Campus

# Techniques for Counting Problems, Lecture 8 <br> Limitations of Counting Dichotomies 

Philip Wellnitz

## Summary: Counting Graph Homomorphisms

## Graph Homomorphism

Mapping from graph $H$ to $G$ that preserves edges;
Write $\operatorname{Hom}(H \rightarrow G)$ for the set of all graph hom's from $H$ to $G$.


## Graph Homomorphism

Mapping from graph $H$ to $G$ that preserves edges;
Write $\operatorname{Hom}(H \rightarrow G)$ for the set of all graph hom's from $H$ to $G$.


H


G

## Graph Homomorphism

Mapping from graph $H$ to $G$ that preserves edges;
Write $\operatorname{Hom}(H \rightarrow G)$ for the set of all graph hom's from $H$ to $G$.


## Graph Homomorphism

Mapping from graph $H$ to $G$ that preserves edges;
Write $\operatorname{Hom}(H \rightarrow G)$ for the set of all graph hom's from $H$ to $G$.


$$
\# \operatorname{Hom}(H \rightarrow G)=16
$$

## Graph Homomorphism

Mapping from graph $H$ to $G$ that preserves edges;
Write $\operatorname{Hom}(H \rightarrow G)$ for the set of all graph hom's from $H$ to $G$.

H

G

## Graph Homomorphism

Mapping from graph $H$ to $G$ that preserves edges;
Write $\operatorname{Hom}(H \rightarrow G)$ for the set of all graph hom's from $H$ to $G$.


No homomorphisms from $H$ to $G$.

## Summary: Counting Graph Homomorphisms

## Graph Homomorphism

Mapping from graph $H$ to $G$ that preserves edges;
Write $\operatorname{Hom}(H \rightarrow G)$ for the set of all graph hom's from $H$ to $G$.


Finding (counting) homomorphisms is important for finding patterns in graphs

## Summary: Counting Graph Homomorphisms

## Graph Homomorphism

Mapping from graph $H$ to $G$ that preserves edges;
Write $\operatorname{Hom}(H \rightarrow G)$ for the set of all graph hom's from $H$ to $G$.


## Summary: Counting Graph Homomorphisms

## Graph Homomorphism

Mapping from graph $H$ to $G$ that preserves edges;
Write $\operatorname{Hom}(H \rightarrow G)$ for the set of all graph hom's from $H$ to $G$.


Finding (counting) homomorphisms generalizes graph coloring problems

## Summary：Counting Graph Homomorphisms

## Hom（ $\mathrm{H} \rightarrow \mathrm{G}$ ）

Given graphs $H \in H$ and $G \in G$ ，check if there is a graph hom from $H$ to $G$ ．



$\qquad$

## Summary：Known Results

## Hom（ $\mathrm{H} \rightarrow \mathrm{G}$ ）

Given graphs $H \in H$ and $G \in G$ ，check if there is a graph hom from $H$ to $G$ ．

## Summary：Known Results

## $\operatorname{Hom}(\mathrm{H} \rightarrow \mathrm{G})$

Given graphs $H \in H$ and $G \in G$ ，check if there is a graph hom from $H$ to $G$ ．

$$
\begin{aligned}
& \text { NP-complete } \\
& \qquad \operatorname{Hom}(\mathrm{T} \rightarrow \mathrm{~T})
\end{aligned}
$$

## $\operatorname{Hom}(\mathrm{H} \rightarrow \mathrm{G})$

Given graphs $H \in H$ and $G \in G$, check if there is a graph hom from $H$ to $G$.


## Hom( $\mathrm{H} \rightarrow \mathrm{G}$ )

Given graphs $H \in H$ and $G \in G$, check if there is a graph hom from $H$ to $G$.


## Summary：Known Results

$\square$
Hom（ $\mathrm{H} \rightarrow \mathrm{G}$ ）
Given graphs $H \in H$ and $G \in G$ ，check if there is a graph hom from $H$ to $G$ ．

$$
\text { Are there fast algorithms for special cases of } \operatorname{Hoм}(T \rightarrow T) \text { ? }
$$

## Summary: Known Results

## Hom( $\mathrm{H} \rightarrow \mathrm{G}$ ) <br> Given graphs $H \in H$ and $G \in G$, check if there is a graph hom from $H$ to $G$.

What makes $\operatorname{Hom}(T \rightarrow T)$ hard?

## Summary: Known Results

## Hom( $\mathrm{H} \rightarrow \mathrm{G}$ )

Given graphs $H \in H$ and $G \in G$, check if there is a graph hom from $H$ to $G$.

|  | poly-time solvable | NP-complete |
| :---: | :---: | :---: |
| $\operatorname{Hom}(T \rightarrow G)$ | G contains only | G contains a |
|  | bipartite graphs | non-bipartite graph |
|  | [Hell, Nešetřil '90] | [Hell, Nešetřil '90] |

## Summary: Known Results

## \#Hom( $\mathrm{H} \rightarrow \mathrm{G}$ )

Given graphs $H \in H$ and $G \in G$, count all graph homomorphisms from $H$ to $G$.

|  | poly-time solvable | \#P-complete |
| :---: | :---: | :---: |
| \#Ном $(T \rightarrow G)$ | (explicit criterion exists) | (explicit criterion exists) |
|  | [Dyer, Greenhill 'oo] | [Dyer, Greenhill 'oo] |

## Summary: Known Results

## Hom( $\mathrm{H} \rightarrow \mathrm{G}$ )

Given graphs $H \in H$ and $G \in G$, check if there is a graph hom from $H$ to $G$.

What about the other side, $\operatorname{Hom}(\mathrm{H} \rightarrow \mathrm{T})$ ?

## Summary: Known Results

## Hom( $\mathrm{H} \rightarrow \mathrm{G}$ )

Given graphs $H \in H$ and $G \in G$, check if there is a graph hom from $H$ to $G$.

$$
\text { When is } \boldsymbol{H o m}(H \rightarrow T) \text { easy? }
$$

## Summary：Known Results

## Hom（ $\mathrm{H} \rightarrow \mathrm{G}$ ） <br> Given graphs $H \in H$ and $G \in G$ ，check if there is a graph hom from $H$ to $G$ ．

## When is Ном $(H \rightarrow T)$ easy？

Always in time $O\left(|V(G)|^{|V(H)|}\right)$（brute－force）
（fast if $|V(H)|$ bounded for all $H \in H$ ，this is the boring case）

## Summary: Known Results

```
Hom(H -> G)
Given graphs \(H \in H\) and \(G \in G\), check if there is a graph hom from \(H\) to \(G\).
```

When is $\boldsymbol{H o m}(\mathrm{H} \rightarrow \mathrm{T})$ fixed-parameter tractable?

$$
\text { (in } O(f(|V(H)|) \cdot p o l y(|V(G)|)) \text { time })
$$

## Summary: Known Results

Hom( $\mathrm{H} \rightarrow \mathrm{G}$ )
Parameter: |V(H)|
Given graphs $H \in H$ and $G \in G$, check if there is a graph hom from $H$ to $G$.

|  | FPT $(f(\|V(H)\|) \cdot \operatorname{poly}(\|V(G)\|)$ time $)$ | $\begin{gathered} \text { W[1]-hard } \\ \text { (not (much) faster than brute-force) } \end{gathered}$ |
| :---: | :---: | :---: |
| $\operatorname{Hom}(\mathrm{H} \rightarrow \mathrm{T})$ | "H contains only graphs with small treewidth" [Grohe '03] | "H contains graphs with arbitrary large tw" [Grohe '03] |

## Summary: Known Results

## \#Hom( $\mathrm{H} \rightarrow \mathrm{G}$ )

Given graphs $H \in H$ and $G \in G$, count all graph homomorphisms from $H$ to $G$.

|  | FPT | \#W[1]-hard |
| :---: | :---: | :---: |
|  | $(f(\|V(H)\|) \cdot$ poly $(\|V(G)\|)$ time) | (not (much) faster than brute-force) |
| \#HOM $(\mathrm{H} \rightarrow \mathrm{T})$ | "H contains only graphs | "H contains a graph |
|  | with small treewidth" | with large treewidth" |
|  | [Dalmau, Jonsson '04] | [Dalmau, Jonsson '04] |

## Summary: Known Results

```
#Hom(H -> G)
    Parameter: |V(H)|
Given graphs H\inH and G GG, count all graph homomorphisms from H to G.
```

Complexity dichotomies when restricting either G or H .

## Summary: Known Results

```
#Hom(H -> G)
    Parameter: |V(H)|
Given graphs H\inH and G GG, count all graph homomorphisms from H to G.
```

Complexity dichotomies when restricting either G or H .

What if we restrict both sides?

## Summary: Known Results

```
#Hom(H -> G)
    Parameter: |V(H)|
Given graphs }H\inH\mathrm{ and G GG, count all graph homomorphisms from H to G.
```

Complexity dichotomies when restricting either G or H .

What if we restrict both sides?
This lecture.

## Main Result

\#HOM $(H \rightarrow G)$
Given graphs $H \in H$ and $G \in G$, count all graph homomorphisms from $H$ to $G$.
Theorem
For any problem $P$ in $\# W[1]$ (or W $[1])$, there are graph classes $H_{P}$ and $G_{P}$ such that $P$
is equivalent to \#Hom $\left(H_{P} \rightarrow \mathrm{G}_{P}\right)$ (or $\operatorname{Hom}\left(\mathrm{H}_{P} \rightarrow \mathrm{G}_{P}\right)$ ).

## Main Result

## \#Hom( $\mathrm{H} \rightarrow \mathrm{G}$ )

Given graphs $H \in H$ and $G \in G$, count all graph homomorphisms from $H$ to $G$.

## Theorem

For any problem $P$ in \#W[1] (or W[1]), there are graph classes $H_{P}$ and $G_{P}$ such that $P$ is equivalent to \#Ном $\left(H_{p} \rightarrow G_{p}\right)$ (or $\operatorname{Hoм}\left(H_{p} \rightarrow G_{p}\right)$ ).

- Cannot hope for clear categorization into FPT/W[1]-hard for all pairs (H, G)
(recall Ladner's Theorem: If $P \neq N P$, there are NP-intermediate problems;
similar results by Downey and Fellows for FPT/W[1])


## Proof Ideas

| \#HOM $(H \rightarrow G)$ | Parameter: $\|V(H)\|$ |
| :--- | :--- |
| Given graphs $H \in H$ and $G \in G$, count all graph homomorphisms from $H$ to $G$. |  |

## Theorem

For any problem $P$ in \#W[1] (or W[1]), there are graph classes $H_{P}$ and $G_{P}$ such that $P$ is equivalent to \#Ном $\left(\mathrm{H}_{\mathrm{p}} \rightarrow \mathrm{G}_{\mathrm{p}}\right)$ (or $\operatorname{Hoм}\left(\mathrm{H}_{\mathrm{p}} \rightarrow \mathrm{G}_{\mathrm{p}}\right)$ ).

## Proof Ideas

## \#Ном( $\mathrm{H} \rightarrow \mathrm{G}$ )

Given graphs $H \in H$ and $G \in G$, count all graph homomorphisms from $H$ to $G$.

## Theorem

For any problem $P$ in \#W[1] (or W[1]), there are graph classes $H_{P}$ and $G_{P}$ such that $P$ is equivalent to \#Ном $\left(\mathrm{H}_{\mathrm{p}} \rightarrow \mathrm{G}_{\mathrm{p}}\right)$ (or $\operatorname{Hoм}\left(\mathrm{H}_{\mathrm{p}} \rightarrow \mathrm{G}_{\mathrm{p}}\right)$ ).

Recall: \#Ном $(\mathrm{H} \rightarrow \mathrm{T})$ is \#W[1]-hard if H has "unbounded treewidth" [DalJon’O4]

## Proof Ideas

## \#Hom( $\mathrm{H} \rightarrow \mathrm{G}$ )

Given graphs $H \in H$ and $G \in G$, count the number of graph hom's from $H$ to $G$.

## Theorem

For any $P$ in \#W[1], there are $H_{P}, G_{P}$ such that $P$ is equivalent to \#Ном $\left(H_{P} \rightarrow G_{P}\right)$.


## Proof Ideas

## \#Hom( $\mathrm{H} \rightarrow \mathrm{G}$ )

Given graphs $H \in H$ and $G \in G$, count the number of graph hom's from $H$ to $G$.

## Theorem

For any $P$ in \#W[1], there are $H_{P}, G_{P}$ such that $P$ is equivalent to \#Ном $\left(H_{P} \rightarrow G_{P}\right)$.


## Proof Ideas

## \#Hom( $\mathrm{H} \rightarrow \mathrm{G}$ )

Given graphs $H \in H$ and $G \in G$, count the number of graph hom's from $H$ to $G$.

## Theorem

For any $P$ in \#W[1], there are $H_{P}, G_{P}$ such that $P$ is equivalent to \#Ном $\left(H_{P} \rightarrow G_{P}\right)$.


## Proof Ideas

## Theorem

For any $P$ in \#W[1], there are $H_{P}, G_{P}$ such that $P$ is equivalent to \#Hom $\left(H_{P} \rightarrow G_{P}\right)$.


## Proof Ideas

## Theorem

For any $P$ in \＃W［1］，there are $H_{P}, G_{P}$ such that $P$ is equivalent to \＃Hom $\left(H_{P} \rightarrow G_{P}\right)$ ．


## Proof Ideas

## Theorem

For any $P$ in \#W[1], there are $H_{P}, G_{P}$ such that $P$ is equivalent to \#Hom $\left(H_{P} \rightarrow G_{P}\right)$.


## Proof Ideas

## Theorem

For any $P$ in \＃W［1］，there are $H_{P}, G_{P}$ such that $P$ is equivalent to \＃Hom $\left(H_{P} \rightarrow G_{P}\right)$ ．


## Proof Ideas

## Theorem

For any $P$ in \#W[1], there are $H_{P}, G_{P}$ such that $P$ is equivalent to \#Hom $\left(H_{P} \rightarrow G_{P}\right)$.


## Proof Ideas

## Theorem

For any $P$ in \#W[1], there are $H_{P}, G_{P}$ such that $P$ is equivalent to \#Hom $\left(H_{P} \rightarrow G_{P}\right)$.


Approach:

$$
\begin{aligned}
& \mathrm{H}_{P}:=\left\{H_{J} \mid \text { instance } J \text { of } P\right\} \\
& \mathrm{G}_{P}:=\left\{G_{J} \mid \text { instance } J \text { of } P\right\}
\end{aligned}
$$

$$
\mathrm{P} \leqslant \# \operatorname{Hom}\left(\mathrm{H}_{P} \rightarrow \mathrm{G}_{p}\right)
$$

$$
\# \operatorname{Hom}\left(\mathrm{H}_{P} \rightarrow \mathrm{G}_{p}\right) \stackrel{?}{\leqslant} P
$$

## Proof Ideas

## Theorem

For any $P$ in \#W[1], there are $H_{P}, G_{P}$ such that $P$ is equivalent to \#Hom $\left(H_{P} \rightarrow G_{P}\right)$.


Approach:

$$
\begin{aligned}
& H_{P}:=\left\{H_{J} \mid \text { instance } J \text { of } P\right\} \\
& G_{P}:=\left\{G_{J} \mid \text { instance } J \text { of } P\right\}
\end{aligned}
$$

$$
\mathrm{P} \leqslant \# \operatorname{Hoм}\left(\mathrm{H}_{P} \rightarrow \mathrm{G}_{p}\right) \checkmark
$$

$$
\# \operatorname{Hom}\left(\mathrm{H}_{\mathrm{P}} \rightarrow \mathrm{G}_{\mathrm{P}}\right) * \mathrm{P}
$$

How do we obtain instance $J$ from $\left(H_{j}, G_{J}\right)$ ?

## Proof Ideas

## Theorem

For any $P$ in \#W[1], there are $H_{P}, G_{P}$ such that $P$ is equivalent to \#Hom $\left(H_{P} \rightarrow G_{P}\right)$.


## Proof Ideas

## Theorem

For any $P$ in \#W[1], there are $H_{P}, G_{P}$ such that $P$ is equivalent to \#Hom $\left(H_{P} \rightarrow G_{P}\right)$.


## Proof Ideas

## Theorem

For any $P$ in \#W[1], there are $H_{P}, G_{P}$ such that $P$ is equivalent to \#Hom $\left(H_{P} \rightarrow G_{P}\right)$.


$$
\begin{array}{lc}
\text { Approach: } & H_{P}:=\{H, \mid \text { instance } J \text { of } P\} \\
& G_{P}:=\{G, \cup\langle J\rangle \mid \text { instance } J \text { of } P\}
\end{array}
$$

$$
\begin{aligned}
& \mathrm{P} \leqslant \# \operatorname{Hom}\left(\mathrm{H}_{\mathrm{P}} \rightarrow \mathrm{G}_{\mathrm{P}}\right) \\
& \text { (ensure \#} \operatorname{Hom}\left(\mathrm{H}_{j} \rightarrow\langle\lambda\rangle\right)=0 \text { ) }
\end{aligned}
$$

## Proof Ideas

## Theorem

For any $P$ in \#W[1], there are $H_{P}, G_{P}$ such that $P$ is equivalent to \#Hom $\left(H_{P} \rightarrow G_{P}\right)$.


Approach:

$$
H_{P}:=\left\{H_{J} \mid \text { instance } J \text { of } P\right\}
$$

$$
G_{P}:=\{G, \cup\langle J\rangle \mid \text { instance } J \text { of } P\}
$$

$$
\begin{aligned}
& P \leqslant \# \operatorname{Hom}\left(\mathrm{H}_{\mathrm{P}} \rightarrow \mathrm{G}_{\mathrm{p}}\right) \\
& \text { (ensure \#Hom }\left(H_{J} \rightarrow\langle\lambda\rangle\right)=0 \text { ) }
\end{aligned}
$$

$$
\# \text { Hом }\left(\mathrm{H}_{P} \rightarrow \mathrm{G}_{\mathrm{P}}\right) \stackrel{?}{\leqslant} \mathrm{P}
$$

## Proof Ideas

## Theorem

For any $P$ in \#W[1], there are $H_{P}, G_{P}$ such that $P$ is equivalent to \#Hoм $\left(H_{P} \rightarrow G_{P}\right)$.


> Approach:

$$
\begin{gathered}
H_{P}:=\{H, \mid \text { instance } J \text { of } P\} \\
G_{P}:=\{G, \cup\langle J\rangle \mid \text { instance } J \text { of } P\}
\end{gathered}
$$

$$
\begin{aligned}
& P \leqslant \# \operatorname{Hom}\left(\mathrm{H}_{\mathrm{P}} \rightarrow \mathrm{G}_{\mathrm{p}}\right) \\
& \text { (ensure \#Hom }(H, \rightarrow\langle \rangle\rangle)=0 \text { ) }
\end{aligned}
$$

$$
\text { \#Ном }\left(\mathrm{H}_{\mathrm{P}} \rightarrow \mathrm{G}_{\mathrm{P}}\right) \stackrel{?}{\leqslant} \mathrm{P}
$$

How do we handle malformed input $\left(H_{J}, G_{L}\right)$ ?

## Proof Ideas

## Theorem

For any $P$ in \#W[1], there are $H_{P}, G_{P}$ such that $P$ is equivalent to \#Hom $\left(H_{P} \rightarrow G_{P}\right)$.


Approach:

$$
H_{P}:=\left\{H_{J} \mid \text { instance } J \text { of } P\right\}
$$

$$
G_{P}:=\{G, \cup\langle J\rangle \mid \text { instance } J \text { of } P\}
$$

$$
\begin{gathered}
\mathrm{P} \leqslant \# \operatorname{Hom}\left(\mathrm{H}_{\mathrm{P}} \rightarrow \mathrm{G}_{\mathrm{P}}\right) \\
\text { (ensure \#Hom }\left(H_{J} \rightarrow\langle \rangle\right)=0 \text { ) }
\end{gathered}
$$

$$
\text { \#Ном }\left(\mathrm{H}_{\mathrm{P}} \rightarrow \mathrm{G}_{\mathrm{P}}\right) \leqslant \mathrm{?}
$$

$$
\text { How do we ensure \#Hom }\left(H_{J} \rightarrow G_{L} \cup\langle L\rangle\right)=0 \text { ? }
$$

## Theorem

For any $P$ in \＃W［1］，there are $H_{P}, G_{P}$ such that $P$ is equivalent to \＃Ном $\left(H_{P} \rightarrow G_{P}\right)$ ．

| $P \leqslant \# \operatorname{Hom}\left(H_{P} \rightarrow G_{P}\right)$ | \＃Hom $\left(H_{P} \rightarrow G_{P}\right) \leqslant P$ |
| :---: | :---: |
| Can solve instance $J$ with $\left(H_{J}, G_{J} \cup\langle J\rangle\right)$ by | Can extract instance J from pair $\left(H_{J}, G_{J} \cup\langle J\rangle\right)$ |
| computing \＃Hom $\left(H_{J} \rightarrow G_{J} \cup\langle J\rangle\right)$ |  |
| （ensuring \＃Hom $\left.\left(H_{J} \rightarrow\langle J\rangle\right)=0\right)$ | How do we ensure \＃Hom $\left(H_{J} \rightarrow G_{L} \cup\langle L\rangle\right)=0$ ？ |

## Theorem

For any $P$ in \#W[1], there are $H_{P}, G_{P}$ such that $P$ is equivalent to \#Ном $\left(H_{P} \rightarrow G_{p}\right)$.

| $P \leqslant \# \operatorname{Hom}\left(H_{P} \rightarrow G_{P}\right)$ | $\# \operatorname{Hom}\left(H_{P} \rightarrow G_{P}\right) \leqslant P$ |
| :---: | :---: |
| Can solve instance $J$ with $\left(H_{J}, G_{J} \cup\langle J\rangle\right)$ by | Can extract instance $J$ from pair $\left(H_{J}, G, \cup\langle J\rangle\right)$ |
| computing \#Hom $\left(H_{J} \rightarrow G_{J} \cup\langle J\rangle\right)$ |  |
| (ensuring \#Hom $\left.\left(H_{J} \rightarrow\langle J\rangle\right)=0\right)$ | How do we ensure \#Hom $\left(H_{J} \rightarrow G_{L} \cup\langle L\rangle\right)=0$ ? |



## Theorem

For any $P$ in \#W[1], there are $H_{p}, G_{P}$ such that $P$ is equivalent to \#Ном $\left(H_{P} \rightarrow G_{P}\right)$.

$$
P \leqslant \# \operatorname{Hom}\left(\mathrm{H}_{P} \rightarrow \mathrm{G}_{P}\right) \quad \text { \#Ном }\left(\mathrm{H}_{P} \rightarrow \mathrm{G}_{P}\right) \leqslant \mathrm{P}
$$

Can solve instance $J$ with $\left(H_{j}, G, \cup\langle J\rangle\right)$ by computing \# $\operatorname{Hom}\left(H_{j} \rightarrow G, \cup\langle J\rangle\right)$ (ensuring \#Hom $\left(H_{j} \rightarrow\langle J\rangle\right)=0$ )

Can extract instance $J$ from pair $\left(H_{j}, G, \cup\langle J\rangle\right)$ How do we ensure \#Hom $\left(H_{J} \rightarrow G_{L} \cup\langle L\rangle\right)=0$ ?


## Theorem

For any $P$ in \#W[1], there are $H_{P}, G_{P}$ such that $P$ is equivalent to \#Ном $\left(H_{P} \rightarrow G_{P}\right)$.

$$
\mathrm{P} \leqslant \# \operatorname{Hom}\left(\mathrm{H}_{P} \rightarrow \mathrm{G}_{P}\right)
$$

Can solve instance $J$ with $\left(H_{j}, G, \cup\langle J\rangle\right)$ by computing \# $\operatorname{Hom}\left(H_{j} \rightarrow G, \cup\langle J\rangle\right)$ (ensuring \#Hom $\left(H_{J} \rightarrow\langle J\rangle\right)=0$ )

$$
\text { \#Ном }\left(\mathrm{H}_{P} \rightarrow \mathrm{G}_{\mathrm{P}}\right) \leqslant \mathrm{P}
$$

Can extract instance $J$ from pair $\left(H_{j}, G, \cup\langle J\rangle\right)$

$$
\text { How do we ensure \#Hom }\left(H_{J} \rightarrow G_{L} \cup\langle L\rangle\right)=0 \text { ? }
$$




## Main Result

## \#Hom( $\mathrm{H} \rightarrow \mathrm{G}$ )

Given graphs $H \in H$ and $G \in G$, count all graph homomorphisms from $H$ to $G$.
Theorem
For any problem $P$ in \#W[1] (or W[1]), there are graph classes $H_{P}$ and $G_{P}$ such that $P$ is equivalent to \#Ном $\left(H_{p} \rightarrow G_{p}\right)$ (or $\operatorname{Hoм}\left(H_{p} \rightarrow G_{p}\right)$ ).

- Cannot hope for clear categorization into FPT/W[1]-hard for all pairs (H, G) Need to look at specific pairs of graph classes


## Main Result

## \#Hom( $\mathrm{H} \rightarrow \mathrm{G}$ )

Given graphs $H \in H$ and $G \in G$, count all graph homomorphisms from $H$ to $G$.

## Theorem

For any problem $P$ in \#W[1] (or W[1]), there are graph classes $H_{P}$ and $G_{P}$ such that $P$ is equivalent to \#Ном $\left(H_{p} \rightarrow G_{p}\right)$ (or $\operatorname{Hoм}\left(H_{p} \rightarrow G_{p}\right)$ ).

- Cannot hope for clear categorization into FPT/W[1]-hard for all pairs (H, G)
$\rightsquigarrow$ Need to look at specific pairs of graph classes



## Thank you!

TikZ code for Kneser graphs available on GitHub github.com/PH111P/tikz-kneser

## Navigation



