



1

#### Techniques for Counting Problems, Lecture 8 Limitations of Counting Dichotomies

**Philip Wellnitz** 

#### **Graph Homomorphism**





#### **Graph Homomorphism**





#### **Graph Homomorphism**





#### **Graph Homomorphism**

Mapping from graph H to G that preserves edges; Write Hom $(H \rightarrow G)$  for the set of all graph hom's from H to G.



 $#Hom(H \rightarrow G) = 16$ 



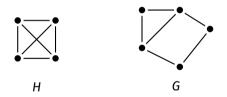
#### Graph Homomorphism





#### **Graph Homomorphism**

Mapping from graph H to G that preserves edges; Write Hom $(H \rightarrow G)$  for the set of all graph hom's from H to G.



No homomorphisms from *H* to *G*.



Philip Wellnitz Techniques for Counting Problems, Lecture 8 2-6

#### **Graph Homomorphism**

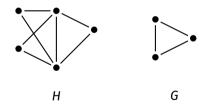
Mapping from graph H to G that preserves edges; Write Hom $(H \rightarrow G)$  for the set of all graph hom's from H to G.



#### Finding (counting) homomorphisms is important for finding patterns in graphs



#### **Graph Homomorphism**

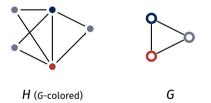






#### **Graph Homomorphism**

Mapping from graph H to G that preserves edges; Write Hom $(H \rightarrow G)$  for the set of all graph hom's from H to G.



#### Finding (counting) homomorphisms generalizes graph coloring problems



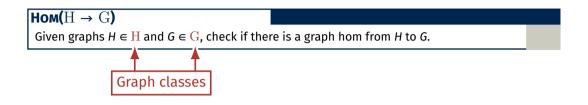
Philip Wellnitz Techniques for Counting Problems, Lecture 8

#### Ном(Н → С)

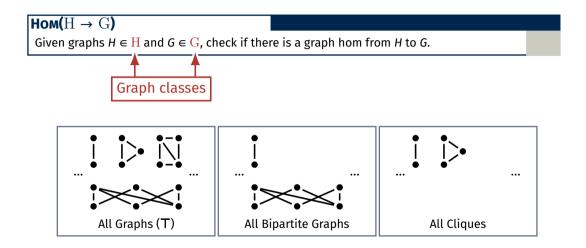
Given graphs  $H \in H$  and  $G \in G$ , check if there is a graph hom from H to G.



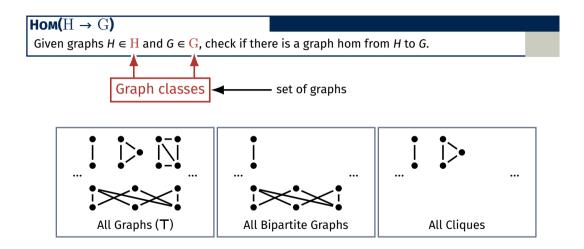














#### **Ном(**Н → G**)**

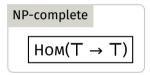
Given graphs  $H \in H$  and  $G \in G$ , check if there is a graph hom from H to G.





**Ном(**Н → G)

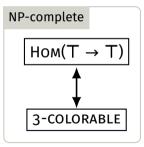
Given graphs  $H \in H$  and  $G \in G$ , check if there is a graph hom from H to G.





**Ном(**Н → G)

Given graphs  $H \in H$  and  $G \in G$ , check if there is a graph hom from H to G.

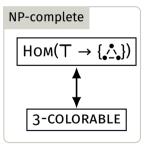




Philip Wellnitz Techniques for Counting Problems, Lecture 8 6-3

**Ном(**Н → G)

Given graphs  $H \in H$  and  $G \in G$ , check if there is a graph hom from H to G.





**Ном(**Н → G**)** 

Given graphs  $H \in H$  and  $G \in G$ , check if there is a graph hom from H to G.

#### Are there fast algorithms for special cases of $HOM(T \rightarrow T)$ ?



**Ном(**Н → G**)** 

Given graphs  $H \in H$  and  $G \in G$ , check if there is a graph hom from H to G.

#### What makes Hom $(T \rightarrow T)$ hard?



#### **Ном(**Н → G**)**

Given graphs  $H \in H$  and  $G \in G$ , check if there is a graph hom from H to G.

|                          | poly-time solvable               | NP-complete                   |
|--------------------------|----------------------------------|-------------------------------|
| Ном( $T \rightarrow G$ ) | $\operatorname{G}$ contains only | $\operatorname{G}$ contains a |
|                          | bipartite graphs                 | non-bipartite graph           |
|                          | [Hell, Nešetřil '90]             | [Hell, Nešetřil '90]          |



8

**#Ном(**Н → G)

Given graphs  $H \in H$  and  $G \in G$ , count all graph homomorphisms from H to G.

|             | poly-time solvable          | #P-complete                 |
|-------------|-----------------------------|-----------------------------|
| #Ном(⊤ → G) | (explicit criterion exists) | (explicit criterion exists) |
|             | [Dyer, Greenhill '00]       | [Dyer, Greenhill '00]       |



**Ном(**Н → G**)** 

Given graphs  $H \in H$  and  $G \in G$ , check if there is a graph hom from H to G.

#### What about the other side, $Hom(H \rightarrow T)$ ?





**Ном(**Н → G**)** 

Given graphs  $H \in H$  and  $G \in G$ , check if there is a graph hom from H to G.

#### When is Hom(H $\rightarrow$ T) easy?





Given graphs  $H \in H$  and  $G \in G$ , check if there is a graph hom from H to G.

#### When is Hom(H $\rightarrow$ T) easy?

#### Always in time $O(|V(G)|^{|V(H)|})$ (brute-force) (fast if |V(H)| bounded for all $H \in H$ , this is the boring case)



**Ном(**Н → G)

Philip Wellnitz Techniques for Counting Problems, Lecture 8 10-3

**Ном(**Н → G)

**Parameter:** |*V*(*H*)|

Given graphs  $H \in H$  and  $G \in G$ , check if there is a graph hom from H to G.

#### When is Hom(H $\rightarrow$ T) fixed-parameter tractable? (in $O(f(|V(H)|) \cdot poly(|V(G)|))$ time)



Philip Wellnitz Techniques for Counting Problems, Lecture 8

#### Parameter: |V(H)|

Given graphs  $H \in H$  and  $G \in G$ , check if there is a graph hom from H to G.

|                          | FPT                                              | W[1]-hard                            |
|--------------------------|--------------------------------------------------|--------------------------------------|
|                          | ( <i>f</i> ( V(H) ) · <i>poly</i> ( V(G) ) time) | (not (much) faster than brute-force) |
| Ном( $H \rightarrow T$ ) | ${ m ``H}$ contains only graphs                  | " ${ m H}$ contains graphs with      |
|                          | with small treewidth"                            | arbitrary large tw"                  |
|                          | [Grohe '03]                                      | [Grohe '03]                          |



**Ном(**Н → G)

#### Parameter: |V(H)|

Given graphs  $H \in H$  and  $G \in G$ , count all graph homomorphisms from H to G.

|                           | FPT                                              | #W[1]-hard                           |
|---------------------------|--------------------------------------------------|--------------------------------------|
|                           | ( <i>f</i> ( V(H) ) · <i>poly</i> ( V(G) ) time) | (not (much) faster than brute-force) |
| #Ном( $H \rightarrow T$ ) | ${ m ``H}$ contains only graphs                  | "H contains a graph                  |
|                           | with small treewidth"                            | with large treewidth"                |
|                           | [Dalmau, Jonsson '04]                            | [Dalmau, Jonsson '04]                |



**#Ном(**Н → G)

**#Ном(**Н → G)

Parameter: |V(H)|

Given graphs  $H \in H$  and  $G \in G$ , count all graph homomorphisms from H to G.

#### Complexity dichotomies when restricting either ${\rm G}$ or ${\rm H}.$



**#Ном(**Н → G)

Parameter: |V(H)|

Given graphs  $H \in H$  and  $G \in G$ , count all graph homomorphisms from H to G.

#### Complexity dichotomies when restricting either ${\rm G}$ or ${\rm H}.$

What if we restrict both sides?



**#Ном(**Н → G)

Parameter: |V(H)|

Given graphs  $H \in H$  and  $G \in G$ , count all graph homomorphisms from H to G.

#### Complexity dichotomies when restricting either ${\rm G}$ or ${\rm H}.$

What if we restrict both sides?

This lecture.



## Main Result

# #Hom( $H \rightarrow G$ )Parameter: |V(H)|Given graphs $H \in H$ and $G \in G$ , count all graph homomorphisms from H to G.TheoremFor any problem P in #W[1] (or W[1]), there are graph classes $H_p$ and $G_p$ such that Pis equivalent to $\#Hom(H_p \rightarrow G_p)$ (or $Hom(H_p \rightarrow G_p)$ ).



## Main Result

| <b>#Ном(</b> Н → G <b>)</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Parameter:                                                                            | V(H) |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|------|
| Given graphs $H \in H$ and $G \in G$ , count all graded graded of $G \in G$ , count all graded grade | aph homomorphisms from <i>H</i> to <i>G</i> .                                         |      |
| Theorem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                       |      |
| For any problem P in $\#W[1]$ (or $W[1]$ ), the is equivalent to $\#HOM(H_P \rightarrow G_P)$ (or $HOM$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | re are graph classes $H_{p}$ and $G_{p}$ such that P (( $H_{p} \rightarrow G_{p}$ )). |      |

• Cannot hope for clear categorization into FPT/W[1]-hard for all pairs (H, G)

(recall Ladner's Theorem: If P ≠NP, there are NP-intermediate problems; similar results by Downey and Fellows for FPT/W[1])



## Proof Ideas

# #Hom( $H \rightarrow G$ )Parameter: |V(H)|Given graphs $H \in H$ and $G \in G$ , count all graph homomorphisms from H to G.TheoremFor any problem P in #W[1] (or W[1]), there are graph classes $H_p$ and $G_p$ such that Pis equivalent to #Hom( $H_p \rightarrow G_p$ ) (or Hom( $H_p \rightarrow G_p$ )).



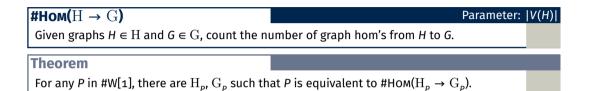
### Proof Ideas

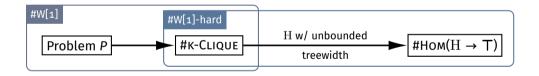
| <b>#Ном(</b> Н → G <b>)</b>                                                                                                                                                     | Parameter:  \ | V(H) |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------|
| Given graphs $H \in H$ and $G \in G$ , count all graph homomorphisms from $H$ to $G$ .                                                                                          |               |      |
| Theorem                                                                                                                                                                         |               |      |
| For any problem P in $\#W[1]$ (or $W[1]$ ), there are graph classes $H_p$ and $G_p$ such that P is equivalent to $\#HOM(H_p \rightarrow G_p)$ (or $HOM(H_p \rightarrow G_p)$ ). |               |      |

#### **Recall:** $\#Hom(H \rightarrow T)$ is #W[1]-hard if H has "unbounded treewidth" [DalJon'04]



## Proof Ideas

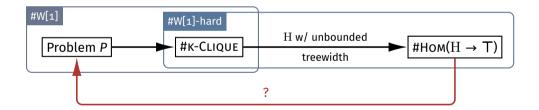




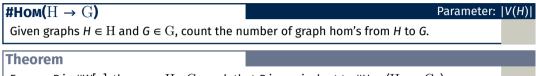




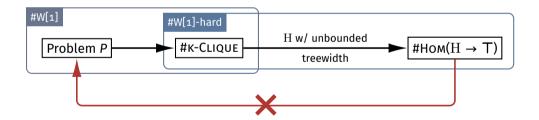
For any P in #W[1], there are  $H_p$ ,  $G_p$  such that P is equivalent to  $\#Hom(H_p \rightarrow G_p)$ .



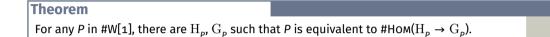


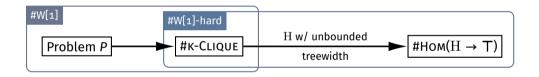


For any P in #W[1], there are  $H_p$ ,  $G_p$  such that P is equivalent to  $\#Hom(H_p \rightarrow G_p)$ .







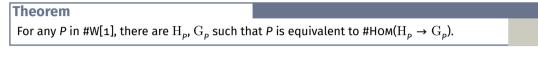






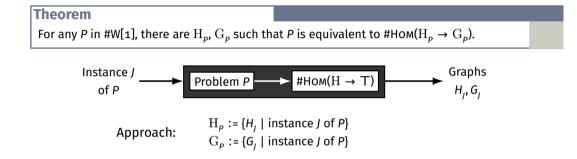
Problem 
$$P \longrightarrow$$
#Hom $(H \rightarrow T)$ 



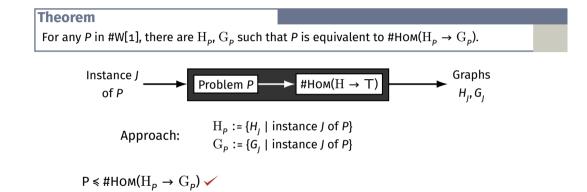




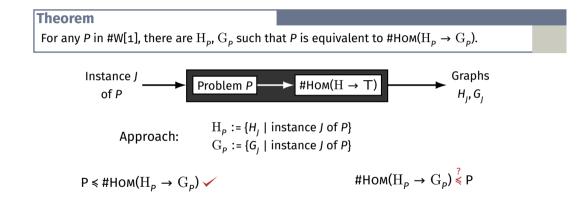






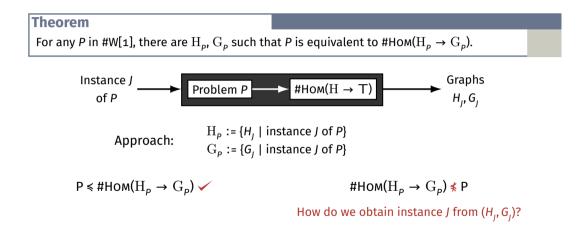








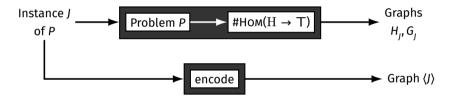
Philip Wellnitz Techniques for Counting Problems, Lecture 8 17-6





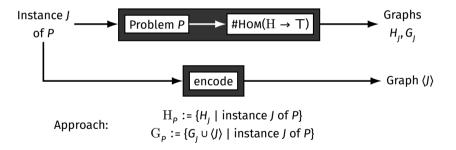
Philip Wellnitz Techniques for Counting Problems, Lecture 8 17-7





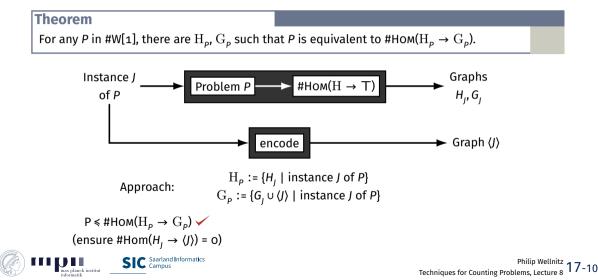


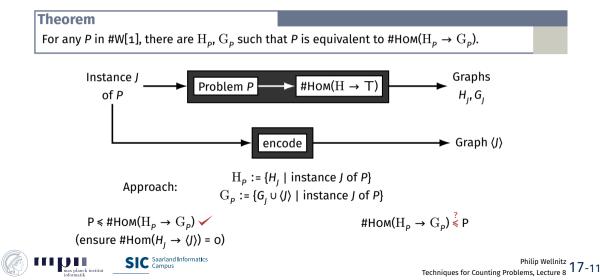


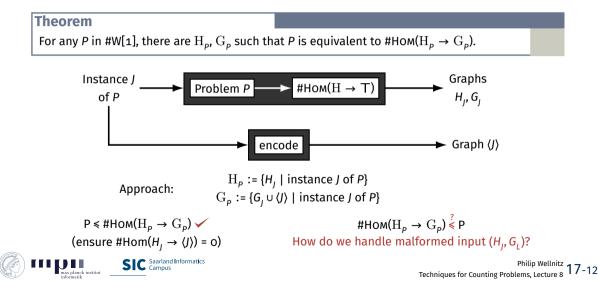


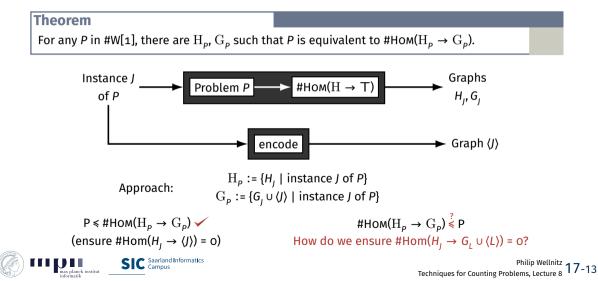


Philip Wellnitz 17-9









#### 

#### Theorem

For any P in #W[1], there are  $H_p$ ,  $G_p$  such that P is equivalent to  $\#HOM(H_p \rightarrow G_p)$ .

| $P \leqslant \#Hom(H_{p} \rightarrow G_{p})$                                                                                   | $\#Hom(\mathrm{H}_{\rho}\to\mathrm{G}_{\rho})\leqslantP$                          |
|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| Can solve instance J with $(H_j, G_j \cup \langle J \rangle)$ by computing #Hom $(H_j \rightarrow G_j \cup \langle J \rangle)$ | Can extract instance J from pair $(H_j, G_j \cup \langle J \rangle)$              |
| (ensuring #Hom( $H_j \rightarrow \langle J \rangle$ ) = 0)                                                                     | How do we ensure $\#\text{Hom}(H_j \rightarrow G_L \cup \langle L \rangle) = 0$ ? |



#### 

#### Theorem

For any P in #W[1], there are  $H_p$ ,  $G_p$  such that P is equivalent to  $\#Hom(H_p \rightarrow G_p)$ .

| $P \leqslant \#Hom(\mathrm{H}_{p} \rightarrow \mathrm{G}_{p})$                                                                 | #Ном( $\mathbf{H}_{p} \rightarrow \mathbf{G}_{p}$ ) ≼ Р                           |
|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| Can solve instance J with $(H_j, G_j \cup \langle J \rangle)$ by computing #Hom $(H_j \rightarrow G_j \cup \langle J \rangle)$ | Can extract instance J from pair $(H_j, G_j \cup \langle J \rangle)$              |
| (ensuring #Hom( $H_j \rightarrow \langle J \rangle$ ) = 0)                                                                     | How do we ensure $\#\text{Hom}(H_J \rightarrow G_L \cup \langle L \rangle) = 0$ ? |

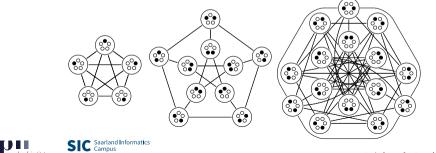




#### Theorem

For any P in #W[1], there are  $H_p$ ,  $G_p$  such that P is equivalent to  $\#Hom(H_p \rightarrow G_p)$ .

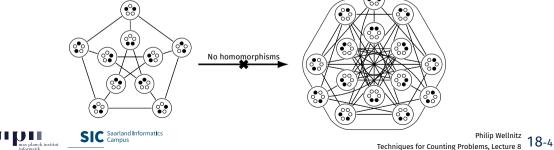
$$\begin{split} \mathsf{P} &\leqslant \#\mathsf{HOM}(\mathsf{H}_p \to \mathsf{G}_p) & \#\mathsf{HOM}(\mathsf{H}_p \to \mathsf{G}_p) \leqslant \mathsf{P} \\ \\ &\mathsf{Can solve instance J with } (H_j, G_j \cup \langle J \rangle) \\ &\mathsf{computing } \#\mathsf{Hom}(H_j \to G_j \cup \langle J \rangle) \\ &\mathsf{(ensuring } \#\mathsf{Hom}(H_j \to \langle J \rangle) = 0) & \mathsf{How do we ensure } \#\mathsf{Hom}(H_j \to G_L \cup \langle L \rangle) = 0? \end{split}$$

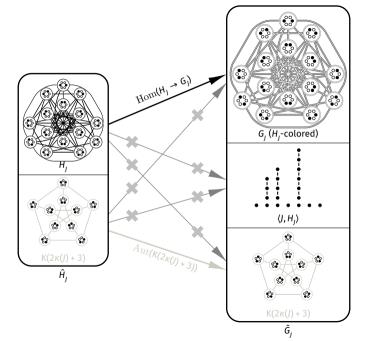


#### Theorem

For any P in #W[1], there are  $H_p$ ,  $G_p$  such that P is equivalent to  $\#Hom(H_p \rightarrow G_p)$ .

 $P \leq \#Hom(H_{p} \rightarrow G_{p}) \qquad \#Hom(H_{p} \rightarrow G_{p}) \leq P$ Can solve instance J with  $(H_{j}, G_{j} \cup \langle J \rangle)$  by computing  $\#Hom(H_{j} \rightarrow G_{j} \cup \langle J \rangle)$  (ensuring  $\#Hom(H_{j} \rightarrow \langle J \rangle) = 0$ ) How do we ensure  $\#Hom(H_{j} \rightarrow G_{L} \cup \langle L \rangle) = 0$ ?





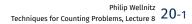
# Main Result

| <b>#Ном(</b> Н → G)                                                                                                                                                             | Parameter: | V(H) |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------|
| Given graphs $H \in H$ and $G \in G$ , count all graph homomorphisms from $H$ to $G$ .                                                                                          |            |      |
| Theorem 🗸                                                                                                                                                                       |            |      |
| For any problem P in $\#W[1]$ (or $W[1]$ ), there are graph classes $H_p$ and $G_p$ such that P is equivalent to $\#HOM(H_p \rightarrow G_p)$ (or $HOM(H_p \rightarrow G_p)$ ). |            |      |

#### Cannot hope for clear categorization into FPT/W[1]-hard for all pairs (H, G)

→ Need to look at specific pairs of graph classes





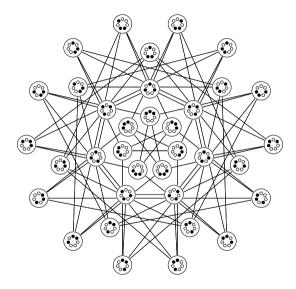
# Main Result

| <b>#Ном(</b> Н → G <b>)</b>                                                                                                                                                     | Parameter: | V(H) |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------|
| Given graphs $H \in H$ and $G \in G$ , count all graph homomorphisms from $H$ to $G$ .                                                                                          |            |      |
| Theorem 🗸                                                                                                                                                                       |            |      |
| For any problem P in $\#W[1]$ (or $W[1]$ ), there are graph classes $H_p$ and $G_p$ such that P is equivalent to $\#Hom(H_p \rightarrow G_p)$ (or $Hom(H_p \rightarrow G_p)$ ). |            |      |

- Cannot hope for clear categorization into FPT/W[1]-hard for all pairs (H, G)
- $\rightsquigarrow~$  Need to look at specific pairs of graph classes







#### Thank you!

TikZ code for Kneser graphs available on GitHub github.com/PH111P/tikz-kneser

#### Navigation



