
Karl Bringmann, Erik Jan van Leeuwen Winter 2016/2017

Exercises for Algorithms and Data Structures
http://www.mpi-inf.mpg.de/departments/algorithms-complexity/teaching/winter16/

algorithms-and-data-structures/

Exercise Sheet 10 Due: 23.1.2017

The homework must be handed in on Monday before the lecture. You may collaborate with other
students on finding the solutions for this problem set, but every student must hand in a writeup
in their own words. We also expect you to state your collaborators and sources (books, papers,
course notes, web pages, etc.) that you used to arrive at your solutions.

You need to collect at least 50% of all points on all exercise sheets to be admitted to the final
exam.

Whenever you are asked to design an algorithm in this exercise sheet you have
to give a proof of its correctness as well as an asymptotic upper bound on its
worst case running time.

Exercise 1 (10 points)

a) In the land of Oddaria, coins have weird integral values (not necessarily 1, 2, 5, etc.).
Cashiers frequently have to solve the following problem when handing out change. Given a
positive integer t (the amount of change) and n positive integers w1, . . . , wn (the values of all
coins at the cashier’s disposal), decide whether some subset of {w1, . . . , wn} sums exactly to t.
Design a fast dynamic programming algorithm and analyze its running time in terms of n and t.

b) Coins are either rare or regular. Adapt your solution to give, among all ways of giving
change, the way that hands out the least number of rare coins.

Exercise 2 (8 points)

In the lecture we focused on polynomial multiplication when both polynomials have the same
degree d. Generalize the results obtained in the lecture to multiplication of polynomials p(x) of
degree n and q(x) of degree m. (You may use the algorithms obtained in the lecture as black
boxes.)

Exercise 3 (10 points)

a) Convolution: We are given vectors (a0, a1, . . . , an) and (b0, b1, . . . , bm) with integer coef-
ficients (each coefficient fits in a machine cell). We want to compute their convolution

(c0, c1, . . . , cn+m) where ci =
∑

j aj · bi−j. Design an O(n log n) algorithm.

b) Boolean Convolution: We are given bit-vectors (a0, a1, . . . , an) and (b0, b1, . . . , bm). We
want to compute their Boolean convolution (c0, c1, . . . , cn+m) where ci =

∨
j(aj ∧ bi−j)

(that is, ci is 1 if there exists a j such that aj and bi−j are both 1). Design an O(n log n)
algorithm.

Exercise 4 (12 points)

Pattern matching with wildcards: We are given a text string t of length n and a pattern string p
of length m. Both p and t contain symbols from an alphabet Σ of constant size. In addition,
p may contain a wildcard character ”*”. We want to know whether any replacement of the
wildcard characters in p by alphabet symbols yields a substring of t. For example, p =”bl**k”
matches two substrings of t =”blank block”. Give an O(n log n) time algorithm for this problem.

Hint: Use fast polynomial multiplication.

