
Randomized Algorithms, Summer 2016 Lecture 7 (5 pages)

Introduction to Smoothed Analysis

Instructor: Thomas Kesselheim

We consider the knapsack problem. There are n items, each with a weight wi > 0 and
with a profit pi > 0, and a capacity bound W > 0. Our task is to find a subset S of the
items so as to maximize the overall profit

∑
i∈S pi while not exceeding the capacity bound, i.e.,∑

i∈S wi ≤ W . It is well known that the knapsack problem is NP-hard. So, unless P = NP ,
there is no polynomial-time algorithm. However, it turns out that practical instances are almost
always easy to solve. Today, we will learn one of the reasons why this is true.

Henceforth, we will write the selection of items as a 0/1 vector x, where xi = 1 means that
item i is selected and xi = 0 otherwise. Now, the objective function can easily be written as
pTx and the constraint as wTx ≤W . A solution is an arbitrary x ∈ {0, 1}n, a feasible solution
is a solution x for which wTx ≤W .

1 Nemhauser-Ullmann Algorithm

We will study an algorithm that is based on Pareto-optimal solutions.

Definition 7.1. A solution y dominates another solution x if pT y ≥ pTx and wT y ≤ wTx and
one of these inequalities is strict. A solution x is called Pareto optimal if it is not dominated
by any other solution y. The Pareto set P is the set of all Pareto-optimal solutions.

In Figure 1, you can see all possible solutions x ∈ {0, 1}n represented as points in the plane.
A point corresponds to a Pareto-optimal solution if there is no other solution to the top left.
The next lemma shows that it is enough to restrict the attention to Pareto-optimal solutions
when solving the knapsack problem.

Lemma 7.2. There always exists an optimal solution that is also Pareto optimal.

Proof. Among all optimal solutions let x be one that minimizes the total wTx. We claim that
x is Pareto-optimal. If x was dominated by some y, one of these two cases would be fulfilled

(i) pT y > pTx and wT y ≤ wTx ≤W , so x could not be optimal.

(ii) pT y = pTx and wT y < wTx ≤W , so x would not have minimal weight.

As both cases lead to a contradiction, x cannot be dominated by y, so it is Pareto optimal.

wTx

pTx

Figure 1: All possible solutions x ∈ {0, 1}n, represented as points in the plane. The points
connected by the black line are the Pareto-optimal solutions.

Randomized Algorithms, Summer 2016 Lecture 7 (page 2 of 5)

This already gives us an algorithm blueprint: Enumerate all Pareto-optimal solutions P.
Among these take one that has the highest weight but at most W .

The Nemhauser-Ullmann algorithm computes the set of all Pareto-optimal solutions P in
a smart way. If we restrict the instance to the first i items, there is a set of Pareto-optimal
solutions Pi for this subinstance. This is the set of solutions that only use items 1, . . . , i and are
not dominated by another solution that only uses items 1, . . . , i. Note that they might not be
Pareto-optimal for the full instance because, for example, item n might be extremely valuable
and have no weight. This would cause P to contain only solutions that include item n. The set
Pi in contrast pretends items i+ 1, . . . , n do not even exist.

If we know the set Pi−1, it is easy to derive candidates for Pi. This candidate set Qi contains
all solutions x ∈ Pi−1 and furthermore for every x ∈ Pi−1 the solution that we get when adding
i, i.e., x′ with x′i = 1, x′j = xj for j 6= i. The Nemhauser-Ullmann algorithm generates this set
Qi and then removes solutions that dominated by other solutions in Qi.

P0 := {0n}.
for i = 1, . . . , n do

generate Qi;
Pi := {x ∈ Qi |6 ∃y ∈ Qi : y dominates x};

end for
return x ∈ Pn that maximizes pTx subject to wTx ≤W ;

Figure 2: Nemhauser-Ullmann algorithms

Theorem 7.3. There is an implementation of the Nemhauser-Ullmann algorithm that performs
Θ(
∑n−1

i=0 |Pi|) operations on a unit-cost RAM.

Proof Idea. As the focus of this lecture is not the exact implementation and analysis of this algo-
rithm, let us only convince ourselves that even a trivial implementation only needsO(

∑n−1
i=0 |Pi|2)

operations. In the ith iteration of the for loop, we generate the set Qi of size 2|Pi−1|. Filtering
it to get Pi is trivially done in time O(|Qi|2) by comparing any pair of solutions in Qi if one
dominates the other. Here you can save a lot by exploiting the structure.

This algorithm still does not run in polynomial time because there can be very many Pareto-
optimal solutions. It is even possible that every single one of the 2n solutions is Pareto optimal,
e.g. if pi = wi = 2−i. Therefore, a worst-case analysis cannot give us a sub-exponential bound.
However, this is a pretty unnatural instance. The solution that picks items 2 to n is only slightly
different in weight and in profit from the one that picks item 1. Probably, in reality instances
are much nicer than what a hypothetical adversary would define as the worst-case input.

2 Stochastic Input Model

Instead of a worst-case analysis, we perform a smoothed analysis. The idea is to interpolate
between worst-case analysis (which is too pessimistic) and average-case analysis (which usually
is not able to reproduce the structure of “typical” instances). We assume that the profits pi are
defined by an adversary as in a worst-case analysis. The weights wi are chosen from distributions
that are again defined by an adversary. In more detail, the adversary defines probability density
functions fi and wi is drawn independently according to the distribution defined by fi.

The density functions have to fulfill the following conditions. We normalize all weights to
be between 0 and 1. That is, fi(x) 6= 0 only for x ∈ [0, 1]. Furthermore, the density is bounded
by some parameter φ ≥ 1 at every point, i.e., f(x) ≤ φ for all x.

Randomized Algorithms, Summer 2016 Lecture 7 (page 3 of 5)

Example 7.4. One important setting that can be captured by this input model is as follows.
The adversary can pick weights 0 ≤ w̄i ≤ 1 but these are slightly perturbed to wi = w̄i + Xi.
Xi might by uniformly distributed on [− 1

2φ ,
1
2φ]. The bigger φ is, the better the adversary can

control the weights.

Generally, for φ = 1, the only possible distributions are uniform ones on [0, 1], so we are
doing an average case analysis. For φ→∞, the adversary gets stronger and stronger and we are
getting closer to a worst-case analysis. To be able to reproduce the above example pi = wi = 2−i

at least approximately, φ needs to be in the order of 2n.

3 The Number of Pareto-Optimal Solutions

Theorem 7.5. The expected number of Pareto-optimal solutions is at most n2φ+ 1.

Proof. For k ∈ N, we let Fk denote the event that there are two solutions that differ in weight by
at most n

k . We will split up the expected number of Pareto-optimal solutions based on whether
Fk occurs or not as follows

E [|P|] ≤ Pr [Fk] E [|P| | Fk] + Pr
[
Fk
]
E
[
|P|

∣∣ Fk] .

We will show that Fk is very unlikely to occur. Therefore, we use the trivial bound |P| ≤ 2n

for this unlikely case. Furthermore, if Fk, then all Pareto-optimal solutions differ in weight by
at least n/k. This means that there is only a single solution of weight 0, namely the all-zero
solution. All other solutions have a weight within one of the intervals (ni/k, n(i + 1)/k] for
i ∈ {0, . . . , k − 1}, but each in a different interval. Let Y k

i = 1 if there is a Pareto-optimal

solution of weight in (ni/k, n(i+ 1)/k], Y k
i = 0 otherwise. If Fk, then |P| = 1 +

∑k−1
i=0 Y

k
i .

Overall, we can bound the expectation of E [|P|] by

E [|P|] ≤ Pr [Fk] 2n + Pr
[
Fk
]
E

[
1 +

k−1∑
i=0

Y k
i

∣∣∣∣∣ Fk
]

= Pr [Fk] 2n + Pr
[
Fk
](

1 +

k−1∑
i=0

E
[
Y k
i

∣∣∣ Fk]
)

= Pr [Fk] 2n + Pr
[
Fk
]

+

k−1∑
i=0

Pr
[
Y k
i = 1 and Fk

]
≤ Pr [Fk] 2n + 1 +

k−1∑
i=0

Pr
[
Y k
i = 1

]
.

Below, we will show that for all k ∈ N, i ∈ {0, . . . , n− 1}, we have

Pr [Fk] ≤ 22n+1φ
n

k
and Pr

[
Y k
i = 1

]
≤ n2φ

k
,

which implies

E [P] ≤ 22n+1φ
n

k
2n + 1 + k

n2φ

k
=

23n+1φn

k
+ 1 + k

n2φ

k
.

This bound holds for every k ∈ N, so E [|P|] ≤ 1 + n2φ.

Lemma 7.6. For every ε > 0, the probability that there are two distinct solutions x 6= y such
that |wTx− wT y| ≤ ε is at most 22n+1φε.

Randomized Algorithms, Summer 2016 Lecture 7 (page 4 of 5)

Proof. We fix any two solutions x 6= y and show that Pr
[
wTx− wT y ≤ ε

]
≤ 2φε. Because

there are at most 2n · 2n = 22n solutions overall, a union bound then shows the claim.
The solutions x and y have to differ in at least one item. Without loss of generality, assume

that xi = 1 and yi = 0. Now fix the weights wj for j 6= i arbitrarily to values w̄j . The weights
of x and y can now be computed as

wTx = wi +
∑
j 6=i

w̄jxj wT y =
∑
j 6=i

w̄jyj .

Therefore
wTx− wT y = wi +

∑
j 6=i

w̄jxj −
∑
j 6=i

w̄jyj

Let κ =
∑

j 6=i w̄jxj −
∑

j 6=i w̄jyj . Observe that this does not depend on wi. We now have

|wTx− wT y| ≤ ε if and only if |wi + κ| ≤ ε if and only if wi ∈ [κ− ε, κ+ ε] .

In terms of probabilities, this gives us

Pr
[
|wTx− wT y| ≤ ε

∣∣ wj = w̄j for j 6= i
]

= Pr [wi ∈ [κ− ε, κ+ ε] | wj = w̄j for j 6= i] ≤ 2φε .

As this bound holds regardless of the way we condition the values wj , it also holds without the
conditioning.

Lemma 7.7. For every t > 0 and every ε > 0, the probability that there is a Pareto-optimal
solution x of weight wTx ∈ (t, t+ ε] is at most nφε.

Proof. We first find a condition that is necessary to have a Pareto-optimal solution x of weight
wTx ∈ (t, t+ ε]. To this end, we keep the weights w fixed. Now, consider the knapsack problem
with capacity bound t. Let x∗ denote its optimal Pareto-optimal solution. We think of x∗ being
the winner whereas the Pareto-optimal solutions of higher profit have to have a weight that
exceeds t. These are the losers. Let x† be the loser of smallest weight (and smallest profit). If
there is any Pareto-optimal solution of weight in (t, t+ ε], then x† must be one of them. Note
that x† must contain an item i that x∗ does not contain. Therefore we get

Pr
[
∃x ∈ P : wTx ∈ (t, t+ ε]

]
= Pr

[
∃i : x∗i = 0, x†i = 1, wTx† ∈ (t, t+ ε]

]
For i ∈ [n], let Ei denote the event that x∗i = 0, x†i = 1, wTx† ∈ (t, t + ε]. By the above

considerations, we can only have a Pareto-optimal solution x of weight wTx ∈ (t, t+ ε] if one of
the events Ei occurs. We will show that Pr [Ei] ≤ φε for every i. A union bound then implies

Pr
[
∃x ∈ P : wTx ∈ (t, t+ ε]

]
≤

n∑
i=1

Pr [Ei] ≤ nφε .

From now on, we keep the index i fixed and bound the probability of this particular event Ei
to occur. Let P+i be the set of solutions that contain item i and are not dominated by another
solution that also contains item i. Analogously we denote by P−i the solutions that do not
contain item i and are not dominated by another solution that also does not contain item i.
The set of Pareto-optimal solutions P is a subset of P+i ∪ P−i.

Now, we also fix all weights except wi. In this conditioned probability space, the weight of
all solutions not containing i are fixed. So, the set P+i is not random anymore. The weights
of solutions containing i are of course not fixed yet but they all change by the same amount
depending on wi. Therefore, the set P−i is also fixed.

Let x∗∗ be the solution in P−i of maximum profit and weight at most t. This is our candidate
for x∗. Furthermore, let x†† be the solution in P+i of minimum profit above pTx∗∗. We note

Randomized Algorithms, Summer 2016 Lecture 7 (page 5 of 5)

wTx

pTx

tt+ ε

0

1
2

3

4

5
6

7

8

9
10

11

12

13
14

15

Figure 3: Points are drawn in red if the respective solution contains item i, otherwise blue. The
red line connects the solutions in P+i, the blue line the ones in P−i. Changing the weight wi
corresponds to a shift of the horizontal coordinate of every red point by the same amount. The
event Ei only occurs if the weight of solution 12 falls in the interval (t, t + ε]. If solution 12’s
weight is smaller then the optimal solution of weight at most t contains item i. If solution 12’s
weight is higher, there is no Pareto-optimal solution in the weight interval.

that the event Ei can only occur if wTx†† ∈ (t, t + ε]. This is for the following reasons. If
wTx†† ≤ t, then x∗∗ cannot be the optimal solution of weight at most t because x†† is better.
If wTx†† > t+ ε, no solution that contains i but is not dominated by x∗∗ can have a weight in
(t, t+ ε].

Like in the proof of Lemma 7.6, we can bound the probability of wTx†† ∈ (t, t+ ε] by using

wTx†† = wi + κ for κ =
∑

j 6=i w̄jx
††
j . Overall, we get Pr [Ei] ≤ Pr

[
wTx†† ∈ (t, t+ ε]

]
≤ φε.

4 Further Reading

• Heiko Rglin’s lecture notes (Chapter 3): http://www.roeglin.org/teaching/Skripte/
ProbabilisticAnalysis.pdf

• The results are a special case of this paper:
Ren Beier, Berthold Vcking: Typical Properties of Winners and Losers in Discrete Opti-
mization. SIAM J. Comput. 35(4): 855-881 (2006)

http://www.roeglin.org/teaching/Skripte/ProbabilisticAnalysis.pdf
http://www.roeglin.org/teaching/Skripte/ProbabilisticAnalysis.pdf

	Nemhauser-Ullmann Algorithm
	Stochastic Input Model
	The Number of Pareto-Optimal Solutions
	Further Reading

