Thomas Kesselheim Kurt Mehlhorn Pavel Kolev

Randomized Algorithms and Probabilistic Analysis of Algorithms

Summer 2016

Exercise Set 3

Exercise 1:

(5 Points)

(5 Points)

(5 Points)

We now consider the more general balls-into-bins setting with m balls being thrown to n bins, $n \neq m$. Show that the highest loaded bin contains $O(\frac{m}{n} + \log n)$ balls with high probability.

Exercise 2:

(5 Points) Consider a random variable $X = X_1 + \ldots + X_n$ such that each X_i is independent and identically distributed with $\Pr[X_i = 1] = p$, $\Pr[X_i = 0] = 1 - p$. To bound $\Pr[X \ge (1 + \delta)\mathbb{E}[X]]$, you can use Markov's inequality, Chebyshev's inequality, and the Chernoff bound. State the resulting bounds in terms of n and p. For each of the three inequalities and each n, give an example value of p and δ such that its bound is the strongest of all three.

Exercise 3:

(Exercise 6.1. in Mitzenmacher/Upfal) Consider an instance of SAT with m clauses, where every clause has exactly k literals.

- (1) Give a Las Vegas algorithm that finds an assignment satisfying at least $m(1-2^{-k})$ clauses, and analyze its expected running time.
- (2) Give a derandomization of the randomized algorithm using the method of conditional expectations.

Exercise 4:

(Exercise 6.10 in Mitzenmacher/Upfal) A family \mathcal{F} of subsets of $\{1, \ldots, n\}$ is an *antichain* if no set in \mathcal{F} is properly contained in another set of \mathcal{F} .

- (a) Give an example of an antichain of cardinality $\binom{n}{\lfloor n/2 \rfloor}$.
- (b) Let f_k be the number of sets in \mathcal{F} of size k. Show that

$$\sum_{0 \le k \le n} \frac{f_k}{\binom{n}{k}} \le 1$$

(Hint: Choose a random permutation of the numbers from 1 to n, and let $X_k = 1$ if the first k numbers in your permutation yield a set in \mathcal{F} . Let $X = \sum_{0 \le k \le n} X_k$. What can you say about X?)

(c) Prove that $|\mathcal{F}| \leq {n \choose \lfloor n/2 \rfloor}$ for every antichain \mathcal{F} .

Exercise 5:

(5 Points)

(Exercise 6.16 in Mitzenmacher/Upfal) If

$$4\binom{k}{2}\binom{n}{k-2}2^{1-\binom{k}{2}} \le 1,$$

then it is possible to color the edges of K_n with two colors such that it has no monochromatic K_k subgraph. Use the Lovasz local lemma.