Exercise 5: Size matters!

Task 1: As small as possible, please?

A forest decomposition of a graph \(G = (V,E) \) is a decomposition of \(G \) into directed forests \(F_1 = (V,E_1), \ldots, F_f = (V,E_f) \), such that (i) each \(e \in E \) occurs in one and only one \(E_i \), and (ii) every \(v \in V \) knows, for every forest \(F_i \), its parent node w.r.t. \(F_i \) if applicable.

Consider the following minimum dominating set (MDS) approximation algorithm, where \(P(v) \) is the set of parents of \(v \). Let \(M \) be an MDS of \(G \).

Algorithm 1 MDS approximation algorithm based on a forest decomposition.

1: \(H := \left(V, \left\{ \{v,w\} \in \binom{V}{2} \mid P(v) \cap P(w) \neq \emptyset \right\} \right) \)
2: compute an MIS \(I \) of \(H \)
3: \(D := \bigcup_{v \in I} P(v) \)
4: add all \(v \in V \setminus D \) without a neighbor in \(D \) to \(D \)
5: return \(D \)

a) Show that Algorithm 1 can be implemented in the synchronous message passing model with running time \(O(\log n) \) w.h.p.!

b) Denote by \(V_C \subseteq V \) the set of nodes that are in \(M \) or have a child in \(M \). Show that \(|V_C| \leq (f+1)|M| \)

c) Denote by \(V_P \subseteq V \) the set of nodes that have some parent in \(M \). Show that \(|I \cap V_P| \leq |M| \)

d) Prove that after Line 3 of the Algorithm 1, at most \((f+1)|M|\) nodes are not covered by \(D \).

e) Conclude that Algorithm 1 computes a dominating set that is at most by factor \(O(f^2) \) larger than the optimum!

Hint: \(V = V_C \cup V_P \).

f)* Show that even if we restrict message size to \(O(\log n) \) bits, the algorithm can be implemented with running time \(O(\log n) \) w.h.p.

Task 2: Lots of Wood

Denote by \(A(G) \) the arboricity of \(G = (V,E) \), i.e., the minimum number of forests into which \(E \) can be decomposed. Our goal in this exercise is to decompose \(G \) into \(f \in O(A) \) forests.

Algorithm 2 Forest decomposition, \(A(G) \) is known.

1: while \(V \neq \emptyset \) do
2: \hspace{1em} for all \(v \in V \) with \(\delta_v \leq 4A(G) \) in parallel do
3: \hspace{2em} \(v \) assigns its incident edges to different forests \(F_1, \ldots, F_{4A(G)} \)
4: \hspace{2em} delete \(v \) (and its incident edges) from \(G \)
5: \hspace{1em} end for
6: \hspace{1em} end while
7: return the computed forests (each node knows its parent in \(F_1, \ldots, F_{4A(G)} \))
a) Show that in each iteration of the WHILE loop, at least half of the remaining nodes are deleted!

Hint: Assume that this is false and bound the number of remaining edges from below. Compare the result to the maximum number of edges in \(A(G) \) forests.

b) Conclude that the algorithm computes a decomposition of \(G \) into at most \(4A(G) \) forests in \(O(\log n) \) rounds!

c) Change the algorithm so that it does not require knowledge of \(A(G) \), but instead relies on an upper bound \(N \in n^{O(1)} \) on \(n! \). You may use up to \(8A(G) \) forests and increase the running time of the algorithm by a factor of \(O(\log A(G)) \)!

d) Conclude that in graphs of arboricity \(A \), a factor-\(O(A^2) \) approximation to \(MDS^2 \) can be found in \(O(\log n \log A) \) rounds w.h.p., provided that an upper bound \(N \in n^{O(1)} \) on \(n \) is known!

e)* Can you do it in \(O(\log n) \) rounds if \(A \) is unknown, but an upper bound \(N \in n^{O(1)} \) on \(n \) is known?

Task 3*: Exponential Enhancement

a) Why is Chernoff’s bound called Chernoff’s bound?

b) Show that for independent variables \(X_i, i \in I \), \(\mathbb{E} \left[\prod_{i \in I} X_i \right] = \prod_{i \in I} \mathbb{E}[X_i] \).

c) Let \(X_i, i \in I \), be random variables, and define \(X = \sum_{i \in I} X_i \). Use Markov’s bound to show that for arbitrary \(t, \delta > 0 \),

\[
P[X \geq (1 + \delta)\mathbb{E}[X]] \leq \frac{\mathbb{E} \left[\prod_{i \in I} e^{tX_i} \right]}{e^{t(1+\delta)\mathbb{E}[X]}}.
\]

d) Use b) and c) to infer that if the \(X_i \) are independent Bernoulli variables, then

\[
P[X \geq (1 + \delta)\mathbb{E}[X]] \leq e^{t(1+\delta)^2}\mathbb{E}[X].
\]

e) Plug in \(t := \ln(1 + \delta) \). You obtain the upper tail bound; choosing \(\delta \in (0, 1) \) and \(t = 1 - \delta \) yields the lower tail bound. The bounds derived here are stronger than those in the lecture, but more unwieldy. For most applications, the simpler versions suffice.

f) Enlarge the knowledge of the exercise group by reporting your findings!

1Forest decompositions into \(f \) forests are particularly interesting if \(f \geq A(G) \) is small, hence usually \(\log A(G) \) is very small!

2Read: “a dominating set at most a constant factor larger than an MDS.”

3Note that one has to introduce a minus sign in the exponents in b) to still be able to apply Markov’s inequality.