Thomas Kesselheim Kurt Mehlhorn Pavel Kolev

Randomized Algorithms and Probabilistic Analysis of Algorithms Summer 2016

Exercise Set 6

Exercise 1:

We consider the generalized assignment problem (GAP), a generalization of knapsack and max-weight bipartite matching. We have n items and m kinds of bins. Bin i has a capacity of $t_i \geq 2$. When item j is placed in bin i, it consumes $w_{i,j} \in [0,1]$ of the capacity but gives us a profit of $p_{i,j}$. The task is to assign the items to bins so as to maximize the profit. Items may also be assigned to no bin.

- (a) State GAP as an integer program.
- (b) Devise an algorithm based on randomized rounding to find an solution to GAP that is within a constant factor of the optimal solution to the LP relaxation. Hints: Assume that you are given a fractional solution x^* to the LP relaxation. Use a scaled version of $(x_{i,j}^*)_{i\in[n]}$ to decide how to assign item j. Use Markov's inequality to show that each constraint is fulfilled with constant probability. There is no need for a union bound this time.

Exercise 2:

(3 Points) Let us consider the minimization variant to the selection problem. An online algorithm is now α -competitive if for every sequence of costs c_1, \ldots, c_n . we have $\mathbf{E}[c(ALG)] \leq \alpha \min_i c_i$. Show that there is no α -competitive algorithm for any finite α , not even a randomized one. (Hint: Observation 12.2)

Exercise 3:

(2+2+4 Points)

(1+5 Points)

Consider the following multiple-choice selection problem. An algorithm is presented a sequence of numbers v_1, \ldots, v_n . It may select a subset $ALG \subseteq [n]$ of size up to k, where k is a parameter. In class, we covered the case k = 1. In the following, we assume that an adversary defines both the values and the order. An algorithm is called α -competitive if for every choice of the adversary $\mathbf{E}\left[\sum_{i\in ALG} v_i\right] \geq \alpha \max_{S\subseteq [n], |S|\leq k} \sum_{i\in S} v_i$. Assume that n is known to the algorithm.

- (a) Show that every deterministic algorithm is 0-competitive if k < n.
- (b) Give a $\frac{k}{n}$ -competitive randomized algorithm.
- (c) Show that there is no α -competitive randomized algorithm for $\alpha > \frac{\kappa}{n}$.