

STATISTICAL PHYSICS MODELS

- graph *G* of interacting particles
- vertices = particles
- edges = interactions
- each vertex can be in one of *q* states/spins
 (*q* depends on the mathematical model)

STATISTICAL PHYSICS MODELS

- graph *G* of interacting particles
- vertices = particles
- edges = interactions
- each vertex can be in one of *q* states/spins
 (*q* depends on the mathematical model)
- configuration of spin system: $\sigma \colon V(G) \to [q]$

STATISTICAL PHYSICS MODELS

- graph *G* of interacting particles
- vertices = particles
- edges = interactions
- each vertex can be in one of *q* states/spins
 (*q* depends on the mathematical model)
- configuration of spin system: $\sigma \colon V(G) \to [q]$
- q x q -matrix K of interaction energies
 K_{i,j} = interaction energy between spins i and j

- configuration of spin system: $\sigma \colon V(G) \to [q]$
- *q* × *q* -matrix *K* of interaction energies
 - $K_{i,j}$ = interaction energy between spins *i* and *j*

- configuration of spin system: $\sigma \colon V(G) \to [q]$
- $q \times q$ -matrix K of interaction energies $K_{i,j}$ = interaction energy between

spins *i* and *j*

Overall energy of configuration σ : $H(\sigma) = \sum K_{\sigma(u),\sigma(v)}$ (Hamiltonian) $uv \in E(G)$

- configuration of spin system: $\sigma \colon V(G) \to [q]$
- q x q -matrix K of interaction energies
 K_{i,j} = interaction energy between spins i and j

Overall energy of configuration σ :

 $H(\sigma) = \sum_{uv \in E(G)} K_{\sigma(u),\sigma(v)}$ (Hamiltonian)

Probability that spin system is in configuration $\boldsymbol{\sigma}$

 $p(\sigma) \propto e^{-H(\sigma)/cT}$

(Gibbs distribution)

- configuration of spin system: $\sigma \colon V(G) \to [q]$
- q x q -matrix K of interaction energies
 K_{i,j} = interaction energy between spins i and j

Overall energy of configuration σ : $H(\sigma) =$

$$I(\sigma) = \sum_{uv \in E(G)} K_{\sigma(u),\sigma(v)}$$
 (Hamiltonian)

(Gibbs distribution)

Probability that spin system is in configuration $\boldsymbol{\sigma}$

Normalising factor of Gibbs distr.: $Z_K(G) = \sum_{\sigma: V(G) \to [q]} e^{-H(\sigma)/cT}$

 $p(\sigma) \propto e^{-H(\sigma)/cT}$

- configuration of spin system: $\sigma \colon V(G) \to [q]$
- q x q -matrix K of interaction energies
 K_{i,j} = interaction energy between spins i and j

Overall energy of configuration
$$\sigma$$
: $H(\sigma) = \sum_{uv \in E(G)} K_{\sigma(u),\sigma(v)}$ (Hamiltonian)
Probability that spin system is in $p(\sigma) \propto e^{-H(\sigma)/cT}$ (Gibbs distribution)
configuration σ

Normalising factor of Gibbs distr.: $Z_K(G) = \sum_{\sigma:V(G) \to [q]} e^{-H(\sigma)/cT}$ (Partition Function)

Overall energy of configuration σ : $H(\sigma) = \sum_{uv \in E(G)} K_{\sigma(u),\sigma(v)}$ (Hamiltonian)

Probability to be in configuration σ : $p(\sigma) \propto e^{-H(\sigma)/cT}$

Partition function: Z_{k}

$$_{K}(G) = \sum_{\sigma: V(G) \to [q]} e^{-H(\sigma)/cT}$$

Overall energy of configuration σ : $H(\sigma) = \sum_{uv \in E(G)} K_{\sigma(u),\sigma(v)}$ (Hamiltonian)

Probability to be in configuration σ : $p(\sigma) \propto e^{-H(\sigma)/cT}$

Partition function: Z_K

$$e^{-K_{\sigma(u),\sigma(v)}/cT} = \sum_{\sigma:V(G)\to[q]} \prod_{uv\in E(G)} e^{-K_{\sigma(u),\sigma(v)}/cT}$$

Overall energy of configuration σ : $H(\sigma) = \sum_{uv \in E(G)} K_{\sigma(u),\sigma(v)}$ (Hamiltonian)

Probability to be in configuration σ : $p(\sigma) \propto e^{-H(\sigma)/cT}$

Partition function:
$$Z_{K}(G) = \sum_{\sigma:V(G) \to [q]} e^{-H(\sigma)/cT} = \sum_{\sigma:V(G) \to [q]} \prod_{uv \in E(G)} e^{-K_{\sigma(u),\sigma(v)}/cT}$$
$$= \sum_{\sigma:V(G) \to [q]} \prod_{uv \in E(G)} A_{\sigma(u),\sigma(v)} =: Z^{A}(G)$$

Allowing 0-entries in A corresponds to hard constraints/forbidden interactions.

Allowing 0-entries in A corresponds to hard constraints/forbidden interactions.

Example: hard-core gas model

Allowing 0-entries in A corresponds to hard constraints/forbidden interactions.

Allowing 0-entries in A corresponds to hard constraints/forbidden interactions.

Example: hard-core gas model

no adjacent occupied sites!

Allowing 0-entries in A corresponds to hard constraints/forbidden interactions.

Allowing 0-entries in A corresponds to hard constraints/forbidden interactions.

Example: hard-core gas model

Allowing 0-entries in A corresponds to hard constraints/forbidden interactions.

Allowing 0-entries in A corresponds to hard constraints/forbidden interactions.

Let *H* be a fixed graph.

#Hom(H)

Input: Graph *G* without loops. Output: Number of Homomorphisms from *G* to *H*.

Let *H* be a fixed graph.

#Hom(H)

Input: Graph *G* without loops. Output: Number of Homomorphisms from *G* to *H*.

Let *H* be a fixed graph.

#Hom(H)

Input: Graph *G* without loops. Output: Number of Homomorphisms from *G* to *H*.

