem in fast screening. If the rate of false negatives is sufficiently low, say
below 5 %, criminals might not be willing to take the risk of being tested.

In a preprocessing step, fingerprints are converted into arrays of size 100 by 100. Some of the array
entries are marked as interesting. Interesting squares correspond to interesting features in the fingerprint,
e.g., merging of two lines. Interesting features in a fingerprint are called minutiae. We make the following
assumptions.

– About 20% of the squares are interesting. We convert this into a probabilistic statement by assuming
that a random square is interesting with probability 0.2 and the events of being interesting are
independent for different squares.

– If two fingerprints come from the same finger then for any particular square the events of being
interesting are highly correlated. More precisely, if a square is interesting in one fingerprint, then
with probability 0.8 it is also interesting in the other fingerprint.

A fingerprint is a bitstring of length 104, in which about 2 · 103 bits are one. Fingerprints from the
same finger have a small hamming distance because they have about 1600 one-bits in common. Thus
there Hamming distance is about 800. On the other hand fingerprints coming from different fingers share
only about (0.2)2 · 104 = 400 one-bits. Thus their Hamming distance is about 3200. We set up the data
structure for d1 = 1000 and d2 = 2500.

Randomized Algorithms, Summer 2016 Lecture 4 (page 4 of 6)

An Application: Discovering Similar Documents There are many documents on the web that
differ only in insignificant ways, e.g., the printing date or the printing location. Search engines may want
to index only one copy of such documents.

The Data Structure We have L tables. For each table we choose k random functions f1 to fk
from F and consider the function f that maps any point p to (f1(p), . . . , fk(p)). We partition S into
buckets according to the value of f , i.e, for each tuple (z1, . . . , zk) we store all elements p ∈ S with
(z1, . . . , zk) = (f1(p), . . . , fk(p)) in a linear list associated with the tuple. Since the total length of the
lists is O(n), we can use standard hashing to organize the lists in linear space. More precisely, we use
(f1(p), . . . , fk(p)) as the key for p in a standard hashing scheme.

The preprocessing time is O(nLkt) where t is the time to evaluate a function h ∈ F on an input point
p. The space requirment is O(nL) plus the space for storing data points.

The Query Algorithm Let q be the query point. For each of the L tables, we compute f(q) =
(f1(q), . . . , fk(q)) and inspect all elements in the bucket associated with f(q). We stop once an element
with distance at most d2 from q is found.

The query time is O(L(kt+ dnpk2)). We are inspecting L tables. For each table we need to compute
f(q). This takes time tk. We then need to inspect the bucket associated with f(q). Let us estimate the
number of unsuccessful comparisons, i.e., comparisons between q and p ∈ S with d(q, p) > d2. Recall
that we stop once a successful comparison occurs. For a point p ∈ S whose distance from q exceeds d2,
the probability that p is contained in the bucket selected by q is pk2 . Thus we need to compare q to an
expected number of npk2 points. Each comparison takes time O(d).

The success probability is at least 1− (1− pk1)L if some point p ∈ S with distance at most d1 from q
exists. Indeed, consider a fixed table. The probability that p is mapped into the same bucket as q by all
fi 1 ≤ i ≤ k is pk1 . Hence the probability that p is not mapped into the same bucket as q for a particular
table is 1− pk1 .

Therefore the probability that p is not mapped into the same bucket as q in any table is (1 − pk1)L.
Thus the algorithm succeeds with probability at least 1− (1− pk1)L.

Selecting k and L Let ρ = log p1
log p2

and set k = logn
log 1/p2

and L = nρ. Note that ρ < 1. Then one obtains

the following performance guarantees:

– preprocessing time: O(n1+ρkt);
– space: O(n1+ρ), plus the space for storing data points;

– query time: O(nρ(kt+ d)); note that npk2 = n2
log p2· logn

log 1/p2 = n · 1n = 1;

– success probability: 1− 1/e; note that (1− pk1)L = (1− 1
nρ)n

ρ ≈ 1/e.

3.5 Probability Amplification

We introduce two methods for constructing new families of hash functions from existing families. The
effect of these constructions is illustrated by Figure 1. We used both methods in the data structure for
nearest neighbor search.

And-Construction Let k be an integer and let f1 to fk be k random functions from F . Let f(x) = f(y)
iff fi(x) = fi(y) for 1 ≤ i ≤ k and let F kand be the set of such functions.

Lemma 4.5. F kand is (d1, d2, p
k
1 , p

k
2)-sensitive.

Proof. Obvious.

Or-Construction Let k be an integer and let f1 to fk be k random functions from F . Let f(x) = f(y)
iff fi(x) = fi(y) for some i ∈ [k] and let F kor be the set of such functions.

Lemma 4.6. F kand is (d1, d2, 1− (1− p1)k, (1− (1− p2)k)-sensitive.

Proof. We have [f(x) 6= f(y)] iff [fi(x) 6= fi(y)] for all i.

Randomized Algorithms, Summer 2016 Lecture 4 (page 5 of 6)

p 1− (1− p4)4

0.2 0.0064
0.4 0.0985
0.6 0.4260
0.8 0.8785

p (1− (1− p)4)4

0.2 0.1215
0.4 0.5740
0.6 0.9015
0.8 0.9936

Figure 1: The left table shows the effect of a 4-way AND-construction followed by a 4-way OR-
Construction. The right tables shows the effect of a 4-way OR-construction followed by a 4-way AND-
Construction.

3.6 LSH for Hamming Distance

M = {0, 1}n for some n and the distance between two strings is the number of positions in which they
differ. Let F be the set of projections of M onto the coordinates, i.e., fi maps a string x onto its i-th
coordinate.

Let d1 and d2 be positive integers with 0 ≤ d1 < d2 ≤ d. The family of projections is (d1, d2, 1 −
d1/d, 1− d2/d) sensitive.

3.7 LSH for Cosine Distance

The cosine-distance between two vectors from the same ambient space is the angle between them. Note
that the two vectors span a plane and the angle is defined as the angle in this plane. Algebraically,

cosϕ =
〈x, y〉
|x| · |y|

Assume our underlying space is Rn. For every direction v (= a point on the n-dimensional hypersphere),
define

hv(x) = sign(〈v, x〉).

and let F be the set of such functions.

Lemma 4.7. Let Sn be the n-dimensional hypersphere, let x and y be nonzero vectors in Rn, and let ϕ
be the angle between them. Then

Prv∈Sn [hv(x) = hv(y)] = 1− ϕ/π

Proof. Let Hv be the hyperplane through the origin with normal vector v and let Lv be the intersection
of Hv with the plane spanned by x and y. We may assume that Lv is a line as the case that Lv is the
entire plane has probability zero. The scalar products of v with x and y have the same sign iff x and y
lie on the same side of Hv if and only iff x and y lies on the same side of Lv. This restrict the direction
of the normal of Lv to a double cone with opening angle π − ϕ.

Lemma 4.8. The family of inner product functions is (d1, d2, (180− d1)/180, (180− d2)/180)-sensitive
for the cosine-distance.

Lemma 4.9. In order to choose a point v on the n-dimensional sphere choose v1 to vn independently
according to the normal distribution, i.e., Pr [vi = z] = 1√

π
e−z

2

, and return

1√
v21 + . . .+ v2n

 v1
...
vn

 .

Proof. For reals z1 to zn, we have

Pr [v1 = z1, . . . , vn = zn] =
∏

1≤i≤n

1√
π
e−z

2
i =

1
√
π
n e
−

∑
i z

2
i =

1
√
π
n e
−R2

,

where R2 =
∑

1≤i≤n z
2
i , i.e., all points on the sphere of radius R are equally likely.

Randomized Algorithms, Summer 2016 Lecture 4 (page 6 of 6)

x

y

d
phi

w w w

origin

l
1−b

Figure 2: The projection of points x and y onto a random direction `. The angle ϕ between ` and the
line through x and y is uniformly random. The line is divided into buckets of width w. The first bucket
starts at distance 1− b from the origin. b is random in [0, w].

3.8 LSH for Euclidean Distance

Let v be a random direction (think of v as a coordinate direction). We partition the direction into
intervals of length w and give the origin a coordinate equal to b. We hash x onto the index of the interval
containing its projection onto direction v. Formally, for a direction v and a scalar b, we define

hv,b(x) =

⌊
vTx+ b

w

⌋
.

Lemma 4.10. The family of functions hv,b is (w/2, 2w, 1/2, 1/3)-sensitive.

Proof. Let d be the distance between x and y. Consider the situation in the plane spanned by the
direction v and the line through x and y. Let ϕ be the angle between v and the line through x and y,
see Figure 2. The angle is random.

If d ≤ w/2, x and y have the same hash value with probability at least 1/2.
Let d′ be the distance between the projections of x and y onto `. Then d′ = d cosϕ. If d ≥ 2w, then

d′ ≤ w implies ϕ ∈ [60◦, 90◦]. Thus with probability at least 2/3, x and y are not hashed into the same
bucket.

Remark 4.11. We have given the analysis for d1 = w/2 and d2 = 2w. For any d1 and d2 with d1 < d2,
the family is (d1, d2, p1, p2)-sensitive for some p1 > p2.

We close with the observation that the random offset b compensates the discrete measurement; this
observation is also useful otherwise.

Lemma 4.12. For every v,

Eb∈[0,w] [hv,b(x)] =
vTx

w
.

Proof. Let z = vT x
w −

⌊
vT x
w

⌋
. Then hv,b(x) =

⌊
vT x
w

⌋
if and only if b ≤ 1− z. Thus

Eb∈[0,w] [hv,b(x)] = (1− z)
⌊
vTx

w

⌋
+ z(

⌊
vTx

w

⌋
+ 1) =

vTx

w
.

	Notation
	Bloom Filter
	Locality-Sensitive Hashing.
	The Jaccard Similarity of Two Sets
	MinHash
	Locality-Sensitive Hashing
	Approximate Nearest Neighbor Search
	Probability Amplification
	LSH for Hamming Distance
	LSH for Cosine Distance
	LSH for Euclidean Distance

