
Lecture 10

Mutual Exclusion and Store
& Collect

In the previous lectures, we’ve learned a lot about message passing systems.
We’ve also seen that neither in shared memory nor message passing systems
consensus can be solved deterministically. But what makes them different?
Obviously, the key difference to message passing is the shared memory: Different
processors can access the same register to store some crucial information, and
anyone interested just needs to access this register. In particular, we don’t
suffer from locality issues, as nodes are just one shared register away. Think
for instance about pointer jumping, which is not possible in a message passing
system, or about MST construction, where the diameter of components matters.

Alas, great power comes with its own problems. One of them is to avoid
that newly posted information is overwritten by other nodes before it’s noticed.

Definition 10.1 (Mutual Exclusion). We are given a number of nodes, each
executing the following code sections:
<Entry> → <Critical Section> → <Exit> → <Remaining Code>,
where <Remaining Code> means that the node can access the critical section
multiple times. A mutual exclusion algorithm consists of code for entry and exit
sections, such that the following holds1

Mutual Exclusion At all times at most one node is in the critical section.

No Deadlock If some node manages to get to the entry section, later some
(possibly different) node will get to the critical section (in a fair execution).

Sometimes we in addition ask for

No Lockout If some node manages to get to the entry section, later the same
node will get to the critical section.

Unobstructed Exit No node can get stuck in the exit section.

1Assuming that nodes finish the <Critical Section> in finite time.
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Remarks:

• We’re operating in the asynchronous model today, as is standard for shared
memory. The reason is that the assumption of strong memory primitives
and organization of modern computing systems (multiple threads, inter-
rupts, accesses to the hard drive, etc.) tend to result in unpredictable
response times that can vary dramatically.

10.1 Strong RMW Primitives

Various shared memory systems exist. A main difference is how they allow
nodes to access the shared memory. All systems can atomically read or write a
shared register R. Most systems do allow for advanced atomic read-modify-write
(RMW) operations, for example:

test-and-set(R): t := R; R := 1; return t

fetch-and-add(R, x): t := R; R := R+ x; return t

compare-and-swap(R, x, y): if R = x then R := y; return true; else return
false; endif;

load-link(R)/store-conditional(R, x): Load-link returns the current value of
the specified register R. A subsequent store-conditional to the same regis-
ter will store a new value x (and return true) only if the register’s content
hasn’t been modified in the meantime. Otherwise, the store-conditional
is guaranteed to fail (and return false), even if the value read by the
load-link has since been restored.

An operation being atomic means that it is only a single step in the execution.
For instance, no other node gets to execute the “fetch” part of the fetch-and-add
primitive while another already completed it, but hasn’t executed the addition
yet.

Using RMW primitives one can build mutual exclusion algorithms quite
easily. Algorithm 20 shows an example with the test-and-set primitive.

Algorithm 20 Mutual exclusion using test-and-set, code at node v.

Given: some shared register R, initialized to 0.
<Entry>

1: repeat
2: r := test-and-set(R)
3: until r = 0
<Critical Section>

4: . . .
<Exit>

5: R := 0
<Remainder Code>

6: . . .

Theorem 10.2. Algorithm 20 solves mutual exclusion and guarantees unobstruc-
ted exit.
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Proof. Mutual exclusion follows directly from the test-and-set definition: Ini-
tially R is 0. Let pi be the ith node to execute the test-and-set “successfully,”
i.e., such that the result is 0. Denote by ti the time when this happens and by
t′i the time when pi resets the shared register R to 0. Between ti and t′i no other
node can successfully test-and-set, hence no other node can enter the critical
section during [ti, t

′
i].

Proving no deadlock works similar: One of the nodes loitering in the entry
section will successfully test-and-set as soon as the node in the critical section
exited.

Since the exit section only consists of a single instruction (no potential infi-
nite loops), we have unobstructed exit.

Remarks:

• No lockout, on the other hand, is not ensured by this algorithm. Even
with only two nodes there are asynchronous executions in which always
the same node wins the test-and-set.

• Algorithm 20 can be adapted to guarantee this, essentially by ordering
the nodes in the entry section in a queue.

• The power of RMW operations can be measured with the consensus num-
ber. The consensus number k of an RMW operation is defined as the
number of nodes for which one can solve consensus with k (crashing)
nodes using basic read and write registers alongside the respective RMW
operations. For example, test-and-set has consensus number 2, whereas
the consensus number of compare-and-swap is infinite.

• It can be shown that the power of a shared memory system is determined
by the consensus number (“universality of consensus”). This insight has
a remarkable theoretical and practical impact. In practice, for instance,
after this was known, hardware designers stopped developing shared mem-
ory systems that support only weak RMW operations.

10.2 Mutual Exclusion using only RW Registers

Do we actually need advanced registers to solve mutual exclusion? Or to solve
it efficiently? It’s not as simple as before,2 but can still be done in a fairly
straightforward way.

We’ll look at mutual exclusion exclusion for two nodes p0 and p1 only. We
discuss how it can be extended to more nodes in the remarks. The general
idea is that node pi has to mark its desire to enter the critical section in a
“want” register Wi by setting Wi := 1. Only if the other node is not interested
(W1−i = 0) access is granted. To avoid deadlocks, we add a priority variable Π
enabling one node to enter the critical section even when the “want” registers
are saying that none shall pass.

Theorem 10.3. Algorithm 21 solves mutual exclusion and guarantees both no
lockout and unobstructed exit.

2Who would have guessed, we’re talking about a non-trivial problem here.
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Algorithm 21 Mutual exclusion: Peterson’s algorithm.

Given: shared registers W0,W1,Π, all initialized to 0.
Code for node pi, i ∈ {0, 1}:
<Entry>

1: Wi := 1
2: Π := 1− i
3: repeat nothing until Π = i or W1−i = 0 // “busy-wait”
<Critical Section>

4: . . .
<Exit>

5: Wi := 0
<Remainder Code>

6: . . .

Proof. The shared variable Π makes sure that one of the nodes can enter the
critical section. Suppose p0 enters the critical section first. If at this point it
holds that W1 = 0, p1 has not yet executed Line 1 and therefore will execute
Line 2 before trying to enter the critical section, which means that Π will be 0
and p1 has to wait until p0 leaves the critical section and resets W0 := 0. On the
other hand, if W1 = 1 when p0 enters the critical section, we already must have
that Π = 0 at this time, i.e., the same reasoning applies. Arguing analogously
for p1 entering the critical section first, we see that mutual exclusion is solved.

To see that there are no lockouts, observe that once, e.g., p0 is executing the
spin-lock (i.e., is “stuck” in Line 3), the priority variable is not going to be set
to 1 again until it succeeds in entering and passing the critical section. If p1 is
also interested in entering and “wins” (we already know that one of them will),
afterwards it either will stop trying to enter or again set Π to 0. In any event,
p0 enters the section next.

Since the exit section only consists of a single instruction (no potential infi-
nite loops), we have unobstructed exit.

Remarks:

• Line 3 in Algorithm 21 is a spinlock or busy-wait, like Lines 1-3 in Algo-
rithm 20. Here we have the extreme case that the node doesn’t even try
to do anything, it simply needs to wait for someone else to finish the job.

• Extending Peterson’s Algorithm to more than 2 nodes can be done by a
tournament tree, like in tennis. With n nodes every node needs to win
dlog ne matches before it can enter the critical section. More precisely,
each node starts at the bottom level of a binary tree, and proceeds to the
parent level if winning. Once winning the root of the tree it can enter the
critical section.

• This solution inherits the additional nice properties: no lockouts, unob-
structed exit.

• On the downside, more work is done than with the test-and-set opera-
tion, as the binary tree has depth dlog ne. One captures this by counting
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asynchronous rounds or the number of actual changes of variables,3 as
only signal transitions are “expensive” (i.e., costly in terms of energy) in
circuits.

10.3 Store & Collect

Informally, the store & collect problem can be stated as follows. There are
n nodes p1, . . . , pn. Every node pi has a read/write register Ri in the shared
memory, where it can store some information that is destined for the other
nodes. Further, there is an operation by which a node can collect (i.e., read)
the values of all the nodes that stored some value in their register.

We say that an operation op1 precedes an operation op2 iff op1 terminates
before op2 starts. An operation op2 follows an operation op1 iff op1 precedes
op2.

Definition 10.4 (Store and Collect). There are two operations: A store(val)
by node pi sets val to be the latest value of its register Ri. A collect operation
returns a view, i.e., a function f : V → VAL ∪ {⊥} from the set of nodes V
to a set of values VAL or the symbol ⊥, which means “nothing written yet.”
Here, f(pi) is intended to be the latest value stored by pi, for each node pi. For
a collect operation cop, the following validity properties must hold for every
node pi:

• If f(pi) = ⊥, then no store operation by pi precedes cop.

• If f(pi) = val 6= ⊥, then val is the value of a store operation sop of pi
that does not follow cop satisfying that there is no store operation by pi
that follows sop and precedes cop.

Put simply, a collect operation cop should not read from the future or
miss a preceding store operation sop.

Attention: A collect operation is not atomic, i.e., consists of multiple
(atomic) operations! This means that there can be reads that neither precede
nor follow a collect. Such overlapping operations are considered concurrent.
In general, also a write operation can be more involved, to simplify reads or
achieve other properties, so the same may apply to them.

We assume that the read/write register Ri of every node pi is initialized
to ⊥. We define the step complexity of an operation op to be the number of
accesses to registers in the shared memory. There is a trivial solution to the
collect problem shown in Algorithm 22.

3There may be an unbounded number of read operations due to the busy-wait, and it is
trivial to see that this cannot be avoided in a (completely) asynchronous system.

Algorithm 22 Trivial collect.

Operation store(val) (by node pi) :
1: Ri := val

Operation collect:
2: for i := 1 to n do
3: f(pi) := Ri // read register Ri
4: end for
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Remarks:

• Obviously,4 Algorithm 22 works. The step complexity of every store
operation is 1, the step complexity of a collect operation is n.

• The step complexities of Algorithm 22 is optimal: There are cases in
which a collect operation needs to read all n registers. However, there
are also scenarios in which the step complexity of the collect operation
is unnecessarily large. Assume that there are only two nodes pi and pj
that have stored a value in their registers Ri and Rj . Then, in principle,
collect needs to read the registers Ri and Rj only.

10.3.1 Splitters

Assume that up to a certain time t, k ≤ n nodes have started at least one
operation. We call an operation completing at time t adaptive to contention, if
its step complexity depends on k only.

To obtain adaptive collect algorithms, we will use a symmetry breaking
primitive called a splitter.

Definition 10.5 (Splitter). A splitter is a synchronization primitive with the
following characteristics. A node entering a splitter exits with either stop, left,
or right. If k nodes enter a splitter, at most one node exits with stop and at
most k − 1 nodes exit with left and right, respectively.

This definition guarantees that if a single node enters the splitter, then it
obtains stop, and if two or more nodes enter the splitter, then there is at most
one node obtaining stop and there are two nodes that obtain different values

4Be extra careful whenever such a word pops up. If it’s not indeed immediately obvious, it
may translate to “I believe it works, but didn’t have the patience to check the details,” which
is an excellent source of (occasionally serious) blunders. One of my lecturers once said: “If it’s
trivial, then why don’t we write it down? It should not take more than a line. If it doesn’t,
then it’s not trivial!”

Algorithm 23 Splitter Code

Shared Registers: X : {⊥} ∪ {1, . . . , n}; Y : boolean
Initialization: X := ⊥; Y := false

Splitter access by node pi:
1: X := i;
2: if Y then
3: return right
4: else
5: Y := true
6: if X = i then
7: return stop
8: else
9: return left

10: end if
11: end if
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k processors

at most 1
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right
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Figure 10.1: A Splitter

(i.e., either there is exactly one stop or there is at least one left and at least
one right). For an illustration, see Figure 10.1. Algorithm 23 implements a
splitter.

Lemma 10.6. Algorithm 23 implements a splitter.

Proof. Assume that k nodes enter the splitter. Because the first node that
checks whether Y = true in line 2 will find that Y = false, not all nodes return
right. Next, assume that i is the last node that sets X := i. If i does not return
right, it will find X = i in Line 6 and therefore return stop. Hence, there is
always a node that does not return left.

It remains to show that at most 1 node returns stop. Suppose pi decides to
do this at time t, i.e., pi reads that X = i in Line 6 at time t. Then any pj that
sets X := j after time t will (re)turn right, as already Y = true. As any other
node pj will not read X = j after time t (there is no other way to change X to
j), this shows that at most one node will return stop. Finally, observe that if
k = 1, then the result for the single entering node will be stop.

10.3.2 Binary Splitter Tree

Assume that we are given 2n − 1 splitters and that for every splitter S, there
is an additional shared variable ZS : {⊥} ∪ {1, . . . , n} that is initialized to ⊥
and an additional shared variable MS : boolean that is initialized to false. We
call a splitter S marked if MS = true. The 2n − 1 splitters are arranged in a
complete binary tree of height n − 1. Let S(v) be the splitter associated with
a node v of the binary tree. The store and collect operations are given by
Algorithm 24.

Theorem 10.7. Algorithm 24 implements store and collect. Let k be the
number of participating nodes. The step complexity of the first store of a node
pi is O(k), the step complexity of every additional store of pi is O(1), and the
step complexity of collect is O(k).

Proof. Because at most one node can stop at a splitter, it is sufficient to show
that every node stops at some splitter at depth at most k − 1 ≤ n − 1 when
invoking the first store operation to prove correctness. We prove that at most
k− i nodes enter a subtree at depth i (i.e., a subtree where the root has distance
i to the root of the whole tree). This follows by induction from the definition
of splitters, as not all nodes entering a splitter can proceed to the same subtree
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Algorithm 24 Adaptive collect: binary tree algorithm

Operation store(val) (by node pi) :
1: Ri := val
2: if first store operation by pi then
3: v := root node of binary tree
4: α := result of entering splitter S(v);
5: MS(v) := true
6: while α 6= stop do
7: if α = left then
8: v := left child of v
9: else

10: v := right child of v
11: end if
12: α := result of entering splitter S(v);
13: MS(v) := true
14: end while
15: ZS(v) := i
16: end if

Operation collect:
Traverse marked part of binary tree:
17: for all marked splitters S do
18: if ZS 6= ⊥ then
19: i := ZS ; f(pi) := Ri // read value of node pi
20: end if
21: end for // f(pi) = ⊥ for all other nodes

rooted at a child of the splitter. Hence, at the latest when reaching depth k−1,
a node is the only node entering a splitter and thus obtains stop.

Note that the step complexity of executing a splitter is O(1). The bound of
k− 1 on the depth of the accessed subtree of the binary splitter tree thus shows
that the step complexity of the initial store is O(k) for each node, and each
subsequent store requires only O(1) steps.

To show that the step complexity of collect is O(k), we first observe
that the marked nodes of the binary tree are connected, and therefore can
be traversed by only reading the variables MS associated to them and their
neighbors. Hence, showing that at most 2k − 1 nodes of the binary tree are
marked is sufficient. Let xk be the maximum number of marked nodes in a
tree when k ∈ N0 nodes access the root. We claim that xk ≤ max{2k − 1, 0},
which is trivial for k = 0. Now assume the inequality holds for 0, . . . , k − 1.
Splitters guarantee that neither all nodes turn left nor all nodes turn right,
i.e., kl ≤ k − 1 nodes will turn left and kr ≤ min{k − kl, k − 1} turn right.
The left and right children of the root are the roots of their subtrees, hence the
induction hypothesis yields

xk ≤ xkl + xkr + 1 ≤ max{2kl − 1, 0}+ max{2kr − 1, 0}+ 1 ≤ 2k − 1,

concluding induction and proof.
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left

right

Figure 10.2: 5× 5 Splitter Matrix

Remarks:

• The step complexities of Algorithm 24 are very good. Clearly, the step
complexity of the collect operation is asymptotically optimal.5 In order
for the algorithm to work, we however need to allocate the memory for the
complete binary tree of depth n−1. The space complexity of Algorithm 24
therefore is exponential in n. We will next see how to obtain a polynomial
space complexity at the cost of a worse collect step complexity.

10.3.3 Splitter Matrix

In order to obtain quadratic memory consumption (instead of the exponential
memory consumption of the splitter tree), we arrange n2 splitters in an n × n
matrix as shown in Figure 10.2. The algorithm is analogous to Algorithm 24.
The matrix is entered at the top left. If a node receives left, it next visits
the splitter in the next row of the same column. If a node receives right, it
next visits the splitter in the next column of the same row. Clearly, the space
complexity of this algorithm is O(n2). The following theorem gives bounds on
the step complexities of store and collect.

Theorem 10.8. Let k be the number of participating nodes. The step complexity
of the first store of a node pi is O(k), the step complexity of every additional
store of pi is O(1), and the step complexity of collect is O(k2).

Proof. Let the top row be row 0 and the left-most column be column 0. Let xi
be the number of nodes entering a splitter in row i. By induction on i, we show

5Here’s another clearly to watch carefully. While the statement is correct, it’s not obvious
that we chose the performance measure wisely. We could refine our notion again and ask for
the step complexity in terms of the number of writes that did not precede the most recent
collect operation of the collecting process. But let’s not go there today.



134 LECTURE 10. MUTUAL EXCLUSION AND STORE & COLLECT

that xi ≤ k− i. Clearly, x0 ≤ k. Let us therefore consider the case i > 0. Let j
be the largest column such that at least one node visits the splitter in row i− 1
and column j. By the properties of splitters, not all nodes entering the splitter
in row i−1 and column j obtain left. Therefore, not all nodes entering a splitter
in row i − 1 move on to row i. Because at least one node stays in every row,
we get that xi ≤ k − i. Similarly, the number of nodes entering column j is at
most k− j. Hence, every node stops at the latest in row k− 1 and column k− 1
and the number of marked splitters is at most k2. Thus, the step complexity of
collect is at most O(k2). Because the longest path in the splitter matrix is
2k, the step complexity of store is O(k).

Remarks:

• With a slightly more complicated argument, it is possible to show that
the number of nodes entering the splitter in row i and column j is at most
k − i− j. Hence, it suffices to only allocate the upper left half (including
the diagonal) of the n× n matrix of splitters.

• Recently, it has been shown that with a considerably more complicated
deterministic algorithm, it is possible to achieve O(k) step complexity and
O(n2) space complexity.

What to take Home

• Obviously, more powerful RMW primitives are extremely useful. However,
their implementation might be more costly than an implementation using
read/write registers only. At the end of the day, RMW primitives solve
mutual exclusion at some level of the system hierarchy.

• Naturally, atomic read/write registers do not fall out of the sky either.
They are implemented from non-atomic registers using similar techniques.
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Lecture 11

Shared Counters

Maybe the most basic operation a computer performs is adding one, i.e., to
count. In distributed systems, this can become a non-trivial task. If the events
to be counted occur, e.g., at different processors in a multi-core system, deter-
mining the total count by querying each processor for its local count is costly.
Hence, in shared memory systems, one may want to maintain a shared counter
that permits to determine the count using a single or a few read operations.

11.1 A Simple Shared Counter

If we seek to implement such an object, we need to avoid that increments are
“overwritten,” i.e., two nodes increment the counter, but only one increment
is registered. So, the simple approach of using one register and having a node
incrementing the counter read the register and write the result plus one to the
register is not good enough with atomic read/write registers only. With more
powerful registers, things look differently.

Algorithm 25 Shared counter using compare-and-swap, code at node v.

Given: some shared register R, initialized to 0.
Increment:

1: repeat
2: r := R
3: success := compare-and-swap(R, r, r + 1)
4: until success = true

Read:
5: return R

11.1.1 Progress Conditions

Basically, this approach ensures that the read-write sequence for incrementing
the counter behaves as if we applied mutual exclusion. However, there is a cru-
cial difference. Unlike in mutual exclusion, no node obtains a “lock” and needs
to release it before other nodes can modify the counter again. The algorithm is
lock-free, meaning that it makes progress regardless of the schedule.

137
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Definition 11.1 (Lock-Freedom). An operation is lock-free, if whenever any
node is executing an operation, some node executing the same operation is guar-
anteed to complete it (in a bounded number of steps of that node). In asynchro-
nous systems, this must hold even in (infinite) schedules that are not fair, i.e.,
if some of the nodes executing the operation may be stalled indefinitely.

Lemma 11.2. The increment operation of Algorithm 25 is lock-free.

Proof. Suppose some node executes the increment code. It obtains some value
r from reading the register R. When executing the compare-and-swap, it either
increments the counter successfully or the register already contains a different
value. In the latter case, some other node must have incremented the counter
successfully.

This condition is strong in the sense that the counter will not cease to operate
because some nodes crash or are stalled for a long time. Yet, it is pretty weak
with respect to read operations: It would admit that a node that just wants to
read never completes this operation. However, as the read operations of this
algorithm are trivial, they satisfy the strongest possible progress condition.

Definition 11.3 (Wait-Freedom). An operation is wait-free if whenever a node
executes an operation, it completes if it is granted a bounded number of steps
by the execution. In asynchronous systems, this must hold even in (infinite)
schedules that are not fair, i.e., if nodes may be suspended indefinitely.

Remarks:

• Wait-freedom is extremely useful in systems where one cannot guarantee
reasonably small response times of other nodes. This is important in
multi-core systems, in particular if the system needs to respond to external
events with small delay.

• Consequently, wait-freedom is the gold standard in terms of progress. Of
course, one cannot always afford gold.

• From the FLP theorem, we know that wait-free consensus is not possible
without advanced RMW primitives.

11.1.2 Consistency Conditions

Progress is only a good thing if it goes in the right direction, so we need to figure
out the direction we deem right. Even for such a simple thing as a counter, this
is not as trivial as it might appear at first glance. If we require that the counter
always returns the “true” value when read, i.e., the sum of the local event counts
of all nodes, we cannot hope to implement this distributedly in any meaningful
fashion: whatever is read at a single location may already be outdated, so we
cannot satisfy the “traditional” sequential specification of a counter. Before we
proceed to relaxing it, let us first formalize it.

Definition 11.4 (Sequential Object). A sequential object is given by a tuple
(S, s0, R,O, t), where

• S is the set of states the object can attain,
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• s0 is its initial state,

• R is the set of values that can be read from the object,

• O is the set of operations that can be performed on the object, and

• t : O × S → S ×R is the transition function of the object.

A sequential execution of the object is a sequence of operations oi ∈ O and states
si ∈ S, where i ∈ N and (si, ri) = t(oi, si−1); operation oi returns value ri ∈ R.

Definition 11.5 (Sequential Counter). A counter is the object given by S = N0,
s0 = 0, R = N0 ∪ {⊥}, O = {read, increment}, and, for all i ∈ N0, t(read, i) =
(i, i) and t(increment, i) = (i+ 1,⊥).

We could now “manually” define a distributed variant of a counter that we
can implement. Typically, it is better to apply a generic consistency condition.
In order to do this, we first need “something distributed” we can relate the
sequential object to.

Definition 11.6 (Implementation). A (distributed) implementation of a se-
quential object is an algorithm1 that enables each node to access the object using
the operations from O. A node completing an operation obtains a return value
from the set of possible return values for that operation.

So far, this does not say anything about whether the returned values make
any sense in terms of the behavior of the sequential object; this is addressed by
the following definitions.

Definition 11.7 (Precedence). Operation o precedes operation o′ if o completes
before o′ begins.

Definition 11.8 (Linearizability). An execution of an implementation of an
object is linearizable, if there is a sequential execution of the object such that

• there is a one-to-one correspondence between the performed operations,

• if o precedes o′ in execution of the implementation, the same is true for
their counterparts in the sequential execution, and

• the return values of corresponding operations are identical.

An implementation of an object is linearizable if all its executions are lineariz-
able.

Theorem 11.9. Algorithm 25 is a linearizable counter implementation. Its
read operations are wait-free and its increment operations are lock-free.

Proof. All claims but linearizability are easily verified from the definitions and
the algorithm. For linearizability, note that read operations are atomic, so
we only need to worry about when we let a write operation take place in the
linearization. This is easy, too: we choose the point in time when the successful
compare-and-swap actually incrementing the value stored by R occurs.

1Or rather a suite of subroutines that can be called, one for each possible operation.
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Figure 11.1: Top: An execution of a distributed counter implementation. Each
mark is one atomic step of the respective node. Bottom: A valid linearization
of the execution. Note that if the second read of node 1 would have returned 2,
it would be ordered behind the increment by node 2. If it had returned 0, the
execution would not be linearizable.

Remarks:

• Linearizability is extremely useful. It means that we can treat a (possibly
horribly complicated) distributed implementation of an object as if it was
accessed atomically.

• This makes linearizability the gold standard in consistency conditions.
Unfortunately, also this gold has its price.

• Put simply, linearizability means “simulating sequential behavior,” but
not just any behavior – if some operation completed in the past, it should
not have any late side effects.

• There are many equivalent ways of defining linearizability:

– Extend the partial “precedes” order to a total order such that the
resulting list of operation/return value pairs is a (correct) sequential
execution of the object.

– Assign strictly increasing times to the (atomic) steps of the execution
of the implementation. Now each operation is associated with a time
interval spanned by its first and last step. Assign to each operation
a linearization point from its interval (such that no two linearization
points are identical). This induces a total order on the operations.
If this can be done in a way consistent with the specification of the
object, the execution is linearizable.

• One can enforce linearizability using mutual exclusion.
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• In the store & collect problem, we required that the “precedes” relation
is respected. However, our algorithms/implementations were not lineariz-
able. Can you see why?

• Coming up with a linearizable, wait-free, and efficient implementation of
an object can be seen as creating a more powerful shared register out of
existing ones.

• Shared registers are linearizable implementations of conventional registers.

• There are many weaker consistency conditions. For example one may just
ask that the implementation behaves like its sequential counterpart only
during times when a single node is accessing it.

11.2 No Cheap Wait-Free Linearizable Counters

There’s a straightforward wait-free, linearizable shared counter using atomic
read/write registers only: for each node, there’s a shared register to which it
applies increments locally; a read operation consists of reading all n registers
and summing up the result.

This clearly is wait-free. To see that it is linearizable, observe that local
increments require only a single write operation (as the node knows its local
count), making the choice of the linearization point of the operation obvious.
For each read, there must be a point in time between when it started and when
it completes at which the sum of all registers equals the result of the read; this
is a valid linearization point for the read operation.

Here’s the problem: this seems very inefficient. It requires n− 1 accesses to
shared registers just to read the counter, and it also requires n registers. We
start with the bad news. Even with the following substantially weaker progress
condition, this is optimal.

Definition 11.10 (Solo-Termination). An operation is solo-terminating if it
completes in finitely many steps provided that only the calling node takes steps
(regardless of what happened before).

Note that wait-freedom implies lock-freedom and that lock-freedom implies
solo-termination.

Theorem 11.11. Any linearizable deterministic implementation of a counter
that guarantees solo-termination of all operations and uses only atomic read/write
shared registers requires at least n− 1 registers and has step complexity at least
n− 1 for read operations.

Proof. We construct a sequence of executions Ei = IiWiRi, i ∈ {0, . . . , n− 1},
where Ei is the concatenation of Ii, Wi, and Ri. In each execution, the nodes
are {1, . . . , n}, and execution Ei is going to require i distinct registers; node n
is the one reading the counter.

1. In Ii, nodes j ∈ {1, . . . , i} increment the counter (some of these increments
may be incomplete).
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2. In Wi, nodes j ∈ {1, . . . , i} each write to a different register Rj once and
no other steps are taken.

3. In Ri, node n reads the registers R1, . . . , Ri as part of a (single) read
operation on the counter.

As in En−1 node n accesses n− 1 different registers, this shows the claim.
The general idea is to “freeze” nodes j ∈ {1, . . . , i} just before they write to

their registers Rj . This forces node i+ 1 to write to another register if it wants
to complete many increments (which wait-freedom enforces) in a way that is not

Figure 11.2: Example for the induction step from 3 to 4. Top: Execution E3.
Second: We extend E3 by letting node n complete its read operation. Third:
We consider the execution where we insert many increment operations by some
unused node between I3 and W3. This might change how node n completes its
read operation. However, if node n would not read a register not overwritten
by W3 to which the new node writes, the two new executions would be indis-
tinguishable to node n and its read would return a wrong (i.e., not linearizable)
value in at least one of the them. Bottom: We let the new node execute until
it writes the new register first and node n perform its read until it accesses the
register first, yielding E4.
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overwritten when we let nodes 1, . . . , i perform their stalled write steps. This is
necessary for node n to be able to complete a read operation without waiting
for nodes 1, . . . , i; otherwise n wouldn’t be able to distinguish between Ei and
Ei+1, which require different outputs if i + 1 completed more increments than
have been started in Ei.

The induction is trivially anchored at i = 0 by defining E0 as the empty
execution. Now suppose we are given Ei for i < n−1. We claim that node n must
access some new register Ri+1 before completing a read operation (its single task
in all executions we construct). Assuming otherwise, consider the following
execution. We execute Ei and then let node n complete its read operation. As
the implementation is solo-terminating, this must happen in finitely many steps
of n, and, by linearizability, the read operation must return at most the number
k of increments that have been started in Ei; otherwise, we reach a contradiction
by letting these operations complete (one by one, using solo-termination) and
observing that there is no valid linearization.

On the other hand, consider the execution in which we run Ii, then let some
node j ∈ {i + 1, . . . , n − 1} complete k + 1 increments running alone (again
possible by solo-termination), append Wi, and let node n complete its read
operation. Observe that the state of all registers R1, . . . , Ri before node n takes
any steps is the same as after IiWi, as any possible changes by node j were
overwritten. Consequently, as n does not access any other registers, it cannot
distinguish this execution from the previous run and thus must return a value
of at most k. However, this contradicts linearizability of the new execution, in
which already k+1 increments are complete. We conclude that when extending
Ei by letting node n run alone, n will eventually access some new register Ri+1.

Define Ri+1 as the sequence of steps n takes in this setting up to and in-
cluding the first access to register Ri+1. W.l.o.g., assume that there exists an
extension of Ii in which only nodes i + 1, . . . , n − 1 take steps and eventually
some j ∈ {i + 1, . . . , n − 1} writes to Ri+1. Otherwise, Ri+1 is never going
to be written (by a node different from n) in any of the executions we con-
struct, i.e., node n cannot distinguish any of the executions we construct by
reading Ri+1; hence it must read another register by repetition of the above
argument. Eventually, there must be a register it reads that is written by some
node i+ 1 ≤ j ≤ n− 1 (if we extend Ii such that only node j takes steps), and
we can apply the reasoning that follows.

W.l.o.g., assume that j = i+1 (otherwise we just switch the indices of nodes j
and i+1 for the purpose of this proof) and denote by Ii+1wi+1 such an extension
of Ii, where wi+1 is the write of j = i+1 to Ri+1. Setting Wi+1 := wi+1Wi and
Ei+1 := Ii+1Wi+1Ri+1 completes the induction and therefore the proof.

Remarks:

• There was some slight cheating, as the above reasoning applies only to un-
bounded counters, which we can’t have in practice anyway. Arguing more
carefully, one can bound the number of increment operations required in
the construction by 2O(n).

• The technique is far more general:

– It works for many other problems, such as modulo counters, fetch-
and-add, or compare-and-swap. In other words, using powerful RMW
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registers just shifts the problem.

– This can also seen by using reductions. Algorithm 25 shows that
compare-and-swap cannot be easy to implement, and load-link/store-
conditional can be used in the very same way. A fetch-and-add reg-
ister is even better: it trivially implements a wait-free linearizable
counter.

– The technique works if one uses historyless objects in the implemen-
tation, not just RW registers. An object is historyless, if the resulting
state of any operation that is not just a read (i.e., does never affect
the state) does not depend on the current state of the object.

– For instance, test-and-set registers are historyless, or even registers
that can hold arbitrary values and return their previous state upon
being written.

– It also works for resettable consensus objects. These support the
operations propose(i), i ∈ N, reset, and read, and are initiated in
state ⊥. A propose(i) operation will result in state i if the object is
in state ⊥ and otherwise not affect the state. The reset operation
brings the state back to ⊥. This means that the hardness of the
problem is not originating in an inability to solve consensus!

– The space bound also applies to randomized implementations. Basi-
cally, the same construction shows that there is a positive probability
that node n accesses n − 1 registers, so these registers must exist.
However, one can hope to achieve a small step complexity (in expec-
tation or w.h.p.), as the probability that such an execution occurs
may be very small.

• By now you might already expect that we’re going to “beat” the lower
bound. However, we’re not going to use randomization, but rather exploit
another loophole: the lower bound crucically relies on the fact that the
counter values can become very large.

11.3 Efficient Linearizable Counter from RW Reg-
isters

Before we can construct a linearizable counter, we first need to better understand
linearizability.

11.3.1 Linearizability “=” Atomicity

As mentioned earlier, a key feature of linearizability is that we can pretend that
linearizable objects are atomic. In fact, this is the reason why it is standard
procedure to assume that atomic shared registers are available: one simply uses
a linearizable implementation from simpler registers. Let’s make this more clear.

Definition 11.12 (Base objects). The base objects of an implementation of an
object O are all the registers and (implementations of) objects that nodes may
access when executing any operations of O.
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Figure 11.3: Bottom: An execution of an implementation using linearizable
base objects. Center: Exploiting linearizability of each base object, we obtain
an execution of a corresponding implementation from atomic base objects. Top:
By linearizability of the assumed implementation from atomic base objects, this
execution can be linearized, yielding a linearization of the original execution at
the bottom.

Lemma 11.13. Suppose some object O has a linearizable implementation us-
ing atomic base objects. Then replacing any atomic base object by a linearizable
implementation (where each atomic access is replaced by calling the respective
operation and waiting for it to complete) results in another linearizable imple-
mentation of O.

Proof. Consider an execution E of the constructed implementation of O from
linearizable implementations of its base objects. By definition of linearizability,
we can map the (sub)executions comprised of the accesses to (base objects of)
the implementations of base objects to sequential executions of the base objects
that preserve the partial order given by the “precedes” relation.

We claim that doing this for all of the implementations of base objects of
O yields a valid execution E ′ of the given implementation of O from atomic
base objects. To see this, observe that the view of a node in (a prefix of) E
is given by its initial state and the sequence of return values from its previous
calls to the atomic base objects. In E , the node calls an operation once all its
preceding calls to operations are complete. As, by definition of linearizability,
the respective return values are identical, the claim holds true.

The rest is simple. We apply linearizability to E ′, yielding a sequential exe-
cution E ′′ of O that preserves the “precedes” relation on E ′. Now, if operation o
precedes o′ in E , the same holds for their counterparts in E ′, and consequently for
their counterparts in E ′′; likewise, the return values of corresponding operations
match. Hence E ′′ is a valid linearization of E .

Remarks:

• Beware side effects, as they break this reasoning! If a call to an operation
affects the state of the node (or anything else) beyond the return value,
this can mess things up.

• For instance, one can easily extend this reasoning to randomized imple-
mentations. However, in practical systems, randomness is usually not
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“true” randomness, and the resulting dependencies can be. . . interesting.

• Lemma 11.13 permits to abstract away the implementation details of more
involved objects, so we can reason hierarchically. This will make our live
much, much easier!

• This result is the reason why it is common lingo to use the terms “atomic”
and “linearizable” interchangably.

• We’re going to exploit this to the extreme now. Recursion time!

11.3.2 Counters from Max Registers

We will construct our shared counter using another, simpler object.

Definition 11.14 (Max Register). A max register is the object given by S = N0,
s0 = 0, R = N0 ∪ {⊥}, O = {read,write(i) | i ∈ N0}, and, for all i, j ∈ N0,
t(read, i) = (i, i) and t(write(i), j) = (max{i, j},⊥). In words, the register
always returns the maximum previously written value on a read.

Max registers are not going to help us, as the lower bound applies when con-
structing them. We need a twist, and that’s requiring a bound on the maximum
value the counter – and thus the max registers – can attain.

Definition 11.15 (Bounded Max Register). A max register with maximum
value M ∈ N is the object given by S = {0, . . . ,M}, s0 = 0, R = S ∪ {⊥}, O =
{read,write(i) | i ∈ S}, and, for all i, j ∈ S, t(read, i) = (i, i) and t(write(i), j) =
(max{i, j},⊥).

Definition 11.16 (Bounded Counter). A counter with maximum value M ∈ N
is the object given by S = {0, . . . ,M}, s0 = 0, R = S∪{⊥}, O = {read, increment},
and, for all i ∈ S, t(read, i) = (i, i) and t(increment, i) = (min{i+ 1,M},⊥).

Before discussing how to implement bounded max registers, let’s see how we
obtain an efficient wait-free linearizable bounded counter from them.

Lemma 11.17. Suppose we are given two atomic counters of maximum value
M that support k incrementing nodes (i.e., no more than k different nodes
have the ability to use the increment operation) and an atomic max register of
maximum value M . Then we can implement a counter with maximum value M
and the following properties.

• It supports 2k incrementing nodes.

• It is linearizable.

• All operations are wait-free.

• The step complexity of reads is 1, a read of a max register.

• The step complexity of increments is 4, where only one of the steps is a
counter increment.
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Proof. Denote the counters by C1 and C2 and assign k nodes to each of them.
Denote by R the max register. To read the new counter C, one simply reads R.
To increment C, a node increments its assigned counter, reads both counters,
and writes the sum to R. Obviously, we now support 2k incrementing nodes,
all operations are wait-free, and their step complexity is as claimed. Hence, it
remains to show that the counter is linearizable.

Fix an execution of this implementation of C. We need to construct a cor-
responding execution of a counter of maximum value M . At each point in time,
we rule that the state of C is the state of R.2 Thus, we can map the sequence of
read operations to the same sequence of read operations; all that remains is to
handle increments consistently. Suppose a node applies an increment. Denote
by σ the sum of the two counter values right after it incremented its assigned
counter. At this point, r < σ, where r denotes the value stored in R, as no node
ever writes a value larger than the sum it read from the two counters to R. As
the node reads C1 and C2 after incrementing its assigned counter, it will read
a sum of at least σ and subsequently write it to R. We conclude that at some
point during the increment operation the node performs on C, R will attain a
value of at least σ, while before it was smaller than σ. We map the increment
of the node to this step.

To complete the proof, we need to check that the result is a valid lineariza-
tion. For each operation o, we have chosen a linearization point l(o) during the
part of the execution in which the operation is performed. Thus, if o precedes
o′, we trivially have that l(o) < l(o′). As only reads have return values different
from ⊥ and clearly their return values match the ones they should have for
a max register whose state is given by R, we have indeed constructed a valid
linearization.

Corollary 11.18. We can implement a counter with maximum value M and
the following properties.

• It is linearizable.

• All operations are wait-free.

• The step complexity of reads is 1.

• The step complexity of each increment operation is 3dlog ne+ 1.

• Its base objects are O(n) atomic read/write registers and max registers of
maximum value M .

Proof. W.l.o.g., suppose n = 2i for some i ∈ N0. We show the claim by induction
on i, where the bound on the step complexity of increments is 3i + 1. For the
base case, observe that a linearizable wait-free counter with a single node that
may increment it is given by a read/write register that is written by that node
only, and it has step complexity 1 for all operations.

Now assume that the claim holds for some i ∈ N0. By the induction hypoth-
esis, we have linearizable wait-free counters supporting 2i incrementing nodes

2This is a slight abuse of notation, as it means that multiple increments may take effect at
the same instant of time. Formally, this can be handled by splitting them up into individual
increments that happen right after each other.
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Figure 11.4: The recursive construction from Corollary 11.18, resulting in a
tree. The leaves are simple read/write registers, which can be used as atomic
counters with a single writer. A subtree of depth d implements a linearizable
counter supporting 2d writers, and by Lemma 11.13 it can be treated as atomic.
Using a single additional max register, Lemma 11.19 shows how construct a
counter supporting 2d+1 writers using 2 counters supporting 2d writers.

(with the “right” step complexities and numbers of registers). If these were
atomic, Lemma 11.17 would immediately complete the induction step. Apply-
ing Lemma 11.13, it suffices that they are linearizable implementations, i.e., the
induction step succeeds.

Remarks:

• This is an application of a reliable recipe: Construct something linearizable
out of atomic base objects, “forget” that it’s an implementation, pretend
its atomic, rinse and repeat.

• Doing it without Lemma 11.13 would have meant to unroll the argument
for the entire tree construction of Corollary 11.18, which would have been
cumbersome and error-prone at best.

11.3.3 Max Registers from RW Registers

The construction of max registers with maximum value M from basic RW reg-
isters is structurally similar.

Lemma 11.19. Suppose we are given two atomic max registers of maximum
value M and an atomic read/write register. Then we can implement a max
register with maximum value 2M and the following properties from these.

• It is linearizable.

• All operations are wait-free.

• Each read operation consists of one read of the RW register and reading
one of the max registers.
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• Each write operation consists of at most one read of the RW register and
writing to one of the max registers.

The construction is given in Algorithm 26. The proof of linearizability is left
for the exercises.

Algorithm 26 Recursive construction of a max register of maximum value 2M
from two max registers of maximum value M and a read/write register.

Given: max registers R< and R≥ of maximum value M , and RW register
switch, all initialized to 0.

read
1: if switch = 0 then
2: return R<.read
3: else
4: return M +R≥.read
5: end if

write(i)
6: if i < M then
7: if switch = 0 then
8: R<.write(i)
9: end if

10: else
11: R≥.write(i−M)
12: switch := 1
13: end if
14: return ⊥

Corollary 11.20. We can implement a max register with maximum value M
and the following properties.

• It is linearizable.

• All operations are wait-free.

• The step complexity of all operations is O(logM).

• Its base objects are O(M) atomic read/write registers.

Proof sketch. Like in Corollary 11.18, we use Lemmas 11.13 and 11.19 induc-
tively, where in each step of the induction the maximum value of the register is
doubled. The base case of M = 1 is given by a read/write register initialized to
0: writing 0 requires no action, and writing 1 can be safely done, since no other
value is ever (explicitly) written to the register; since both reads and writes
require at most one step, the implementation is trivially linearizable.

Theorem 11.21. We can implement a counter with maximum value M and
the following properties.

• It is linearizable.

• All operations are wait-free.

• The step complexity of reads is O(logM).
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Figure 11.5: The recursive construction from Corollary 11.20, resulting in a tree.
The leaves are simple read/write registers, which can be used as atomic max
registers with maximum value 1. A subtree of depth d implements a linearizable
max register of maximum value 2d, and by Lemma 11.13 it can be treated as
atomic. Using a single read/write register “switch,” Lemma 11.19 shows how
to control access to two max registers with maximum value 2d to construct one
with maximum value 2d+1.

• The step complexity of each increment operation is O(logM log n).

• Its base objects are O(nM) atomic read/write registers.

Proof. We apply Lemmas 11.13 and 11.18 to the implementations of max reg-
isters of maximum value M given by Corollary 11.20. The step complexities
follow, as we need to replace each access to a max register by the step complex-
ity of the implementation. Similarly, the total number of registers is the number
of read/write registers per max register times the number of used max registers
(plus an additive O(n) read/write registers for the counter implementation that
gets absorbed in the constants of the O-notation).

Remarks:

• As you will show in the exercises, writing to R< only if switch reads 0 is
crucial for linearizability.

• If M is nO(1), reads and writes have step complexities of O(log n) and
O(log2 n), respectively, and the total number of registers is nO(1). As for
many algorithms and data structures only polynomially many increments
happen, this is a huge improvement compared to the linear step complexity
the lower bound seems to imply!

• If one has individual caps ci on the number of increments a node may per-
form, one can use respectively smaller registers. This improves the space
complexity to O(log n

∑n
i=1 ci), as on each of the dlog ne hierarchy levels

(read: levels of the tree) of the counter construction, the max registers
must be able to hold

∑n
i=1 ci in total, but not individually.
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• For instance, if one wants to know the number of nodes participating in
some algorithm or subroutine, this becomes O(n log n).

• One can generalize the construction to cap the step complexity at n. How-
ever, at this point the space complexity is already exponential.

What to take Home

• This is another example demonstrating how lower bounds do more than
just giving us a good feeling about what we’ve done. The lower bound
was an essential guideline for the max register and counter constructions,
as it told us that the bottleneck was the possibility of a very large number
of increments!

• Advanced RMW registers are very powerful. At the same time, this means
they are very expensive.

• Understanding and proving consistency for objects that should behave
like they are accessed sequentially is challenging. One may speculate that
we’re not seeing the additional computational power of multi-processor
systems with many cores effectively used in practice, due to the difficulty
of developing scalable parallel software.

Bibliographic Notes

This lecture is based largely on two papers: Jayanti et al. [JTT00] proved the
lower bounds on the space and step complexity of counters and, as discussed in
the remarks, many other shared data structures. The presented counter imple-
mentation was developed by Aspnes et al. [AACH12]. In this paper, it is also
shown how to use the technique to implement general monotone circuits (i.e.,
things only “increase,” like for a counter), though the result is not linearizable,
but satisfies a weaker consistency condition. Moreover, the authors show that
randomized implementations of max registers with maximum value n must have
step complexity Ω(log n/ log log n) for read operations, assuming that write op-

erations take logO(1) n steps. In this sense their deterministic implementation
is almost optimal!

Randomization [AC13] or using (deterministic) linearizable snapshots that
support only polynomially many write operations of the underlying data struc-
ture [AACHE12] are other ways to circumvent the linear step complexity lower
bound. Finally, any implementation of a max register of maximum value M
from historyless objects requires Ω(min{M,n}) space [AACHH12].
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