1 Pictorial Structures

Points: 20

The goal of this exercise is to implement a simplified version of the pictorial structures model, although using an efficient algorithm, and test it on a pedestrian dataset. You are going to use a star model over (upper and lower) legs, head, and torso as follows:

Each L_i in this distribution is actually a two dimensional random variable representing image coordinates of the center of each body part: $L_i = (x_i, y_i)$. Scale and rotation is not considered here. Unary factors represent likelihoods.
p(e_i|L_i) and pairwise factors stand for kinematic priors \(p(L_i, L_j) \). You will learn the priors from a training dataset. Then, you will make inference on test images, for which you are given the corresponding likelihood maps.

The first step is to download “assignment02-data.zip” from the lecture’s website and import the “data.mat”. Variable \texttt{likelihoods\{j,i\}} is the 2D likelihood map \(p(e_i|L_i) \) for image number \(j \). The images are to be found in directory \texttt{testset} for reference. Index \(i \) is as follows:

<table>
<thead>
<tr>
<th>(i)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Lower leg Left</td>
</tr>
<tr>
<td>2</td>
<td>Upper leg Left</td>
</tr>
<tr>
<td>3</td>
<td>Upper leg Right</td>
</tr>
<tr>
<td>4</td>
<td>Lower leg Right</td>
</tr>
<tr>
<td>5</td>
<td>Head</td>
</tr>
<tr>
<td>6</td>
<td>Torso</td>
</tr>
</tbody>
</table>

Variable \texttt{train} contains training data. Columns \(i \) are numbered as before and every row \(j \) represents a sample \(L^{(j)} \).

2 Learning Kinematic Priors

Points: 4

We set the prior as a 2D Gaussian \(p(L_i, L_j) \approx N(L_i - T_{ij}(L_j); 0, \Sigma_{ij}) \) and we define the transformation \(T_{ij}(L_i) = L_j - \mu_{ij} \). This is a reasonable approximation for small joint rotations, as it is the case for pedestrians. The parameters to be determined for each prior are thus \(\Sigma_{ij} \) and \(\mu_{ij} \). Write function \texttt{pairwisePotts = learnPairwisePotts(train)} which, for each body part, computes ML estimate of \(\mu_{ij} \) as a row vector \texttt{pairwisePotts\{i,1\}} and of \(\Sigma_{ij} \) as \texttt{pairwisePotts\{i,2\}}. Use the \texttt{mean} and \texttt{cov} matlab functions.

3 Maximal Marginal States

Points: 6

The goal is to compute maximal marginals of the model using sum-product algorithm. Write function \texttt{maxstates = sumproduct(pairwisePotts, unaryPotts)} doing this. It returns a 6x2 matrix of x,y coordinates.

- Note that the graph is not a chain but a tree, so you have to think about the correct message scheduling.

- You will need computations like
 \[f(L_i) = \sum_{L_j} N(L_i - T_{ij}(L_j))g(L_j) \]
 in your code. However, summing over \(L_j \) is nearly infeasible due to the huge state space. That’s why one computes the sum as a convolution:
 \[f(L_i) = \sum_s N(L_i - s)g(T_{ij}^{-1}(s)) = (N * (g \circ T_{ij}^{-1}))(L_i) \]
 with \(s = T_{ij}(L_j) \).
 Moreover, one uses a diagonal covariance here so that the Gaussian is separable. Functions \texttt{fspecial}, \texttt{conv2} and the prepared file \texttt{shiftimg.m}
(it shifts a given image for a given 2D offset) will be useful here. Take care when computing messages in the opposite direction.

- You can visualize your maxima using `drawmaxima.m`. You can compare your results for the first 10 images with the official solution in directory `solution`. If your results are better than ours, let us know.
- Hint: remember that we work with (x,y) vectors but Matlab indexes its matrices by (row, column).

4 Mode

Points: 6

The goal is to compute the maximum state of the joint distribution using min-sum algorithm (i.e. using negated log potentials). Write function `maxstates = minsum(pairwisePotts, unaryPotts)` doing this. It returns a 6x2 matrix of x, y coordinates.

- For efficiency reasons, we compute minimizations using the generalized distance transform: $min_{L_j} -log[N(L_i-T_{ij}(L_j))]-log[g(L_j)] = min_s \delta(L_i,s) - log[g(T^{-1}_{ij}(s))] = DT(-log[g(T^{-1}_{ij}(s))]).$ You can find the code in DT.m; the function takes covariance matrix of the Gaussian as the second argument.
- Unfortunately, DT doesn’t give you the argmin, just the min. For this reason, you can’t do backtracking and you need to implement the min-sum algorithm as in the lecture on max-sum algorithm earlier, i.e. computing all messages (that’s two messages per edge) and taking a node-wise minimum. This will probably fail on potential ties (multiple modes) but that’s fine in this exercise.

5 Evaluation

Points: 4

Evaluation (4 pts)

Now you are going to evaluate the model as a person detector by writing a script `evaluation.m`. To make it simple, fix a bounding box of size 80x200px around the torso (horizontally centered at it, vertically offset in 1:2 ratio). A predicted bounding box is considered correct if it overlaps more than 50% with a ground-truth bounding box, otherwise the bounding box is considered a false positive detection. Ground truth can be found as variable `GT` in the supplied mat file, each row is a rectangle $[x1, y1, w, h]$. Bounding box overlap is computed using `boxoverlap.m` function which is provided for your convinience.

Compute bounding boxes for each test image using three ways of choosing the torso:
• Torso as the result of min-sum.
• Torso as the result of max-product.
• Torso as the maximum of a torso’s likelihood, which corresponds to using no model at all.

The result is the accuracy (correct:all) of each method. Note that you can visualize your bounding boxes and detections using `drawmaxima.m`.