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Mantra

Ideally, one should be able to run a pre-processing
algorithm before running any algorithm,

parameterized/approximation/heuristics, on the
input.
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An important drawback!

But the notion of kernelization, as we have
been seeing, does not combine well with

approximation algorithms or with
heuristics.
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Why?(I, k)

Polynomial Time

(I 0, k0)

|I 0|, k0  f(k)

‚ Run 2-approximation on pI 1, k1q and get solution S.

‚ Can we use S to get solution for I?

‚ The current definition provides no insight whatsoever about
the original instance.

‚ If we have an α-approximate solution to pI 1, k1q there is no
guarantee that we will be able to get an α-approximate
solution to pI, kq, or even able to get any feasible solution
to pI, kq.
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Some Remarks

‚ In practice most kernels are okay.

It is primarily a limitation of the definition.
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Definition is broken :(

Let us fix it.

6



Definition is broken :(

(I, k) (I 0, k0)

Yes Yes

optimal optimal

Polynomial Time
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Definition is broken :(

(I, k) (I 0, k0)

optimal optimal

Polynomial Time

Useful information in reduced instance gives useful information
in the original instance.
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Kernel?

(I, k) (I 0, k0)

c-factor
approximationapproximation

Polynomial Time

c-factor

Observe that the inequality should hold for all values of c.

If allowing loss in reduced instance why not allow loss in
reduction itself!
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α-Approximate/Lossy Kernel (Rough
Version)

(I, k) (I 0, k0)

c-factor
approximationapproximation

↵c-factor

Observe that the inequality should hold for all values of c.
Solution for reduced instance ùñ α bad solution for original
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Technicalities

Approximation is about optimization problems.

Most of the parameterized/kernelization algorithms are
built around decision problems.

Need a notion of parameterized optimization problems.
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Parameterized Optimization Problems

Definition
A parameterized optimization (minimization or maximization)
problem Π is a computable function

Π : Σ˚ ˆ N ˆ Σ˚ Ñ R Y t˘8u.

‚ Instances of a parameterized optimization problem Π are
pairs pI, kq P Σ˚ ˆ N.

‚ A solution to pI, kq is simply a string s P Σ˚, such that
|s| ď |I| ` k.

‚ The value of the solution s is ΠpI, k, sq.
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‚ Just as for “classical” optimization problems the instances
of Π are given as input, and the algorithmic task is to find
a solution with the best possible value.

‚ Best means minimization and maximization.

‚ So we need a notion of optimum for parameterized
optimization problems.
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Optimum Value

Definition
For a parameterized minimization problem Π, the optimum
value of an instance pI, kq P Σ˚ ˆ N is

OPTΠpI, kq “ min
sPΣ˚

|s|ď|I|`k

ΠpI, k, sq.

For an instance pI, kq of a parameterized optimization problem
Π, an optimal solution is a solution s such that
ΠpI, k, sq “ OPTΠpI, kq.
For parameterized optimization problems the algorithm has to
produce an optimal solution.
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Example: Connected Vertex Cover

Connected Vertex Cover (CVC) Parameter: k
Input: A graph G “ pV,Eq and a positive integer k.
Question: Does there exist a subset V 1 Ď V of size at most k
such that V 1 is a vertex cover and GrV 1s is connected?
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Example with Connected Vertex Cover

CV CpG, k, Sq “

"

8 if S is not a cvc of the graph G
|S| otherwise

CV CpG, k, Sq “

"

8 if S is not a cvc of the graph G
min t|S|, k ` 1u otherwise
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Kernels for Parameterized Optimization
Problems

(I, k) (I 0, k0)
Polynomial Time

Reduction Algorithm

Solution Lifting Algorithm s0s

optimaloptimal

Kernelization comprises of a pair of algorithms: Reduction
Algorithm and Solution Lifting Algorithm
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α-Lossy Kernels

(I, k) (I 0, k0)
Polynomial Time

Reduction Algorithm

Solution Lifting Algorithm s0s

c-approximate↵c-approximate
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Which of the problems that do not admit
polynomial kernel, admit α-lossy

polynomial kernel?
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Connected Vertex Cover

What are the right question for this problem in
this framework?

‚ It has a factor 2-approximation algorithm (that runs in
polynomial time) ùñ Op1q-sized 2-lossy kernel.

‚ It has no polynomial kernel ùñ no kOp1q-sized 1-lossy
kernel.

‚ So the right question is: does this has α-lossy kernel of
kOp1q-size where 1 ă α ă 2.
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Connected Vertex Cover

What is the best answer one can hope for?

‚ For every α ą 1, it has α-approximate kernel of kfpαq -size.
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How to design α-lossy kernels

‚ We have the notion of safe Reduction Rules for
kernelization.

‚ pI, kq if and only if pI 1, k1q.
pI, kq ðñ pI1, k1q ðñ pI2, k2q ¨ ¨ ¨ ðñ pIℓ, kℓq
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Designing α-lossy kernel
‚ Let us define an analogous notion of α-Safe Reduction

Rules for α-lossy kernelization.
‚ pI, kq ùñ pI 1, k1q. Given a c-approximate solution to

pI 1, k1q, one should get an αc approximate solution for
pI, kq.

(I, k) (I1, k1) (I2, k2)

c↵c↵2c
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α-Safe Reduction Rule

↵ ↵ ↵

‚ s1 be a c-approximate solution to pI 1, k1q

‚ If c ď α then s must be at most α approximate solution to
pI, kq.

‚ If c ą α then s must be at most c approximate solution to
pI, kq.
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α-Safe Reduction Rule

(I, k) (I 0, k0)
Polynomial Time

Reduction Algorithm

Solution Lifting Algorithm s0s

If ⇧ is a minimization problem

then

⇧(I,k,s)
OPT (I,k)  max

n
⇧(I0,k0,s0)
OPT (I0,k0) ,↵

o
.
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Towards α-lossy kernel for Connected
Vertex Cover (CVC)

Recall the reduction rules for kernelization of Vertex Cover.

Reduction Rule
Delete isolated vertices.

Reduction Rule (High degree rule)
Delete a vertex of degree at least k` 1 and pick it in the solution.
We cannot apply Reduction Rule 2.2 for Connected Vertex
Cover.
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Exponential Kernel for CVC

Let H be the set of vertices of degree at least k ` 1 in the graph.
We know H is present in every at most k-sized solution. Thus,
if |H| ě k ` 1, report No-instance. Otherwise, |H| ď k.

If there are at least k2 ` 1 edges in G ´ H, then report
No-instance.
Let R be the set of vertices in G ´ H that are incident on some
edge of G ´ H. Then |R| ď 2k2.

Let I be the remaining vertices of G, that is I “ V pGqzpH Y Rq.
Then NpIq Ď H.
The role of I is only to provide connectivity amongst the
vertices of H.
We want to bound the size of I.
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Exponential kernel for CVC

Reduction Rule
Reduction algorithm: If two vertices of I have the same
neighbourhood, then delete one of them.
Solution lifting algorithm: Every solution of the reduced
instance is a solution of the original instance. In particular, an
optimum solution of the reduced instance is also an optimum
solution of the original instance.
Reduction rule 2.3 is 1-safe. Reduction rule 2.3 implies
|I| ď 2|H| ď 2k. This would immediately give an exponential
kernel.
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α-lossy kernel for CVC

Let d be the least integer such that d
d´1 ď α. In particular,

choose d “ r α
α´1 s.

Reduction Rule
Reduction algorithm: Let v P I be a vertex of degree D ě d.
Delete NGrvs from G and add a vertex w such that the
neighborhood of w is NGpNGpvqqztvu. Then add k degree 1
vertices v1, . . . , vk whose neighbor is w. Output this graph G1,
together with the new parameter k1 “ k ´ pD ´ 1q.
Solution lifting algorithm: Return S “ pS1ztwuq Y NGrvs,
where S1 is a solution for pG1, k1q.

To prove: Reduction rule 2.4 is α-safe, that is,
CV CpI,k,Sq

OPT pI,kq
ď maxt

CV CpI 1,k1,S1q

OPT pI 1,k1q
, αu.
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α-lossy kernel for CVC: Proof of
Reduction rule 2.4

To prove: CV CpI,k,Sq

OPT pI,kq
ď maxt

CV CpI 1,k1,S1q

OPT pI 1,k1q
, αu.

OPT pG1, k1q ď OPT pG, kq ´ pD ´ 1q

If S̃ is an optimum solution for pG, kq, then
S˚ “ S̃zNGpvq Y twu is a solution for pG1, k1q.

CV CpG, k, Sq ď CV CpG1, k1, S1q ` D

This follows from the construction of S (S “ pS1ztwuq Y NGrvs).

CV CpI, k, Sq

OPT pI, kq
ď

CV CpI 1, k1, S1q ` D

OPT pI 1, k1q ´ pD ´ 1q
ď maxt

CV CpI 1, k1, S1q

OPT pI 1, k1q
,

D

D ´ 1
u

ď maxt
CV CpI 1, k1, S1q

OPT pI 1, k1q
, αu

Second inequality follows because because maxta`x
b`y ď maxta

b ,
x
y uu.
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α-lossy kernel for CVC: Size bound

When Reduction rule 2.3 and 2.4 are not applicable, the degree
of each vertex of I is at most d and thus,
|I| ď

`

|H|

ďd

˘

“ Opkdq “ Opkr α
α´1 sq.

Since V pGq “ H Z R Z I, |H| ď k, |R| ď 2k2, and |I| “ Opkdq,
we get an α-lossy kernel for Connected Vertex Cover of
size Opkr α

α´1 s ` k2q, for every α ą 1.
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Further remarks on lossy kernels

1 Unlike Turing kernels, lossy kernels can also be designed for
W-hard problems.

2 Unlike Turing kernels, there is a lower bound machinery
that shows that no lossy kernels exist for certain problems
under reasonable complexity theoretic assumptions. This
theory is developed over the ideas from OR-compositions (a
tool from kernelization lower bound) and gap creating
reductions (a tool from approximation lower bound).
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