Lossy Kernelization

Roohani Sharma

Slides Courtesy: Saket Saurabh

Lecture #14 Contd.
February 08, 2022

Mantra

Ideally, one should be able to run a pre-processing
algorithm before running any algorithm,
parameterized /approximation /heuristics, on the
input.

An important drawback!

But the notion of kernelization, as we have
been seeing, does not combine well with
approximation algorithms or with
heuristics.

Why?

Polynomial Time

1",k < f(k)

Why?

Polynomial Time

1",k < f(k)

® Run 2-approximation on (I’, k') and get solution S.

Why?

[l Pol \HUllllrl Time

1’|,k < f(k
® Run 2-approximation on (I’, k') and get solution S.

e Can we use S to get solution for 17

Why?

Polynomial Time

1",k < f(k)

e Can we use S to get solution for 17

® The current definition provides no insight whatsoever about
the original instance.

Why?

Polynomial Time

'K < f(k)

e If we have an a-approximate solution to (I’, k") there is no
guarantee that we will be able to get an a-approximate
solution to (I, k), or even able to get any feasible solution
to (I, k).

Some Remarks

¢ [n practice most kernels are okay.

Some Remarks

¢ [n practice most kernels are okay.

[t is primarily a limitation of the definition.

Definition is broken :(

Let us fix it.

Definition is broken :(

PorLynomiAL TIME

A ————

YES e —— YES
OPTIMAL <Gss=p OPTIMAL

Definition is broken :(

PoryNoMmIAL TIME

eee——

OPTIMAL <G OPTIMAL

Useful information in reduced instance gives useful information
in the original instance.

Kernel?

PorLyNoMIAL TIME
<eeeeee——

c-factor | <= c-factor
approximation approximation

Observe that the inequality should hold for all values of c.

Kernel?

PorLyNoMIAL TIME
<eeeeee——

c-factor | <= c-factor
approximation approximation

Observe that the inequality should hold for all values of c.
If allowing loss in reduced instance why not allow loss in
reduction itself!

a-Approximate/Lossy Kernel (Rough
Version)

O C-fACtOr g c-factor
approximation approximation

Observe that the inequality should hold for all values of c.
Solution for reduced instance = « bad solution for original

Technicalities

Approximation is about optimization problems.

Technicalities

Approximation is about optimization problems.

Most of the parameterized /kernelization algorithms are
built around decision problems.

Technicalities

Approximation is about optimization problems.

Most of the parameterized /kernelization algorithms are
built around decision problems.

Need a notion of parameterized optimization problems.

Parameterized Optimization Problems

Definition
A parameterized optimization (minimization or maximization)
problem II is a computable function

IT: ¥ xNxY* > Ru{+oo}.

10

Parameterized Optimization Problems

Definition
A parameterized optimization (minimization or maximization)
problem II is a computable function

IT: ¥ xNxY* > Ru{+oo}.

e Instances of a parameterized optimization problem II are
pairs (I, k) € ¥* x N.

10

Parameterized Optimization Problems

Definition
A parameterized optimization (minimization or maximization)
problem II is a computable function

IT: ¥ xNxY* > Ru{+oo}.
e Instances of a parameterized optimization problem II are
pairs (I, k) € ¥* x N.

* A solution to (I, k) is simply a string s € ¥*, such that
ls| < || + k.

10

Parameterized Optimization Problems

Definition
A parameterized optimization (minimization or maximization)
problem II is a computable function

IT: ¥ xNxY* > Ru{+oo}.

e Instances of a parameterized optimization problem II are
pairs (I, k) € ¥* x N.

* A solution to (I, k) is simply a string s € ¥*, such that
ls| < || + k.

® The value of the solution s is TI(1, k,).

10

e Just as for “classical” optimization problems the instances
of IT are given as input, and the algorithmic task is to find
a solution with the best possible value.

e Best means minimization and maximization.

11

e Just as for “classical” optimization problems the instances
of IT are given as input, and the algorithmic task is to find
a solution with the best possible value.

¢ Best means minimization and maximization.

® So we need a notion of optimum for parameterized
optimization problems.

11

Optimum Value

Definition
For a parameterized minimization problem II, the optimum
value of an instance (I,k) € ¥* x N is

OPTn(I,k) = min II(I,k,s).

sex*
\si<T|+k

12

Optimum Value

Definition
For a parameterized minimization problem II, the optimum
value of an instance (I,k) € ¥* x N is

OPTn(I,k) = min II(I,k,s).
sex*
|s| <[]+
For an instance (I, k) of a parameterized optimization problem
II, an optimal solution is a solution s such that

(I, k,s) = OPTu(I, k).

12

Optimum Value

Definition
For a parameterized minimization problem II, the optimum
value of an instance (I,k) € ¥* x N is

OPTn(I,k) = min II(I,k,s).
sex*
|s| <[]+
For an instance (I, k) of a parameterized optimization problem
II, an optimal solution is a solution s such that
(I, k,s) = OPTy(I,k).
For parameterized optimization problems the algorithm has to
produce an optimal solution.

12

Example: Connected Vertex Cover

CONNECTED VERTEX COVER (CVC) Parameter: k
Input: A graph G = (V, E) and a positive integer k.
Question: Does there exist a subset V/ < V of size at most k
such that V' is a vertex cover and G[V'] is connected?

13

Example with Connected Vertex Cover

oo if S is not a cvc of the graph G
|S| otherwise

CVC(G,k,S) = {

14

Example with Connected Vertex Cover

oo if S is not a cvc of the graph G
|S| otherwise

CVC(G,k,S) = {

oo if S is not a cvc of the graph G

CVC(G,E,S) = { min {|S|,k + 1} otherwise

14

Kernels for Parameterized Optimization

Problems
PorynoMIAL TIME
[———
Reduction Algorithm
S < ' /
. Solution Lifting Algorithm S
optimal optimal

Kernelization comprises of a pair of algorithms: Reduction
Algorithm and Solution Lifting Algorithm

15

S

ac-approximate

a-Lossy Kernels

PorLyNOoMIAL TIME

e ——
Reduction Algorithm

< ! /
Solution Lifting Algorithm S

c-approximate

16

Which of the problems that do not admit
polynomial kernel, admit a-lossy
polynomial kernel?

17

Connected Vertex Cover

18

Connected Vertex Cover

What are the right question for this problem in
this framework?

e It has a factor 2-approximation algorithm (that runs in
polynomial time) = (O(1)-sized 2-lossy kernel.

18

Connected Vertex Cover

What are the right question for this problem in
this framework?

e It has a factor 2-approximation algorithm (that runs in
polynomial time) = (O(1)-sized 2-lossy kernel.

e It has no polynomial kernel — no k9M-sized 1-lossy
kernel.

18

Connected Vertex Cover

What are the right question for this problem in
this framework?

e It has a factor 2-approximation algorithm (that runs in
polynomial time) = (O(1)-sized 2-lossy kernel.

e It has no polynomial kernel — no k®M-sized 1-lossy
kernel.

¢ So the right question is: does this has a-lossy kernel of
k9 _size where 1 < a < 2.

18

Connected Vertex Cover

What is the best answer one can hope for?

19

Connected Vertex Cover

What is the best answer one can hope for?

e For every a > 1, it has a-approximate kernel of i/ (@) _gize.

19

How to design a-lossy kernels

20

How to design a-lossy kernels

e We have the notion of safe Reduction Rules for
kernelization.

® (I,k) if and only if (I, k).
(I,k) < (I,k1) < (I2,ke) -+ <= (Is, k)

20

Designing a-lossy kernel
® Let us define an analogous notion of a-Safe Reduction
Rules for a-lossy kernelization.
® (I,k) = (I',K'). Given a c-approximate solution to

(I', k'), one should get an ac approximate solution for
(1, k).

21

Designing a-lossy kernel
® Let us define an analogous notion of a-Safe Reduction
Rules for a-lossy kernelization.
® (I,k) = (I',K'). Given a c-approximate solution to
(I', k'), one should get an ac approximate solution for

(I,k).
,:.,:,
o’c <==m ac N ¢

21

a-Safe Reduction Rule

A A A

* s’ be a c-approximate solution to (I, k')

e [f ¢ < o then s must be at most a approximate solution to

(I, k).

e [f ¢ > o then s must be at most ¢ approximate solution to
(1, k).

22

a-Safe Reduction Rule

PoryNoMIAL TIME

I ——
Reduction Algorithm

S (= /
Solution Lifting Algorithm S

If II is a minimization problem
then

N(1ks) (1 ks
OPT(T k) =M\ opr(1 k) ¥ (-

23

Towards a-lossy kernel for CONNECTED
VERTEX COVER (CVC)

Recall the reduction rules for kernelization of VERTEX COVER.

Reduction Rule
Delete isolated vertices.

Reduction Rule (High degree rule)

Delete a vertex of degree at least k+ 1 and pick it in the solution.

We cannot apply Reduction Rule 2.2 for CONNECTED VERTEX
COVER.

24

Exponential Kernel for CVC

Let H be the set of vertices of degree at least k + 1 in the graph.
We know H is present in every at most k-sized solution. Thus,
if |H| = k + 1, report No-instance. Otherwise, |H| < k.

25

Exponential Kernel for CVC

Let H be the set of vertices of degree at least k + 1 in the graph.

We know H is present in every at most k-sized solution. Thus,
if |H| = k + 1, report No-instance. Otherwise, |H| < k.

If there are at least k% + 1 edges in G — H, then report
No-instance.

Let R be the set of vertices in G — H that are incident on some
edge of G — H. Then |R| < 2k°.

25

Exponential Kernel for CVC

Let H be the set of vertices of degree at least k + 1 in the graph.

We know H is present in every at most k-sized solution. Thus,
if |H| = k + 1, report No-instance. Otherwise, |H| < k.

If there are at least k% + 1 edges in G — H, then report
No-instance.

Let R be the set of vertices in G — H that are incident on some
edge of G — H. Then |R| < 2k°.

Let I be the remaining vertices of GG, that is I = V(G)\(H U R).

Then N(I)< H.

The role of I is only to provide connectivity amongst the
vertices of H.

We want to bound the size of I.

25

Exponential kernel for CVC

Reduction Rule

Reduction algorithm: If two vertices of I have the same
neighbourhood, then delete one of them.

Solution lifting algorithm: Every solution of the reduced
wmstance is a solution of the original instance. In particular, an
optimum solution of the reduced instance is also an optimum
solution of the original instance.

Reduction rule 2.3 is 1-safe. Reduction rule 2.3 implies

7] < 2171 < 2%, This would immediately give an exponential
kernel.

26

a-lossy kernel for CVC

Let d be the least integer such that dfdl < «. In particular,
choose d = [-2-].

a—1

Reduction Rule

Reduction algorithm: Let v € I be a vertex of degree D > d.
Delete Ng[v] from G and add a vertex w such that the
neighborhood of w is N (Ng(v))\{v}. Then add k degree 1
vertices vy, . .., v whose neighbor is w. Output this graph G’,
together with the new parameter k' =k — (D — 1).

Solution lifting algorithm: Return S = (S"\{w}) U Ng[v],
where S” is a solution for (G' k).

27

a-lossy kernel for CVC

Let d be the least integer such that dfdl < «. In particular,
choose d = [-2-].

a—1

Reduction Rule

Reduction algorithm: Let v € I be a vertex of degree D > d.
Delete Ng[v] from G and add a vertex w such that the
neighborhood of w is N (Ng(v))\{v}. Then add k degree 1
vertices vy, . .., v whose neighbor is w. Output this graph G’,
together with the new parameter k' =k — (D — 1).

Solution lifting algorithm: Return S = (S"\{w}) U Ng[v],
where S” is a solution for (G' k).

To prove: Reduction rule 2.4 is a-safe, that is,

CVC(LES) _ {CVC(I/,k',S/))
OPT(Ik) SWMAXN"GprI iy

27

a-lossy kernel for CVC: Proof of
Reduction rule 2.4

T CVC(IE,S) K [CVCU RS
O Prove: ~Gprrhy S MaXA—Gprm iy

OPT(G',K') < OPT(G,k) — (D —1)
If S is an optimum solution for (G, k), then
= S\Ng(v) U {w} is a solution for (G, k).

28

a-lossy kernel for CVC: Proof of
Reduction rule 2.4

T CVC(lk,S) {C’VC’(I’ 0 |
O Prove: ~Gprrhy S MaXA—Gprm iy

OPT(G',K') < OPT(G,k) — (D —1)
If S is an optimum solution for (G, k), then
= S\Ng(v) U {w} is a solution for (G, k).

CVC(G,k,S) < CVC(GK,S")+ D
This follows from the construction of S (S = (S"\{w}) u Ng[v]).

28

a-lossy kernel for CVC: Proof of
Reduction rule 2.4

T CVC(lk,S) {C’VC’(I’k’S’) |
O Prove: ~Gprrhy S MaXA—Gprm iy

OPT(G',K') < OPT(G,k) — (D —1)
If S is an optimum solution for (G, k), then
= S\Ng(v) U {w} is a solution for (G, k).

CVC(G,k,S) < CVC(GK,S")+ D
This follows from the construction of S (S = (S"\{w}) u Ng[v]).

CVC(Lk,S) _ CVCUI'K,8)+D max ovo(r,k',sy D
OPT(I,k) ~ OPT(I',k)—(D—1) OPT(I',K') "D -1
cve(r', K, s
oPTr)

}

< max{

Second inequality follows because because max{f " ‘””” < max{f, {}}

28

a-lossy kernel for CVC: Size bound

When Reduction rule 2.3 and 2.4 are not applicable, the degree
of each vertex of I is at most d and thus,

11 < () = o(x?) = okl==11),

29

a-lossy kernel for CVC: Size bound

When Reduction rule 2.3 and 2.4 are not applicable, the degree
of each vertex of I is at most d and thus,

1 < (4)) = okt = ol =1,

Since V(G) = Hw Rw I, |H| < k, |R| < 2k?, and |I| = O(k%),
we get an a-lossy kernel for CONNECTED VERTEX COVER of
size O(k[ﬁ] + k?), for every a > 1.

29

Further remarks on lossy kernels

@ Unlike Turing kernels, lossy kernels can also be designed for
W-hard problems.

® Unlike Turing kernels, there is a lower bound machinery
that shows that no lossy kernels exist for certain problems
under reasonable complexity theoretic assumptions. This
theory is developed over the ideas from OR-compositions (a
tool from kernelization lower bound) and gap creating
reductions (a tool from approximation lower bound).

30

	Introduction
	Introduction

